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a b s t r a c t

The zinc tetrathiolate (ZnS4) cluster is an important structural feature of endothelial nitric oxide synthase
(eNOS). The cluster is located on the dimeric interface and four cysteine residues (C94 and C99 from two
adjacent subunits) form a cluster with a Zn ion in the center of a tetrahedral configuration. Due to its high
sensitivity to oxidants this cluster is responsible for eNOS dimer destabilization during periods of redox
stress. In this work we utilized site directed mutagenesis to replace the redox sensitive cysteine residues
in the ZnS4 cluster with redox stable tetra-arginines. Our data indicate that this C94R/C99R eNOS mutant
is active. In addition, this mutant protein is insensitive to dimer disruption and inhibition when
challenged with hydrogen peroxide (H2O2). Further, the overexpression of the C94R/C99R mutant
preserved the angiogenic response in endothelial cells challenged with H2O2. The over-expression of the
C94R/C99R mutant preserved the ability of endothelial cells to migrate towards vascular endothelial
growth factor (VEGF) and preserved the endothelial monolayer in a scratch wound assay. We propose
that this dimer stable eNOS mutant could be utilized in the treatment of diseases in which there is eNOS
dysfunction due to high levels of oxidative stress.

& 2014 The Authors. Published by Elsevier B.V. All rights reserved.

Introduction

Metallo-enzymes can coordinate zinc ions (Zn) through cysteine
or histidine residues. The Zn ion can coordinate four ligands in
a tetrahedral structure. In this work we focused on the ZnS4 cluster
in endothelial nitric oxide synthase (eNOS). Endothelial NOS, like
all NOS isoforms, is a homodimeric enzyme with the ZnS4 cluster
at the dimeric interface. The cluster is formed by four sulfur atoms
from two cysteine residues C94 and C99 from each monomer
(Fig. 1). It is well established that the dimeric configuration is
required for nitric oxide (NO) generation by NOS [1,2]. Thus, the
ZnS4 cluster is an important contributor to the proper folding of
eNOS enzyme. However, the four sulfur atoms in the tetrahedral
configuration are very sensitive to oxidation, leading to eNOS

dimer disruption and attenuated NO production [3,4]. The distance
between sulfur atoms in the ZnS4 cluster is equal to the distance
between sulfur atoms in (S–S) disulfide bond. Therefore, the
formation of an intermediate with a two-center three-electron
bond between two sulfur atoms is very favorable (Fig. 1) [5].
Further oxidation of the three-electron (S–S) intermediate requires
significantly less energy than oxidation of free cysteine, therefore,
oxidation of cysteine residues in the ZnS4 cluster can occur even
under conditions of mild oxidative stress.

As eNOS dependent vasodilation is an important mechanism
regulating vascular tone, the disruption of eNOS activity under
conditions of oxidative stress, can induce pathological changes in
blood vessels that can lead to a number of diseases including
atherosclerosis, diabetes mellitus and hypertension [6–8]. Thus,
maintaining NO production is a primary goal in the treatment of
cardiovascular disorders. The purpose of this study was to design
an eNOS enzyme that is insensitive to oxidative stress. It has been
previously reported that arginine rich structures can be stabilized
by the formation of strong electrostatic interactions between arginine
residues and negative ions such as phosphate or chloride [9].
We report here that the replacement of the ZnS4 cluster with a
tetra-arginine cluster results in a catalytically competent enzyme.
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This engineered eNOS is resistant to oxidative dimer disruption and is
able to produce NO in an environment of enhanced oxidative stress.

Materials and methods

Molecular dynamic simulations

Molecular dynamic (MD) simulations were performed using
Yasara. The Amber 99 all-hydrogen force field was used in the runs
(22). For comparison, two 100 nsec simulations at 330 K were carried
out using an eNOS dimeric structure. Simulations were carried out
within a simulation cube filled with water molecules. All the atoms
except those in the 70–125 aa region were fixed. The simulated
systems contained �2000 atoms. Snapshots were saved every 2 ns.
Final structures after MD were structurally aligned using the Mustang
algorithm in Yasara and the conformational changes were identified.

eNOS protein purification

For eNOS purification, 50 ml of terrific broth was premixed
with ampicillin (100 mg/ml) and chlorophenicol (50 mg/ml), and
inoculated with E. coli BL21 cells transformed with a polyHis-
pCWeNOS plasmid containing wild type human eNOS sequence
(9) or the mutant C94R/C99R. The polyHis-pCWeNOS vector was a
gift from P. R. Ortiz de Montellano (University of California, San
Francisco). The C94R/C99R eNOS mutant was prepared from the
wildtype plasmid by Retrogen and sequenced to verify identity.
Bacteria were grown overnight at 37 1C (260 rpm) then used to
inoculate 2.8 L Fernabach flasks (6�1.5 L) again containing terrific
broth (52 g/L) as the culture medium and supplemented with
ampicillin (100 mg/ml), riboflavin (15 mg), and aminolevulinic
acid (0.5 g). Flasks were placed on an orbital shaker and were
allowed to grow at 37 1C (200 rpm). The OD600 was checked
periodically during the growth period until it reached 0.8–1.0
(4–5 h) then adenosine-50-triphosphate (ATP, 200 mM final con-
centration) and isopropyl-beta-D-thiogalactopyranoside, dioxane
free (IPTG, 1 mM final concentration, to induce the T7 promoter)
was added and the cells incubated for 18–20 h at 25 1C (200 rpm).
Bacteria were then harvested by centrifugation using a FiberLite F6
6�1000 rotor at 4 1C (3500 rpm/2700g) for 20 min. The pellet was
immediately transferred into lysis buffer (40 mM Tris–HCl,
5% glycerol, 1 mg/ml lysozyme, 100 mM NaCl, 4 mM FAD, 4 mM
FMN, 100 mM BH4, 5 mM L-arginine) and a protease inhibitor

cocktail for use with histidine-tagged proteins (Sigma), ribonu-
clease A from bovine pancreas (Sigma), and deoxyribonuclease I
from bovine pancreas (106 units, Sigma) was added. The pellet
was gently rocked for 30 min at 4 1C, sonicated on ice, then
subjected to ultracentrifugation at 4 1C (60,000 rpm/37,1000g) for
1 h and 45 min. The supernatant was loaded onto a Hisprep FF 16/
10 column (charged with 0.1 M NiSO4) using binding buffer
(40 mM Tris–HCl, 100 mM NaCl, 5% glycerol, 30 mM imidazole,
100 mM BH4, 100 mM L-arginine) at 0.1 ml/min flow. The column
was washed with washing buffer (40 mM Tris–HCl, 300 mM NaCl,
5% glycerol, 30 mM imidazole, 100 mM BH4, 100 mM L-arginine)
using a flow rate of 1.5 ml/min, and a base line was obtained
resulting in the washing out of non-histidine-tagged proteins.
Elution of histidine-tagged protein was accomplished using elu-
tion buffer (40 mM Tris–HCl, 300 mM NaCl, 5% glycerol, 400 mM
imidazole, 100 mM BH4, 100 mM L-arginine) at 1.0 ml/min flow.
Collected fractions were loaded for size-exclusion gel filtration on
a HiLoad 26/60 Superdex 200 prep grade column using eNOS gel
filtration buffer (60 mM Tris–HCl, 100 mM NaCl, 5% glycerol,
100 mM BH4, 100 mM L-arginine) at 0.2 ml/min flow. Fractions were
collected in 5 ml amounts for analysis by Coomassie blue staining
and Western blot. Desalting was then performed for fractions
containing eNOS using a HiPrep 26/10 desalting column and eNOS
gel filtration buffer at flow rate of 0.5 ml/min. All purification steps
were performed at 4 1C, and the purified protein was stored at
�80 1C. Protein homogeneity was confirmed using Coomassie
blue staining and Western blot with anti-eNOS antibody with
1:1000 dilutions (Transduction Labs). Final protein concentration
was then measured in each fraction.

Gel filtration chromatography

To examine the extent of dimerization in the wildtype and mutant
eNOS proteins we utilized analytical gel filtration. One hundred
microlitres of each protein, at a concentration of 0.5 mg/ml, was
injected into a Tosoh TSKgel G3000SW� l gel filtration column. Using
a flow rate of 0.5 ml/min, monomer and dimer fractions were eluted
in 100 mM phosphate buffer (pH¼7.0) using an HPLC system (GE) and
analyzed by measuring the absorption at 260 nm.

Determination of NOx levels

To measure NO production we utilized a chemiluminescence
method. Wildtype eNOS and the C94R/C99R-eNOS were mixed
with the cofactors calmodulin (10 mM) and BH4 (40 mM) as well as
the substrate L-arginine (100 mM) and Ca2þ (100 mM CaCl2) in
reaction buffer (50 mM HEPES, pH 7.4). The reaction was initiated
with the addition of NADPH (10 mM). After 30 min of incubation at
37 1C the reaction mixture was analyzed for NOx levels. In our
experiments, potassium iodide (KI)/acetic acid reagent was pre-
pared fresh daily by dissolving 0.05 g of KI in 7 ml of acetic acid.
This reagent was added to a septum sealed purge vessel and
bubbled with nitrogen gas. The gas stream was connected via a
trap containing 1 N NaOH to a Sievers 280i Nitric Oxide Analyzer
(GE). Samples were injected with a syringe through a silicone/Teflon
septum. Results were analyzed by measuring the area under curve of
the chemiluminescence signal using the Liquid software (GE). To carry
out NO measurements in cells experiment, we utilized cell lysate and
measured cellular NO content per mg of protein.

Measurement of superoxide levels

To detect superoxide generation, EPR measurements were
performed using the spin trap, 1-hydroxy-3-methoxycarbonyl-
2,2,5,5-tetramethylpyrrolidine.HCl (CMH) as we have described
[10,11].

Fig. 1. The structure of Zn-tetrathiolate cluster. The Zn4 cluster is composed of two
cysteine residues (C94 and C99, human nomenclature) from each subunit of eNOS (cyan
and magenta). Oxidation of cysteine residues within the Zn4 cluster requires less energy
due to formation of three electron S–S bond in the tetrahedral coordination.
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Optical absorption spectroscopy

The spectra of the wildtype and mutant eNOS proteins were
determined using a Shimadzu spectrophotometer using a micro-
cuvette. The final protein concentration used was 1 mg/ml. Spectra
were scanned at 25 1C in the region 350–600 nm and the average
of three measurements was plotted.

Overexpression of eNOS in COS-7 cells and dimer/monomer analysis

COS-7 cells were transfected with wildtype (WT) and C94R/
C99R eNOS 48 h before experiment. Cells were treated with
increasing concentrations of H2O2 (0-, 100-, 200-, 300-, 400-mM).
Cells were lysed after the experiment. Lysis buffer containing 1%
Triton X-100, 20 mM Tris pH 7.4, 100 mM NaCl, 1 mM EDTA, 1%
sodium deoxycholate, 0.1% SDS and protease inhibitor cocktail
(Pierce) was then added and insoluble proteins precipitated by
centrifugation at 13,000 rpm for 10 min at 4 1C. Samples were
mixed with ice cold PBS and ice cold 5� sample buffer, incubated
on ice for 10 min, centrifuged and loaded into 4–20% denaturating
polyacrylamide gels (Mini-PROTEANs TGXTM, BioRad) and low
temperature gel electrophoresis (LT-PAGE) was utilized to evaluate
the eNOS dimer/monomer ratio. The samples were separated on
ice using ice-cold TRIS/Glycine running buffer with 0.1% SDS on
50 V for 3 h. All gels were electrophoretically transferred to PVDF
membranes. The membranes were blocked with 1% BSA in Tris-
buffered saline (TBS) containing 0.1% Tween 20 for 1 h and
incubated overnight at 4 1C with an appropriate dilution of
primary antibody anti-eNOS (BD). The membranes were then
washed with TBST (3�10 min), incubated with secondary anti-
bodies coupled to horseradish peroxidase, washed again with TBST
(3�10 min), and the protein bands visualized using the Super-
Signal West Femto Maximum Sensitivity Substrate (Pierce) on a
Kodak 440CF image station. Band intensity was quantified using
Kodak 1D image processing software. Protein loading was normal-
ized by reprobing membranes with HSP90 (Sigma).

Endothelial cell culture

Primary cultures of ovine pulmonary arterial endothelial cells
(PAEC) were isolated as described previously [12]. Cells were
maintained in DMEM containing 1 g/L glucose and supplemented
with 10% fetal calf serum (Hyclone, Logan, UT), antibiotics, and
antimycotics (MediaTech, Herndon, VA) at 37 1C in a humidified
atmosphere with 5% CO2–95% air. Cells were utilized between
passages 3 and 10. COS-7 cells were cultured and maintained in
the same constituent medium but with a higher glucose concen-
tration (4.5 g/L glucose).

Scratch wound assay
PAEC were transiently transfected with expression plasmids for

either WT- or C94R/C99R-eNOS. The cells were then wounded by
scratching the monolayer with a 200 ml pipette tip and washed
with medium to remove any debris. Cells were then exposed or
not to H2O2 (400 mM) and then photographed using phase-
contrast microscope (Olympus, Japan) with digital camera 0-, 4-,
and 8-h later. The rate of wound healing was determined by
measuring the change in distance between the wounded edges
over time. The data were plotted as percent change compared to
untreated controls.

HMEC-1 migration analysis

An immortalized human microvascular endothelial cell line
(HMEC-1) was provided by Dr. Robert Debs and used with permis-
sion of its creators, Dr. Edwin Ades and Mr. Francisco J. Candal

of the Centers for Disease Control and Dr. Thomas Lawley of Emory
University. HMEC-1 cells (passage 8) were seeded in a 6-well plate
at 2�105 per well and cultured with EBM-2 supplemented with
Singlequots (Cambrex) and 5% FBS. 24 h later, 2 mg of DNA (1:1
ratio of WT eNOS with GFP, or C94R/C99R eNOS with GFP) were
transfected with PEI solution (gift from R. Debs). After 24 h
incubation, GFPþ transfected cells were sorted using a FACS Aria
II YG and were cultured for another 24 h before being harvested
for migration assays. After detachment, 6�103 cells were resus-
pended in basal cell media (without supplements, 0.5% BSA) and
plated in the upper of two chambers divided by a membrane with
8 mm pores (Corning Transwell, Corning, NY). H2O2 (Sigma) was
added to both the upper and lower chambers at 300 mM. No
chemoattractants were used. After 3 h, the membranes were
washed twice in PBS and fixed in 4% formaldehyde. After wiping
cells off of the upper side of the membrane with a cotton swab (Q-
tip), the membranes were detached, dipped briefly in Hoechst
33258 (Invitrogen; 1:2000 in PBS) and mounted on glass slides.
Migrated cells were counted on the lower side of the membrane
using fluorescence microscopy on 5 random 100� optical fields
per membrane. Each experimental condition was performed in
triplicate.

Statistical analysis

Statistical calculations were performed using the GraphPad Prism
V. 4.01 software. The mean7SD or SEM was calculated for all the
samples and significance determined using either the unpaired t-test
or ANOVA. For ANOVA, Newman–Kuels post-hoc testing was also
utilized. A value of Po0.05 was considered significant.

Results

Protein engineering of a tetra-arginine cluster based endothelial NOS

We hypothesized that substituting the cysteines that formed ZnS4
cluster with arginines would still form an active eNOS homodimer, but
one that was redox insensitive. Molecular dynamic (MD) experiments
were initially undertaken using the available crystal stucture of human
eNOS (PDB ID 3NOS) to determine if mutations of the two tetrathiolate
clusters generating cysteine residues to arginines (C94R/C99R) would
grossly alter the eNOS structure. A phosphate ion (PO3�

4 ) was
introduced as a replacement for the Zn2þ ion. The resulting mutant
protein was simulated in a water filled cube for 100 ns using the MD
simulation module in Yasara. After minimization of free energy, the
structure of eNOS was still predicted to be dimeric and three arginine
residues were found to interact with the phosphate ion (Fig. 2). Four
arginines failed to form a compact tetrahedral structure, however, the
structure of catalytic center and substrate channel did not appear to be
disturbed in the C94R/C99R mutant eNOS.

Protein purification and characterization of tetra-arginine
C94R/C99R eNOS

To begin to analyze the properties of C94R/C99R mutant
protein, a histidine tagged protein was expressed and purified
using a bacterial expression system and Ni-NTA affinity chromato-
graphy. Gel filtration analysis demonstrated that the level of dimer
in the purified C94R/C99R eNOS mutant protein was equivalent to
that found in WT eNOS (Fig. 3A). This was in contrast to an eNOS
mutant in which the ZnS4 cluster was disrupted by insertion of
alanine residues [13] (C94A/C99A, Fig. 3A). Oxidation of the
ZnS4 cluster by H2O2 resulted in the disruption of the WT eNOS
dimeric structure (Fig. 3B) as previously published [3] while the
C94R/C99R mutant eNOS was resistant to H2O2-mediated dimer
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disruption (Fig. 3B). Further, we found that H2O2 decreased NO
generation in WT (Fig. 3C), but not in the C94R/C99R eNOS mutant
(Fig. 3D). Interestingly, under basal conditions, the level of NO
production was higher in the C94R/C99R mutant compared with
that of WT eNOS (Fig. 3C and D). This increase in eNOS activity
could be due to the fact that C94R/C99R eNOS mutant is not
susceptible to the NO-mediated dimer disruption we have pre-
viously shown to occur in WT eNOS. However, further studies will
be required to confirm this. Superoxide generation rate of C94R/
C99R eNOS was similar to that of wild-type (Fig. 3E). Further we
found that the heme spectra in both WT- and C94R/C99R-eNOS
have a characteristic band at 396 nm that indicates active high
spin heme state (Fig. 3F). Together these data suggest that the
inversion of the ion cluster from cation centered ZnS4 cluster to an
anion centered tetra-arginine cluster does not appear to affect the
dimeric interface, catalytic and spectral characteristics of the
recombinant protein. Moreover, the presence of the tetra-
arginine cluster enhances the redox stability of the dimeric eNOS.

Redox stability of C94R/C99R eNOS in COS-7 cells

In order to evaluate the effect of the C94R/C99R mutation on
dimeric assembly and susceptibility to oxidative mediated disrup-
tion in cells, plasmids encoding WT- and C94R/C99R-eNOS were
transiently transfected into COS-7 cells. Our data demonstrated
that COS-7 cells expressing the C94/C99R mutant had a higher
dimer:monomer ratio than those expressing wildtype eNOS
(Fig. 4A and B). Treatment with H2O2, which disrupts the ZnS4
cluster inducing eNOS monomerization [3], led to dose dependant
decrease in eNOS dimer levels in WT- but not C94R/C99R-eNOS
expressing cells (Fig. 4A and B). Thus, the replacement of redox
sensitive tetrathiolate cluster with redox stable four arginines
resulted in the stabilization of the enzyme to oxidative stress.
We also measured NO generation for both WT- and the C94R/C99R

mutant-eNOS. WT- and C999R-eNOS produced similar amount of
NOx under basal conditions (Fig. 4C). H2O2 exposure significantly
decreased the rate of NOx generation in WT eNOS expressing cells
(Fig. 4C). However, NOx generation in the C94R/C99R eNOS
expressing cells was unaffected by H2O2.

C94R/C99R eNOS maintains endothelial cell angiogenesis under
conditions of oxidative stress

To determine whether dimer-stable C94R/C99R eNOS protects
eNOS-dependent endothelial cell function when exposed to oxi-
dative stress, we transfected ovine PAEC with WT- and C94R/
C99R-eNOS and utilized the scratch wound assay. Initially, we
confirmed that eNOS protein levels (Fig. 5A) and NO production
levels (Fig. 5B) were both increased. Then we assessed the effect
on PAEC migration NO production in the presence of H2O2. Both
NO production (Fig. 5B) and the migration rate (Fig. 5C) were
significantly attenuated by H2O2 (400 mM) in WT-eNOS expressing
cells. However, in PAEC transfected with the redox insensitive
C94R/C99R eNOS both NO generation (Fig. 5B) and migration
ability were maintained (Fig. 5C).

Finally, we employed a well established, and commonly used,
transwell assay for cell migration [14] that has been effective at
detecting inhibitory effects on endothelial and endothelial-like
cells [15]. HMEC-1 cells, a microvascular endothelial cell line, were
transfected with either WT- or C94R/C99A-eNOS and compared to
cells transfected with GFP. Our data indicate that under conditions
where there were no chemoattractants in the lower chamber, cells
both WT- or C94R/C99A-eNOS expressing cells exhibited signifi-
cantly more random migration than cells transfected with GFP
alone (Fig. 5D). However, in the presence of H2O2, although
migration was decreased in all three groups, there was signifi-
cantly less reduction in migration in cells transfected with C94R/
C99A-eNOS (Fig. 5D).

Fig. 2. Ion cluster inversion in C94R/C99R eNOS. The upper panel demonstrates that wildtype eNOS contains a Zn4 cluster with four negatively charged sulfur atoms
surrounding the Zn2þ cation in a tetrahedral configuration. In the C94R/C99R mutant the introduction of four arginine residue are proposed to stabilize the dimeric interface
of eNOS via electrostatic interactions with a PO3�

4 anion. The lower panel shows both the crystal structure of the Zn cluster (PDB ID 3NOS) in wildtype eNOS and computer
simulated structure of the C94R/C99R mutant.
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Discussion

There is increasing histologic and physiologic evidence that
endothelial injury and the resulting aberration in the balance of its
regulatory mechanisms play a major role in the development of
endothelial dysfunction and vascular remodeling. Endothelial
dysfunction is a hallmark of many diseases of the vasculature,
including hypertension (both pulmonary and systemic), athero-
sclerosis, and diabetes [16,17]. The most important consequence of
endothelial dysfunction is the observed decrease in the ability of
the endothelium to mediate vasodilation [18]. An increasing

number of studies now implicate oxidative stress in the pathogen-
esis of many cardiovascular diseases [19–22]. Oxidative stress is
now believed to be a major player in the development of
endothelial dysfunction. Further, evidence from both our group
and others, has shown a clear correlation between increase in
oxidative stress and decrease in both eNOS dimer levels and NO
signaling [3,23]. Published data demonstrate that both ROS,
such as H2O2 [3] and RNS such as NO and peroxynitrite [23–25],
can disrupt the eNOS dimer. The mechanism by which this dimer
disruption occurs through the oxidation of the ZnS4 cluster located
at the NOS dimer interface was reported previously [3]. Importantly,

Fig. 3. Characterization of C94R/C99R eNOS mutant. Gel filtration profiles (absorbance at λ260 nm) of WT (solid)-, C94R/C99R (dash)- and C94A/C99A (dot)-eNOS in the
presence and absence of H2O2 (0.5 mM). WT- and C94R/C99R-eNOS form dimeric proteins in contrast to the C94A/C99A-eNOS mutant (A). H2O2 treatment disrupts the
dimeric structure of WT eNOS, but the C94R/C99R mutant is resistant to monomerization (B). The disruption of the dimeric structure of WT eNOS correlates with a reduction
in NO generation (C). NO generation is maintained in the C94A/C99A-eNOS mutant exposed to H2O2 (D). NO production in the C94R/C99R-eNOS under basal conditions is
significantly higher that WT-eNOS (C and D) although superoxide generation is similar (E). Both WT- and C94R/C99R-eNOS enzymes exhibited high spin heme absorption
peak at 396 nm that indicates catalytically active enzymes. (F). Data are mean7SEM, N¼3, npo0.05 vs. untreated.

R. Rafikov et al. / Redox Biology 2 (2014) 156–164160



there is a great deal of interest in developing eNOS gene based
therapies for the treatment of cardiovascular disease. For example,
there is an ongoing clinical trial of a gene therapy for pulmonary
hypertension, that is using endothelial progenitor cells, or more
accurately, circulating angiogenic cells (CACs) engineered to over-
express eNOS [26]. In addition, we, and others have shown that
functional deficiencies in CAC migration toward VEGF or association
with co-cultured endothelial tubes correlates with endothelial dys-
function and greater risk of cardiovascular events [15,26–31]. Further,
CACs have been reported to provide therapeutic benefit when
administered directly or i.v. to several models of tissue ischemia or
injury [32–35]. The therapeutic effects of CACs can be augmented by
transducing them to express vascular regulators, such as VEGF and
eNOS [26,36,37]. However, a number of reports have shown that
autologous cell therapy can be thwarted if the patient0s disease
impairs the therapeutic functionality of the cells in question
[30,38,39]. In addition, we have demonstrated that CACs isolated from
older healthy and CAD donors produce less NO and more ROS than

those from young healthy donors and that this is associated not only
with impairment of migration toward VEGF, but also with reduced
therapeutic capacity when injected into post-MI mouse hearts (MLS,
unpublished data). Both negative effects can be improved by transduc-
tion of the CACs with an eNOS adenovirus. However, only partial
restoration of cardiac function is achieved, even though resistance to
NO is not apparent in the impaired CACs [28]. This underscores an
important problem in the use of gene based therapies to treat
cardiovascular diseases that involve insufficient levels of NO: ther-
apeutic approaches to increase active eNOS protein may nonetheless
have limited efficacy due to oxidative-mediated inhibition of the
protein through the disruption of the ZnS4 cluster. Based on these
factors, we postulated that there is a potential therapeutic niche for an
eNOS protein that was insensitive to oxidative stress mediated dimer
disruption and would be able to continue to produce NO under the
oxidative stress conditions associated with endothelial dysfunction.

ZnS4 or zinc histidine–hiolate structural features are found
in proteins, such as PKC family enzymes [40], zinc fingers of

Fig. 4. eNOS dimer stability under conditions of oxidative stress. COS-7 cells were transiently transfected with either WT- or C94R/C99R-eNOS. After 48 h, cells were exposed
or not to increasing concentrations of H2O2 (0–400 mM, 30 min). Western blot analysis using LT-PAGE, was then used to determine the effect on the eNOS dimer: monomer
ratio. H2O2 dose dependently decreased the dimer level in WT-eNOS expressing cells (A). However, the C94R/C99R mutant was resistant to dimer disruption even at 400 mM
H2O2 (B). Basal levels of NOx were similar in WT- or C94R/C99R-eNOS expressing cells. H2O2 exposure (300 mM) significantly reduced NOx levels in WT eNOS expressing cells
but not in the cells expressing the C94R/C99R eNOS mutant (C). Data are mean7SEM, N¼3, npo0.05 vs. untreated; † vs. WT eNOS þH2O2.
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transcription factors [41], sirtuins [42] and metallothionein [43],
and NOS [1]. In all cases these form conformational stabilizing
structures. In addition, these structural elements share redox
sensitivity due to availability of readily oxidazible cysteines [44–
46]. However, the presence of a stabilizing tetrathiolate cluster at
the dimer interface appears to be an exclusive feature of the NOS
isoforms, as a similar structural element has, so far, not been found
in other enzymatic systems. Thus, NOS is a unique enzyme that
stabilizes its homodimeric structure by employing redox sensitive
ZnS4 cluster. In this work we utilized protein engineering to
eliminate this redox sensitivity. There have been several reports
utilizing protein engineering to stabilize inter-subunit assembly
and, thus, increase the stability of multimeric proteins. These
include nucleoside diphosphate kinase [47], acid-sensing ion
channel-1a (ASIC1a) [48], and seminal RNAse [49]. The formation
of intersubunit bridges also plays an important role in the thermal
stability of glucose-6-phosphate dehydrogenase [50]. As with NOS,
stabilizing intersubunit disulfide bond formation occurs in many
native multimeric proteins. Importantly, for our approach to eNOS,
the introduction of an artificial intersubunit disulfide bridge is a
well described tactic for the stabilization of a multimeric interface.
Indeed, a similar strategy has been utilized to stabilize Fe-
superoxide dismutase [51], thymidylate synthase [52] and

triosephosphate isomerase [53]. From previous studies we know
that there is a disruption of the NOS dimer when the proteins are
oxidized by NO, H2O2 or peroxynitrite. This involves disulfide
oxidation, but does not induce dimer stabilization via disulfides
formation in the ZnS4 cluster. Based on this, we decided to utilize a
charge based interactions rather than relying on covalent bonding.
In our engineered protein we demonstrate that the replacement of
the oxidant sensitive, ZnS4 cluster with a redox stable, tetra-
arginine cluster, produces a fully functional enzyme that is
resistant to dimer disruption by oxidative stress and that retains
the ability to produce NO under conditions in which the wildtype
enzyme is severely inhibited.

It is also worth noting that there is controversy in the literature
regarding the relative roles of the ZnS4 cluster and BH4, a cofactor
essential for the catalytic activity of all three NOS isoforms [54–
57], in stabilizing the dimeric interface of NOS [23,24,58–60]. Both
are redox sensitive, and the binding site of BH4 is located in close
proximity to the ZnS4 cluster [1]. Thus, it has been difficult to
differentiate the effects mediated by the ZnS4 cluster from those of
BH4. In addition, prior studies have shown that cellular BH4 levels
have important consequences for the structure of NOS. These
include the ability of NOS to shift its heme iron to a high spin state
[61], increase arginine binding [61], and at least in some NOS

Fig. 5. Effect of eNOS overexpression on endothelial cell migration. PAEC were transiently transfected with either WT- or C94R/C99R-eNOS. After 48 h, eNOS protein levels
(A) and basal NO generation were determined. A representative Western blot image is shown that verifies over-expression of both proteins. The blots were reprobed with
HSP90 to confirm equal loading. Basal NOx levels were also significantly increased in WT- and C94R/C99R-eNOS over-expressing cells (B). In the presence of H2O2 (400 mM,
1 h), NOx levels were significantly attenuated in WT- but not C94R/C99R-eNOS over-expressing cells (B). H2O2 (400 mM) significantly attenuated wound closure in WT- but
not C94R/C99R-eNOS over-expressing cells (C). Similarly, in HMEC-1 cells, cell migration was significantly increased in WT- and C94R/C99R-eNOS over-expressing cells under
basal conditions (D). H2O2 (300 mM) significantly attenuated HMEC-1 cell migration in both WT- and C94R/C99R-eNOS over-expressing cells (D). However, migration was
attenuated less in C94R/C99R-eNOS over-expressing cells (D). Data are mean7SEM, N¼3–49, npo0.05 vs. untreated; †po0.05 vs. WT-eNOS.
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isoforms, potentially stabilize the active dimeric form of the
enzyme [54]. However, based on our published data [3]it is
possible that the antioxidant properties of BH4 is used to protect
the ZnS4 cluster from oxidation during the catalytic cycling of NOS
which in turn could explain the apparent dimer stabilizing ability
of BH4. As we show here that the replacement of the ZnS4 cluster
with redox stable tetra-arginines is sufficient to maintain eNOS in
a dimeric form under conditions of oxidative stress, we conclude
that the ZnS4 cluster plays the primary role in NOS dimerization.

In conclusion, our engineered C94R/C99R dimer stable mutant
opens up the possibility of gene therapy for the treatment of
conditions where eNOS dysfunction is associated with increased
oxidative stress. This dimer stable enzyme should be able to
maintain NO signaling under conditions in which the introduction
of the wildtype enzyme would result in dimer disruption and
reduced NO generation.
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