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ABSTRACT

Dynamic, disaggregate choice models which use longitudinal data axe
known to have clear advantages over cross-sectional models, but they also
have their own unique estimation problems. The correlation among
unobserved error components ("heterogeneity") that is likely to exist in such
data sets can be the source of apparent state dependence, but true state
dependence is also possible. A review of car ownership models reveals that
the issue of heterogeneity versus true state dependence has not been
adequately addressed in the transportation literature. This paper develops
computationally convenient ordered-response probit models for panel data,
estimates models of car ownership, and performs tests of heterogeneity
versus true state dependence. Conclusions in (the more general) one-factor
models are found to differ from those obtained from (the more restricted)
components of variance models, and the issue of initial conditions is also
found to affect the conclusions.

INTRODUCTION

Many disaggregate models of household car ownership, car-type choice, and utilization
have been proposed during the past decade and a half. These developments have been driven
by the recognition that the aggregate time-series models that had previously dominated
automobile demand forecasting were deficient in some respects. Specifically, they did not
capture the causal relationships underlying household behavior, thus limiting their accuracy,
versatility, and policy sensitivity (see, e.g., Manski, et al., 1978, for a review of aggregate
automobile demand models). In contrast, disaggregate models formulated at the household
level possess the structure necessary for depicting the causal mechanisms that govern
household behavior.

However, recently it has been recognized that disaggregate models based on cross-
sectional data are subject to their own sets of limitations. They may be flawed because
elasticities evaluated using a cross-sectional model may not be identical to longitudinal
elasticities associated with behavioral changes of each behavioral unit, thus they may not offer
accurate forecasts. Furthermore, the presence of unobserved contributing factors that are
correlated with observed variables will lead to biased coefficient estimates, which in turn will
produce false elasticities and forecasts. This motivates the use of dynamic models that are
based on longitudinal observation of individual behavioral units.

There are many additional behavioral, as well as statistical, reasons to favor such
dynamic models (for discussions, see Heckman, 1981, Davies and Pickles, 1985, Goodwin,

et al., 1987, Goodwin, et al. 1989, Kitamura, 1989). For example, Goodwin and Mogridgcr
(1981) note the "resistance to change" as one of the dynamic aspects of car ownership behavior
that previous cross-sectional models have failed to account for. Factors that motivate the use of
dynamic models include:

Copyright 1990 by Elsev/er Science Publishing Co., Inc.
Transportation and Traffic Theory
M. Koshi, Editor 477



478

¯ asymmetry in the magnitude of response (i.e., elasticity may be different depending
on the direction of change, say, between income increase and decrease),

¯ asymmetry in the speed of response (i.e., the time lag between the time when 
change takes place in the travel environment and the time a response takes place
may be different depending on the direction of change),

¯ influence on behavior of past experiences or future expectations (e. g., brand
loyalty), and,

¯ effects of temporal changes and trends (e.g., increasing license ownership).

Possibly underlying apparent behavioral asymmetry, are the effects of incomplete
information, searching, experimentation, learning, inertia or habit, risk aversion behavior
under uncertainty, and various constraints that prohibit immediate response. As a result,
behavior may be dependent on its past history, exhibiting asymmetry, and hysteresis.l

Many modeling approaches can be taken to capture such behavioral characteristics. For
example, explanatory variables from previous time points (lagged independent variables) may
be introduced to represent response lags. The increase and decrease over time in an
contributing factor may be represented by separate variables to capture asymmetric responses.
Dependence on past experience may also be incorporated by introducing variables that
represent past behavior (lagged dependent or endogenous variables).2

The apparent dependence of current choices on past choices ("state dependence"), 
shown through simple lagged dependent variable models, may actually be due to heterogeneity.
Heterogeneity here refers to variations in unobserved contributing factors across (otherwise
observationally equivalent) behavioral units. If behavioral differences are largely due to
unobserved factors, and if unobserved factors are invariant over time but correlated with the
measured explanatory variables, then estimates of model coefficients will be biased if this
heterogeniety is not taken into account. In particular, this may offer a false indication that
behavior has been fundamentally altered by previous choices ("true state dependence").
Distinguishing between m,e state dependence and apparent state dependence resulting from
heterogeneity (or, "spurious state dependence") is critical for proper characterization 
behavioral variation. Having made distinctions among various sources of state dependence, in
the remainder of this paper the phrase "state dependence" will refer to true state dependence.

The problem of distinguishing heterogeniety from state dependence is well-recognized as
an important issue in econometrics. Addressing this problem with discrete choice models,
however, requires elaborate models and estimation procedures. The beta-logistic model
(Heckman and Willis, 1977) is a discrete-choice version of an error component model that
allows for heterogeneity in longitudinal behavior; however, it can only make use of explanatory
variables from the first time period, and thus cannot incorporate endogenous variables for
modeling state dependence. Davies (1984) generalizes the beta-logistic model to accommodate
time-varying variables and so-called "feedback effects," i.e., information on behavior from

prior periods, and estimates a renewal model of residential mobility. A few examples of beta-
logistic model applications exist in the transportation field (Uncles, 1987, Smith, et at., 1989).
To our knowledge, however, no single study has performed a rigorous test of state dependence
versus heterogeneity in travel behavior studies using discrete choice. In fact, as the review of
household car ownership models of the next section reveals, most "dynamic" discrete choice
models with lagged endogenous variables are estimated with the restrictive assumption that
heterogeneity does not exist.
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This study aims at a rigorous treatment of heterogeneity and state dependence in
household car ownership behavior observed over time. Dynamic ordered-response probit
models with error components are formulated and estimated using the algorithm described in
Bunch and Kitamura (1989). The error-component ordered-response probit models allow
more flexible formulation of the error terms, and thus offer a better accounting of heterogeneity
than do beta-logistic models.

The objective of the study is to determine the characteristics of household car ownership
behavior through thorough examination of hypotheses on state dependence and heterogeneity
by using alternative specifications of the error terms. It is anticipated that coeff’lcient estimates
may vary greatly depending on the formulation of the dynamics of household car ownership,
potentially leading to drastically different forecasts. The intent of the study is to present how
dynamic characteristics of car ownership can be statistically examined, and how resulting
predictions are influenced by the hypotheses adopted.

The paper begins with a review of dynamic models of car ownership which have
appeared in the transportation literature. Section 3 presents detailed definitions of heterogeniety
and state dependence which are needed for the development of model formulations in Section
4. Sections 5 and 6 present empirical results and conclusions, respectively.

DYNAMIC MODELS OF HOUSEHOLD CAR OWNERSHIP: A REVIEW

Dynamic, disaggregate choice models of household car ownership (i.e., those which
attempt to incorporate lagged dependent variables) are relatively few, and those that properly
account for the endogenous nature of the lagged dependent variables are even fewer. Some
models are formulated using behavioral information related to past choices, e.g., a dummy
variable in a car-type choice model for the same make as the previously owned car. Yet in
virtually every model that incorporates them, such endogenous variables are treated as if they
are exogenous, which gives rise to a variety of statistical difficulties.

For example, it is quite common for dynamic studies to treat initial conditions as if they
are fixed and exogenous, even though the initial lagged dependent variables are stochastic. As
Heckman (1981b) has shown, this may led to serious estimation errors. In addition, problems
arise when estimating discrete choice models with lagged endogenous variables in the presence
of serially correlated errors, as noted above. Although practical methods exist for linear
models with lagged dependent variables, estimating nonlinear models is computationally much
more demanding under the assumption of serially correlated errors. In many of the studies of
household car ownership reviewed below, the fact that lagged dependent variables are
endogenous is not acknowledged at all. Among those studies which do, most facilitate model
estimation by assuming that all error terms are serialS, independent.

Consequently, most studies have been unable to directly address such questions as state
dependence versus heterogeneity. The presence of heterogeneity in car ownership is shown in
Uncles (1987) and Smith, et al. (1989) using beta-logistic models. These studies, however,
do not address the issue of state dependence. Although Kitamura (1988) incorporates the
possibilities of both state dependence and heterogeneity, no rigorous statistical test is
performed in that study. In thediscussion below, disaggregate household car ownership
models in the literature are reviewed, focusing on their treatment of lagged variables.

The use of lagged variables became prevalent when discrete choice models of car
ownership level were extended to include vehicle-type choice. In one of the earliest studies of
this kind, Manski, Sherman, and Ginn (1978) estimate a multinomial logit car-type choice
model, where car-types are defined by combinations of make, model, and vintage. The search-
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and-transaction cost is represented by a dummy variable "which takes the value zero for
vehicles currently owned by the household and one for all vehicles obtainable on the market"
(op. cit., p. 26). Manski, et al. recognize that the search/transaction cost dummy variables
form "a set of lagged endogenous variables" (op. cit., p. 29), but they estimate the model
assuming the absence of serial correlation. Their justification is that the omission of transaction
dummy variables would have led to more serious specification errors than ignoring serial
correlation.3

In their development of dynamic household vehicle transaction models, Hocherman, et
al. (1983) use similar dummy variables to represent the effect of transaction costs (search costs
and information costs), brand loyalty, and income effects. These authors also acknowledge
that problems might arise from ignoring temporally correlated errors, but estimate their nested-
logit models assuming ,,hat serial correlation is not present.

This is also the case for the system of models developed by Train and Lohrer (1982) for
predicting the number of cars, car-types, and utilization. They use transaction dummy
variables in their "class/vintage" submodels to represent "the psychic, search, and other
transaction costs associated with buying a new vehicle" (op. cit., p. 41). The endogenous
nature of these var~,ables is not discussed and possible estimation problems are not recognized
in this study. Similarly, the models of Berkovec and Rust (1985) include transaction dummy
variables without discussion of their endogeneity.

Mannering and Winston (1985) present a "dynamic" model system similar to Train and
Lohrer (1982). It is comprised of nested-logit models of car ownership level (number of cars)
and vehicle-type choice (make, model and vintage), combined with linear utilization models
(vehicle-miles traveled). The paper emphasizes dynamic aspects of car ownership and
utilization behavior, e.g., stationarity, state dependence, "brand preference" and "brand
loyalty" (op. cit., p. 216).

Most striking in Mannering and Winston (1985) is the complete neglect of the possible
intertemporal correlation in the error terms, despite the prominence of lagged dependent
variables in their model system. The "vehicle-type choice models" contain up to two-period
lagged utilization variables for the "same vehicle" and vehicles of the "same make" that the
household may have owned. The same lagged variables are also used in the linear vehicle
utilization models (for which consistent and practical estimation methods have existed). These
lagged endogenous variables are treated as if they are fixed, exogenous variables, constituting
an assumption of nonstochastic initial conditions. In a subsequent paper, Mannering discusses
the same model system, but in this account gives explicit recognition to the "endogenous
variable problem" (Mannering, 1986, p. 3). A decision is taken to assume that disturbances
are serially independent because of "the difficulty in accounting for serial correlation in the
presence of lagged endogenous variables in discrete choice models" (op. cit.).

The issue of state dependence versus heterogeneity is not addressed in any of the studies
discussed s,~ far. It is also evident that these attempts to include dynamic elements may have
resulted in model specifications which were too complex for the estimation methods that were
readily available. The inclusion of lagged endogenous variables, and the introduction (either
explicitly or implicitly) of the assumption of serially independent errors require a careful re-
examination of the various behavioral characteristics which these models are hoping to capture.

An extensive discussion of dynamic elements--"heterogeneity, nonstationarity, and
intertemporal dependence"--is given by Hensher and Wrigley (1986). In particular, they note
"confoundment" due to the correlation between temporally invariant observed and unobserved
variables, and discuss the issue of true versus spurious state dependence. They also suggest
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the use of beta-logistic models (Heckman and Willis, 1977) and their generalizations (see
discussion below).

Another model system of car ownership, car-type choice, and utilization is proposed by
Hensher, et al. (1987). A unique feature of this model system is the inclusion of "expectation"
and "experience" terms as components of the "conditional intertemporal indirect utility" (op.
cit., p. 8). Both expectation and experience terms are formulated for each alternative as 
geometric series of its attributes observed over time, and a multiplier (the absolute difference
between the attribute of an alternative and the corresponding attribute of the chosen alternative
is used to represent the experience term of the former). Another unique feature is the inclusion
of an "initial condition term" (op. cit., p. 8) which is again expressed as a geometric series 
observed attributes.

Hensher, et al. (1987) avoid the problem of serial correlation by "substituting the
exogenous choice-determining variables in previous periods for the previous period
endogenous-choice variables" (op. cit., p. 9). The treatment of the initial conditions in this
study is based on the same idea: exogenous variables are used as instruments, and are used in
place of the lagged endogenous elements. Presumably because of this, the issue of
heterogeneity versus state dependence is not examined in Hensher, et al. (1987). Indeed there
is no point in doing so if obtaining model coefficients is the concern because, once lagged
endogenous variables have been replaced by exogenous variables, consistent estimates can be
obtained in the presence of serial correlation.

Despite these conscious efforts, the estimations in Hensher, et al. may not be entirely
flawless. The "exogenous" variables comprising the "experience" effects in the indirect utility
function appear to be, in fact, endogenous because they include the attributes of the chosen
alternative. Dubin and McFadden (1984) propose three alternative approaches to account for
this type of endogeneity in a vehicle choice-utilization context. No such treatment is apparent
in the effort by Hensher, et al.

As previously noted, an application of the beta-logistic model to travel behavior can be
found in Uncles (1987). The study, however, is subject to the limitations inherent in the beta-
logistic model as it was originally proposed (Heckman and Willis, 1977). Specifically, the
model assumes that the choices made over time by each behavioral unit follow a Bernoulli
process comprised of repeated independent draws from a set of time-invariant binary choice
probabilities. The model allows for heterogeneity--the probabilities are assumed to va-,3’ across
behavioral units due to unmeasured as well as measured effects--but assumes that choices are
state independent, and that exogenous variables are invariant over time.

This original beta-logistic model has been extended to incorporate multinomial choice
(Dunn and Wrigley, 1985), and to allow for time-varying exogenous variables, "feedback
effects," and initial conditions (Davies, 1984). Smith, Hensher and Wrigley (1989) adopt
Davies’ beta-logistic model in their analysis of household vehicle transactions. The analysis in
Smith, et al. is based on 373 households which maintained exactly one vehicle during a four-
wave survey period. Transactions behavior is described as the binary choice between
replacing versus keeping the car. Vehicle age, an endogenous variable, is included in the
model formulation, roughly representing the state dependence of vehicle transactions behavior
(holding duration would be a more precise indicator). However, state dependence based 
previous choices is not considered, and thus no hypothesis tests are performed to examine the
specific issue of current interest.

Presumably the study that most closely addresses the issue is the panel analysis of car
ownership by Kitamura (1988), which explicitly incorporates both state dependence and
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heterogeneity (as expressed by serially correlated errors). Heckman-type correction terms are
used to obtain consistent coefficient estimates. The single-equation estimation method used,
however, is not efficient and, as noted earlier, performing a rigorous test of state dependence
versus heterogeneity was outside the scope of that work.4

As this review indicates, the development of dynamic models of car ownership, car-type
choice, or transactions, is unfortunately somewhat limited. This is mainly due to the difficulty
in estimating discrete choice models with lagged endogenous variables under the presence of
serially correlated errors. 5 Consequently no study has rigorously examined alternative
hypotheses involving heterogeneity versus state dependence. One purpose of this study is to
overcome these limitations.

OPERATIONAL DEFINITIONS OF HETEROGENEITY AND STATE DEPENDENCE

Mathematical expressions of heterogeneity and state dependence will naturally vary
depending on how these concepts are specifically defined. For example, heterogeneity may
imply the variation in observed exogenous variables, or may refer to the variation in
unobserved variables. Similarly, there are various possible types of state dependence, some of
which appear in the studies reviewed in ’~he previous section. For example, Hensher and
Wrigley (!986) list: Markovian state dependence on the current state; dependence on the
number of visits to the respective states; duration of the occupancy at the current state; and
durations of the occupancy at previous states. Even when a particular type of state dependence
is specified, there are many possible model specifications that can represent the dependence.

As noted earlier, heterogeneity in this study refers to the variation in unobserved
contributing factors across behavioral units. If these variations are purely random across
behavioral units and over time, then "heterogeneity" is inconsequential, presenting no
difficulties for model estimation, and providing no interesting behavioral implications. This
study is concerned with the case where the unobserved errors are cross-sectionally independent
but temporally correlated for each behavioral unit. One possible approach is to model the
errors by an autoregressive process

e(i, t) = pe(i, t - 1) + U(i, t), t = 1, 2 T, and i = 1, 2 ..... I, (1)

where e(i, t) is the error term for individual i at period t, p is the coefficient of serial

correlation, U(i, t) is an independent random error term, T is the number of time periods, and 
is the number of behavioral units in the data. We further assume that, for i = 1, 2 ..... I and t =
1,2 ..... T,

E[a(i, t)] = E[U(i, t)] 

E[e(i, 0)e(i’, 0)] 

E[e(i, 0)U(i, t)] = E[e(i, t)U(i’, t’)] = E[U(i, t)U(i’, t’)] = 0 

E[U(i, t)U(i, t’)] = 0 for t ~ t’, 

E[U(i, 02] = ~u(t, t).

Note that under this formulation the error term e(i, t+l) is conditionally independent of e(i, t’),

for t’ = 0, 1 ..... t - 1, given e(i, t).

A more simple alternative formulation for heterogeneity may be defined by introducing aa
individual-specific, time-invariant error component, q(i),

e(i, t) = q(i) + U(i, (2)
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2 and U(i, t) is as defined
where E[q(i)] = 0, E[q(i)U(i, t)] = E[q(i)U(i’, t)] = 2] = ~q

above. In this approach, unobserved attributes are assumed to be distributed across behavioral
units that are otherwise observationally identical, and this endowment of attributes does not
vary over time.

Equation (2) defines the components of variance model CCVAR"). It is a special case 
the one-factor model COFAC") discussed by Heckman (1981a), given 

e(i, t) = ~*(t)q(i) + U(i, (3)

where cx*(t) is a constant factor-loading for period t. These two schemes provide certain

computational advantages, and are used in combination with ordered-response probit models to
represent heterogeneity in the empirical analysis presented below. Model formulations are
discussed in more detail in the next section.

Let Y(i, t) be a measure of behavior at time t. Models are easily formulated which include
direct dependencies of current behavior, Y(i, t), on behavior observed at previous time periods,
i.e., Y(i, t’), t’ = 1, 2 ..... t - 1. In particular, consider the expression

Y(i, t) = X(i, t)13 + BY(i, t - 1) + e(i, (4)

where X is a vector of exogenous variables, 1~ is a vector of coefficients, and ~5 is a scalar

coefficient. Here the behavioral dependence is captured by the simple additive term ~SY(i, t 

1). A more general formulation would allow the coefficient vector ~ to vary as a function of

Y(i, t-l); however, we assume that the past does not affect the marginal contribution of each
exogenous variable. This is in part due to the convenience it offers in model estimation; the
more general formulation should be tested in future efforts.

Note that this model formulation may have multiple behavioral interpretations. For
example, equation (4) may be interpreted either as (i) a model including experience effects, 
a model of partial adjustment, (iii) a model including response lags due to habit persistence,
cost of change, etc., or (iv) an adaptive expectations model depicting planning behavior. In the
context of this study, Y(i, t) is a discrete choice variable, and hence we interpret the model as 
state dependence model analogous to a first-order Markov process. Examination of a more
extensive range of model formulations and interpretations, including the use of lagged

exogenous variables, also belongs to future efforts.

MODEL FORMULATION

The models considered here fall into the category of discrete choice models, and
generalize the work of Heckrnan (1981a) and Heckman and Willis (1977). The focus of 
attention here is on ordered choice models, i.e., choice models whose discrete dependent
variable has a natural interpretation as an increasing integer. Specifically, the study is
concerned with the number of cars owned by a household (0, 1, and 2 or more), observed 
equi-spaced discrete time points.

Heckman (1981a) gives a very general framework for panel analysis of binary choices,
which we extend in this study to trinar3’, ordered choices. The Heckman framework
encompasses many complex stochastic processes, but for our purposes the discussion can be
simplified by considering the following latent random variable model:

V(i, t) = Z(i, t)~ + Dl(i, t - 1)T1 + D2(i, t - 1)72 + (5a)
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and

where

i if -,,~ < V(i, t) _< x 
Y(i, t) if xt < V(i, t) < x2

if x2 < V(i, t) < +o,,

(5b)

V(i, t} is the latent ordinal preference index for individual i ~m drne period t.
Y(i, t) is the observed ordered-response choice (in this case the number of cars owned),
Zfi, t) is a 1 x k vector of exogenous explanatory variables,
Dr(i, t) = 1 if Y(i, t) = 1, and 0 otherwise,
D2(i, t ; = I if Y(i, t.) = 2, and 0 otherwise,
13 is a k-vector of parameters,

"It and ","2 are weights for the state in the previous period,

¢1 and z2 are constant thresholds, and
a(i,t) is a random variable with E[e(i,[~] = 

As noted, the model is formulated for trinomial ordered-response choice. Y(i. t) is 
latent one-dimensional random variable of increasing household preference for cars, and the
Di’s are dummy variables representing the observed (discrete) choices.

The implication of ",he lagged dummy variables is that two households that are otherwise
observationally equivalent in time period t may have different choice probabilities due to latent
preference shifts associated with having experienced the choice made during the last period.
This is an example of true state dependence, where we have specifically chosen a first-order
Markov model in this instance. Such preference shifts could be associated with having
experienced the convenience and flexibility associated with owning a car (or cars).

Heckman (1981b) uses a binary version of this model in his study of estimation problems
associated with initial conditions. In another study, Heckman (1981c) applies a similar
(binary) model to an empirical study of labor force participation, in which the shift is a function
of the sum of the dummy variables for all previous periods. The binary, character of these
examples is an important distinction, since they neatly fit into the framework of random utility.
maximization developed by McFadden (1981) and others. In contrast, our ordinal latent
variable model, while natural for the problem of car ownership level, does not fall into this
framework, and requires a different behavioral interpretation.

From the point-of-view of practical estimation for panel analysis, there are two important
issues. First, equation (5) must be combined with an assumed error process for the e(i, t)’s 

that the resulting panel model is computationally tractable. This will be a direct function of the
intertemporal covariance structure of the e(i, t)’s. Second, allowance must be made for the
problem of initial conditions described by Heckman (1981c), Each of these is considered next.

Covariance Structures for 8{i. t)

The error component models of equations (2) and (3) can be readily combined 
equation (5) to form ordered-response panel data models, as we now describe. Normal
distributions are used for all error components, leading to models with normal mixing
distributions (a mixing distribution refers to the distribution of error components). With the
distributional assumptions already introduced in the previous section, the models lead to
likelihood functions which require only two-dimensional integration for a sequence of choices
made in T periods. This can be shown for the components of variance model as follows. For
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normalization purposes, let E[U(i, 02] --- 1 for t -- 1, 2 ..... T. For notational convenience

define W(i, t) - Z(i, t)13 + Dl(i, t - 1)~’1 + D2(i, t - 1)’t2, for t = 1, 2 ..... T, and denote 
of T choices by (c(1), c(2) ..... c(T)), where c(t) = 0, 1, or 2 for t = I, 2 ..... T. 
U(i, t)’s are temporally uncorrelated, the probability of observing (c(1), c(2) c(T)) 
given by

Pr[ Y(i, 1) = c(1), Y(i, 2) = c(2) Y(i, T) = eft)]

= Pr[xc(1) < V(i, < ~c(1)+1, Xc(2) < V(i < Xc(2)+l ..... Xc (T) < V(i, T< Xc(T)+l]

= Pr[zc(1) - W(i, 1) - q(i) < U(i, 1) _< "%0)+1 - W(i, 

"~c(2) - W(i, 2) - q(i) < U(i, < Xc(2)+l - W(i , 2) - q(i ) ...
~cfr) - W(i, T) - q(i) < U(i, < ~c(1)+l - W(i , T) - q

= ~ {O(’Cc(1) - W(i, 1) - q(i)) - O(Xc0)+l - W(i, 

*’*{O(’~cfr) - W(i, T)- q(i)) - O(Xc03+l - W(i, T) - q(i)) }fq(q(i))dq(i), 

where ̄ is the standard normal cumulative distribution function, fq is the density function of
q(i), ~0 = -**, and ~3 = *~- The integration involved is two-dimensional, one to evaluate ̄  and
the other taken with respect to q(i). (Equation 6 is used here for illustrative purposes.
Normalization restrictions are required for the estimations discussed below.)

Components Of Variance (CVAR) Model: This model uses the error structure defined in
equation (2). We add the distributional assumptions that both components are iid normal, i.e.,

that E[U(i, 02]= oU(t, t) = O2U for all i and t, with U(i, 
2 2

~ N(0, CU), and that q(i) ~ N(0, 

for all i. Define the disturbance vector for individual i by e(i) = (e(i, 1), e(i, 2) eft, T))T.

2 and identical off-
The covariance matrix for e(i) has identical diagonal elements O~U + o 

diagonal elements ~q. To obtain estimates, it is necessary, to choose a normalization so that the

model is identified. The scale of the model must be fixed: one choice is to estimate the

intertemporal correlation p = ( + ). (Other possibiities are to assign either or e~ 

be an arbitrary constant.) Note that p is non-negative in this formulation; heterogeneity in 
CVAR model is expressed by the temporally invariant individual specific term, q(i), which
always produces non-negative intertemporal correlation. The other requirement concerns the
W(i, t)’s and the ~’s. Because choice is a function of differences in these terms, only relative
values can be identified. In this study the Z(i, t)’s contain a constant term, and the

normalization ’tl = 0 is used to fix location.

One-Factor (OFAC) Model: This model uses the error structure defined in equation (3).
The distributional assumptions for q(i) are the same as for CVAR, but those for U(i, t) 
relaxed to allow the variances to change over time, i.e., U(i, t) ~ N(0, aU(t, t)), for t = i 

T. This yields a covariance matrix for e(i) which has diagonal elements given 

t)2] = oe(t, t) = t~*(t)2t~2 + o~(t, t), (7)E[e(i,

and off-diagonal elements given by
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¢x*(t)cx*(t’)a2q, for t’ (8)E[E(i, t)E(i,t’)]

As before, a normalization is required to render the model estimable. One normalization
used in Heckman (1981c) can be written in terms of the correlation matrix for e(i), and 

ae(t, t)’s. The special one-factor structure gives that the correlation between z(i, t) and E(i, 
is Ptt’- ¢x(t)cx(t’), where the ¢x(t)’s are parameters to be estimated. The normalization o¥(1,1)

= I is also required, along with Zl = 0 as before. (Note that a(t) ~ o~*(t), and that Oq 

aU(t, t) are not identified in this normalization.) As previously noted, this special structure
results in probability calculations which require only two-dimensional inte~als. See Heckman
(1981a) for expressions involving binary choices; for our ordered models, the univariate
normal CDFs are replaced by the appropriate univariate standard normal inte~als.

The OFAC model is an attractive alternative for panel analysis, exhibiting much more
flexibility than the CVAR model, while at the same time retaining the computational
advantages. However, the OFAC structure does imply some special restrictions, as described
in Heckman (1981a). For T > 3 the OFAC model requires that the error process defined 

equation (3) be nonstationary to be interesting. In other words, restricting ere(t, t) = o~ for all 

essentially forces the OFAC model to be equivalent to the CVAR model. Unfortunately, error
processes which modelers find appealing are often stationary, and the bottom line is that many
interesting error structures simply cannot be one-factor analyzed.

For the special case T = 3 the above restrictions do not apply, and there are some
interesting stationary processes which can be captured by OFAC models. In particular, the
first order stationary Markov process characterized by

e(i, t) = pe(i, t - 1) + U(i, (9)

may be accommodated by restricting el(l) = ¢x(3) and c~(2) = 1 (along with aa(l, 1) = 

= ¢~(3, 3) = 1)--see Heckman (1981c). Finally, we note that models more general than 
and OFAC may be formulated by assuming a general error structure for the e(i, t)’s. However,

such an approach requires multivariate integration of dimension T, and produces estimation
problems of the same level of difficulty as the muhinomial probit model.

Initial Conditions

One technical problem that arises for dynamic models with lagged dummy variables when
applied to "short" discrete panel data sets (i.e., data sets with small T) is the treatment of initial
conditions. The choice behavior being studied here is viewed as a discrete-time stochastic
process in which the behavior at time t may depend on that at time t-l; other models (not
considered here) could include even more lagged terms, as well as lagged exogenous variables.
Such processes must in principle have starting points. Formally, at the true beginning of the
stochastic process any "lagged" information will be available and be represented as
nonstochastic initial conditions.

Unfortunately, it is essentially always the case that observed panel data sets do not
include the beginning of the process. Let the full process be represented by observations taken

at t = 1, 2 ..... T, plus any nonstochastic initial conditions at periods 0, -1, etc. Typical panel
data sets are observed only for t = I, J+l ..... T, where I >> 1. Even if some pre-sample
information is available, this information is usually also stochastic, coinciding with previous
points in the process rather than with the nonstochastic initial conditions. Ideally, maximum
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likelihood estimation should be performed using data from the entire process, including the
initial conditions. Or at the very least, a long panel could be estimated, minimizing the effects
of the missing initial conditions.

Heckman (1981b) addresses this problem directly, noting that most social scientists
simply ignore the issue. He illustrates the deleterious effects of ignoring the problem in short
panels via Monte Carlo simulations, and recommends two possible solutions. Unfortunately,
one of the procedures is relatively difficult to implement, and the other is rather ad hoc and
sketchy. The second of these is used in an empirical study of female labor force participation
(Heckman, ~98 lc), and Heckman acknowledges that the In’st procedure has not been attempted
in an empirical study.

The Heckman ad hoc procedure is an approximate solution to the initial conditions
problem, and he claims that it is acceptable for testing the null hypothesis of no state

dependence, e.g., T1 = ]t2 = 0 in equation (5). We have implemented a version of this
procedure, which we now describe.

First, we note that there were four periods of data available for our study. Due to the
considerations described above for the OFAC model, estimating models with T=3 rather than
with T=4 was attractive due to the potential added flexibility of the model specifications. In
addition, if models were estimated using periods (2, 3, 4), then lagged variables would 
available from period 1. However, simply using lagged variables from period i as though they
were nonstochastic could cause estimation problems.

A cross-sectional probit model was estimated for period 1, and then predicted
probabilities for each household were generated. The probabilities corresponding to the
dummy variables in equation (5) were used as explanatory variables for period 2 in place of the
observed lagged dummies. A separate set of coefficients was estimated for these explanatory
variables, which represented "predicted pre-sample information" in our first-order model.
Before proceeding to empirical results, we discuss some issues pertaining to the choice of
model formulations in our study.

Error-Comoo~¢~t Orderecl-Respo~tse Probit versus Beta-Logistic Models

The fundamental concepts underlying the error-component ordered-response model
proposed here and the beta-logistic model are the same: a series of choices made by an
individual (or household) can be described by a series of cross-sectional discrete choice models
which have been written as conditional on the individual-specific error components. Since the
individual-specific terms are unobserved, the probability of observing the actual sequence of
choice outcomes can be evaluated by assuming an error distribution and integrating out the
error components. Normal distributions are used to derive the panel data ordered-response
probit model. In motivating the beta-logistic model, on the other hand, it is simpler to assume
the final functional form for the mixing distribution of the choice probabilities and work
backwards. Specifically, the distribution of choice probabilities is conditioned on a single set
of exogenous variables and is assumed to have a beta distribution. This is convenient, since
the mean choice probabilities then reduce to the standard logit model--see Heckman and Willis
(1977).

There are advantages to using the error-component ordered-response probit models
defined above. First of all, representation of multinomial ordered choice does not increase the
model’s complexity or computational requirements versus binary models. Secondly, its
computational requirements in model estimation are modest because its likelihood function can
be evaluated through one-dimensional numerical quadrature. (As is shown in equation (6), 
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integrands include one-dimensional normal integrals; hence, the full integration is two-
dimensional.)

Although the beta-logistic model is computafionally attractive in its original closed-form
representation, its advantages quickly diminish when it is extended to incorporate time-varying
exogenous variables. To achieve this flexibility, Davies (1984) proposes the use of a power
series expansion to express the choice probability in each period as a function of (i) the
probabifity in the "reference period" and (ii) the differences between the exogenous variables 
the period of interest and those in the reference period.

Most critically, our calculations using numerical examples indicate ",hat the performance
of this series expansion is poor. This is especially true with nontrivial changes in the
exogenous variables, and when the choice probability is close to unity. For example, in some
cases the approximation requires at least four "erms in order to get one significant digit of
accuracy .6

The proposed ordered-response probit model, on the other hand, does not require s.uch
approximations. Perhaps the most important advantage of the probit approach is the flexibility
it allows in the specification of the error terms, and the statistical examination of alternative
hypotheses concerning heterogeneity. The CVAR and OFAC models are examined in this
study, and future studies may be extended to include more general formulations.

Finally, a comparison of error-component ordered-response probit models and the
multinomSal probit model appiied to discrete panel data (Daganzo. 1979. Daganzo and Sheffi,
1982, Johnson and Hensher, 1982) deserves some mention. Clearly, in the case of the CVAR
and OFAC models, the ordered models have the computational edge. They only require one-
dimensional numerical quadrature, regardless of the number of alternatives and the number of
periods. The most general ordered models require integrals of dimension T. Applications of
the multinomial probit model, on the other hand, require integrations of dimension (J-1)T,
where J is the number of choice alternatives. Of course, the latter is capable of accommodating
unordered alternatives, which may be the only appropriate formulation for many problems.

EMPIRICAL RESULTS

Alternative specifications of error-component ordered-response probit models are
estimated using a sample from the Dutch National Mobility Panel data set. This subsample
contains 605 households that participated in the panel survey from March 1984 through March
1987.7 Data from four survey waves conducted 12 months apart are used in the model
estimation. For the background of the Dutch Panel survey, see Golob, Schreurs and Smit
(1986) and van Wissen and Meurs (1989).

The specification of the latent variable in this study is an extension of those developed in
Kitamura (1987, 1988), and is constructed on the premise that demographic and socio-
economic attributes of a household are the major determinants of its car ownership. This
viewpoint, supported by empirical results in the literature, can also be found in Manski and
Sherman (1980).

The explanatory variables of the model are: square-root of annual household income
("SQRTInc"), number of workers in household ("Workers"), number of adults in household
("Adults"), number of children of 17 years old and over CChildl7") number of persons 
household CHHSize"), number of drivers in household ("Drivers"), 0-I dummy for access 
good mass transit ("Gmtgrp"), and 0-1 dummy for households with individuals with higher
education ("HHeduc"). These variables are highly correlated and, partly because of this, not
all variables are significant in every model estimated here. However, the same set of variables
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is included in all the models to facilitate comparisons across models with different assumptions
about heterogeneity and state dependence.

The following models are estimated:

I. Independent choice model, which assumes no state dependence or heterogeneity
(equivalent to pooled cross-sectional ordered probit with no lagged dependent
variables),

2. Pure state dependence model, with state dependence but with no heterogeneity,
3. Components of variance model with no state dependence assumed,
4. Components of variance model with state dependence assumed,
5. One-factor model with no state dependence assumed,
6. One-factor model with state dependence assumed,
7. One-factor model with state dependence assumed, and initial conditions assumed to

be non-stochastic, and
8. One-factor model with state dependence and stationarity (temporally invariant error

variances) assumed.

Maximum likelihood estimates were obtained using the -algorithm described in Bunch and
Kitamura (1989), and asymptotic t-scores were computed using variance estimates obtained
from the inverse of the estimated Hessian matrix at the solution. The error component for each
household was integrated out using four-point Gauss-Hermite quadrature--see, e.g., Butler
and Moffit (’_982).

Components of Variance Models

Estimated model coefficients of the components of variance models with and without true
state dependence are presented in Table 1 along with those of the independent choice model and
pure state dependence model. A comparison of goodness-of-fit statistics immediately indicates
that the independent choice model is an inadequate specification. Accounting for intertemporal
dependence is essential in dynamic analysis of household car ownership.

The components of variance model with no state dependence (Model 3) shows strong
heterogeneity: the positive intertemporal correlation coefficient, p, is 0.71 with a highly

significant t-statistic. Similarly, the coefficients of the lagged endogenous variables in the pure
state dependence model (Model 2) are highly significant. Assuming either heterogeneity 
state dependence substantially improves the fit.

The significance of heterogeneity and state dependence can be examined further by
performing statistical tests using the (nested) models in Table 1. Examination of the asymptotic
t-statistic for p in Model 4 indicates that heterogeneity is not significant. Furthermore, the
likelihood-ratio chi-square statistic of 1.26 witll 1 degree of freedom (dr), obtained from
Models 2 and 4, also indicates that heterogeneity as expressed by the components of variance
scheme is not statistically significant. On the other hand, the asymptotic t-statistics for the four
iagged dummy terms are quite large, and the likelihood ratio test statistic for Model 3 versus
Model 4 (141.9 with df = 4) is highly significant. This analysis based on components 
variance models thus leads to the conclusion that intertemporal dependence in household car
ownership is due to true state dependence, and that heterogeniety is not a factor.

One-Factor Models

Two one-factor models are estimated for further investigation of heterogeneity and state
dependence in car ownership (Table 2). In the one-factor model without state dependence
(Model 5), the factor loadings (o~’s) are almost identical for all three periods, and the oe’s 

close to unity (recall that oe(1, 1) is set to 1.0 for normalization). This one-factor model



490

(Model 5) is thus essentially equivalent to the corresponding components of variance model
(Model 3). These models are in fact nested, and the likelihood ratio test statistic is 1.0 with 

dfs, under the restriction ~1 = ct2 = o~3 and ae(2, 2) -- o¥(3, 3) 

TABLE 1: PARAMETER ESTIMATESANDASYMPTOTICT-SCORES FORCOMPONENTSOF
VARIANCE MODELS

1. 2. 3. 4.
No Hetero. No Hetem. CVAR CVAR
No TSP" TSP No TSP TSP
.3 t t3 t 8 ,. 13 t

Const -1.69 -9.6 -2.27 -10.1 -2.28 .5.2 -2.34 -9.0
SQRTInc ._"", 8.8 . 14 3.7 .41 6.5 .15 ~..:,
Workers .02 .5 .02 .3 .25 2.2 .03 a
Adults -.]2 -1.5 -.07 -.5 -.29 -’..2 -.08 -..5
Childl7 .’.’6 3.1 .05 .8 .03 .2 .06 .:~
HHSize -.05 -2.0 -.01 -.2 -.06 -.9 -.01 -.2
Drivers 1.38 26.8 ,77 9.7 1.99 16.2 .88 7.1
Gmtgrp -.42 -5.9 -.18 -1.7 -.72 -3.9 -.21 -1.8
H~Ieduc -.36 45.0 -.16 -1.9 -.46 -3.1 -.19 -1.9
D1 2.29 20.3 2.23 14.1

Do 4.23 27.2 4.04 15.0
?red. D1 for t=l 2.51 16.7 2.43 12.7
~ed. ’D2 for t=l 3.84 10.5 3.81 9.1

P ,7! 20.1 .11 i.2
z2 3.24 45.9 3.70 45.6 5.64 27. I 3.92 19.0
L(~) -903.8 -652.5 -722.8 -651.8
L(0) -1994.0 -1994.0 -1994.0 -1994.0
-2[L(0)-L(13)] -2180.4 -2683.1 -2542.4 -2684.3
02 .547 .673 .638 .673
_adj.:p2 .542 .666 .632 .666
No. of households = 605
Likelihood Ratio Chi-square Statistics for.
Significance of st,am dependence and heterogeneity= 503.9 (df = 5)
Significance of stale dependence = 141.9 (df = 4)
Significance of heterogeneity = 1.26 (df = 1)
" "TSP" = "true slam dependence"

The coefficients of the lagged endogenous variables in the one-factor model with state

dependence (Model 6) are significant, but to a much lesser extent than those in the pure state
dependence model (Model 2) or in the components of variance model with state dependence
(Model 4). The coefficient values themselves, however, are relatively stable across these

models,

The most dramatic changes are in the o~ coefficients. These coefficients are constrained to
be between -1 and 1 in the estimation to allow for negative intenemporal correlation. Unlike

Model 5 which has uniform 0~ values, Model 6 has an o:2 that is virtually 0, while o~1 and o:3

are positive and significant. The model thus implies that unobserved effects are positively
correlated between period 1 and period 3, while period 2 is independent of the others. These

results are parallel to those of Smith, et al, (1989) in which predicted probabilities for the
second period exhibit distinct values, We have been unable to clearly identify the reason for

the singularity of the second period at this point. However, note that the value for o:1 is

relatively large in comparison to 0:2 and o:3; this is undoubtedly due to the larger unexplained

random variation in period 1 caused by the correction for initial conditions--see the discussion
below.
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TABLE 2: PARAMETER ESTIMATES AND ASYMPTOTIC T-SCORES FOR ONE-FACTOR
MODELS

2. 5. 6.
No Hetero. OFAC OFAC

TSP No TSP TSP
t ~ t [3

Const -2.27 -10.1 -1.26 -6.0 -2.08
SQRTInc .14 3.7 .23 8.0 .13
Workers .02 .3 .14 2.2 .03
Adults -.07 -.5 -.17 -1.5 -.07
Childl7 .05 .8 .01 .2 .08
HHSize -.01 -.2 -.03 -.9 -.00
Drivers .77 9.7 1.10 14.8 .79
Gmtgrp -.18 -1.7 -.40 -3.9 -.20
HI-Ieduc -.16 -1.9 -.26 -3.5 -.16
DI 2.29 20.3 2.07
D2 4.23 27.2 3.84
Pred. D1 for t=l 2.51 16.7 2.03
Pred. I32 for t=l 3.84 10.5 3.00
etl .84 71.0 .63
ct2 .89 12.6 .00
~3 .86 17.6 .41
ae(2, 2) 1.10 7.4 .77
ce(3, 3) 1.05 10.9 .96
z2 3.70 45.6 5.65 45.4 4.18

t

-6.4
3.0
.4
-.5
1.1
-.1
6.9
-1.7
-1.9
5.9
5.7
8.9
6.3

10.0
.0

3.7
3.1
3.3

27.1

I.~) -652.5 -722.3 -641.4
L(0) - 1994.0 - 1994.0 - 1994.0
-2[I..(0)-L~)] o2683.1 -2543.4 -2705.2

p2 .673 .638 .678
adj.-p2 .666 .630 .669

No. of households = 605
Likelihood Ratio Chi-square statistics for.
Significance of state dependence = 161.79 (df-- 4)
Significance of heterogeneity = 22.18 (df = 5)

In contrast to the components of variance models, the results obtained from the one-factor
models indicate that heterogeneity and state dependence are both significant, although state
dependence accounts for more variation in behavior than does heterogeneity. The Iikeiihood

ratio statistics are 161.8 (df = 4) for state dependence and 22.2 (df = 5) for heterogeneity.

This empirical analysis thus makes it clear that the significance of heterogeneity and state
dependence depends on how they are specified. While the components of variance

specification has led to the conclusion that heterogeneity is not significant, the second, more
general, one-factor specification has shown that both heterogeneity and state dependence are

significant. It is entirely possible that different conclusions could be obtained using models
with an even more general specification of heterogeneity.

Although the error covariance parameters vary substantially between Models 5 and 6, the

coefficients of the explanatory variables are relatively similar, despite the significance of both
state dependence and heterogeneity. Particularly notable is the uniformity of the coefficients

among the models with state dependence (Models 2, 4, and 6), irrespective of the assumptions
on heterogeneity.

The effect of the treatment of initial conditions on coefficient estimates is examined by

estimating another one-factor model. In this model, the dummy variables representing actual

car ownership in the "pre-sample" period (t = 0) are used assuming they represent
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nonstochastic initial conditions. The estimation results (Model 7) are compared in Table 3 with

those of Model 6, whose estimation is based on instrumental variables. The table again shows
that the coefficients of the explanatory, variables are very. similar, including the coefficients of

the lagged dependent variables.

TABLE 3: PARAMETER ESTIMATES AND ASYMPTOTIC T-SCORES FOR ONE-FACTOR
MODELS: NON-STOCHASTIC INITIAL CONDITIONS AND STATIONARITY

5. 7. 8.
instrument Vat. Non-Stochastic Stationaritv

t3 t 6 t 13

Const -2.080 -6.4 -2.196 -8.3 -2.224
SQRTInc .!32 3.0 .134 2.6 .141
Workers .028 ." .056 .7 .025
Adults -.070 -.5 -.130 -.9 -.066
Chiidl7 .076 i.l .06,1 .8 .068
HHSize -.003 -.1 .012 .2 -.006
Drivers .795 6.9 .795 8.5 .811
Gmtgrp -.200 -1.7 -.208 -1.6 -.192
HHeduc -.160 -1.9 -.159 -1.6 -.173

D! 2.072 5.9 2.381 18.4 2.286
Do 3.339 5.7 4.333 19.8 .-t.252

Pred. D! for t=i 2.028 8.9 2.147

Pred. D2 for t=l 3.005 6.3 3.040

al .625 10.0 .243 1.1 .585

a2 .000 .0 .000 .0 .000

ct3 .409 3.7 .168 .7 .293
ere(2, 2) .773 3.1 .988 7.7 1
cr~(3, 3) .959 3.3 .995 8.4 1

:2 4.184 27.1 4.012 29.5 4.063

-11.0
5.7

-.5

.9
-.1

10.7
-1.7
-2.0
18.7
28.6
12.3
6.8

8.7
34.8
3.7

31.6

L(13) -641.4 -551.5 -643.0
L(0) - 1994.0 -2030.2 - 1994.0
2[L(0)-L([3] -2705.2 -2957.5 -2702.0
’3p~ .678 .728 .678

adj.-p2 .669 .720 .669

No. of households: 605 616 605
* Variances are constrained to be 1 in the stationarity model.

Substantial differences exist, however, in the covariance parameters. Model 7, estimated

assuming non-stochastic initial conditions, yields o~ coefficients that are insignificant and

variance terms that are all close to unity. It is also notable that the estimated t-statistics for the

lagged dummy variables are much larger in Model 7. Despite the similarity in the model

coefficients, Model 7 offers an entirely different indication of the heterogeneity of car
ownership. Clearly, behavioral implications drawn by estimating a dynamic model depend

critically on how the initial conditions are handled.

A final model specification, the one-factor model with stationarity (Model 8 of Table 3),

was estimated. In this model the variance of the e(i, t)’s are assumed to be invariant across all

time periods. The results are essentially the same as the ones without the stationarity

assumption (Model 6). A likelihood ratio test indicates that car ownership choice is stationary,
in the error dist~bance terms.

The relative performances of Models 1 through 6 are also evaluated in terms of goodness-

of-fit by comparing the predicted frequencies of car ownership over the three periods versus

the observed frequencies--see Table 4. The results generally confirm our previous
observations. Quite notable is the extremely large discrepancy for the independent choice
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model (Model 1). The heterogeneity models without state dependence (Models 3 and 5) 
chi-square statistics that are much smaller than that of Model 1, but indicate that the predictions

are still significantly different from the observed frequencies, In particular, these models

grossly underpredict the frequency of no change (0-0-0, 1-1-1, and 2-2-2). This offers
evidence that stability in car ownership behavior cannot be represented by heterogeneity alone.

Incorporation of state dependence improves the fit dramatically. In particular, the one-factor
model (Model 6) exhibits a chi-squared value of 12.7 (df = 13), which implies a near perfect

replication of observed frequencies.

Table 4: Comparison of Observed versus Predicted Choice Frequencies.

Predicted Frequent7
1. 2. 3. 4. 5. 6.

Choice bv Peri9;1 Observed No Het No Het CVAR CVAR OFAC OFAC
1 2 3 Frequency No TSP TSP No TSP TSP No TSP TSP
0 0 0 102 45.3 94.1 68.6 93.7 68.9 98.0
0 0 1 8 23.0 11.1 19.5 11.2 19.8 11.7
0 0 2 0 .3 .0 .0 .0 ,0 .0
0 1 0 2 19.8 1.4 15.7 1.5 15.1 2.5
0 1 1 11 38.3 10.5 27.4 10.9 26.4 15.1
0 1 2 0 1.8 .3 .1 .2 .1 .1
0 2 0 1 .1 .0 .0 .0 .0 .0
0 2 1 0 1.6 .0 .1 .0 .0 .0
0 2 2 1 .3 .0 .0 .0 .0 .0

Subtotal 125 130.4 117.3 131.3 117.6 130.3 127.4
;(2 116.9 4.7 41.7 4.7 40.1 3.1

1 0 0 8 20.0 17.0 16.3 17.4 16.8 11.2
1 0 1 3 35.0 4.9 22.5 4.9 23.2 4.4
1 0 2 0 1.5 .0 .0 .0 .1 .0
1 1 0 10 32.0 18.2 20.5 18.0 20.6 14.8
1 1 1 374 252.9 352.4 320.5 351.8 320.4 352.7
I I 2 13 33.3 20.5 19.8 20.2 17.9 16.5
1 2 0 0 1.0 .0 .0 .0 .0 .0
1 2 1 2 30.0 7.0 16.1 7.1 16.0 5.8
1 2 2 9 10.4 14.4 9.2 14.4 8.5 9.8

Subtotal 419 416.0 434.3 424.8 433.7 423.4 415.2
;(2 150.7 18.5 50.1 18.7 50.4 7.2

2 0 (; i .2 .0 .0 .0 .0 .0
2 0 1 0 1.3 .0 .1 .0 .1 .0
2 0 2 0 .2 .0 .0 .0 .0 .0
2 1 0 0 1.3 .3 .1 .3 .2 .1
2 1 1 12 30.4 13.5 17.3 13.9 19.1 16.9
2 1 2 3 7.9 1.2 6.0 1.5 5.9 2.4
2 2 0 0 .2 .0 .0 .0 .0 .0
2 2 1 10 7.9 10.1 6.4 9.8 7.2 9.3
2 2 2 35 9.2 28.2 18.8 28.2 18.9 33.7

Subtotal 61 58.6 53.4 48.8 53.7 51.3 62.4
2~2 88.8 5.7 18.4 4.9 18.3 2.4

Total 605 605.0 605.0 604.9 605.0 605.0 605.0
;(2 (df : 13) 356.4 28.8 110.I 28.3 108.8 12.7

An optimistic but perhaps dangerous generalization of the results obtained in this study is
that the dominant source of intertemporal dependence in car ownership is state dependence and
that heterogeneity may be ignored, especially when obtaining the coefficients of explanatory

variables is the major concern. In our empirical results the coefficient estimates are robust
irrespective of assumptions about heterogeneity or treatment of initial conditions. However,
recall that conclusions about the statistical significance of heterogeneity depended on how it

was specified, and upon the treatment of initial conditions. Thus, the apparent insignificance
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of heterogeneity may be due to the particular specifications used, and in future studies more
general specifications should be examined. Testing for state dependence versus heterogeniety
continues to be tricky and difficult, and will probably remain so.

SUMMARY AND CONCLUSIONS

Although correlation among unobserved errors, endogeneity of lagged dependent
variables, and problems with initial conditions have been recognized as having important
consequences in the estimation of dynamic, disaggregate models, a review of the literature
reveals that these have often been ignored in the dynamic modeling of car ownership. By
taking advantage of the ordinal nature of the problem, eomputadonally convenient models
which take ~ of these issues into account can be formulated, and estimated using state-of-the-
art numerical techniques. To perform an analogous analysis using a beta-logistic approach, !t
would be necessary, to somehow combine the approximation procedure in Davies (1984) with
Dunn and Wrigley (1985) to produce a three-alternative model which allows time-varying
exogenous variables and "feedback effects." This would be unnecessarily restrictive,
cumbersome, and possibly "~naccurate. Alternatively, one could attempt to use a multinomia/
probit approach, but tbr three alternatives and three time periods this would most likely be
computationally intractable using currently available methods.

The numerical results in Section 5 rust demonstrate the ~oss inadequacy of pooled
cross-sectional analysis. Next, models assuming a components of variance error structure lead
to conclusions that (i) state dependence is strongly significant, and (ii) heterogeniety is 
significant. Presumably, these results would be similar to those obtained in a carefully
performed analysis using the beta-logistic-like approach identified above.

On the other hand, results using a more general one-factor model approach reject the
hypothesis of no heterogeneity, indicating that a more general formulation could lead to
different conclusions. This could not have been identified by a beta-logistic-type approach.

The empirical study in the literature most similar to ours is perhaps Heckman (198 lc),
which estimates CVAR and OFAC models of female labor force participation (e.g., binary
choice) using three periods of data. As in Heckman’s study, we accept the hypothesis of
stadonarity. Unfortunately, unlike Heckman’s results--which nearly lead to the conclusion that

the error process is f’trst-order Markov--our estimated ot paramters are very difficult to
interpret. This matter will be the subject of further study. It may be that, although
heterogeneity is present, it is not adequately modeled by the one-factor approach in this data
set, especially in the context of ordered latent variable models. Finally, our results also reveal
that acceptance or rejection of the hypothesis of no heterogeneity can be seriously affected by
the manner in which initial conditions are handled_

To conclude, we acknowledge that our results seem to indicate that the coefficient
estimates themselves may be robust to many of these concerns. However, we caution against
jumping to the conclusion that simply including lagged dummies is an adequate solution to the
dynamic modeling problem. This may lead to erroneous conclusions about true state
dependence and heterogeneity, which in turn may result in inaccurate forecasts using the
dynamic models.
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FOOTNOTES
1. For further discussions, see Goodwin (1977), Goodwin, Dix and Layzell (1987), Goodwin, Kitarnura 

Meurs (1989), and Kitamrua (1989). Empirical results showing characteristics of dynamic behavior can 
found in Golob and Meurs (1987), Goodwin (1987), Hensher, et al. (1987), Kitamura (1987, 1988) 
Kitamura and van der Hoorn (1987).

2. A model with a lagged dependent variable may be interpreted to represent a "partial adjustment" to a
change, as well as dependence on past behavior. See Griliches (1967) for possible interpretations.

3. According to Train and Lohrer (1982, p. 41), Sherman, Manski and Ginn (1980) in a later report chose 
to estimate the coefficient of the transaction dummy variable within the model, but its value was selected
such that the observed aggregate turnover rote could be reproduced.

4. The problem of heteroskedasticity caused by truncated errors is accounted for in a later study (Kitamura and
Goulias, 1989) using theoretically derived weights in the single-equation maximum likelihood estimation.
Initial conditions are treated in Kitamura and Goulias (1989) via a procedure similar to that described 
Heckman (1981b, pp. 188-9).

5. Notable here is the application of structural equations models to the estimation of discrete choice models
with lagged endogenous variables and serially correlated errors. Golob and his associates (Golob 1989;
Golob and Meurs, 1987) have applied structural equations models to various aspects of travel behavior.
These models, however, adopt entirely different estimation principles; further analysis is needed to
determine the relationship between the structural equation approach and the conventional econometric
estimation approach.

6. Smith, et al. (1989) used up to two terms in the series expansion. Judging from the magnitude of error
that takes place with this k, the results of Smith, et al., must be cautiously interpreted.

7. No adjustment is made in this study to account for possible biases in the data due to attrition because the
examination of the heterogeneity versus state dependence issue, not inference of population characteristics,
is the main concern of the study. For a discussion of attrition behavior in the Dutch Panel data, see
Kitamura and Bovy (1987).
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