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ABSTRACT OF THE DISSERTATION

Learning with Limited Supervision for Static and Dynamic Tasks

by

Sujoy Paul

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2020

Dr. Amit K. Roy-Chowdhury, Chairperson

The recent successes in computer vision have been mostly around using a huge

corpus of intricately labeled data for training recognition models. But, in real-world cases,

acquiring such large datasets will require a lot of manual annotation, which may be strenu-

ous, out of budget, or even prone to errors. Whereas, a lot of real data that are generated

daily can be acquired at low to no annotation cost. Such data can be unlabeled or contain

tag/meta-data information, termed as weak annotation. Our goal is to develop methods

that can learn recognition models from such data involving limited manual supervision. In

this thesis, we explore two dimensions of learning with limited supervision - first, reducing

the number of manually labeled data required to learn recognition models, and second, re-

ducing the level of supervision from strong to weak which can be mined from the web, easily

queried from an oracle, or imposed as rule-based labels derived from domain knowledge.

In the first dimension of learning with limited supervision, we show that context

information, often present in natural data, can be used to reduce the number of annotations

required. We take an information-theoretic approach considering the relationship in data
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points, to select them for labeling, unlike works in literature which only use the uncertainty

of individual samples. In the next dimension of learning with limited supervision, i.e.,

reducing the level of supervision, we use weak labels instead of dense strong labels, for

learning dense prediction tasks. We develop frameworks to learn using weak labels for

action detection in videos and domain adaptation of semantic segmentation models on

images. In action detection, unlike using frame-wise annotations as in the literature, we use

only video-level annotations, which is much easier to obtain from the annotator and can

also be mined from the web. In domain adaptation of semantic segmentation models, we

use weak image-level labels in two forms - pseudo weak labels, which are estimated using

the source segmentation model, incurring no annotation cost, or oracle weak labels, which

are obtained from the human annotator and incurring a very low cost. In spite of using

such weak labels, our methods perform close to frameworks using strong supervision.

Continuing in the direction of learning from weak labels, we explore sequential

decision-making problems. We learn robotics tasks with a small set of expert human demon-

strations. Traditional imitation learning methods can only be as good as the expert, with

a lot of human demos. We devise a strategy that divides a complex task into subgoals

and solves them sequentially with reinforcement learning. We learn the subgoal partitions

just from the human demos without any partition labels from the human annotator, by

imposing only a temporal ordering based weak constraint among the subgoals, often arising

in most real-world tasks. Our method is able to solve tasks with a low number of demos

which other methods in the literature are not able to solve.

ix
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Chapter 1

Introduction

Frameworks in computer vision have been mostly around using a huge corpus of

intricately labeled data to learn recognition models. For e.g., in dense predictions tasks

such as semantic segmentation [29], object detection [61], or action detection [238], state-of-

the-art methods utilize dense manual labeling for training, obtaining which is a tedious job,

and prone to errors. Moreover, dense manual labeling may not scale well in real-world ap-

plications requiring an enormous amount of data and further in continual learning scenarios

where drift in concept occurs and constant labeling may be necessary. Similar trends can

also be seen in learning to solve dynamical decision making tasks via reinforcement learning

[126], where either detailed specifications of the reward function are necessary or a huge

number of human demonstrations [180] are required when using imitation learning. Thus,

to utilize the ever-growing corpus of data for better performance of real-world computer

vision and robotics applications, it is necessary to develop learning mechanisms that can

learn from limited supervision.
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In recent years, researchers have started focusing to develop algorithms that can

learn from limited supervision. There can be potentially two dimensions of limited super-

vision. In the first case, we have access to only a small number of labeled data points,

and probably a lot of unlabeled data points. Unsupervised feature learning [30, 141], semi-

supervised learning [134], active learning [170] fall under this category and mostly consid-

ered for classification tasks that involve single prediction per data point. The second case

includes tasks involving dense predictions. In this case, limited supervision would mean

having access to partial information about the labels, often termed as weak labels. For

e.g., weak labels can be the categories present in an entire image compared to having labels

for every pixel, the latter termed as strong labels. Note that this form of limited supervi-

sion reduces the level of supervision, whereas the first case reduces the number of samples.

Other forms of information such as domain or world knowledge [151, 159], physics-based

constraints [44], side information [73], can be utilized to reduce the amount of supervision

required to learn recognition models.

In this thesis, we primarily explore core problems in computer vision involving

static prediction tasks and also one problem involving dynamic decision making. We study

these problems in the light of learning from limited supervision and develop algorithms to

solve these tasks in such scenarios. Fig. 1.1 presents a pictorial overview of the thesis.

We start in Chapter 2 discussing our framework for learning with a limited number of

data points for classification tasks in an active learning setup, which corresponds to the

first dimension of learning from limited supervision as discussed in the previous paragraph.

Active Learning [170] is a method of choosing the most informative samples to label from an

2
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Figure 1.1: This figure presents the organization of the thesis. In the second chapter, we
look into reducing the amount of supervision for classification tasks, where for a given image
or video the task is to predict categorical labels, y. In the third and fourth chapters, we look
into reducing the level of supervision from strong to weak for temporal action detection and
image segmentation respectively. These are dense predictions tasks that need per frame
predictions, yt, for action detection in videos or per-pixel spatial predictions, yij in image
segmentation. Finally, in the fifth chapter, we look into the sequential decision-making
problems under the light of reduced level manual supervision. In these tasks, a starts from
a certain state, is required to go to a goal state by taking sequential actions, at.

unlabeled set. Most existing active learning methods in literature formulate a utility score

for each unlabeled sample, based on which only on a small subset of them are chosen for

manual labeling. Information density [111], classifier uncertainty [112], expected error rate

[41, 111], expected change in gradient [171], expected model output change [87] are some

popular utility functions used in the literature. But, most of these methods do consider

the inter-relationships that may occur in data points belonging to the same or different

recognition tasks. For e.g., in a scene, containing multiple objects, as scene-objects and

objects-objects co-occur in natural images, certainty about some objects in the image can

help in better understanding of the rest and thus help in choosing to label only those

instances, which results in a better holistic understanding of the scene, rather than dealing
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with them individually. We develop our framework using probabilistic graphical models

[97], where the nodes represent the individual unlabeled data points and the edges represent

the inter-relationships between them. We formulate an information-theoretic cost function

to select a small number of nodes from the graph and query the human annotator to

obtain their labels. We show that our method is general enough to be applied to a variety

of problems - joint scene-object recognition where we utilize the co-occurrence between

scenes and objects, action recognition where we exploit the spatio-temporal relationships

in streaming videos, and document classification where we use the citations as relationship

information. We show that utilizing the relationship information which is often available in

most natural data, helps to reduce the number of labeled samples even further compared

to state-of-the-art methods in the literature.

In Chapter 3 we move towards the second dimension of learning with limited

supervision discussed above, i.e., the scenario where we have reduced level of supervision

from strong dense labeling to weak labels. In this direction, we first look into the problem

of action detection in videos, where given a long video, we need to temporally localize

human action or event categories of interest. State-of-the-art methods on action detection

[238, 227] use strong annotations to learn the detection model, i.e., start-end time of every

action category that occurs in the video. Obtaining such precise frame-wise annotations

requires enormous manual labor and often discrepancy arises between annotators with the

start and end of events in the video. On the other hand, it is much easier for a person

to provide a few categorical labels which encapsulate the content of a video. Moreover, in

the absence of a human annotator, we can also mine such training data from the web as
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videos on the internet are often accompanied by tags that provide semantic discrimination.

Such video-level labels are generally termed as weak labels, as they are weaker forms of

annotation than obtaining the labels of every time frame in the video. We utilize such

weak video-level labels to learn action detection models where during test time, the model

temporally localizes the categories of interest. The motivation behind the prospective of

using weak labels is driven by finding the similarities across all videos which have a certain

category in common. We pose the problem as a Multiple Instance Learning (MIL) and

impose certain constraints for better feature learning. Analogous to MIL, each video can be

considered as a bag of frames and we need to predict the category of every frame in the bag

on the test videos, given only bag-level labels during training. We develop two loss functions

to learn the model parameters. First, the video classification loss based on the k-max-mean

multiple instance learning and co-activity similarity loss via an attention mechanism. The

co-activity similarity loss considers pairs of videos and enforces similar activity temporal

regions to have similar features compared to dissimilar activity regions, which are identified

using an attention mechanism. The model significantly performs better when using the

co-activity loss than when using only the video classification loss. This work shows that we

can obtain significant detection performance even when using only weak labels rather than

strong dense labels used in the literature, thus opening the horizon for using the enormous

corpus of videos accompanied by tags on the web.

Continuing in the direction of using weak labels, we look into the problem of

semantic segmentation of images in Chapter 4. A segmentation model learned on one

dataset (source) may not generalize well to images from a different distribution (target).
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Thus, the model needs to be adapted to the target images. Pixel-wise labeling of real-world

images takes a huge amount of time (90 min/image [39]). Due to such high annotation

costs, the model needs to be adapted from source to target with none to minimal annotation

cost. Current methods [202, 47] in literature have been mostly unsupervised, i.e., requiring

no annotation on the target side. However, there exists a considerable performance gap

between these methods and a fully supervised method with pixel-wise labels. To bridge the

gap, we utilize weak labels of the target images in two different paradigms of learning. We

use image-level weak labels, i.e., we only have information about the presence or absence

of the categories appearing in the image. There are two ways by which we can obtain

such weak labels. We can estimate them using the model trained on the source side,

which would be pseudo-weak labels. However, as this does not involve a human, thus

incurring no annotation cost, using such pseudo-weak labels falls under the category of

unsupervised domain adaptation. On the other hand, we can ask a human annotator to

obtain the weak labels, which would be true labels, and fall under the category of weakly-

supervised domain adaptation and incurring a very low annotation cost (30-45 sec/image).

Our experimental results with different combinations of source and target datasets show that

we can considerably reduce the gap in performance with full target supervision, incurring

none to very limited annotation cost.

Finally, in Chapter 5, we look into sequential decision-making tasks, in contrast

to static tasks discussed until now. Reinforcement Learning (RL) aims to take sequential

actions on an environment, to maximize a certain reward function, designed for a task. RL

generally requires intricately designed dense rewards, as methods with sparse rewards re-
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quire a lot of time and costly interaction with the environment to learn. Imitation Learning

(IL) using human demos can be used to learn the policies faster [6], but due to the dynamic

nature of the tasks, even a small error rate compounds quadratically with time and results

in improper performance. To overcome this problem, we take the path of IL followed by

RL to mitigate the errors. However, instead of using sparse rewards in RL, we propose

the idea of using subgoals, often characterized in human behavior, for more dense rewards,

but learned just from a few human demos. We learn to break down the long complex task

into subgoals and make the agent solve them sequentially. However, to learn the subgoal

partitions, we do not use any subgoal labels from annotator but impose a weak temporal

order constraint on the discovered subgoals, i.e., the first subgoal should occur before the

second, the second before the third, and so on. This natural ordering in subgoals, which

often arises in most real-world tasks, can be used as a reward function in RL. Results show

that the subgoals discovered play an important role in solving several sparse reward tasks

sample-efficiently, which other methods in the literature are not able to solve.

Organization of the Thesis. Fig. 1.1 presents a pictorial overview of the thesis.

The rest of the thesis is organized as follows. In Chapter 2, we present our framework on

active learning in the presence of context to reduce the number of data points needed to

learn classification tasks. In Chapter 3 and 4, we move towards dense prediction tasks -

action detection and domain adaptation of semantic segmentation respectively. We develop

algorithms that can learn from weak labels specifically for these problems. Then in Chapter

5, we move towards learning sequential decision-making tasks in a sample-efficient manner,

using the concept of subgoals of an otherwise long complex task. Finally, we conclude the

7



thesis in Chapter 6 with some interesting future directions of work in learning with limited

supervision for computer vision and robotics tasks.
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Chapter 2

Active Learning with Context

2.1 Introduction

In the recent years, due to advances in technology, huge amount of visual and text

data is generated daily, which are mostly unlabeled for the purpose of learning machine

learning models. Also, machine learning algorithms are becoming more commonplace in

human life. A large proportion of these algorithms are based on supervised learning which

requires a large quantity of data to be labeled. Moreover, these models need to be updated

over time as new data becomes available in order to dynamically adapt to the different

semantic concepts which may drift with time. Manually labeling this continuous flow of

data is not only a tedious task for humans but also prone to incorrect labeling. Active

Learning [171] can be a solution to this problem to reduce the amount of manual labeling,

without compromising recognition performance.

The ability of active learning to reduce manual labeling effort is due to the fact

that not all training samples are valuable for building a recognition model [104]. Most active
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learning approaches formulate a utility score for each unlabeled sample, based on which they

are chosen for manual labeling. Uncertainty [112, 139], information density [111], expected

change in gradient [171], expected error rate [41, 111], expected model output change [87]

and their combinations are some popular techniques for designing the utility score. But,

most of these techniques fail to consider the inter-relationships that may occur in data

points belonging to the same or different recognition tasks.

Several works have shown that in many applications such as activity recognition

[229, 220], object recognition [58, 37], text classification [168, 172], etc, the relationships

between data points can be exploited to get better recognition performance. These relation-

ships may also be exploited in active learning to significantly reduce the effort of manual

labeling. Although there have been some works that consider relationships between data

points in active learning [13, 119, 68, 77], they do not consider the flow of beliefs between

samples to have a joint understanding of the samples, which may be helpful for choosing the

most informative ones. Moreover, most of them are problem-specific algorithms and deal

with active learning of a single recognition task. A general approach for active learning that

considers the inter-relationships between data points, and which can be used across a vari-

ety of application domains, is lacking. Joint learning of tasks such as scene-object [230, 215]

or activity-object [82, 98] classification may be required to be learned actively, to reduce

the manual labeling effort. In such scenarios, it is challenging to choose the informative

samples for manual labeling as they may belong to different recognition tasks.

In this chapter, we present our work [140] on the generalized active learning frame-

work, which utilize contextual relationships between data points to reduce the manual la-
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Figure 2.1: This figure presents the flow of the proposed framework. 1. A small set of
labeled data is used to obtain the initial relationship (R) and classification model (C). 2.
As a new unlabeled batch of data becomes available sequentially over time, we first extract
features from the raw data. Then the current C and R models are used to construct a graph
from the data to represent the relationships between them. Then inference on the graph is
used to obtain the node and edge probabilities, which are used to choose the informative
samples for manual labeling. The newly labeled instances are then used to update the
models C and R.

beling effort. Given an unlabeled set, our algorithm automatically determines the optimal

number of informative samples to be labeled, by exploiting the structure of the data, i.e.,

the relationships between the samples. The relationship information can not only help to

update the beliefs of the classifier for each data point but also plays an important role

in selecting a small subset of informative samples, which when labeled can help the other

unlabeled samples to have a better understanding of their labels. This framework can be

applied for both single, as well as multiple, recognition tasks learned jointly.

Framework Overview. The flow of the proposed method is pictorially presented in

Fig.2.1. The proposed method starts with a small set of labeled data and uses it to build

the classification (C) and relationship (R) models. R represents the underlying relation-

ship between the data points via categorical co-occurrence probabilities. Note that the

classification models may contain multiple classifiers for multiple recognition tasks. After
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learning the initial models, given a new batch of unlabeled samples, the goal is to select a

subset of informative samples for manual labeling which can be used to update the current

classification and relationship models.

As a new batch of data becomes available, they are separated into different sets

based on the recognition task to which they belong and their features are extracted. Using

the current classifiers, a probability mass function over the possible categories is obtained

for each unlabeled sample. It is used along with R to construct a graph whose nodes

represent the samples. A message-passing algorithm is used to infer on the graph to obtain

the beliefs of each node and the edges of the graphs. An information-theoretic objective

function is derived, which utilizes the beliefs to select the informative nodes for manual

labeling. The submodular nature of this optimization function allows us to achieve this in a

computationally efficient manner. The newly labeled nodes are used to update the models

C and R. It may be noted that the number of samples selected per batch is non-uniform,

dependent on the information content of each batch.

Main Contributions. The main contributions are the following.

• We propose a novel generalized active learning framework that exploits the relationships

in data to reduce the manual labeling effort. It can be used for both single as well as

multiple inter-related recognition tasks jointly.

• Our framework chooses a non-uniform number of samples for manual labeling from each

batch of data, which is helpful as the amount of information contained in a batch of data

varies and it may not be useful to select the same number of samples from each batch.

• Unlike other batch mode subset selection algorithms that exploit relationships in data
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points, the optimization problem in our framework can be proved to be submodular

minimization which makes it easy to obtain optimal solutions in polynomial time.

2.2 Related Works

Active Learning. An overview of the approaches which form the core of most active

learning (AL) algorithms may be found at [170]. Most AL algorithms involve the uncertainty

of the classifier for choosing the informative samples, best vs. second-best [110], entropy

[111], classifier margin [212] being commonly used measures for classifier uncertainty. Along

with classifier uncertainty, diversification in the chosen samples is also used via k-means [110]

or sparse representative subset selection [53]. The scalability issue in terms of the number

of categories was addressed in [86] by asking binary questions to the human. They selected

samples from the unlabeled set based on expected misclassification risk and extracted a

probabilistically similar image from the labeled set to ask whether they match. Another

important concept used in AL is expected model change [21, 211, 87].

Active Learning with Relationship Information. Most of the above-mentioned works

do not consider the relationships between the data points which may be exploited to reduce

the amount of manual labeling. In [14], an AL algorithm was proposed which involves un-

certainty, committee-based ensembles, and community-based clustering of networked data.

A network-based utility score for each sample was proposed in [103] involving neighborhood

information of the networked data. In [174], maximum uncertainty as well as the maxi-

mum impact on other unlabeled instances was used, where the link information enhances

the feature-based similarity measure used to capture the impact of a sample. In [112], a
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hierarchical model for AL was proposed for scene classification where they also query the

objects whenever there is a mismatch between the scene label provided by the classifier

and human. An AL algorithm for scene and object classification is presented in [8]. The

relationship in the feature space was exploited in [119] for AL. The concept of typicality in

information theory is exploited in [9] to choose the optimal subset of samples.

In [23], an algorithm for batch mode AL was proposed which uses entropy and

Kullback Leibler divergence to select informative and diverse samples. However, these

algorithms do not incorporate the propagation of beliefs among samples. An AL algorithm

is presented in [68] for activity recognition. They proposed an objective function based

on intuition and provided a greedy solution to optimize it. Our algorithm on the other

hand is not only mathematically validated, but also experimentally supported on different

applications (beyond activity recognition), including multiple inter-related tasks. Moreover,

our AL algorithm is computationally efficient due to the submodularity property and can

be applied in scenarios involving joint learning of multiple recognition models. Also, unlike

[68], we do not select a fixed number of samples from each batch; rather the number of

samples is non-uniform based on the information content of each batch.

2.3 Methodology

2.3.1 Data Representation

The proposed method for informative sample selection is based on the assumption

that the unlabeled data points have an underlying structure, i.e., relationships among them.

We build a graph whose nodes represent the unlabeled samples to exploit the relationships
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between them. The two important measures which represent the graph are node and edge

potentials.

Our active learning framework can select samples for single as well as multiple

joint classification tasks simultaneously if the instances share relationship, e.g., scene-object,

object-object, activity-object classification, etc. In order to generalize, let us consider that

we have m tasks at hand which share relationships in data. Let us consider that we have

a set of baseline classifiers C = {C1, . . . , Cm} for these m interrelated tasks. The node and

edge potentials in the format we use are discussed below.

Node Potential. We represent each data point as a node. Consider that we a have total

n categories {c1, . . . , cn} for these m classification problems. Consider an indicator function

I(.) which takes as input a category name c and provides as output a unit standard basis

vector, i.e., I(c = c1) = [1, 0 . . . , 0]T . If f j is the feature of node j, then its node (unary)

potential can be expressed as,

φj =

m∑
p=1

n∑
i=1

Cp(f j , ci)I(c = ci) (2.1)

where Cp(f j , ci) is a scalar representing the probability of node j to belong to category ci.

Cp(f j , ci) = 0 if the training data of Cp does not contain data of category ci.

Edge Potential. The edge (pair-wise) potential represents the relationships between the

categories. The relationship model R contains the edge potential matrix ψ whose i,j lo-

cation is the co-occurence frequency [58] of data point of category ci with data point of

category cj . Co-occurrence, and thus edge potential, depends on the application and will

be discussed in Section 2.4.
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The node and edge potentials play an important role in our framework as we use it

to construct a graph to represent the relationships between the data points. Note that our

framework can be applied to any dataset containing relationships which can be modeled as

edge potentials.

Graph Construction. Let us consider that we have a labeled set L. We learn the baseline

classification model C and a relationship model R with these labeled data L. Now, consider

that a new unlabeled dataset U becomes available with features {f j}Nj=1, N being the size

of the set U . Instead of manually labeling this entire unlabeled set, our goal is to reduce

the labeling effort by choosing an informative subset of U for manual labeling, such that it

helps to improve the current models C and R.

We start by constructing a graph G = (V,E) with the instances in U using the

current models C and R. Each node in V = {v1, . . . , vN} represents each data point. The

edges E = {(i, j)|vi and vj are linked} represent the relationships between the data points.

The link information between the nodes depends on the application and is discussed in

Section 2.4. The nodes are assigned the corresponding node potentials φi and the edges

are assigned the edge potential ψ. A message-passing algorithm can be used to infer the

node and edge beliefs which are the marginal node probabilities and the pair-wise joint

distribution of the edges respectively. We use Loopy Belief Propagation (LBP) [166] to

accomplish this task.

2.3.2 Selection of Informative Samples

In this section, we discuss how we choose the informative samples based on the

graphical model constructed from a batch of data. Using the node and edge probabilities,
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the goal is to choose a small subset V l∗ ⊂ V for manual labeling, which will improve the

current models C and R. We wish to select a subset of the nodes such that the joint entropy

of all the nodes H(V ) is minimized. Below we derive an expression for the joint entropy of

the graph G.

Joint Entropy of Nodes. The entropy of each node and the mutual information between

a pair of nodes can be expressed as H(vi) = E[− log2 pi] and I(vi, vj) = E[log2 pij
/
pipj ] and

pi, pj and pij are the node and edge probabilities respectively. The joint entropy of the

nodes of the graph G can be expressed as follows,

H(V )
(a)
= H(v1) +

N∑
i=2

H(vi|v1, . . . , vi−1)

(b)
=H(v1) +

N∑
i=2

[
H(vi)− I(v1, . . . , vi−1; vi)

]
(c)
=H(v1) +

N∑
i=2

[
H(vi)−

i∑
j=1

I(vj ; vi|v1, . . . , vj−1)
]

=
N∑
i=1

H(vi)−
N∑
i=2

i∑
j=1

I(vj ; vi|v1, . . . , vj−1)

(d)
≈
∑
vi∈V

H(vi)−
∑

(i,j)∈E

I(vj ; vi) (2.2)

(a)Joint entropy chain rule [40]

(b)Using I(v1, . . . , vj−1; vj) = H(vj) −H(vj |v1, . . . , vj−1), where, I(.; .) represents the mu-

tual information between the set of random variables separated by ’;’.

(c)Mutual information chain rule [40]

(d)Computing the conditional mutual information I(vj ; vi|v1, . . . , vj−1) becomes computa-

tionally intractable as the number of nodes on which it is conditioned increases. Moreover,

17



we construct our graph using just unary (node) and pair-wise (edge) potentials and ignor-

ing higher-order potentials. Thus, we approximate the conditional mutual information as

I(vj ; vi|v1, . . . , vj−1) ≈ I(vj ; vi). Furthermore, we consider two nodes to be independent if

there exists no link between them. It is also known that the mutual information between

two random variables is zero if they are independent.

The expression in Eqn 2.2 is similar to the expression of joint entropy using Bethe Approx-

imation [224]. Moreover, this expression for joint entropy is exact for an acyclic graph but

an approximation in case of graphs containing cycles. We use this expression to derive an

objective function to be optimized in order to obtain the most informative nodes for manual

labeling.

Objective Function Derivation. Our goal is to choose a subset of nodes from V , the size

of which may vary across each batch of data, such that the joint entropy H(V ) in Eqn. 2.2

is minimized after inferring on the graph G conditioned on the obtained labels of the chosen

nodes. To set up the optimization problem, let us partition the node-set V into two sets,

V l which will be selected for manual labeling and V nl which will not be manually labeled.

We need to find the optimal partition of V into these two sets by optimizing an objective

function. The motivation is that the classifier is either confident or will become confident

about the set V nl if we gain information about the subset V l. Here l means Labeled and

nl means Not Labeled.

Let us define the two subgraphs of G as follows: Gl = (V l, El) be the subgraph

whose nodes will be labeled and Gnl = (V nl, Enl) be the subgraph whose nodes will remain
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unlabeled. For the sake of completeness, the following are defined:

El = {(i, j)|(i, j) ∈ E, vi, vj ∈ V l} (2.3)

Enl = {(i, j)|(i, j) ∈ E, vi, vj ∈ V nl}

Following the above partition, the joint entropy H(V ) can be partitioned as follows,

H(V ) =
[ ∑
vi∈V l

H(vi)−
∑

(i,j)∈El
I(vj ; vi)

]
+

[ ∑
vi∈V nl

H(vi)−
∑

(i,j)∈Enl
I(vj ; vi)

]
−

∑
(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)

=H(V l) +H(V nl)−
∑

(i,j)∈E
vi∈V l,vj∈V nl

I(vj ; vi) (2.4)

Once the nodes in V l are manually labeled and we run inference on the graph conditioned

on the acquired labels, the first and last term of the above expression becomes zero. This

is because after acquiring labels for V l, its every node become deterministic. Thus H(V l)

becomes zero. Also, mutual information I(vi; vj) = H(vi) +H(vj)−H(vi, vj) = 0 when vi

is deterministic, as then H(vi) = 0, H(vi, vj) = H(vj).

Most active learning algorithms assume that for each batch of unlabeled data,

there is a fixed budget, i.e., the number of samples for manual labeling. If the budget for

manual labeling is K(≤ N), then the optimal subset V l∗ which minimizes the joint entropy

19



of the node can be expressed as,

V l∗ = arg max
V l

s.t.|V l|=K

[
H(V l)−

∑
(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)
]

(2.5)

However, each batch of data may contain a non-uniform amount of information, and choos-

ing the same number of budget-constrained samples (i.e., K) from each batch may not be

a good idea. Instead, the number of samples could be determined based on the information

content of each batch. This motivates us to modify the above objective function, such that

we choose a non-uniform number of informative samples from a different batch of data. We

rewrite Eqn. 2.5 as an unconstrained minimization problem as follows:

V l∗ = arg min
V l

[ ∑
(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)−H(V l) + λ|V l|
]

(2.6)

where λ is a positive trade-off parameter between maximizing the objective function in Eqn.

2.5 and minimizing the number of nodes chosen for manual labeling. The choice of λ is

discussed at the end of this section.

The optimization problem can be represented in vector and matrix notations. For

that, we define the following: consider a vector x of length N with elements being 1 or 0,

where 1 represents the node is selected to be in the set V l and 0 represents the opposite.

We need to find the optimal x which solves the optimization problem in Eqn. 2.6. Let

us define a N dimensional vector h of node entropies and a N ×N matrix M of pairwise
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mutual informations as follows,

h , [H(v1), H(v2) . . . H(vN )]T

M(i, j) ,


I(vi; vj), if (i, j) ∈ E

0, otherwise

where i, j ∈ {1, . . . , N}. The objective function in Eqn. 2.6 can be represented as

x∗ = arg min
x

1

2
xTQx+ xTf + λxT1 (2.7)

where Q , −M and f ,M1−h and where 1 = [1 1 . . . 1]T of size N × 1. The objective

function in Eqn. 2.7 can be proved to be submodular which makes the optimization problem

simpler compared to Eqn. 2.5. Details of the optimization is discussed next.

Proof of Submodularity. Considering P(S) as the power set of a finite set S, a submod-

ular function is a set function f : P(S)→ R if it satisfies the following,

f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y ) (2.8)

where X ⊆ Y ⊆ S and v ∈ S − Y . The sets are presented in Fig. 2.2 for a better

understanding. Let us consider two vectors x and y representing the two sets X and Y ,

i.e., if a node exists in a set, the corresponding element of the vector will be 1 else 0.

Consider a vector v which represents the node v of Eqn. 2.8, i.e., v is a vector of all zeros

and one at the vth element location. Consider the objective function in Eqn. 2.7 be f .
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Figure 2.2: This figure is an example illustration of the sets S,X, Y , and the element v
involved in proving that the proposed objective function is submodular.

Then,

f(X ∪ {v})− f(X) =
[1

2
(x+ v)TQ(x+ v) + (x+ v)Tf + λ(x+ v)T1

]
−
[1

2
xTQx+ xTf + λxT1

]
=

1

2
vTQv + xTQv + vTf + λ (2.9)

Also, f(Y ∪ {v})− f(Y ) = 1
2v

TQv + yTQv + vTf + λ

{f(X ∪ {v})− f(X)} − {f(Y ∪ {v})− f(Y )} = (x− y)TQv (2.10)

Now, as X ⊆ Y , y contains 1 at least in the positions where x contains 1. Thus,

the entries of the vector x−y are either 0 or −1. Also, the entries of Q are non-positive as

Q = −M and mutual information is always non-negative. Also, v is a vector of 1 at a single

element and 0 otherwise. Thus, (x − y)TQv ≥ 0 and Eqn. 2.8 is satisfied, which makes

the objective function in Eqn. 2.7 submodular and the optimization problem is submodular

minimization.

22



Algorithm 1 Proposed Framework

Input: Sequential Batch of Unlabeled Data {U1,U2, . . . }.
Output: Classification C & Relationship R models after processing every batch of data.
Variable L: Labeled Set, k: batch number
1. L ← U1: Ask human to label the first batch U1.
2. Construct the models C and R using L.
k ← 2
while new batch

(
Uk
)

available do
3. Construct graph G = (V,E) using Uk
4. Use the C and R to assign the node and edge potentials to G
5. Run inference on G to obtain the node (pi) and edge (pij) probabilities
6. Compute the entropy & mutual information to construct h & M respectively.
7. Find λ using Eqn. 2.11
8. Obtain x∗ in Eqn. 2.7 using Fujishige-Wolfe Min Norm Point algorithm
9. Use x∗ to select the samples for query to human, denoted by V l∗. Then, L ← L∪V l∗

10. Infer conditioned on the acquired labels and L ← L∪{Highly confident instances}
11. Use L to update the models C and R
k ← k + 1

end while

Optimization Procedure. Submodular Function Minimization (SFM) often arises in

fields of machine learning, game theory, information theory, etc. Detailed description may

be found here [121]. There exist some algorithms which can be used to solve SFM in poly-

nomial time. We use the Fujishige-Wolfe Min Norm Point algorithm [57] in the Submodular

Function Optimization (SFO) [99] toolbox to solve the submodular minimization problem

in Eqn. 2.7. It is one of the most well-known algorithms to solve SFM.

Trade-off Parameter. The parameter λ in Eqn. 2.7 is a trade-off between the two

objectives as discussed previously. If f(x) is the objective function in Eqn. 2.7, then λ can

be expressed as,

λ = α
minx f(x)|λ=0 − 0

0−maxx xT1
(2.11)

where α is a scalar parameter. In Eqn. 2.11, a fraction is obtained using the range of values
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of the two objective functions, such that the scaling between the two objective functions

using λ is appropriate. λ now depends on α, which can be kept close to 1 for all applications

due to the scaling done in Eqn. 2.11 between the two objective functions.

Model Update After the chosen samples are labeled by a human annotator, we perform

inference on the graph, conditioned on the acquired labels to update the beliefs of the nodes

and then we apply the concept of weak teacher [235], which does not involve the human.

We choose those nodes having the confidence in classification > ε, with the corresponding

label, to be in the labeled set L. ε should be high enough to avoid incorrect labeling. The

classification model C is updated by retraining the classifier using L. Model R is comprised

of only the co-occurrence matrix ψ and it is incremented using the new labeled instances.

An overview of the entire framework is presented in Algorithm 1.

Special Case of Archived Data. Note we discussed the proposed method to be used in

a continual learning set-up where data comes in batches with time. However, the proposed

framework can also be used in cases where the entire dataset is available at the outset.

In that case, a small set of samples is randomly selected from the unlabeled dataset and

their labels are obtained. These labeled samples are used to construct the initial models

C and R. These models are used to choose the informative samples from the rest of the

unlabeled pool of samples and then the models are updated after acquiring the labels. This

process continues until the joint entropy of the remaining subset becomes less than a certain

threshold.
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2.4 Experiments

In this section, we present an experimental analysis of our proposed active learning

framework for three different applications - joint scene-object classification, activity recog-

nition, and document classification. These applications are chosen as they have data that

share relationships among them. For each application, we perform the following experi-

ments.

• We compare the proposed method with commonly used and state-of-the-art active learn-

ing methods namely - Batch Rank [23], BvSB [110], Entropy [171, 76], Density Based

Sampling (DENS) [171], Expected Gradient Length (GRL) [172] and Random Sampling.

We also compare with CAAL [68] for activity recognition.

• We compare the results of our algorithm with other state-of-the-art methods that use the

entire dataset for training, details of which are mentioned subsequently.

• We perform a sensitivity analysis of the proposed method on the parameter α in Eqn.

2.11.

We use Support Vector Machine (SVM) [24] as a baseline classifier in our proposed

method as well as for all the active learning methods with which we compare, to have a

fair comparison. We use the Undirected Graphical Model (UGM) toolbox [166] to perform

inference on the graph. We will use the following short-notations. “ALL” represents the

accuracy obtained by using the entire dataset for training.“ALL Batch” denotes that the

classifier is updated using ALL the instances of the current batch.
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Figure 2.3: This figure presents the results on the SUN dataset for scene recognition. (a)
presents the comparison of the proposed method with other active learning methods. (b)
presents the comparison with other methods which use the entire dataset for training. (c)
presents the sensitivity of the proposed method to the parameter α.
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Figure 2.4: This figure presents the results on the SUN dataset for object detection. (a)
presents the comparison of the proposed method with other active learning methods. (b)
presents the comparison with other methods which use the entire dataset for training. (c)
presents the sensitivity of the proposed method to the parameter α.

2.4.1 Scene-Object Classification

Scene and objects tend to co-occur in images. Although scene and objects classi-

fiers are separate, their joint understanding can be beneficial [230], which can be exploited

in our active learning framework to reduce manual labeling.

Dataset. We use the SUN dataset [37, 226] for our experiments on scene-object classifi-

cation. We use that portion of the dataset which has both scene and object annotations

as we aim to exploit their relationship. In order to represent the scene nodes, we extract
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CNN features (∈ R4096) from the fc-7 layer of VGG-net [241] pre-trained on the places-205

dataset. We use the pipeline of R-CNN [62] to detect the objects and then extract CNN

features from fc-7 layer of Alex-net [101], pre-trained on ImageNet [45].

Experimental Set-up. We perform 5 Fold Cross-Validation (FCV) for this dataset. The

training data of 4 folds are divided into 6 batches and fed sequentially to our active learning

framework. We consider that the first batch is manually labeled and use it to construct the

initial models C and R. We assume that the other batch of data is unlabeled and we choose

only the informative samples for manual labeling, which is then used to update the models.

It may be noted that this application is an example that depicts that our algorithm can be

applied for active learning of different recognition tasks jointly. Each image is represented

by a single scene node and multiple object nodes as detected by the detector. The graph

for this application is considered to be fully connected and the i, j position of the edge

potential matrix is a count of the number of times an object of category i appears in a

scene of category j.

Results. Fig. 2.3(a) and 2.4(a) presents the comparison of the proposed method with

other state-of-the-art active learning methods. The proposed method performs better than

the other methods and reaches the “ALL” mark with only 41% and 62% manual labeling

for scene and objects respectively.

Fig. 2.3(b) and 2.4(b) presents the results of the proposed method along with

methods that consider that the entire dataset is manually labeled and available for training.

We compare our method with SUN-CNN [241] for scene classification and with R-CNN [62]

and DPM [54] for object recognition. As may be observed, the proposed method requires
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Figure 2.5: This figure presents the results on the CORA dataset for document classi-
fication. (a) presents the comparison of the proposed method with other active learning
methods. (b) presents the comparison with other methods which use the entire dataset for
training. (c) presents the sensitivity of the proposed method to the parameter α.
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Figure 2.6: This figure presents the results on the VIRAT dataset for activity classification.
(a) presents the comparison of the proposed method with other active learning methods.
(b) presents the comparison with other methods which use the entire dataset for training.
(c) presents the sensitivity of the proposed method to the parameter α.

a much lesser number of samples to be manually labeled to obtain the same accuracy as

“ALL Batch”.

Fig. 2.3(c) and 2.4(c) present the results of the proposed method for different

values of the parameter α in Eqn. 2.11. It may be noted that α = 1.1 have been used for

all the results corresponding to the SUN dataset.
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2.4.2 Document Classification

Documents are generally inter-linked by citations and hyperlinks, which may be

exploited using our active learning approach to reduce manual labeling effort.

Dataset. We use the CORA dataset [169] for our experiments on document classification.

It is a dataset containing 2708 scientific publications divided into seven categories. There are

a total of 5429 links (citations) between the publications. The publications are represented

using a dictionary of 1433 unique words and the feature vectors f i ∈ {0, 1}1433 indicate the

absence or presence of these words.

Experimental Set-up. We perform 10 FCV for this dataset following [169] and follow a

similar set-up as discussed previously for scene-object. We construct the graph such that

each node is connected to its five nearest neighbors in the feature space. The i, j position

of the edge potential matrix is a count of the number of times a publication belonging to

category i is related to category j via a citation link.

Results. The results of the proposed AL method along with other state-of-the-art AL

methods is presented in Fig. 2.5(a). It may be observed that the proposed method performs

much better than the other algorithms and requires only 42% manual labeling to reach

“ALL”.

We also compare our proposed method with other methods which consider that the

entire dataset is manually labeled and use it for training. Fig. 2.5(b) presents the compar-

ison with two such methods namely CCND [169] and LBC [168] 1. The proposed method

performs much better than “ALL Batch”, which signifies that the proposed method ex-

1Please note that the horizontal lines should be points at 100% manual labeling, but for better visualiza-
tion, we have presented them as lines.
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tracts maximum possible information from the unlabeled set, but using much lesser manual

labeling.

We also present analysis of the parameter α in Eqn. 2.11 and the plots are pre-

sented in Fig. 2.5(c). The results in Fig. 2.5(a) and 2.5(b) is with α = 1.1. Lower the

value of α, lesser will be the penalty for the number of samples chosen per batch (Eqn.

2.7), thus more samples will be chosen. This is also evident from Fig. 2.5(c). Although,

the performance with α = 0.5 is similar to α = 1.1 at the end, the later chooses much lesser

number of samples for manual labeling.

2.4.3 Activity Classification

Activities are generally spatio-temporally related which can be exploited to reduce

the number of instances chosen for manual labeling. Dataset. We use the VIRAT dataset

[133] on human activity for our experiments on activity classification. The dataset consists

of 11 videos segmented into 329 activity sequences. We extracted features using the pre-

trained model of 3D convolutional networks [199]. We extract the features for 16 frames at a

time with a temporal stride of 8 and then apply max pooling along the temporal dimension

to obtain a single vector ∈ R4096 for each activity.

Experimental Set-up. We have used the first 176 sequence (761 activity) for training and

153 sequence (661 activities) for testing. We have divided the training set into 20 batches

and fed them sequentially to our active learning algorithm. We consider that there exists a

link between two activities if they have occurred within a certain spatio-temporal distance.

We consider the edge potential to be the spatio-temporal co-occurrence between the two

activities.
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Results. The results of the proposed active learning algorithm with other state-of-the-

art active learning methods is presented in Fig. 2.6(a). It may be observed that the

proposed method not only reaches the accuracy of “ALL” with only 18% manual labeling,

but also performs better than “ALL”. The fact that an algorithm can perform better than

“ALL”, i.e. using the entire dataset for training is discussed in [104]. Although Batch

Rank reaches “ALL”, it requires much more manual labeling than required by the proposed

method. ”CAAL” remains close to the proposed algorithm initially, but the latter peaks

up thereafter.

We compare the proposed method in in Fig. 2.6(b) with other learning algorithms

which consider the entire dataset to be manually labeled and use it for training namely -

Context Aware Activity Recognition (CAAR) [244] and Sum Product Network (SPN) [3].

It may be observed that the proposed method peaks much faster than “ALL Batch” which

indicates that the former requires lesser manual labeling in each batch to obtain the same

accuracy as when the entire batch is manually labeled and used for training. The plots for

sensitivity analysis of the parameter α for the VIRAT dataset is presented in Fig. 2.6(c).

2.5 Conclusions

In this chapter, we presented and evaluated a novel generalized active learning

framework for inter-related data. Our framework can be applied for active learning of

both single as well as multiple recognition tasks simultaneously by exploiting the inter-

relationships in data. Our proposed method selects non-uniform number of samples from

each batch depending on the information content. The proposed informative subset selection
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methodology is not only fast due to its submodular property, but also performs well on a

wide range of applications. Further, in [67] we show that our method can also be used when

we have a given fixed budget for manual annotation per batch of unlabeled data. We also

show that other contextual information, such as objects in case of activity recognition, can

be exploited as side information for better performance of our model. An interesting future

direction of work could be to investigate the scenario the scenario where the labels provided

by human is not always correct.
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Chapter 3

Weakly Supervised Event

Localization

3.1 Introduction

Temporal activity localization and classification in continuous videos is a challeng-

ing and interesting problem in computer vision [1]. Its recent success [227, 238] has evolved

around a fully supervised setting, which considers the availability of frame-wise activity

labels. However, acquiring such precise frame-wise information requires enormous manual

labor. This may not scale efficiently with a growing set of cameras and activity categories.

On the other hand, it is much easier for a person to provide a few categorical labels which

encapsulate the content of a video. Moreover, videos available on the web are often accom-

panied by tags that provide semantic discrimination. Such video-level labels are generally

termed as weak labels, which may be utilized to learn models with the ability to classify
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Figure 3.1: This figure presents the train-test protocol of weakly supervised action localiza-
tion. The training set consists of videos with their video-level activity tags and NOT the
temporal annotation. Whereas, while testing, the network not only estimates the labels of
the activities in the video but also temporally locates their occurrence.

and localize activities in videos. In this chapter, we present a novel framework [142] for

Temporal Activity Localization and Classification (TALC) from such weak labels. Fig. 3.1

presents the train-test protocol of W-TALC.

In computer vision, researchers have utilized weak labels to learn models for several

tasks including semantic segmentation [66, 92, 228], visual tracking [239], reconstruction

[204, 88], video summarization [136], learning robotic manipulations [184], video captioning

[173], object boundaries [93], place recognition [5], and so on. The weak TALC problem

is analogous to weak object detection in images, where object category labels are provided

at the image-level. There have been several works in this domain mostly utilizing the

techniques of Multiple Instance Learning (MIL) [242] due to their close relation in terms of

the structure of information available for training. The positive and negative bags required

for MIL are generated by state-of-the-art region proposal techniques [109, 85]. On the other

hand, end-to-end learning with categorical loss functions are presented in [51, 52, 46, 185]
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and the authors in [243] incorporated the proposal generation network in an end-to-end

manner.

Temporal localization using weak labels is a much more challenging task compared

to weakly-supervised object detection. The key reason is the additional variation in content

as well as the length along the temporal axis in videos. Activity localization from weakly

labeled data remains relatively unexplored. Some works [186, 228, 192] focus on weakly-

supervised spatial segmentation of the actor region in short videos. Another set of works [16,

102, 153, 78] considers video-level labels of the activities and their temporal ordering during

training. However, such information about the activity order may not be available or may

not make sense for a majority of web-videos. [222] utilizes state-of-the-art object detectors

for spatial annotations but considers full temporal supervision. In [218], a soft selection

module is introduced for untrimmed video classification along with activity localization and

a sparsity constraint is included in [132].

In W-TALC, as we have labels only for the entire video, we need to process them

at once. Processing long videos at fine temporal granularity may have considerable mem-

ory and computation requirements. On the other hand, coarse temporal processing may

result in reduced detection granularity. Thus, there is a trade-off between performance and

computation. Over the past few years, networks trained on ImageNet [45] and recently

on Kinetics [90], has been used widely in several applications. Based on these advances

in literature and the aforementioned trade-off, we may want to ask the question that: is

it possible to utilize these networks just as feature extractors and develop a framework for

weakly-supervised activity localization which learns only the task-specific parameters, thus
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Figure 3.2: This figure presents the proposed framework for weakly-supervised activity
localization and classification. Given a video, we extract features from two streams - RGB
and Optical Flow. After concatenating the feature vectors from the two streams, we learn
a few layers specific to the task of weak localization and finally project to the category
space to obtain a T ×C matrix where T and C are the number of time steps and categories
respectively. We utilize two loss functions to learn the network parameters - Cross-entropy
loss on the temporally pooled predictions, and Co-Activity Loss obtained using a pair of
videos containing at least one category in common.

scaling up to long videos and processing them at fine temporal granularity? To address

this question, we present a framework (W-TALC) for weakly-supervised temporal activity

localization and video classification, which utilizes pair-wise video similarity constraints via

an attention-based mechanism along with multiple instances learning to learn only the task-

specific parameters.

Framework Overview. A pictorial representation of W-TALC is presented in Fig. 3.2.

The proposed method utilizes off-the-shelf Two-Stream networks [218, 22] as a feature

extractor. The number of frame inputs depend on the network used and will be discussed

in Section 3.3.1. After passing the frames through the networks, we obtain a matrix of

feature vectors with one dimension representing the temporal axis. Thereafter, we apply a

FullyConnected-ReLU-Dropout layer followed by the label space projection layer, both of

which is learned for the weakly-supervised task.
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The activations over the label space are then used to compute two complimentary

loss functions using video-level labels. The first one is Multiple Instance Learning Loss,

where the category-wise k-max-mean strategy is employed to pool the category-wise acti-

vations and obtain a probability mass function over the categories. Its cross-entropy with

the ground-truth label is the Multiple Instance Learning Loss (MILL). The second one is

the Co-Activity Similarity Loss (CASL), which is based on the motivation that a pair of

videos having at least one activity category (say biking) in common should have similar

features in the temporal regions which correspond to that activity. Also, the features from

one video corresponding to biking should be different from the features of the other video

(of the pair) not corresponding to biking. However, as the temporal labels are not known

in weakly-supervised data, we use the attention obtained from the label space activations

as weak temporal labels, to compute CASL. Thereafter, we jointly minimize the two loss

functions to learn the network parameters.

Main contributions. The main contributions of the proposed method are as follows. 1.

We propose a novel approach for weakly-supervised temporal activity localization and video

classification, without fine-tuning the feature extractor, but learning only the task-specific

parameters. Our method does not consider any ordering of the labels in the video during

training and can detect multiple activities in the same temporal duration.

2. We introduce the Co-Activity Similarity Loss and jointly optimize it with the Multiple

Instance Learning Loss to learn the network weights specific to the weakly-supervised task.

We empirically show that the two loss functions are complementary in nature.

3. We perform extensive experiments on two challenging datasets and show that the pro-
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posed method performs better than the current state-of-the-art methods.

3.2 Related Works.

The problem of learning from weakly-supervised data has been addressed in several

computer vision tasks including object detection [12, 52, 109, 175, 38, 185], segmentation

[210, 138, 11, 92, 221], video captioning [173] and summarization [136]. Here, we discuss in

detail the other works which are more closely related to our work.

Weakly-supervised Spatial Action Localization. Some researchers have looked into

the problem of spatial localization of actors in mostly short and trimmed videos using weak

supervision. In [28] a framework is developed for localization of players in sports videos,

using detections from a state-of-the-art fully supervised player detector, as inputs to their

network. Person detectors are also used in [186, 223] to generate person tubes, which is

used to learn different Multiple Instance Learning-based classifiers. Conditional Random

Field (CRF) is used in [228] to perform actor-action segmentation from video-level labels

but on short videos.

Scripts as Weak Supervision. Some works in the literature use scripts or subtitles

generally available with videos as weak labels for activity localization. In [105, 50] words

related to human actions are extracted from subtitles to provide coarse temporal localization

of actions for training. In [15], actor-action pairs extracted from movie scripts serve as weak

labels for spatial actor-action localization by using discriminative clustering. Our algorithm

on the other hand only considers that the label of the video is available as a whole, agnostic

to the source from where the labels are acquired, i.e., movie scripts, subtitles, humans.
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Temporal Localization with Ordering. Few works in the literature have considered the

availability of temporal order of activities, apart from the video-level labels during train-

ing. The activity orderings in the training videos are used as constraints in discriminative

clustering to learn activity detection models [16]. A similar approach was taken in [17]. In

[78], the authors propose a dynamic programming-based approach to evaluate and search

for possible alignments between video frames and the corresponding labels. The authors in

[153] use a Recurrent Neural Network (RNN) to iteratively train and realign the activity

regions until convergence. A similar iterative process is presented also in [102], but with-

out employing an RNN. Unlike these works in literature, our work does not consider any

information about the orderings of the activity.

The works in [218, 132] are closely related to the problem setting presented in this

chapter. However, as the framework in [218] is based on the temporal segments network

[219], a fixed number of segments, irrespective of the length of the video, are considered

during training, which may lead to a reduction in localization granularity. Moreover, they

only employ the MILL, which may not be enough to localize activities at a fine temporal

granularity. A sparsity-based loss function is optimized in [132], along with a loss function

similar to that obtained using the soft selection method in [218]. We introduce a novel loss

function named Co-Activity Similarity Loss (CASL) which imposes pair-wise constraints

for better localization performance. We also propose a mechanism for dealing with long

videos and yet detecting activities at a high temporal granularity. In spite of not finetuning

the feature extractor, we can still achieve better performance than state-of-the-art methods

on weak TALC. Moreover, results show that CASL is complementary in nature with MILL.
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3.3 Methodology

In this section, we present our framework (W-TALC) for weakly-supervised activ-

ity localization and classification. First, we present our mechanism to extract features from

the two standard networks, followed by the layers of the network we learn. Thereafter, we

present two loss functions MILL and CASL, which we jointly optimize to learn the network

parameters. It may be noted that we compute both the loss functions using only the video-

level labels of the training videos. Before going into the details of our framework, let us

define the notations and problem statement formally.

Problem Statement. Consider that we have a training set of n videos X = {xi}ni=1 with

variable temporal duration denoted by L = {li}ni=1 (after feature extraction) and activity

label set A = {ai}ni=1, where ai = {aji}mij=1 are the mi(≥ 1) labels for the ith video. We also

define the set of activity categories as S =
⋃n
i=1 ai = {αi}nci=1. During test time, given a

video x, we need to predict a set xdet = {(sj , ej , cj , pj)}n(x)j=1 , where n(x) is the number of

detections for x. sj , ej are the start time and end time of the jth detection, cj represents

its predicted activity category with confidence pj . With these notations, our proposed

framework is presented next.

3.3.1 Feature Extraction

We focus particularly on two architectures - UntrimmedNets [218] and I3D [22] for

feature extraction, mainly due to their two-stream nature, which incorporates rich temporal

temporal information in one of the streams, necessary for activity recognition. Please note

that the rest of our framework is agnostic to the features used.
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UntrimmedNet Features. In this case, we pass one frame through the RGB stream

and 5 frames through the Optical Flow stream as in [218]. We extract the features from

just before the classification layer at 2.5 fps. We use the network which is pre-trained on

ImageNet [45], and finetuned using weak labels and MILL on the task-specific dataset as in

[218]. Thus, this feature extractor has no knowledge about activities using strong labels.

I3D Features. As in [132], we also experiment with features extracted from the Kinetics

pre-trained I3D network [22]. The input to the two streams is non-overlapping 16 frame

chunks. The output is passed through a 3D average pooling layer of kernel size 2× 7× 7 to

obtain features of dimension 1024 each from the two streams.

At the end of the feature extraction procedure, each video xi is represented by

two matrices Xr
i and Xo

i , denoting the RGB and optical flow features respectively, both

of which are of dimension 1024× li. Note that li is not only dependent on the video index

i, but also on the feature extraction procedure used, but it is proportional to the length of

the video. These matrices become the input to our weakly-supervised learning module.

Memory Constraints. As mentioned previously, natural videos may have large variations

in length, from a few seconds to more than an hour. In the weakly-supervised setting, we

have information about the labels for the video as a whole, thus requiring it to process the

entire video at once. This may be problematic for very long videos due to GPU memory

constraints. A possible solution to this problem may be to divide the videos into chunks

along the temporal axis [219] and apply a temporal pooling technique to reduce the length

of each chunk to a single representation vector. The number of chunks depends on the

available GPU memory. However, this will introduce unwanted background activity feature
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in the representation vectors as the start and end period of the activities in the video will

not overlap with the pre-defined chunks for most of the videos. To cope with this problem,

we introduce a simple video sampling technique.

Long Video Sampling. As the granularity of localizations is important for activity lo-

calization, we take an approach alternative to the one mentioned above. We process the

entire video if its length is less than the pre-defined length T necessary to meet the GPU

bandwidth. However, if the length of the video is greater than T , we randomly extract from

it a clip of length T with contiguous frames and assign all the labels of the entire video to

the extracted video clip. It may be noted that although this may introduce some errors in

the labels, this way of sampling does have advantages, as will be discussed in more detail

in Section 3.4.

Computational Budget and Finetuning. The error introduced by the video sampling

strategy will increase with a decrease in the pre-defined length of T , which meets the GPU

bandwidth. If we want to jointly finetune the feature extractor along with training our

weakly-supervised module, T may be very small in order to maintain a reasonable batch

size for Stochastic Gradient Descent (SGD) [19]. Although the value of T may be increased

by using multiple GPUs simultaneously, it may not be a scalable approach. Moreover,

the time to train both the modules may be high. Considering these problems, we do not

finetune the feature extractors, but only learn the task-specific parameters, described next,

from scratch. The advantages for doing this are twofold - the weakly-supervised module is

light-weight in terms of the number of parameters, thus requiring less time to train, and it

increases T considerably, thus reducing labeling error while sampling long videos.
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3.3.2 Weakly Supervised Layer

In this section, we present the proposed weakly-supervised learning scheme, which

uses only weak labels to learn models for simultaneous activity localization and classification.

Fully Connected Layer. We introduce a fully connected layer followed by ReLU [130]

and Dropout [189] on the extracted features. The operation can be formalized for a video

with index i as follows.

Xi = D
(

max
(

0,W fc

Xr
i

Xo
i

⊕ bfc), kp) (3.1)

where D represents Dropout with kp representing its keep probability, ⊕ is the addition

with broadcasting operator, W fc ∈ R2048×2048 and bfc ∈ R2048 are the parameters to be

learned from the training data and Xi ∈ R2048×li is the output feature matrix for the entire

video.

Label Space Projection We use the feature representation Xi to classify and localize the

activities in the videos. We project the representations Xi to the label space (∈ Rnc , nc is

the number of categories), using a fully connected layer, with weight sharing along the tem-

poral axis. The category-wise activations we obtain after this projection can be represented

as follows.

Ai = W aXi ⊕ ba (3.2)

where W a ∈ Rnc×2048, ba ∈ Rnc are to be learned and Ai ∈ Rnc×li . These category-wise

activations represent the possibility of activities at each of the temporal instants.
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3.3.3 k-max Multiple Instance Learning

As discussed in Section 3.1, the weakly-supervised activity localization and clas-

sification problem as addressed in this chapter can be directly mapped to the problem of

Multiple Instance Learning (MIL) [242]. In MIL, individual samples are grouped into two

bags, namely positive and negative bags. A positive bag contains at least one positive in-

stance and a negative bag contains no positive instance. Using these bags as training data,

we need to learn a model, which will be able to distinguish each instance to be positive or

negative, besides classifying a bag. In our case, we consider the entire video as a bag of

instances, where each instance is represented by a feature vector at a certain time instant.

In order to compute the loss for each bag, i.e., video in our case, we need to represent

each video using a single confidence score per category. For a given video, we compute the

activation score corresponding to a particular category as the average of k-max activation

over the temporal dimension for that category. As in our case, the number of elements in

a bag varies widely, we set k proportional to the number of elements in a bag. Specifically,

ki = max
(

1,

⌊
li
s

⌋)
(3.3)

where s is a design parameter. Thus, our category-wise confidence scores for the jth category

of the ith video can be represented as,

sji =
1

ki
max

M⊂Ai[j,:]
|M|=ki

ki∑
l=1

Ml (3.4)
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where Ml indicates the lth element in the set M. Thereafter, a softmax non-linearity

is applied to obtain the probability mass function over the all the categories as follows,

pji =
exp(sji )∑nc
j=1 exp(s

j
i )

. We need to compare this pmf with the ground truth distribution of labels

for each video in order to compute the MILL. As each video can have multiple activities

occurring in it, we represent the label vector for a video with ones at the positions if that

activity occurs in the video, else zero. We then normalize this ground truth vector in order

to convert it to a legitimate pmf. The MILL is then the cross-entropy between the predicted

pmf pi and ground-truth, which can then be represented as follows,

LMILL =
1

n

n∑
i=1

nc∑
j=1

−yji log(pji ) (3.5)

where yi = [y1i , . . . , y
nc
i ]T is the normalized ground truth vector. This loss function is

semantically similar to that used in [218]. We next present the novel Co-Activity Similarity

Loss, which enforces constraints to learn better network parameters for activity localization.

3.3.4 Co-Activity Similarity

As discussed previously, the W-TALC problem motivates us to identify the corre-

lations between videos of similar categories. Before discussing in more detail, let us define

category-specific sets for the jth category as, Sj = {xi |∃ aki ∈ ai, s.t. aki = αj}, i.e., the

set Sj contains all the videos of the training set, which has activity αj as one of its labels.

Ideally, we may want the following properties in the learned feature representations Xi in

Eqn. 3.1.

• A video pair belonging to the set Sj (for any j ∈ {1, . . . , nc}) should have similar
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feature representations in the portions of the video where the activity αj occurs.

• For the same video pair, feature representation of the portion where αj occurs in one

video should be different from that of the other video where αj does not occur.

These properties are not directly enforced in MILL. Thus, we introduce Co-Activity Sim-

ilarity Loss to embed the desired properties in the learned feature representations. As we

do not have frame-wise labels, we use the category-wise activations obtained in Eqn. 3.2

to identify the required activity portions. The loss function is designed in a way that helps

to learn simultaneously the feature representation as well as the label space projection. We

first normalize the per-video category-wise activations scores along the temporal axis using

softmax non-linearity as follows:

Âi[j, t] =
exp(Ai[j, t])∑li
t′=1 exp(Ai[j, t′])

(3.6)

where t indicates the time instants and j ∈ {1, . . . , nc}. We refer to these as attention, as

they attend to the portions of the video where the activity of a certain category occurs. A

high value of attention for a particular category indicates its high occurrence-probability of

that category. In order to formulate the loss function, let us first define the category-wise

feature vectors of regions with high and low attention as follows:

Hf ji = XiÂi[j, :]
T

Lf ji =
1

li − 1
Xi

(
1− Âi[j, :]

T
)

(3.7)
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where Hf ji ,
L f ji ∈ R2048 represents the high and low attention region aggregated feature

representations respectively of video i for category j. It may be noted that in Eqn. 3.7 the

low attention feature is not defined if a video contains a certain activity and the number

of feature vectors, i.e., li = 1. This is also conceptually valid and in such cases, we cannot

compute the CASL. We use cosine similarity in order to obtain a measure of the degree of

similarity between two feature vectors and it may be expressed as follows:

d[f i,f j ] = 1− 〈f i,f j〉
〈f i,f i〉

1
2 〈f j ,f j〉

1
2

(3.8)

In order to enforce the two properties discussed above, we use the ranking hinge loss. Given

a pair of videos xm,xn ∈ Sj , the loss function may be represented as follows:

Lmnj =
1

2

{
max

(
0, d[Hf jm,

H f jn]− d[Hf jm,
L f jn] + δ

)
+ max

(
0, d
[
Hf jm,

Hf jn
]
− d
[
Lf jm,

H f jn
]

+ δ
)}

(3.9)

where δ is the margin parameter and we set it to 0.5 in our experiments. The two terms

in the loss function are equivalent in meaning, and they represent that the high attention

region features in both the videos should be more similar than the high attention region

feature in one video and the low attention region feature in the other video. The total loss

for the entire training set may be represented as follows:

LCASL =
1

nc

nc∑
j=1

1(|Sj |
2

) ∑
xm,xn∈Sj

Lmnj (3.10)
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Optimization. The total loss function we need to optimize in order to learn the weights

of the weakly supervised layer can be represented as follows:

L = λLMILL + (1− λ)LCASL + α||W ||2F (3.11)

where the weights to be learned in our network are lumped to W . We use λ = 0.5 and

α = 5 × 10−4 in our experiments. We optimize the above loss function using Adam [94]

with a batch size of 10. We create each batch in a way such that it has a minimum of three

pairs of videos such that each pair has at least one category in common. We use a constant

learning rate of 10−4 in all our experiments.

Classification and Localization. After learning the weights of the network, we use them

to classify an untrimmed video as well as localize the activities in it during test time. Given

a video, we obtain the category-wise confidence scores as in Eqn. 3.4 followed by softmax

to obtain a pmf over the possible categories. Then, we can threshold the pmf to classify the

video to contain one or more activity categories. However, as defined by the dataset [80]

and used in literature [218], we use mAP for classification performance comparison, which

does not require the thresholding operation, but directly uses the pmf.

For localization, we employ a two-stage thresholding scheme. First, we discard the

categories which have a confidence score (Eqn. 3.4) below a certain threshold (0.0 used in

our experiments). Thereafter, for each of the remaining categories, we apply a threshold

on the corresponding activation in A (Eqn. 3.2) along the temporal axis to obtain the

localizations. It may be noted that as li is generally less than the frame rate of the videos,

we upsample the activations to meet the frame rate.

48



3.4 Experiments

In this section, we experimentally evaluate the proposed framework for activity

localization and classification from weakly labeled videos. We first discuss the datasets we

use, followed by the implementation details, quantitative, and some qualitative results.

3.4.1 Datasets

We perform experimental analysis on two datasets namely ActivityNet v1.2 [70]

and Thumos14 [80]. These two datasets contain untrimmed videos with frame-wise labels

of activities occurring in the video. However, as our algorithm is weakly-supervised, we use

only the activity tags associated with the videos.

ActivityNet1.2. This dataset has 4819 videos for training, 2383 videos for validation and

2480 videos for testing whose labels are withheld. The number of categories involved is 100,

with an average of 1.5 temporal activity segments per video. As in literature [218, 132],

we use the training videos to train our network, and the validation set to report the test

performance.

Thumos14. The Thumos14 dataset has 1010 validation videos and 1574 test videos divided

into 101 categories. Among these videos, 200 validation videos and 213 test videos have

temporal annotations belonging to 20 categories. Although this is a smaller dataset than

ActivityNet1.2, the temporal labels are very precise and with an average of 15.5 temporal

activity segments per video. This dataset has several videos where multiple activities occur,

thus making it even more challenging. The length of the videos also varies widely from a

few seconds to more than an hour. The lower number of videos make it challenging to
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efficiently learn the weakly-supervised network. Following literature [218, 132], we use the

validation videos for training and the test videos for testing.

Implementation Details. We use the corresponding repositories to extract the features

for UntrimmedNets1 and I3D2. We do not finetune the feature extractors. The weights of

the weakly supervised layers are initialized by Xavier method [63]. We use TVL1 optical

flow 3. We train our network on a single Tesla K80 GPU using Tensorflow. We set s = 8 in

Eqn. 3.3 for both the datasets.

Table 3.1: Detection performance comparisons on Thumos14. UNTF & I3DF are abbrevi-
ations for UntrimmedNet features and I3D features respectively. The symbol ↓ represents
that following [132], those models are trained using only the 20 categories with temporal
annotations, but without these annotations.

Supervision IoU → 0.1 0.2 0.3 0.4 0.5 0.7

Strong

Saliency-Pool [89] 04.6 03.4 02.1 01.4 00.9 00.1
FV-DTF [135] 36.6 33.6 27.0 20.8 14.4 -
SLM-mgram [152] 39.7 35.7 30.0 23.2 15.2 -
S-CNN [177] 47.7 43.5 36.3 28.7 19.0 05.3
Glimpse [231] 48.9 44.0 27.0 20.8 14.4 -
PSDF [232] 51.4 42.6 33.6 26.1 18.8 -
SMS [233] 51.0 45.2 36.5 27.8 17.8 -
CDC [176] - - 40.1 29.4 23.3 07.9
R-C3D [227] 54.5 51.5 44.8 35.6 28.9 -
SSN [238] 60.3 56.2 50.6 40.8 29.1 -

Weak

HAS [185] 36.4 27.8 19.5 12.7 06.8 -
UntrimmedNets [218] 44.4 37.7 28.2 21.1 13.7 -
STPN (UNTF) [132] ↓ 45.3 38.8 31.1 23.5 16.2 05.1
STPN (I3DF) [132] ↓ 52.0 44.7 35.5 25.8 16.9 04.3

Weak
(Ours)

MILL+CASL+UNTF↓ 49.0 42.8 32.0 26.0 18.8 06.2
MILL+I3DF 46.5 39.9 31.2 24.0 16.9 04.4
MILL+CASL+I3DF 53.7 48.5 39.2 29.9 22.0 07.3
MILL+CASL+I3DF↓ 55.2 49.6 40.1 31.1 22.8 07.6

1www.github.com/wanglimin/UntrimmedNet
2www.github.com/deepmind/kinetics-i3d
3www.github.com/yjxiong/temporal-segment-networks

50



Table 3.2: Detection performance comparisons over the ActivityNet1.2 dataset. The last
column (Avg.) indicates the average mAP for IoU thresholds 0.5:0.05:0.95.

Supervision IoU → 0.1 0.2 0.3 0.4 0.5 0.7 Avg.

Strong
SSN-SW [238] - - - - - - 24.8
SSN-TAG [238] - - - - - - 25.9

Weak W-TALC (Ours) 53.9 49.8 45.5 41.6 37.0 14.6 18.0

3.4.2 Activity Localization

We first perform a quantitative analysis of our framework for the task of activity

localization. We use mAP with different Intersection over Union (IoU) thresholds as a

performance metric, as followed in the literature [80]. We compare our results with several

state-of-the-art methods on both strong and weak supervision in Table 3.1 and 3.2 for

Thumos14 and ActivityNet1.2 respectively. We show results for different combinations

of features and loss functions used. It may be noted that our framework performs much

better than the other weakly supervised methods with similar feature usage. It is important

to note that although the Kinetics pre-trained I3D features (I3DF) have some knowledge

about activities, using only MILL as in [218] along with I3DF performs much worse than

combining it with CASL. Moreover, our framework performs much better than other state-

of-the-art methods even when using UNTF, which is not trained using any strong labels of

activities. A detailed analysis of the two loss functions MILL and CASL will be presented

subsequently.

3.4.3 Activity Classification

We now present the performance of our framework for activity classification. We

use mean average precision (mAP) to compute the classification performance from the

51



Table 3.3: Classification performance com-
parisons on the Thumos14 dataset. ↑ indi-
cates that the algorithm uses both videos
from Thumos14 and trimmed videos from
UCF101 for training. Without ↑ indicates
that the algorithm uses only videos from
Thumos14 for training.

Methods mAP Supervision

EMV + RGB [234] 61.5 Strong ↑

iDT+FV [216] 63.1 Strong ↑

iDT+CNN [217] 62.0 Strong ↑

Objects + Motion [84] 71.6 Strong ↑

Feat. Agg. [83] 71.0 Strong ↑

Extreme LM [208] 63.2 Strong ↑

TSN [219] 78.5 Strong ↑

Two Stream [181] 66.1 Strong ↑

TSN [219] 67.7 Strong

UntrimmedNets [218] 74.2 Weak

UntrimmedNets [218] 82.2 Weak ↑

W-TALC (Ours w. I3D) 85.6 Weak

Table 3.4: Classification performance com-
parisons on the ActivityNet1.2 dataset. ↑

indicates that the algorithm uses the train-
ing and validation set of ActivityNet1.2 for
training and tested on the server. Without
↑ means that the algorithm is trained on the
training set and tested on the validation set.

Algorithms mAP Supervision

C3D [199] 74.1 Strong ↑

iDT+FV [216] 66.5 Strong ↑

Depth2Action [84] 78.1 Strong ↑

TSN [219] 88.8 Strong ↑

Two Stream [181] 71.9 Strong ↑

TSN [219] 86.3 Strong

UntrimmedNets [218] 87.7 Weak

UntrimmedNets [218] 91.3 Weak ↑

W-TALC (Ours w. I3D) 93.2 Weak

predicted videos-level scores in Eqn. 3.4 after applying softmax. We compare with both

fully supervised and weakly-supervised methods and the results are presented in Table 3.3

and 3.4 for Thumos14 and ActivityNet1.2 respectively. The proposed method performs

significantly better than other state-of-the-art approaches. Please note that the methods

indicated with ↑ utilize a larger training set compared to ours as mentioned in the tables.

3.4.4 Ablation Study

Relative Weights on Loss Functions. In our framework, we jointly optimize two loss

functions - MILL and CASL defined in Eqn. 3.11 to learn the weights of the weakly-

supervised module. It is interesting to investigate the relative contributions of the loss
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Figure 3.3: (a) presents the variations in detection performance on Thumos14 by changing
weights on MILL and CASL. Higher λ represents more weight on the MILL and vice versa.
(b) presents the variations in detection performance (@IoU ≥ 0.3) and training time on
Thumos14 dataset by changing the maximum possible length of video sequence during
training (T ) as discussed in the text.

functions to the detection performance. In order to do that, we performed experiments,

using the I3D features, with different values of λ (higher value indicate larger weight on

MILL) and present the detection performance on the Thumos14 dataset in Fig. 3.3(a).

As may be observed from the plot, the proposed method performs best at λ = 0.5,

i.e., when both the loss functions have equal weights. Moreover, using only MILL, i.e.,

λ = 1.0, results in a decrease of 7 − 8% mAP compared to when both CASL and MILL

are given equal weights in the loss function. This shows that the CASL introduced in this

work has a major effect on the better performance of our framework compared to using I3D

features along with the loss function in [218], i.e., MILL.

Sensitivity to Length of Sequence. Natural videos may often be very long. As men-

tioned previously, in the weakly-supervised setting, we have only video-level labels, so we

need to process the entire video at once in order to compute the loss functions. In Section
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3.3.1, we discuss a simple sampling strategy, which we use to maintain the length of the

videos in a batch to be less than a pre-defined length T to meet GPU memory constraints.

This method has the following advantages and disadvantages.

- Advantages: First, we can learn from long-length videos using this scheme. Secondly, this

strategy will act as a data augmentation technique as we randomly crop, along the temporal

axis to make it a fixed-length sequence, if the length of the video ≥ T . Also, a lower value

of T reduces computation time.

- Disadvantage: In this sampling scheme, errors will be introduced in the labels of the

training batch, which may increase with the number of training videos with length > T .

The above factors induce a trade-off between performance and computation time. This

can be seen in Figure 3.3(b), wherein the initial portion of the plot, with an increase of T ,

the detection performance improves, but the computational time increases. However, the

detection performance eventually reaches a plateau suggesting T = 320s to be a reasonable

choice for this dataset.

Qualitative Results. We present a few interesting example localizations with ground

truths in Fig. 3.4. The figure has four examples from Thumos14 and ActivityNet1.2

datasets. To test how the proposed framework performs on videos outside the aforemen-

tioned datasets, we tested the learned networks on randomly collected videos from YouTube.

We present two such example detections in Fig. 3.4, using the model trained on Thumos14.

The first example in Fig. 3.4 is quite challenging as the localization should precisely

be the portions of the video, where Golf Swing occurs, which has very similar features in

the RGB domain to portions of the video where the player prepares for the swing. In spite
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Figure 3.4: This figure presents some detection results for qualitative analysis on Thumos14,
ActivityNet1.2 and a couple of random videos from YouTube

of this, our model is able to localize the relevant portions of Golf Swing, potentially based

on the flow features. In the second example from Thumos14, the detections of Cricket

Shot and Cricket Bowl appear to be correlated in time. This is because Cricket Shot and

Bowl are two activities that generally co-occur in videos. To have fine-grained localization

for such activities, videos that have only one of these activities are required. However, in

the Thumos14 dataset, very few training examples contain only one of these two activities,

which explains the behavior noted in the figure.

55



In the third example, which is from ActivityNet1.2, although ‘Playing Polo’ occurs

in the first portion of the video, it is absent in the ground truth. However, our model is

able to localize those activity segments as well. The same discussion is also applicable to

the fourth example, where ‘Bagpiping’ occurs in the frames in a sparse manner, and our

model’s response is aligned with its occurrence, but the ground truth annotations are for

almost the entire video. These two examples are motivations behind weakly-supervised

localization because obtaining precise unanimous ground truths from multiple labelers is

difficult, costly, and sometimes even infeasible.

The fifth example is on a randomly selected video from YouTube. It has a person,

who is juggling balls in an outdoor environment. But, most of the examples in Thumos14 of

the same category are indoors, with the person taking up a significant portion of the frames

spatially. Despite such differences in data, our model is able to localize some portions of

the activity. However, the model also predicts some portions of the video to be ‘Soccer

Juggling’, which may be because its training samples in Thumos14 contains a combination

of feet, hand, and head, and a subset of such movements are present in ‘Juggling Balls’.

Moreover, it is interesting to note that the first two frames show some maneuver of a ball

with feet and it is detected as ‘Soccer Juggling’ as well.

3.5 Conclusions

In this chapter, we present an approach to learn temporal activity localization and

video classification models using only weak supervision with video-level labels. We present

the novel Co-Activity Similarity loss, which is empirically shown to be complementary with
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the Multiple Instance Learning Loss. We also show a simple mechanism to deal with long

length videos, yet processing them at high granularity. Experiments on two challenging

datasets demonstrate that the proposed method achieves state-of-the-art results in the

weak TALC problem. In an extension of this work [124], we present a mechanism to learn

a model for a text to video moment retrieval task using weak labels. An interesting future

direction can be to explore the usefulness of co-video similarities for this type of task.
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Chapter 4

Domain Adaptation of Semantic

Segmentation using Weak Labels

4.1 Introduction

Unsupervised domain adaptation (UDA) methods for semantic segmentation have

been developed to tackle the issue of domain gap. Existing methods aim to adapt a model

learned on the source domain with pixel-wise ground truth annotations, e.g., from a simula-

tor which requires the least annotation efforts, to the target domain that does not have any

form of annotations. These UDA methods in the literature for semantic segmentation are

developed mainly using two mechanisms: pseudo label self-training and distribution align-

ment between the source and target domains. For the first mechanism, pixel-wise pseudo

labels are generated via strategies such as confidence scores [113, 79] or self-paced learning

[245], but such pseudo-labels are specific to the target domain, and do not consider align-

58



Source Image 𝑋!

Target Image 𝑋"

Source Labels 𝑌!

Domain 
Adaptation

Car

Person
Road

Pseudo-Weak 
Labels

Oracle-Weak 
Labels

OR
Predicted Seg. #𝑌"

I. Weak Labels for Domain Adaptation

UDA WDA

Car Person Road
Source Category-wise 

Pooled Features

Target Category-wise Pooled Features

Weak Labels

II. Weak Labels for Category-wise Alignment

Figure 4.1: Our work introduces two key ideas to adapt semantic segmentation models
across domains. I: Using image-level weak annotations for domain adaptation, either esti-
mated, i.e., pseudo-weak labels (Unsupervised Domain Adaptation, UDA) or acquired from
a human oracle (Weakly-supervised Domain Adaptation (WDA). II: We utilize weak labels
to improve the category-wise feature alignment between the source and target domains.
X/5 depicts weak labels, i.e., the categories present/absent in an image.

ment between domains. For the second mechanism, numerous spaces could be considered to

operate the alignment procedure, such as pixel [74, 128], feature [75, 236], output [202, 33],

and patch [203] spaces. However, alignment performed by these methods are agnostic to

the category, which may be problematic as the domain gap may vary across categories.

To alleviate the issue of lacking annotations in the target domain, we propose [143]

a concept of utilizing weak labels on the domain adaptation task for semantic segmentation,

in the form of image- or point-level annotations in the target domain. Such weak labels

can be used for category-wise alignment between the source and target domain, and also to

enforce constraints on the categories present in an image. It is important to note that our

weak labels could be estimated from the model prediction in the UDA setting, or provided by

the human oracle in the weakly-supervised domain adaptation (WDA) paradigm (see left of

weakda. 4.1). We are the first to introduce the WDA setting for semantic segmentation with

image-level weak-labels, which is practically useful as collecting such annotations is much

59



easier than pixel-wise annotations on the target domain. Benefiting from the concept of

weak labels introduced in this chapter, we aim to utilize such weak labels to act as an enabler

for the interplay between the alignment and pseudo labeling procedures, as they are much

less noisy compared to pixel-wise pseudo labels. Specifically, we use weak labels to perform

both 1) image-level classification to identify the presence/absence of categories in an image

as a regularization, and 2) category-wise domain alignment using such categorical labels.

For the image-level classification task, weak labels help our model obtain a better pixel-

wise attention map per category. Then, we utilize the category-wise attention maps as the

guidance to further pool category-wise features for proposed domain alignment procedure

(right of Fig. 4.1).

Note that, although weak labels have been used in domain adaptation for object

detection [81], our motivation is different from theirs. More specifically, [81] uses the weak

labels to choose pseudo labels for self-training, while we formulate a general framework

to learn from weak labels with different forms, i.e., UDA and WDA (image-level or point

supervision), as well as to improve feature alignment across domains using weak labels.

We conduct experiments on the road scene segmentation problem from GTA5 [154]

/ SYNTHIA [156] to Cityscapes [39]. We perform extensive experiments to verify the

usefulness of each component in the proposed framework, and show that our approach

performs favorably against state-of-the-art algorithms for UDA. In addition, we show that

our proposed method can be used for WDA and present its experimental results as a new

benchmark. For the WDA setting, we also show that our method can incorporate various

types of weak labels, such as image-level or point supervision. The main contributions
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of our work are: 1) we propose a concept of using weak labels to help domain adaptation

for semantic segmentation; 2) we utilize weak labels to improve category-wise alignment for

better feature space adaptation; and 3) we demonstrate that our method is applicable to

both UDA and WDA settings.

4.2 Related Work

In this section, we discuss the literature of unsupervised domain adaptation (UDA)

for image classification and semantic segmentation. In addition, we also discuss weakly-

supervised methods for semantic segmentation.

UDA for Image Classification. The UDA task for image classification has been devel-

oped via aligning distributions across source and target domains. To this end, hand-crafted

features [55, 64] and deep features [59, 205] have been considered to minimize the do-

main discrepancy and learn domain-invariant features. To further enhance the alignment

procedure, maximum mean discrepancy [116] and adversarial learning [60, 206] based ap-

proaches have been proposed. Recently, several algorithms focus on improving deep models

[117, 161, 106, 43], combining distance metric learning [187, 188], utilizing pixel-level adap-

tation [20, 200], or incorporating active learning [191].

UDA for Semantic Segmentation. Existing UDA methods in literature for seman-

tic segmentation can be categorized primarily into to two groups: domain alignment and

pseudo-label self-training. For domain alignment, numerous algorithms focus on aligning

distributions in the pixel [26, 36, 74, 128, 225, 237], feature [31, 75, 236], and output [202, 33]

spaces. For pseudo-label re-training, current methods [164, 245, 114] aim to generate pixel-
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wise pseudo labels on the target images, which is utilized to finetune the segmentation

model trained on the source domain.

To achieve better performance, recent works [47, 113, 203, 213] attempt to combine

the above two mechanisms. AdvEnt [213] adopts adversarial alignment and self-training

in the entropy space, while BDL [113] combines output space and pixel-level adaptation

with pseudo-label self-training in an iterative updating scheme. Moreover, Tsai et al. [203]

propose a patch-level alignment method and show that their approach is complementary to

existing modules such as output space adaptation and pseudo-label self-training. Similarly,

Du et al. [47] integrate category-wise adversarial alignment with pixel-wise pseudo-labels,

which may be noisy, leading to incorrect alignment. In addition, [47] needs to progressively

change a ratio for selecting pseudo-labels, and the final performance is sensitive to this

chosen parameter.

Compared to the above-mentioned approaches, we propose to exploit weak la-

bels by learning an image classification task, while improving domain alignment through

category-wise attention maps. Furthermore, we show that our approach can be utilized

even in the case where oracle-weak labels are available on the target domain, in which case

the performance will be further improved.

Weakly-supervised Semantic Segmentation. Since we are specifically interested in

how weak labels can help domain adaptation, we also discuss the literature for weakly-

supervised semantic segmentation, which has been tackled through different types of weak

labels, such as image-level [2, 27, 96, 138, 146], video-level [32, 201, 240], bounding box [137,

42, 91], scribble [115, 209], and point [10] supervisions. Under this setting, these methods
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train the model using ground truth weak labels and perform testing in the same domain,

which does not require domain adaptation. In contrast, we use a source domain with pixel-

wise ground truth labels, but in the target domain, we consider pseudo-weak labels (UDA)

or oracle-weak labels (WDA). As a result, we note that performance of weakly-supervised

semantic segmentation methods which do not utilize any source domain, is usually much

lower than the domain adaptation setting adopted in this chapter, e.g., the mean IoU on

Cityscapes is only 24.9% as shown in [163].

4.3 Domain Adaptation with Weak Labels

In this section, we first introduce the problem and then describe details of the

proposed framework - the image-level classification module and category-wise alignment

method using weak labels. Finally, we present our method of obtaining the weak labels for

the UDA and WDA settings.

Problem Definition. In the source domain, we have images and pixel-wise labels denoted

as Is = {Xi
s, Y

i
s }Nsi=1. Whereas, our target dataset contains images and only image-level

labels as It = {Xi
t , y

i
t}Nti=1. Note that Xs, Xt ∈ RH×W×3, Ys ∈ BH×W×C with pixel-wise

one-hot vectors, yt ∈ BC is a multi-hot vector representing the categories present in the

image and C is the number of categories, same for both the source and target datasets.

Such image-level labels yt are often termed as weak labels. We can either estimate them,

in which case we call them pseudo-weak labels (Unsupervised Domain Adptation, UDA)

or acquire them from a human oracle that is called oracle-weak labels (Weakly-supervised

Domain Adaptation, WDA). We will further discuss details of acquiring weak labels in
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LC
adv<latexit sha1_base64="59D3nxQpAy7DpqaZbLHHpmeHUs8=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaQKuix248JFBfuANobJZNIOnUzCzKQQQvwVNy4UceuHuPNvnLRZaOuBgcM593LPHC9mVCrL+jbW1jc2t7YrO9Xdvf2DQ/PouCejRGDSxRGLxMBDkjDKSVdRxcggFgSFHiN9b9ou/P6MCEkj/qDSmDghGnMaUIyUllyzNgqRmmDEsrvczZA/yx/brlm3GtYccJXYJamDEh3X/Br5EU5CwhVmSMqhbcXKyZBQFDOSV0eJJDHCUzQmQ005Col0snn4HJ5pxYdBJPTjCs7V3xsZCqVMQ09PFlHlsleI/3nDRAXXTkZ5nCjC8eJQkDCoIlg0AX0qCFYs1QRhQXVWiCdIIKx0X1Vdgr385VXSazbsi0bz/rLeuinrqIATcArOgQ2uQAvcgg7oAgxS8AxewZvxZLwY78bHYnTNKHdq4A+Mzx8rq5Ua</latexit>

LC
d<latexit sha1_base64="qp5j2HKMRX4nZ8RuoG6Ku1AR2PI=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KkkVdFnsxoWLCvYBbQyTybQdOnkwM1FKzKe4caGIW7/EnX/jpM1CWw8MHM65l3vmeDFnUlnWt7Gyura+sVnaKm/v7O7tm5WDjowSQWibRDwSPQ9LyllI24opTnuxoDjwOO16k2budx+okCwK79Q0pk6ARyEbMoKVllyzMgiwGhPM05vMTf3svumaVatmzYCWiV2QKhRouebXwI9IEtBQEY6l7NtWrJwUC8UIp1l5kEgaYzLBI9rXNMQBlU46i56hE634aBgJ/UKFZurvjRQHUk4DT0/mQeWil4v/ef1EDS+dlIVxomhI5oeGCUcqQnkPyGeCEsWnmmAimM6KyBgLTJRuq6xLsBe/vEw69Zp9VqvfnlcbV0UdJTiCYzgFGy6gAdfQgjYQeIRneIU348l4Md6Nj/noilHsHMIfGJ8/jRaULw==</latexit>

Lc
<latexit sha1_base64="2zthiTB7UxowBIW3jDf4avRvRJE=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWpgi6Lbly4qGAf0IYwmU7boZNJmJkINeRL3LhQxK2f4s6/cdJmoa0HBg7n3Ms9c4KYM6Ud59sqra1vbG6Vtys7u3v7VfvgsKOiRBLaJhGPZC/AinImaFszzWkvlhSHAafdYHqT+91HKhWLxIOexdQL8ViwESNYG8m3q4MQ6wnBPL3L/JRkvl1z6s4caJW4BalBgZZvfw2GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nnwDJ0aZYhGkTRPaDRXf2+kOFRqFgZmMo+plr1c/M/rJ3p05aVMxImmgiwOjRKOdITyFtCQSUo0nxmCiWQmKyITLDHRpquKKcFd/vIq6TTq7nm9cX9Ra14XdZThGE7gDFy4hCbcQgvaQCCBZ3iFN+vJerHerY/FaMkqdo7gD6zPH0B2k3k=</latexit>

Ls
<latexit sha1_base64="tuaNa+h6p2PSTo/YU0s+XT/qp6E=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWpgi6Lbly4qGAf0IYwmU7boZNJmJkINeRL3LhQxK2f4s6/cdJmoa0HBg7n3Ms9c4KYM6Ud59sqra1vbG6Vtys7u3v7VfvgsKOiRBLaJhGPZC/AinImaFszzWkvlhSHAafdYHqT+91HKhWLxIOexdQL8ViwESNYG8m3q4MQ6wnBPL3L/FRlvl1z6s4caJW4BalBgZZvfw2GEUlCKjThWKm+68TaS7HUjHCaVQaJojEmUzymfUMFDqny0nnwDJ0aZYhGkTRPaDRXf2+kOFRqFgZmMo+plr1c/M/rJ3p05aVMxImmgiwOjRKOdITyFtCQSUo0nxmCiWQmKyITLDHRpquKKcFd/vIq6TTq7nm9cX9Ra14XdZThGE7gDFy4hCbcQgvaQCCBZ3iFN+vJerHerY/FaMkqdo7gD6zPH1jGk4k=</latexit>

FC
s<latexit sha1_base64="Zef8IhOcGhvsWAttC0S8bUoOysA=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KkkVdFksiMsK9gFtDJPppB06eTAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+Z4MWdSWda3sbK6tr6xWdoqb+/s7u2blYOOjBJBaJtEPBI9D0vKWUjbiilOe7GgOPA47XqTZu53H6iQLArv1DSmToBHIfMZwUpLrlkZBFiNCebpdeamMrtvumbVqlkzoGViF6QKBVqu+TUYRiQJaKgIx1L2bStWToqFYoTTrDxIJI0xmeAR7Wsa4oBKJ51Fz9CJVobIj4R+oUIz9fdGigMpp4GnJ/OgctHLxf+8fqL8SydlYZwoGpL5IT/hSEUo7wENmaBE8akmmAimsyIyxgITpdsq6xLsxS8vk069Zp/V6rfn1cZVUUcJjuAYTsGGC2jADbSgDQQe4Rle4c14Ml6Md+NjPrpiFDuH8AfG5w+avZQ4</latexit>

FC
t<latexit sha1_base64="vO/GFuDjUy1RKh8PPl3HnjP3vNU=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclaQKuiwWxGUF+4A2hsl00g6dPJi5UUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+Z4seAKLOvbWFldW9/YLG2Vt3d29/bNykFHRYmkrE0jEcmeRxQTPGRt4CBYL5aMBJ5gXW/SzP3uA5OKR+EdTGPmBGQUcp9TAlpyzcogIDCmRKTXmZtCdt90zapVs2bAy8QuSBUVaLnm12AY0SRgIVBBlOrbVgxOSiRwKlhWHiSKxYROyIj1NQ1JwJSTzqJn+EQrQ+xHUr8Q8Ez9vZGSQKlp4OnJPKha9HLxP6+fgH/ppDyME2AhnR/yE4EhwnkPeMgloyCmmhAquc6K6ZhIQkG3VdYl2ItfXiades0+q9Vvz6uNq6KOEjpCx+gU2egCNdANaqE2ougRPaNX9GY8GS/Gu/ExH10xip1D9AfG5w+cRJQ5</latexit>

Fs
<latexit sha1_base64="JHzy8vUuGFDdNLNLnrZZ/KRmmv4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUxGNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO3pXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPIzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxTuvVO8vyrXrPI4CHMMJnIEHl1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEk2o20</latexit>

Ft
<latexit sha1_base64="l2CLbW0cMiuR1iclpCi/0jKdUf0=">AAAB6nicbVDJSgNBEK2JW4xbVPDipTEInsJMPOgxRBCPCZoFkiH0dHqSJj0L3TVCGPIJXjwo4tWrf+EXePPit9hZDpr4oODxXhVV9bxYCo22/WVlVlbX1jeym7mt7Z3dvfz+QUNHiWK8ziIZqZZHNZci5HUUKHkrVpwGnuRNb3g18Zv3XGkRhXc4irkb0H4ofMEoGun2uovdfMEu2lOQZeLMSaF8VPsW75WPajf/2elFLAl4iExSrduOHaObUoWCST7OdRLNY8qGtM/bhoY04NpNp6eOyalResSPlKkQyVT9PZHSQOtR4JnOgOJAL3oT8T+vnaB/6aYijBPkIZst8hNJMCKTv0lPKM5QjgyhTAlzK2EDqihDk07OhOAsvrxMGqWic14s1UwaFZghC8dwAmfgwAWU4QaqUAcGfXiAJ3i2pPVovVivs9aMNZ85hD+w3n4ABQaRUg==</latexit>

At
<latexit sha1_base64="8ONQlsLXOqgmxTyWPHSI6P0O+Yc=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLSMsbFM0DwgWcLsZDYZMvtg5q4QlnyCjYUitrb+hV9gZ+O3OHkUmnjgwuGce7n3Hi+WQqNtf1mZldW19Y3sZm5re2d3L79/0NBRohivs0hGquVRzaUIeR0FSt6KFaeBJ3nTG15P/OY9V1pE4R2OYu4GtB8KXzCKRrq96mI3X7CL9hRkmThzUigf1b7Fe+Wj2s1/dnoRSwIeIpNU67Zjx+imVKFgko9znUTzmLIh7fO2oSENuHbT6aljcmqUHvEjZSpEMlV/T6Q00HoUeKYzoDjQi95E/M9rJ+hfuqkI4wR5yGaL/EQSjMjkb9ITijOUI0MoU8LcStiAKsrQpJMzITiLLy+TRqnonBdLNZNGBWbIwjGcwBk4cAFluIEq1IFBHx7gCZ4taT1aL9brrDVjzWcO4Q+stx/9WZFN</latexit>

As
<latexit sha1_base64="nFoGx7DwMsh1/aRKfh29AbX5cVs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLSMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOn2qqu7+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhpZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6gDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD+9WRTA==</latexit>

Target Image

Xs
<latexit sha1_base64="ei6xBKTH/iGMRaOtU00zbgXwCKE=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5aHd3JF9yiOwVZJt6cFMpHtW/+XvmodvKfd92IJSFKwwTVuu25sfFTqgxnAse5u0RjTNmQ9rFtqaQhaj+dnjomp1bpkl6kbElDpurviZSGWo/CwHaG1Az0ojcR//Paield+imXcWJQstmiXiKIicjkb9LlCpkRI0soU9zeStiAKsqMTSdnQ/AWX14mjVLROy+WajaNCsyQhWM4gTPw4ALKcA1VqAODPjzAEzw7wnl0XpzXWWvGmc8cwh84bz8e7pFj</latexit>

Xt
<latexit sha1_base64="1A5gvkzP9o22rB/cuJNCs9+ML/U=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2MkmGzM4uM3eFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSxFAZd98vJrKyurW9kN3Nb2zu7e/n9g4aJEs14nUUy0q2AGi6F4nUUKHkr1pyGgeTNYHg18Zv3XBsRqVscxdwPaV+JnmAUrXTT6mAnX3CL7hRkmXhzUigf1b7Fe+Wj2sl/3nUjloRcIZPUmLbnxuinVKNgko9zd4nhMWVD2udtSxUNufHT6aljcmqVLulF2pZCMlV/T6Q0NGYUBrYzpDgwi95E/M9rJ9i79FOh4gS5YrNFvUQSjMjkb9IVmjOUI0so08LeStiAasrQppOzIXiLLy+TRqnonRdLNZtGBWbIwjGcwBl4cAFluIYq1IFBHx7gCZ4d6Tw6L87rrDXjzGcO4Q+ctx8gcpFk</latexit>

G
<latexit sha1_base64="m0LQJm8qLJUZ57HFaJVAVFAe25I=">AAAB8XicbZC7SgNBFIbPxltcb1FLm8UgWIXdWGgjBi20jGAumIQwO5lNhszOLjNnxbDkLWwsFNHSB7G3Ed/GyaXQxB8GPv7/HOac48eCa3TdbyuzsLi0vJJdtdfWNza3cts7VR0lirIKjUSk6j7RTHDJKshRsHqsGAl9wWp+/2KU1+6Y0jySNziIWSskXckDTgka67aJ7B79IL0ctnN5t+CO5cyDN4X82Yd9Gr992eV27rPZiWgSMolUEK0bnhtjKyUKORVsaDcTzWJC+6TLGgYlCZlupeOJh86BcTpOECnzJDpj93dHSkKtB6FvKkOCPT2bjcz/skaCwUkr5TJOkEk6+ShIhIORM1rf6XDFKIqBAUIVN7M6tEcUoWiOZJsjeLMrz0O1WPCOCsVrN186h4mysAf7cAgeHEMJrqAMFaAg4QGe4NnS1qP1Yr1OSjPWtGcX/sh6/wE9PJRH</latexit>
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<latexit sha1_base64="DlyCL88Diwtd/wf9zJ16aNz9xvM=">AAAB8nicbVDLSsNAFJ34rPVVdelmaBEqQknqQpdVNy4r2AckoUymk3boPMLMRAihf6EbF4q49Wvc9W+cPhbaeuDC4Zx7ufeeKGFUG9edOGvrG5tb24Wd4u7e/sFh6ei4rWWqMGlhyaTqRkgTRgVpGWoY6SaKIB4x0olGd1O/80SUplI8miwhIUcDQWOKkbGSH2g64Kh609PnvVLFrbkzwFXiLUilUQ4unieNrNkrfQd9iVNOhMEMae17bmLCHClDMSPjYpBqkiA8QgPiWyoQJzrMZyeP4ZlV+jCWypYwcKb+nsgR1zrjke3kyAz1sjcV//P81MTXYU5Fkhoi8HxRnDJoJJz+D/tUEWxYZgnCitpbIR4ihbCxKRVtCN7yy6ukXa95l7X6g03jFsxRAKegDKrAA1egAe5BE7QABhK8gDfw7hjn1flwPueta85i5gT8gfP1A5uCk8g=</latexit>

�(At)
<latexit sha1_base64="8FbQWvg8b1wRVTJ02YJ1Eu2rm48=">AAAB8nicbVDLSsNAFJ34rPVVdelmaBEqQknqQpdVNy4r2AckoUymk3boTBJmboQQ+he6caGIW7/GXf/G6WOhrQcuHM65l3vvCRLBNdj2xFpb39jc2i7sFHf39g8OS0fHbR2nirIWjUWsugHRTPCItYCDYN1EMSIDwTrB6G7qd56Y0jyOHiFLmC/JIOIhpwSM5HqaDySp3vTgvFeq2DV7BrxKnAWpNMrexfOkkTV7pW+vH9NUsgioIFq7jp2AnxMFnAo2LnqpZgmhIzJgrqERkUz7+ezkMT4zSh+HsTIVAZ6pvydyIrXOZGA6JYGhXvam4n+em0J47ec8SlJgEZ0vClOBIcbT/3GfK0ZBZIYQqri5FdMhUYSCSaloQnCWX14l7XrNuazVH0wat2iOAjpFZVRFDrpCDXSPmqiFKIrRC3pD7xZYr9aH9TlvXbMWMyfoD6yvH50Hk8k=</latexit>

Fs
<latexit sha1_base64="JHzy8vUuGFDdNLNLnrZZ/KRmmv4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUxGNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO3pXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPIzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxTuvVO8vyrXrPI4CHMMJnIEHl1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEk2o20</latexit>

Ft
<latexit sha1_base64="l2CLbW0cMiuR1iclpCi/0jKdUf0=">AAAB6nicbVDJSgNBEK2JW4xbVPDipTEInsJMPOgxRBCPCZoFkiH0dHqSJj0L3TVCGPIJXjwo4tWrf+EXePPit9hZDpr4oODxXhVV9bxYCo22/WVlVlbX1jeym7mt7Z3dvfz+QUNHiWK8ziIZqZZHNZci5HUUKHkrVpwGnuRNb3g18Zv3XGkRhXc4irkb0H4ofMEoGun2uovdfMEu2lOQZeLMSaF8VPsW75WPajf/2elFLAl4iExSrduOHaObUoWCST7OdRLNY8qGtM/bhoY04NpNp6eOyalResSPlKkQyVT9PZHSQOtR4JnOgOJAL3oT8T+vnaB/6aYijBPkIZst8hNJMCKTv0lPKM5QjgyhTAlzK2EDqihDk07OhOAsvrxMGqWic14s1UwaFZghC8dwAmfgwAWU4QaqUAcGfXiAJ3i2pPVovVivs9aMNZ85hD+w3n4ABQaRUg==</latexit>
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<latexit sha1_base64="rO3c9VFJ9QrYsUrD4MPnOHWAW/U=">AAAB6nicbVDJSgNBEK2JW4xb1KMijUHwFGbiQY9BLx4TNAskQ+jpdJImPQvdNcIw5OjRiwdFvPoR+Q5vfoM/YWc5aOKDgsd7VVTV8yIpNNr2l5VZWV1b38hu5ra2d3b38vsHdR3GivEaC2Womh7VXIqA11Cg5M1Icep7kje84c3EbzxwpUUY3GMScden/UD0BKNopLukg518wS7aU5Bl4sxJoXw8rn4/nowrnfxnuxuy2OcBMkm1bjl2hG5KFQom+SjXjjWPKBvSPm8ZGlCfazednjoiZ0bpkl6oTAVIpurviZT6Wie+Zzp9igO96E3E/7xWjL0rNxVBFCMP2GxRL5YEQzL5m3SF4gxlYghlSphbCRtQRRmadHImBGfx5WVSLxWdi2KpatK4hhmycASncA4OXEIZbqECNWDQhyd4gVdLWs/Wm/U+a81Y85lD+APr4wdhD5GP</latexit>
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<latexit sha1_base64="yx9ZW/hwaSj89bs2XbN8wfLKYtA=">AAAB73icbVDLSsNAFL3xWeur6lKRwSK4kJLUhS6Lbly2YB/QhjCZTtqhk0mcmQghdOkPuHGhiFv/oN/hzm/wJ5w+Ftp64MLhnHu59x4/5kxp2/6ylpZXVtfWcxv5za3tnd3C3n5DRYkktE4iHsmWjxXlTNC6ZprTViwpDn1Om/7gZuw3H6hULBJ3Oo2pG+KeYAEjWBuplXrqHKWe9gpFu2RPgBaJMyPFytGo9v14PKp6hc9ONyJJSIUmHCvVduxYuxmWmhFOh/lOomiMyQD3aNtQgUOq3Gxy7xCdGqWLgkiaEhpN1N8TGQ6VSkPfdIZY99W8Nxb/89qJDq7cjIk40VSQ6aIg4UhHaPw86jJJieapIZhIZm5FpI8lJtpElDchOPMvL5JGueRclMo1k8Y1TJGDQziBM3DgEipwC1WoAwEOT/ACr9a99Wy9We/T1iVrNnMAf2B9/ACLjJNY</latexit>
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t<latexit sha1_base64="7h1YHd1oKKc+5M1gpUlz7tEgpHA=">AAACBHicbVC7TsMwFHXKq5RXgLGL1QqpU5WUoYwVXRiLRB9SGyLHdVqrjhPZDlIVdWDhJ/gAFgYQYmVnZUPwMThNB2i5lnWPz7lX1/d4EaNSWdankVtb39jcym8Xdnb39g/Mw6OODGOBSRuHLBQ9D0nCKCdtRRUjvUgQFHiMdL1JM9W7N0RIGvIrNY2IE6ARpz7FSGnKNYuRq65tOIBprumcnfTVdM2yVbXmAVeBvQDlRqny/VV/v2+55sdgGOI4IFxhhqTs21aknAQJRTEjs8IgliRCeIJGpK8hRwGRTjJfYgZPNDOEfij05QrO2d8dCQqknAaergyQGstlLSX/0/qx8s+chPIoVoTjbJAfM6hCmDoCh1QQrNhUA4QF1X+FeIwEwkr7VtAm2Msrr4JOrWqfVmuX2o1zkEUeFEEJVIAN6qABLkALtAEGt+ABPIFn4854NF6M16w0Zyx6jsGfMN5+AHg3mco=</latexit>
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Figure 4.2: The proposed architecture consists of the segmentation network G and the weak
label module. We compute the pixel-wise segmentation loss Ls for the source images and
image classification loss Lc using the weak labels yt for the target images. Note that the
weak labels can be estimated as pseudo-weak labels or provided by a human oracle. We then
use the output prediction A, convert it to an attention map σ(A) and pool category-wise
features FC . Next, these features are aligned between source and target domains using the
category-wise alignment loss LCadv guided by the category-wise discriminators DC learned
via the domain classification loss LCd .

Section 4.3.4. Given such data, the problem is to adapt a segmentation model G learned

on the source dataset Is to the target dataset It.

Algorithm Overview. Fig. 4.2 presents an overview of our proposed method. We first

pass both the source and target images through the segmentation network G and obtain

their features Fs, Ft ∈ RH′×W ′×2048, segmentation predictions As, At ∈ RH′×W ′×C , and the

up-sampled pixel-wise predictions Os, Ot ∈ RH×W×C . Note that H ′(< H),W ′(< W ) are

the downsampled spatial dimensions of the image after passing through the segmentation

network. As a baseline, we use the source pixel-wise annotations to learn G, while aligning

the output space distribution Os and Ot, following [202].
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In addition to having pixel-wise labels on the source data, we also have image-level

weak labels on the target data. As discussed before, such weak labels can be either estimated

(UDA) or acquired from an oracle (WDA). We then utilize these weak labels to update the

segmentation networkG in two different ways. First, we introduce a module which learns to

predict the categories that are present in a target image. Second, we formulate a mechanism

to align the features of each individual category between source and target domains. To

this end, we use category-specific domain discriminators Dc guided by the weak labels to

determine which categories should be aligned. In the following sections, we present these

two modules in more detail.

4.3.1 Weak Labels for Category Classification

In order to predict whether a category is absent/present in a particular image,

we define an image classification task using the weak labels, such that the segmentation

network G can discover those categories. Specifically, we use the weak labels yt and learn

to predict the categories present/absent in the target images. We first feed the target images

Xt through G to obtain the predictions At and then apply a global pooling layer to obtain

a single vector of predictions for each category:

pct = σs

1

k
log

1

H ′W ′

∑
h′,w′

exp kA
(h′,w′,c)
t

 , (4.1)

where σs is the sigmoid function such that pt represents the probability that a particular

category appears in an image. Note that (4.1) is a smooth approximation of the max

function. The higher the value of k, the better it approximates to max. We set k = 1 as we
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do not want the network to focus only on the maximum value of the prediction, which may

be noisy, but also on other predictions that may have high values. Using pt and the weak

labels yt, we can compute the category-wise binary cross-entropy loss:

Lc(Xt;G) =

C∑
c=1

−yct log(pct)− (1− yct ) log(1− pct). (4.2)

This is shown at the bottom stream of Fig. 4.2. This loss function Lc helps to identify the

categories which are absent/present in a particular image and enforces the segmentation

network G to pay attention to those objects/stuff that are partially identified when the

source model is used directly on the target images.

4.3.2 Weak Labels for Feature Alignment

The classification loss using weak labels introduced in (4.2) regularizes the network

focusing on certain categories. However, distribution alignment across the source and target

domains is not considered yet. As discussed in the previous section, methods in literature

either align feature space [75] or output space [202] across domains. However, such alignment

is agnostic to the category, so it may align features of categories that are not present in

certain images. Moreover, features belonging to different categories may have different

domain gaps. Thereby, performing category-wise alignment could be beneficial but has not

been widely studied in UDA for semantic segmentation. Although an existing work [47]

attempts to align category-wise features, it utilizes pixel-wise pseudo labels, which may

be noisy, and performs alignment in a high-dimensional feature space, which is not only

difficult to optimize but also requires more computations.
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To alleviate all the above issues, we use image-level weak labels to perform category-

wise alignment in the feature space. Specifically, we obtain the category-wise features for

each image via an attention map, i.e., segmentation prediction, guided by our classification

module using weak labels, and then align these features between the source and target

domains. We next discuss the category-wise feature pooling mechanism followed by the

adversarial alignment technique.

Category-wise Feature Pooling. Given the last layer features F and the segmentation

prediction A, we obtain the category-wise features by using the prediction as an attention

over the features. Specifically, we obtain the category-wise feature Fc as a 2048-dimensional

vector for the cth category as follows:

Fc =
∑
h′,w′

σ(A)(h
′,w′,c)F (h′,w′), (4.3)

where σ(A) is a tensor of dimension H ′ ×W ′ × C, with each channel along the category

dimension representing the category-wise attention obtained by the softmax operation σ

over the spatial dimensions. As a result, σ(A)(h
′,w′,c) is a scalar and F (h′,w′) is a 2048-

dimensional vector, while Fc is the summed feature of F (h′,w′) weighted by σ(A)(h
′,w′,c)

over the spatial map H ′ ×W ′. Note that we drop the subscripts s, t for source and target,

as we employ the same operation to obtain the category-wise features for both domains.

We next present the mechanism to align these features across domains. Note that we will

use Fc to denote the pooled feature for the cth category and FC to denote the set of pooled

features for all the categories. Category-wise feature pooling is shown in the middle of Fig.

4.2.
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Category-wise Feature Alignment. To learn the segmentation network G such that

the source and target category-wise features are aligned, we use an adversarial loss while

using category-specific discriminatorsDC = {Dc}Cc=1. The reason of using category-specific

discriminators is to ensure that the feature distribution for each category could be aligned

independently, which avoids the noisy distribution modeling from a mixture of categories.

In practice, we train C distinct category-specific discriminators to distinguish between

category-wise features drawn from the source and target images. The loss function to

train the discriminators DC is as follows:

LCd (FCs ,FCt ;DC) =

C∑
c=1

−ycs logDc
(
Fcs
)
− yct log

(
1−Dc

(
Fct
))
. (4.4)

Note that, while training the discriminators, we only compute the loss for those categories

which are present in the particular image via the weak labels ys, yt ∈ BC that indicate

whether a category occurs in an image or not. Then, the adversarial loss for the target

images to train the segmentation network G can be expressed as follows:

LCadv(FCt ;G,DC) =
C∑
c=1

−yct logDc
(
Fct
)
. (4.5)

Similarly, we use the target weak labels yt to align only those categories present in the target

image. By minimizing LCadv, the segmentation network tries to fool the discriminator by

maximizing the probability of the target category-wise feature being considered as drawn

from the source distribution. These loss functions in (4.4) and (4.5) are obtained in the

right of the middle box in Fig. 4.2.
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4.3.3 Network Optimization

Discriminator Training. We learn a set of C distinct discriminators for each category c.

We use the source and target images to train the discriminators, which learn to distinguish

between the category-wise features drawn from either the source or the target domain. The

optimization problem to train the discriminator can be expressed as: minDC LCd (FCs ,FCt ).

Note that each discriminator is trained only with features pooled specific to that particular

category. Therefore, given an image, we only update those discriminators corresponding to

those categories which are present in the image and ignore the rest.

Segmentation Network Training. We train the segmentation network with the pixel-

wise cross-entropy loss Ls on the source images, image classification loss Lc and adversarial

loss LCadv on the target images. We combine these loss functions to learn G as follows :

min
G
Ls(Xs) + λcLc(Xt) + λdLCadv(FCt ). (4.6)

We follow the standard GAN training procedure [65] to alternatively update G and DC .

Note that, computing LCadv involves the category-wise discriminators DC . Therefore, we fix

DC and backpropagate gradients only for the segmentation network G.

4.3.4 Acquiring Weak Labels

In the above sections, we have proposed a mechanism to utilize image-level weak

labels of the target images and adapt the segmentation model between source and target

domains. In this section, we explain two methods to obtain such image-level weak labels.
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Pseudo-Weak Labels (UDA). One way of obtaining weak labels is to directly estimate

them using the data we have, i.e., source images/labels and target images, which is the

unsupervised domain adaptation (UDA) setting. In this work, we utilize the baseline model

[202] to adapt a model learned from the source to the target domain, and then obtain the

weak labels of the target images as follows:

yct =


1, if pct > T,

0, otherwise

(4.7)

where pct is the probability for category c as computed in (4.1) and T is a threshold, which

we set to 0.2 in all the experiments unless specified otherwise. In practice, we compute

the weak labels online during training and avoid any additional inference step. Specifically,

we forward a target image, obtain the weak labels using (4.7), and then compute the loss

functions in (4.6). As the weak labels obtained in this manner do not require human

supervision, adaptation using such labels is unsupervised.

Oracle-Weak Labels (WDA). In this form, we obtain the weak labels by querying a

human oracle to provide a list of the categories that occur in the target image. As we use

supervision from an oracle on the target images, we refer to this as weakly-supervised domain

adaptation (WDA). It is worth mentioning that the WDA setting could be practically useful,

as collecting such human annotated weak labels is much easier than pixel-wise annotations.

Also, there has not been any prior research involving this setting for domain adaptation.

To show that our method can use different forms of oracle-weak labels, we further

introduce the point supervision as in [10], which only increases effort by a small amount
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compared to the image-level supervision. In this scenario, we randomly obtain one pixel

coordinate of each category that belongs in the image, i.e., the set of tuples {(hc, wc, c)|∀yct =

1}. For an image, we compute the loss as follows: Lpoint = −∑∀yct=1 y
c
t log(O

(hc,wc,c)
t ), where

Ot ∈ RH×W×C is the output prediction of target after pixel-wise softmax.

4.4 Experimental Results

In this section, we perform an evaluation of our domain adaptation framework for

semantic segmentation. We present the results for using both pseudo-weak labels, i.e., unsu-

pervised domain adaptation (UDA) and human oracle-weak labels, i.e., weakly-supervised

domain adaptation (WDA) and compare it with existing state-of-the-art methods. We also

perform ablation studies to analyse the benefit of using pseudo/oracle-weak labels via our

proposed weak-label classification module and category-wise alignment.

Datasets and Metric. We evaluate our domain adaptation method under the Sim-to-

Real case with two different source-target scenarios. First, we adapt from GTA5 [154] to

the Cityscapes dataset [39]. Second, we use SYNTHIA [156] as the source and Cityscapes

as the target, which has a larger domain gap than the former case. For all experiments,

we use the Intersection-over-Union (IoU) ratio as the metric. For SYNTHIA→Cityscapes,

following the literature [213], we report the performance averaged over 16 categories (listed

in Table 4.2) and 13 categories (removing wall, fence and pole), which we denote as mIoU*.

Network Architectures. For the segmentation network G, to have a fair comparison

with works in literature, we use the DeepLab-v2 framework [29] with the ResNet-101 [69]

architecture. We extract features Fs, Ft before the Atrous Spatial Pyramid Pooling (ASPP)
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layer. For the category-wise discriminators DC = {Dc}Cc=1, we use C separate networks,

where each consists of three fully-connected layers, having number of nodes {2048, 2048, 1}

with ReLU activation.

Training Details. We implement our framework using PyTorch on a single Titan X

GPU with 12G memory for all our experiments. We use the SGD method to optimize

the segmentation network and the Adam optimizer [95] to train the discriminators. We

set the initial learning rates to be 2.5 × 10−4 and 1 × 10−4 for the segmentation network

and discriminators, with polynomial decay of power 0.9 [29]. As a common practice in

weakly-supervised semantic segmentation [2], we use Dropout of 0.1 and 0.3 for oracle-weak

labels and pseudo-weak labels respectively, on the spatial predictions before computing the

loss Lc. We choose λc to be 0.2 for oracle-weak labels and use a smaller λc = 0.01 for

pseudo-weak labels to account for its inaccurate prediction. For the weight on the category-

wise adversarial loss LCadv, we set λadv = 0.001. For experiments using pseudo weak labels,

to avoid noisy pseudo weak label prediction in the early training stage, we first train the

segmentation baseline network using [202] for 60K iterations. Then, we include the proposed

weak-label classification and alignment procedure, and train the entire framework.

4.4.1 Comparison with State-of-the-art Methods

Unsupervised Domain Adaptation (UDA). We compare our method with existing

state-of-the-art UDA methods in Table 4.1 for GTA5→Cityscapes and in Table 4.2 for

SYNTHIA→Cityscapes. Recent methods [26, 74, 113, 203] show that adapting images

from source to target on the pixel level and then adding those translated source images in
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training enhances the performance. We follow this practice in the final model via adding

these adapted images to the source dataset, as their pixel-wise annotations do not change

after adaptation. Thus adaptation using weak labels aligns the features not only between

the original source and target images, but also between the translated source images and the

target images. We show that our method is also complementary to pixel-level adaptation.

We also test our method with GTA5 as source and Foggy Cityscapes [162] as target. There

is a parameter to choose the level of fog in the images, and we set that to 0.02 in our exper-

iments. The results are presented in Table 4.3. We can observe consistent improvements as

in other datasets.

All of the results presented till now are with ResNet-100 as the backbone archi-

tecture. We also test our framework on the VGG16 architecture and present the results in

Table 4.4. Our method performs better than other UDA methods.

Discussions. In terms of applied techniques, e.g, pseudo-label re-training and domain

alignment, the closest comparisons to our method are DISE [26], BDL [113], and Patch Space

alignment [203]. We show that our method performs favorably against these approaches on

both benchmarks. This can be attributed to our introduced concept of using weak labels, in

which our UDA model explores pseudo-weak image-level labels, instead of using pixel-level

pseudo-labels [203, 113] that may be noisy and degrade the performance. In addition, these

methods do not perform domain alignment guided by such pseudo labels, whereas we use

weak labels to enable our category-wise alignment procedure.

The only prior work that adopts category-wise feature alignment is SSF-DAN [47].

However, our method is different from theirs in three aspects: 1) We introduce the weak-
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Table 4.1: Results of adapting GTA5 to Cityscapes. The top group is for UDA, while the
bottom group presents our method’s performance using the oracle-weak labels for WDA
that use either image-level or point supervision.

GTA5 → Cityscapes

Method ro
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mIoU

No Adapt. 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

Road [33] 76.3 36.1 69.6 28.6 22.4 28.6 29.3 14.8 82.3 35.3 72.9 54.4 17.8 78.9 27.7 30.3 4.0 24.9 12.6 39.4

AdaptOutput [202] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

AdvEnt [213] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

CLAN [118] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

SWD [106] 92.0 46.4 82.4 24.8 24.0 35.1 33.4 34.2 83.6 30.4 80.9 56.9 21.9 82.0 24.4 28.7 6.1 25.0 33.6 44.5

SSF-DAN [47] 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4

DISE [26] 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4

BDL [113] 91.4 47.9 84.2 32.4 26.0 31.8 37.3 33.0 83.3 39.2 79.2 57.7 25.6 81.3 36.3 39.7 2.6 31.3 33.5 47.2

AdaptPatch [203] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

Ours (UDA) 91.6 47.4 84.0 30.4 28.3 31.4 37.4 35.4 83.9 38.3 83.9 61.2 28.2 83.7 28.8 41.3 8.8 24.7 46.4 48.2

Ours (WDA: Image) 89.5 54.1 83.2 31.7 34.2 37.1 43.2 39.1 85.1 39.6 85.9 61.3 34.1 82.3 42.3 51.9 34.4 33.1 45.4 53.0

Ours (WDA: Point) 94.0 62.7 86.3 36.5 32.8 38.4 44.9 51.0 86.1 43.4 87.7 66.4 36.5 87.9 44.1 58.8 23.2 35.6 55.9 56.4

label classification module to take advantage of image-level weak labels that enables an

efficient feature alignment process and the novel WDA setting; 2) Our unified framework

can be applied for both UDA and WDA settings with various types of supervisions; 3) Due

to the introduced weak-label module, our category-wise feature alignment is operated in

the pooled feature space in (4.3) guided by an attention map, rather than in a much higher-

dimensional spatial space as in [47] that uses pixel-wise pseudo-labels. This essentially

improves the training efficiency compared to [47], which requires a GPU with 16 GB memory

as their discriminator needs much more computation time (> 20×) and GPU memory

(> 8×) compared to our combined output space and category-wise discriminators. Also,

the discriminators in [47] require 130 GFLOPS, whereas our discriminators require a total

of only 0.5 GFLOPS.
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4.4.2 Weakly-supervised Domain Adaptation (WDA)

Image-level Supervision. We present the results of our method when using oracle-weak

labels (obtained from the ground truth of the training set) in the last rows of Table 4.1, 4.2,

4.3, 4.4. To the best of our knowledge, we are the first to work on WDA, i.e., using human

oracle-weak labels on domain adaptation for semantic segmentation, and there are no other

methods to compare against in the literature. From the results, it is interesting to note

that the major boost in performance using WDA compared to UDA occurs for categories

such as truck, bus, train, and motorbike for both cases using GTA5 and SYNTHIA as the

source domain. One reason is that those categories are most underrepresented in both the

source and the target datasets. Thus, they are not predicted in most of the target images,

but using the oracle-weak labels helps to identify them better.

Point Supervision. We introduce another interesting setting of point supervision as

in [10], which adds only a slight increase of annotation time compared to the image-level

supervision. We follow [10] and randomly sample one pixel per category in each target image

as the supervision. Note that, all the details and the modules are the same during training

in this setting. In Table 4.1 and 4.2, the results show that using point supervision improves

performance (3.4 − 6.6%) on both benchmarks compared to the image-level supervision.

This shows that our method is a general framework that can be applied to the conventional

UDA setting as well as the WDA setting using either image-level or point supervision, while

all the settings achieve consistent performance gains.

Fig. 4.3(b) shows a comparison of annotation time v.s. performance for various

levels of supervision. With low annotation cost in WDA cases, our model bridges the gap
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Table 4.2: Results of adapting SYNTHIA to Cityscapes. The top group is for UDA, while
the bottom group presents the WDA setting using oracle-weak labels. mIoU and mIoU∗

are averaged over 16 and 13 categories.

SYNTHIA → Cityscapes
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mIoU mIoU∗

No Adapt. 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6

AdaptOutput [202] 79.2 37.2 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 39.5 45.9

AdvEnt [213] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

CLAN [118] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

SWD [106] 82.4 33.2 82.5 - - - 22.6 19.7 83.7 78.8 44.0 17.9 75.4 30.2 14.4 39.9 - 48.1

DADA [214] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6 49.8

SSF-DAN [47] 84.6 41.7 80.8 - - - 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 - 50.0

DISE [26] 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5 48.8

AdaptPatch [203] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

Ours (UDA) 92.0 53.5 80.9 11.4 0.4 21.8 3.8 6.0 81.6 84.4 60.8 24.4 80.5 39.0 26.0 41.7 44.3 51.9

Ours (WDA: Image) 92.3 51.9 81.9 21.1 1.1 26.6 22.0 24.8 81.7 87.0 63.1 33.3 83.6 50.7 33.5 54.7 50.6 58.5

Ours (WDA: Point) 94.9 63.2 85.0 27.3 24.2 34.9 37.3 50.8 84.4 88.2 60.6 36.3 86.4 43.2 36.5 61.3 57.2 63.7

in performance between UDA and full supervision ones (more results are shown in the

supplementary material). Note that, other forms of weak labels such as object count and

density can also be effective.

4.4.3 Ablation Study

Effect of Weak Labels. We show results for using both pseudo-weak labels as well as

human oracle-weak labels. Table 4.5 and 4.6 present the results for different combina-

tions of the modules used in our framework with and without pixel-level adaptation (PA)

[74]. It is interesting to note that on GTA5→Cityscapes, even when using pseudo-weak

labels, our method obtains a 4.2% boost in performance (41.4→ 45.6), as well as a 3− 4%
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Table 4.3: Results of adapting GTA5 to Foggy Cityscapes with ResNet101. The top
group is for Unsupervised Domain Adaptation (UDA), while the bottom group presents our
method’s performance using the oracle-weak labels for Weakly-supervised Domain Adapta-
tion (WDA) that use either image-level or point supervision.
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mIoU

No Adapt. 78.8 11.8 67.8 15.1 15.6 19.5 20.6 12.1 63.6 19.3 60.3 49.3 22.6 55.6 17.2 14.9 0.0 19.2 27.0 31.0

AdaptOutput [202] 87.3 24.9 70.2 15.4 18.7 19.6 24.9 18.6 69.3 28.2 64.4 49.5 24.1 74.0 17.6 21.2 2.1 27.5 35.9 36.5

Ours (UDA) 88.8 27.8 71.0 21.7 21.8 26.4 33.1 26.2 68.7 29.4 66.3 55.4 27.2 77.1 11.8 24.0 5.7 14.7 39.3 38.8

Ours (Image) 89.0 32.8 76.5 22.0 26.5 29.8 35.3 34.8 77.4 32.8 71.7 60.1 35.0 84.7 33.6 42.0 19.0 30.8 44.1 46.2

Ours (Point) 92.7 55.0 80.0 28.3 29.3 34.2 37.4 45.8 79.9 32.8 73.4 62.4 34.0 85.8 37.2 50.6 19.3 28.1 53.7 50.5

Table 4.4: Results of adapting GTA5 to Cityscapes with VGG16. The top group is for Un-
supervised Domain Adaptation (UDA), while the bottom group presents our method’s per-
formance using the oracle-weak labels for Weakly-supervised Domain Adaptation (WDA)
that use either image-level or point supervision.
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AdaptOutput [202] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

AdvEnt [213] 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1

CLAN [118] 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6

SSF-DAN [47] 88.7 32.1 79.5 29.9 22.0 23.8 21.7 10.7 80.8 29.8 72.5 49.5 16.1 82.1 23.2 18.1 3.5 24.4 8.1 37.7

AdaptPatch [203] 87.3 35.7 79.5 32.0 14.5 21.5 24.8 13.7 80.4 32.0 70.5 50.5 16.9 81.0 20.8 28.1 4.1 15.5 4.1 37.5

Ours (UDA) 87.1 35.7 78.6 24.9 22.7 21.8 26.5 11.7 82.1 32.1 70.4 50.6 18.3 77.4 21.7 24.6 7.6 16.3 19.3 38.4

Ours (Image) 88.0 46.8 81.6 22.3 35.2 27.4 29.2 27.0 82.4 35.4 80.7 57.1 29.0 83.2 38.0 56.4 23.3 29.8 5.5 46.2

Ours (Point) 93.6 62.7 81.4 29.6 33.7 30.7 29.7 38.2 81.5 43.0 81.7 54.3 28.8 83.8 42.9 52.5 38.4 27.1 49.8 51.8

boost for SYNTHIA→Cityscapes. In addition, as expected, using oracle-weak labels per-

forms better than pseudo-weak labels by 6.5% on GTA5→Cityscapes and 6.5 − 7.3% on

SYNTHIA→Cityscapes. It it also interesting to note that using the category-wise align-

ment consistently improves the performance for all the cases, i.e., different types of weak

labels and for different datasets.

Effect of Pseudo-Weak Label Threshold. We use a threshold T in (4.7) to convert
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Table 4.5: Ablation of the proposed loss
functions for GTA5→Cityscapes.

U
D

A

Supervision Lc LCadv PA mIoU

No Adapt. 36.6

Baseline [202] 41.4

Pseudo-Weak

X 44.2

X X 45.6

X X 46.7

X X X 48.2

W
D

A

Oracle-Weak

X 50.8

X X 52.1

X X 52.0

X X X 53.0

Table 4.6: Ablation of the proposed loss func-
tions for SYNTHIA→Cityscapes.

U
D

A

Supervision Lc LCadv PA mIoU mIoU*

No Adapt. 33.5 38.6

Baseline [202] 39.5 45.9

Pseudo-Weak

X 41.7 49.0

X X 42.7 49.9

X X 43.0 50.6

X X X 44.3 51.9

W
D

A
Oracle-Weak

X 47.8 56.0

X X 49.2 57.2

X X 49.8 57.8

X X X 50.6 58.5

the image-level prediction probability to a multi-hot vector denoting the pseudo-weak labels

that indicates absence/presence of the categories. Note that the threshold is on a probability

between 0 and 1. We then study the effect of T by varying it and plot the performance

in Fig. 4.3(a) on GTA5→Cityscapes. The figure shows that our model generally works

well with T in a range of 0.05 to 0.25. However, when we make T larger than 0.3, the

performance starts to drop significantly, as in this case, the recall of the pseudo-weak labels

would be very low compared with the oracle-weak labels (i.e., ground truths), which makes

the segmentation network fail to predict most categories.

Output Space Visualization. We present some visualizations of the segmentation pre-

diction probability for each category in Fig. 4.4. Before using any weak labels (third row),

the probabilities may be low, even though there is a category present in that image. How-

ever, based on these initial predictions, our model can estimate the categories and then
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Figure 4.3: (a) Performance comparison on GTA5→Cityscapes with different levels of su-
pervision on target images: no target labels (“No Adapt.” and “UDA”), weak image labels
(30 seconds), one point labels (45 seconds), and fully-supervised setting with all pixels la-
beled (“All Labeled”) that takes 1.5 hours per image according to [39]. (b) Performance
of our method on GTA5→Cityscapes with variations in the threshold, i.e., T in (4.7), for
obtaining the pseudo-weak labels.

enforce their presence/absence explicitly in the proposed classification loss and alignment

loss. The fourth row in Fig. 4.4 shows that such pseudo-weak labels help the network

discover object/stuff regions towards better segmentation. For example, the fourth and

fifth column shows that, although the original prediction probabilities are quite low, re-

sults using pseudo-weak labels are estimated correctly. Moreover, the last row shows that

the predictions can be further improved when we have oracle-weak labels. Please refer to

Appendix B for semantic segmentation visualizations.

4.5 Conclusions

In this chapter, we use weak labels to improve domain adaptation for semantic

segmentation in both the UDA and WDA settings, with the latter being a novel setting.

Specifically, we design an image-level classification module using weak labels, enforcing
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Figure 4.4: Visualizations of category-wise segmentation prediction probability before and
after using the pseudo-weak labels on GTA5→Cityscapes. Before adaptation, the network
only highlights the areas partially with low probability, while using the pseudo-weak labels
helps the adapted model obtain much better segments, and is closer to the model using
oracle-weak labels.

the network to pay attention to categories that are present in the image. With such a

guidance from weak labels, we further utilize a category-wise alignment method to improve

adversarial alignment in the feature space. Based on these two mechanisms, our formulation

generalizes both to pseudo-weak and oracle-weak labels. We conduct extensive ablation

studies to validate our approach against state-of-the-art UDA approaches.
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Chapter 5

Learning from Trajectories via

Subgoal Discovery

5.1 Introduction

Reinforcement Learning (RL) aims to take sequential actions while interacting

with an environment, to maximize a certain pre-specified reward function, designed for the

purpose of solving a task. RL using Deep Neural Networks (DNNs) has shown tremendous

success in several tasks such as playing games [126, 180], solving complex robotics tasks

[107, 48], etc. However, with sparse rewards, these algorithms often require a huge number

of interactions with the environment, which is costly in real-world applications such as

self-driving cars [18], and manipulations using real robots [107]. Manually designed dense

reward functions could mitigate such issues, however, in general, it is difficult to design

detailed reward functions for complex real-world tasks.
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Imitation Learning (IL) using trajectories generated by an expert can potentially

be used to learn the policies faster [6]. But, the performance of IL algorithms [158] are

not only dependent on the performance of the expert providing the trajectories, but also

on the state-space distribution represented by the trajectories, especially in case of high

dimensional states. In order to avoid such dependencies on the expert, some methods in

the literature [194, 34] take the path of combining RL and IL. However, these methods

assume access to the expert value function, which may become impractical in real-world

scenarios.

In this chapter, we present a strategy that starts with IL and then switches to RL.

In the IL step, our framework performs supervised pre-training which aims at learning a

policy that best describes the expert trajectories. However, due to the limited availability of

expert trajectories, the policy trained with IL will have errors, which can then be alleviated

using RL. Similar approaches are taken in [34] and [129], where the authors show that

supervised pre-training does help to speed-up learning. However, note that the reward

function in RL is still sparse, making it difficult to learn. With this in mind, we pose the

following question: can we make more efficient use of the expert trajectories, instead of just

supervised pre-training?

Given a set of trajectories, humans can quickly identify waypoints, which need to

be completed in order to achieve the goal. We tend to break down the entire complex task

into sub-goals and try to achieve them in the best order possible. Prior knowledge of humans

helps to achieve tasks much faster [4, 49] than using only the trajectories for learning. The

human psychology of divide-and-conquer has been crucial in several applications and it
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serves as a motivation behind our algorithm which learns to partition the state-space into

sub-goals using expert trajectories. The learned sub-goals provide a discrete reward signal,

unlike value-based continuous reward [131, 193], which can be erroneous, especially with

a limited number of trajectories in long time horizon tasks. As the expert trajectories set

may not contain all the states where the agent may visit during exploration in the RL

step, we augment the sub-goal predictor via one-class classification to deal with such under-

represented states. We perform experiments on three goal-oriented tasks on MuJoCo [197]

with sparse terminal-only reward, which state-of-the-art RL, IL, or their combinations are

not able to solve.

5.2 Related Works

Our work [145], is closely related to learning from demonstrations or expert trajec-

tories as well as discovering sub-goals in complex tasks. We first discuss works on imitation

learning using expert trajectories or reward-to-go. We also discuss the methods which aim

to discover sub-goals, in an online manner during the RL stage from its past experience.

Imitation Learning. Imitation Learning [165, 178, 35, 148, 72] uses a set of expert trajec-

tories or demonstrations to guide the policy learning process. A naive approach to use such

trajectories is to train a policy in a supervised learning manner. However, such a policy

would probably produce errors that grow quadratically with increasing steps. This can be

alleviated using Behavioral Cloning (BC) algorithms [158, 157, 198], which queries expert

action at states visited by the agent, after the initial supervised learning phase. However,

such query actions may be costly or difficult to obtain in many applications. Trajectories are
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also used by [108], to guide the policy search, with the main goal of optimizing the return

of the policy rather than mimicking the expert. Recently, some works [194, 25, 193] aim to

combine IL with RL by assuming access to experts reward-to-go at every state visited by

the RL agent. [34] take a moderately different approach where they switch from IL to RL

and show that randomizing the switch point can help to learn faster. The authors in [149]

use demonstration trajectories to perform skill segmentation in an Inverse Reinforcement

Learning (IRL) framework. The authors in [127] also perform expert trajectory segmenta-

tion, but do not show results on learning the task, which is our main goal. SWIRL [100]

makes certain assumptions on the expert trajectories to learn the reward function and their

method is dependent on the discriminability of the state features, which we on the other

hand learn end-to-end.

Learning with Options. Discovering and learning options have been studied in the lit-

erature [195, 147, 190] which can be used to speed-up the policy learning process. [179]

developed a framework for planning based on options in a hierarchical manner, such that

low-level options can be used to build higher-level options. [56] propose to learn a set of

options, or skills, by augmenting the state space with a latent categorical skill vector. A

separate network is then trained to learn a policy over options. The Option-Critic architec-

ture [7] developed a gradient-based framework to learn the options along with learning the

policy. This framework is extended in [155] to handle a hierarchy of options. [71] proposed

a framework where the goals are generated using Generative Adversarial Networks (GAN)

in a curriculum learning manner with increasingly difficult goals. Researchers have shown

that an important way of identifying sub-goals in several tasks is identifying bottle-neck
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regions in tasks. Diverse Density [122], Relative Novelty [182], Graph Partitioning [183],

clustering [120] can be used to identify such sub-goals. However, unlike our method, these

algorithms do not use a set of expert trajectories, and thus would still be difficult to identify

useful sub-goals for complex tasks with high sample-efficiency.

5.3 Methodology

We first provide a formal definition of the problem we are addressing in this chap-

ter, followed by a brief overall methodology, and then present a detailed description of our

framework.

Problem Definition. Consider a standard RL setting where an agent interacts with an en-

vironment which can be modeled by a Markov Decision Process (MDP)M = (S,A,P, r, γ,P0),

where S is the set of states, A is the set of actions, r is a scalar reward function, γ ∈ [0, 1]

is the discount factor and P0 is the initial state distribution. Our goal is to learn a policy

πθ(a|s), with a ∈ A, which optimizes the expected discounted reward Eτ [
∑∞

t=0 γ
tr(st,at)],

where τ = (. . . , st,at, rt, . . . ) and s0 ∼ P0, at ∼ πθ(a|st) and st+1 ∼ P(st+1|st,at).

With sparse rewards, optimizing the expected discounted reward using RL may

be difficult. In such cases, it may be beneficial to use a set of state-action trajectories

D = {{(sti,a∗ti)}nit=1}ndi=1 generated by an expert to guide the learning process. nd is the

number of trajectories in the dataset and ni is the length of the ith trajectory. We propose

a methodology to efficiently use D by discovering sub-goals from these trajectories and use

them to develop an extrinsic reward function.

Overall Methodology. Several complex, goal-oriented, real-world tasks can often be
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Figure 5.1: (a) This shows an overview of our proposed framework to train the policy
network along with sub-goal based reward function with out-of-set augmentation. (b) An
example state-partition with two independent trajectories in black and red. Note that the
terminal state is shown as a separate state partition because we assume it to be indicated
by the environment and not learned.

broken down into sub-goals with some natural ordering. Providing positive rewards after

completing these sub-goals can help to learn much faster compared to sparse, terminal-only

rewards. We advocate that such sub-goals can be learned directly from a set of expert

demonstration trajectories, rather than manually designing them.

A pictorial description of our method is presented in Fig. 5.1(a). We use the set D

to first train a policy using supervised learning. This serves a good initial point for policy

search using RL. However, with sparse rewards, the search can still be difficult and the

network may forget the learned parameters in the first step if it does not receive sufficiently

useful rewards. To avoid this, we use D to learn a function πφ(g|s), which given a state,

predicts sub-goals. We use this function to obtain a new reward function, which intuitively

informs the RL agent whenever it moves from one sub-goal to another. We also learn a

utility function uψ(s) to modulate the sub-goal predictions over the states which are not

well-represented in the set D. We approximate the functions πθ, πφ, and uψ using neural

networks. Next, we define sub-goals and present an algorithm to learn them.
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5.3.1 Sub-goal Definition

Definition 1. Consider that the state-space S is partitioned into sets of states as -

{S1,S2, . . . ,Sng}, s.t., S = ∪ngi=1Si and ∩ngi=1Si = ∅ and ng is the number of sub-goals

specified by the user. For each (s,a, s′), we say that the particular action takes the agent

from one sub-goal to another iff s ∈ Si, s′ ∈ Sj for some i, j ∈ G = {1, 2, . . . , ng} and i 6= j.

We assume that there is an ordering in which groups of states appear in the

trajectories as shown in Fig. 5.1(b). However, the states within these groups of states may

appear in any random order in the trajectories. These groups of states are not defined a

priori and our algorithm aims at estimating these partitions. Note that such orderings are

natural in several real-world applications where a certain sub-goal can only be reached after

completing one or more previous sub-goals. We show (empirically in Appendix A) that

our assumption is soft rather than being strict, i.e., the degree by which the trajectories

deviate from the assumption determines the granularity of the discovered sub-goals. We

may consider that states in the trajectories of D appear in increasing order of sub-goal

indices, i.e., achieving sub-goal j is harder than achieving sub-goal i (i < j). This gives

us a natural way of defining an extrinsic reward function, which would help towards faster

policy search. Also, all the trajectories in D should start from the initial state distribution

and end at the terminal states.

5.3.2 Learning Sub-Goal Prediction

We use D to partition the state-space into ng sub-goals, with ng being a hyper-

parameter. We learn a neural network to approximate πφ(g|s), which given a state s ∈ S
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predicts a probability mass function (p.m.f.) over the possible sub-goal partitions g ∈ G.

The order in which the sub-goals occur in the trajectories, i.e., S1 < S2 < · · · < Sng , which

can be derived from our assumption mentioned above, acts as a supervisory signal.

We propose an iterative framework to learn πφ(g|s) using these ordered constraints.

In the first step, we learn a mapping from states to sub-goals using equipartition labels

among the sub-goals. Then we infer the labels of the states in the trajectories and correct

them by imposing temporal ordering constraints. We use the new labels to again train the

network and follow the same procedure until convergence. These two steps are as follows.

Learning Step. In this step, we consider that we have a set of tuples (s, g), which we use

to learn the function πφ. This can be posed as a multi-class classification problem with ng

categories. We optimize the following cross-entropy loss function,

π∗φ = arg min
πφ

1

N

nd∑
i=1

ni∑
t=1

ng∑
k=1

−1{gti = k} log πφ(g = k|sti) (5.1)

where 1 is the indicator function and N is the number of states in the dataset D. To begin

with, we do not have any labels g, and thus we consider equipartition of all the sub-goals

in G along each trajectory. That is, given a trajectory of states {s1i, s2i, . . . , snii} for some

i ∈ {1, 2, . . . , nd}, the initial equi-partition sub-goals are,

gti = j, ∀ b(j − 1)

ng
nic < t <= b j

ng
nic, j ∈ G (5.2)

Using this initial labeling scheme, similar states across trajectories may have different labels,

but the network is expected to converge at the Maximum Likelihood Estimate (MLE) of the
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entire dataset. We also optimize CASL [142] presented in Section 3.3.4. for stable learning

as the initial labels can be erroneous. In the next iteration of the learning step, we use the

inferred sub-goal labels, which we obtain as follows.

Inference Step. Although the equipartition labels in Eqn. 5.2 may have similar states

across different trajectories mapped to dissimilar sub-goals, the learned network modeling

πφ maps similar states to the same sub-goal. But, Eqn. 5.1, and thus the predictions of

πφ do not account for the natural temporal ordering of the sub-goals. Even when using

architectures such as Recurrent Neural Networks (RNN), it may be better to impose such

temporal order constraints explicitly rather than relying on the network to learn them. We

inject such order constraints using Dynamic Time Warping (DTW).

Formally, for the ith trajectory inD, we obtain the following set: {(sti,πφ(g|sti)}nit=1,

where πφ is a vector representing the p.m.f. over the sub-goals G. However, as the predic-

tions do not consider temporal ordering, the constraint that sub-goal j occurs after sub-goal

i, for i < j, is not preserved. To impose such constraints, we use DTW between the two

sequences {e1, e2, . . . , eng}, which are the standard basis vectors in the ng dimensional

Euclidean space and {πφ(g|s1i),πφ(g|s2i), . . . ,πφ(g|snii)}. We use the l1-norm of the dif-

ference between two vectors as the similarity measure in DTW. In this process, we obtain

a sub-goal assignment for each state in the trajectories, which become the new labels for

training in the learning step.

We then invoke the learning step using the new labels (instead of Eqn. 5.2), fol-

lowed by the inference step to obtain the next sub-goal labels. We continue this process until

the number of sub-goal labels changed between iterations is less than a certain threshold.
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This method is presented in Algorithm 2, where the superscript k represents the iteration

number in learning-inference alternates.

Reward Using Sub-Goals. The ordering of the sub-goals, as discussed before, provides

a natural way of designing a reward function as follows:

r′(s, a, s′) = γ ∗ arg max
j∈G

πφ(g = j|s′)− arg max
k∈G

πφ(g = k|s) (5.3)

where the agent in state s takes action a and reaches state s′. The augmented reward

function would become r + r′. Considering that we have a function of the form Φφ(s) =

arg maxj∈G πφ(g = j|s), and without loss of generality that G = {0, 1, . . . , ng − 1}, so

that for the initial state Φφ(s0) = 0, it follows from [131] that every optimal policy in

M′ = (S,A,P, r + r′, γ,P0), will also be optimal in M, the original MDP. However, the

new reward function may help to learn the task faster.

5.3.3 Out-of-Set Augmentation

In several applications, it might be the case that the trajectories only cover a small

subset of the state space, while the agent, during the RL step, may visit states outside of

the states in D. The sub-goals estimated at these out-of-set states may be erroneous.

To alleviate this problem, we use a logical assertion on the potential function Φφ(s)

that the sub-goal predictor is confident only for states which are well-represented in D, and

not elsewhere. We learn a neural network to model a utility function uψ : S → R, which

given a state, predicts the degree by which it is seen in the dataset D. To do this, we

build upon Deep One-Class Classification [160], which performs well on the task of anomaly
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detection. Their idea is derived from Support Vector Data Description (SVDD) [196], which

aims to find the smallest hypersphere enclosing the given data points with minimum error.

Data points outside the sphere are then deemed as anomalous. We learn the parameters of

uψ by optimizing the following function:

ψ∗ = arg min
ψ

1

N

nd∑
i=1

ni∑
t=1

||fψ(sti)− c||2 + λ||ψ||22,

where c ∈ Rm is a vector determined a priori [160], f is modeled by a neural network with

parameters ψ, s.t. fψ(s) ∈ Rm. The second part is the l2 regularization loss with all the

parameters of the network lumped to ψ. The utility function uψ can be expressed as follows:

uψ(s) = ||fψ(s)− c||22 (5.4)

A lower value of uψ(s) indicates that the state has been seen in D. We modify the potential

function Φφ(s) and thus the extrinsic reward function, to incorporate the utility score as

follows:

Φφ,ψ(s) = 1{uψ(s) ≤ δ} ∗ arg max
j∈G

πφ(g = j|s),

r′(s, a, s′) =γΦφ,ψ(s′)− Φφ,ψ(s), (5.5)

where Φφ,ψ denotes the modified potential function. It may be noted that as the extrinsic

reward function is still a potential-based function [131], the optimality conditions between

the MDP M and M′ still hold as discussed previously.
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Algorithm 2 Learning Sub-Goal Prediction

Input: Expert trajectory set D
Output: Sub-goal predictor πφ(g|s)
k ← 0
Obtain gk for each s ∈ D using Eqn. 5.2
repeat

Optimize Eqn. 5.1 to obtain πkφ
Predict p.m.f of G for each s ∈ D using πkφ
Obtain new sub-goals gk+1 using the p.m.f in DTW
done = True, if |gk − gk+1| < ε, else False
k ← k + 1

until done is True

5.4 Supervised Pre-Training

As discussed previously, an initial way to utilize the trajectories is by pre-training

the policy network πθ using the trajectory set D in a supervised learning framework. We

pre-train the network by optimizing the following:

θ∗ = arg min
θ

nd∑
i=1

ni∑
t=1

l(πθ(a|sti),a∗ti) + λ||θ||2F (5.6)

where l is the loss function which can be cross-entropy or regression loss depending on

discrete or continuous actions. Note that the continuous actions comprise of (µ, σ) which are

parameters of a Gaussian distribution. The second part of Eqn. 5.6 is the l2 regularization

loss. The policy obtained after optimizing Eqn. 5.6 possesses the ability to take actions

with low error rates at the states sampled from the distribution induced by the trajectory

set D. However, a small error at the beginning would compound quadratically [158] with

time as the agent starts visiting states which are not sampled from the distribution of D.

Algorithms like DAgger can be used to fine-tune the policy by querying expert actions at
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(a) BiMGame (b) AntTarget (c) AntMaze

Figure 5.2: This figure presents the three environments we use - (a) Ball-in-Maze Game
(BiMGame) (b) Ant locomotion in an open environment with an end goal (AntTarget) (c)
Ant locomotion in a maze with an end goal (AntMaze).

states visited after executing the learned policy. This query to the expert is often very

costly and even may not be feasible in some applications. More importantly, as DAgger

aims to mimic the expert, it can only reach its performance and not better than that. For

this reason, we fine-tune the policy using RL with the extrinsic reward function obtained

after identifying the sub-goals.

5.5 Experiments

In this section, we perform an experimental evaluation of the proposed method

of learning from trajectories and compare it with other state-of-the-art methods. We also

perform ablation of different modules of our framework.

Tasks. We perform experiments on three challenging environments as shown in Fig. 5.2.

The first environment is Ball-in-Maze Game (BiMGame) introduced in [207], where the

task is to move a ball from the outermost to the innermost ring using a set of five discrete

actions - clock-wise and anti-clockwise rotation by 1◦ along the two principal dimensions of

the board and “no-op” where the current orientation of the board is maintained. The states
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are images of size 84 × 84. The second environment is AntTarget which involves the Ant

[167]. The task is to reach the center of a circle of radius 5m with the Ant being initialized

on a 45◦ arc of the circle. The state and action are continuous with 41 and 8 dimensions

respectively. The third environment, AntMaze, uses the same Ant, but in a U-shaped maze

used in [71]. The Ant is initialized on one end of the maze with the goal being the other

end indicated as red in Fig. 5.2(c).

Network Architectures We follow the architecture of A3C [125] and share parameters

between the policy and the state value estimation network. To model πθ in BiMGame, we

use a CNN with architecture Conv-Conv-FC-RNN followed by two heads: one for policy

network and another for state value estimation. We append the previous step action as

an additional input to the RNN step [123]. To model πθ for AntTarget and AntMaze,

we use the architecture FC-FC-FC-RNN, again followed by two heads for policy and state

value estimation. For the policy, we predict the mean and standard deviation and sample

actions from a Gaussian distribution. We use similar architectures (without RNN) for the

respective tasks for πφ and fψ(s) with modifications in the final layer to suit their purpose.

Reward. For all tasks, we use sparse terminal-only reward, i.e., +1 only after reaching the

goal state and 0 otherwise. Standard RL methods such as A3C [125] are not able to solve

these tasks with such sparse rewards.

5.5.1 Trajectory Generation

We generate trajectories from A3C [125] policies trained with dense reward, which

we do not use in any other experiments. We also generate sub-optimal trajectories for

BiMGame and AntMaze. To do so for AntMaze, we generate sub-optimal trajectories from
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an A3C policy stopped much before convergence. But for BiMGame, we use the simulator

via Model Predictive Control (MPC) as in [144]. We leverage the internal physics engine of

the simulator to forward propagate the state in time and generate trajectories by optimizing

the cumulative reward function in a Model Predictive Control (MPC) manner. Formally,

at time step t, we obtain the optimal action set a∗t:t+H−1 from t to t+H − 1 by solving the

following:

arg max
at:t+H−1

t+H−1∑
t′=t

r(st′ , at′ , st′+1), s.t., st′+1 = M(st′ , at′), (5.7)

where M is the simulator, r(st, at, st+1) = d(st+1)− d(st) is the reward, d(st) is the radial

distance of the ball at time t from the center of the board, H is the horizon of optimization

and at:t+H−1 is a set of actions. We only take the first action a∗t , move to state st+1 and

repeat Eqn. 5.7. As we use a non-differentiable simulator, we employ a random shooting

strategy [150] where we sample K sets of at:t+H−1 and choose the one which maximizes the

rewards. We use K,H = 10 empirically. Note that the reward and the random shooting

may not lead to the shortest path, thus making the trajectories sub-optimal. We generate

around 400 trajectories for BiMGame and AntMaze, and 250 for AntTarget. As we generate

two separate sets of trajectories for BiMGame and AntTarget, we use the sub-optimal set

for all experiments, unless otherwise mentioned.

5.5.2 Comparison with Baselines

Baselines. We primarily compare our method with other RL methods which

utilize trajectory or expert information - AggreVaTeD [194] and value-based reward shaping
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Figure 5.3: This figure shows the comparison of our proposed method with the baselines.
Some lines may not be visible as they overlap. For tasks (a) and (c) our method clearly
outperforms others. For task (b), although value reward initially performs better, our
method eventually achieves the same performance. For a fair comparison, we do not use
the out-of-set augmentation to generate these plots.
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Figure 5.4: (a) This figure presents the learning curves associated with a different number
of learned sub-goals for the three tasks. For BiMGame and AntTarget, the number of sub-
goals hardly matters. However, due to the inherently longer length of the task for AntMaze,
a lower number of sub-goals such as ng = 5 perform much worse than with higher ng.

[131], equivalent to the K =∞ in THOR [193]. For these methods, we use D to fit a value

function to the sparse terminal-only reward of the original MDPM and use it as the expert

value function. We also compare with standard A3C, but pre-trained using D. It may be

noted that we pre-train all the methods using the trajectory set to have a fair comparison.

We report results with mean cumulative reward and ±σ over 3 independent runs.

Comparison. First, we compare our method with other baselines in Fig 5.3. Note that

as out-of-set augmentation using uψ can be applied for other methods that learn from

trajectories, such as value-based reward shaping, we present the results for comparison with
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baselines without using uψ, i.e., Eqn. 5.3. Later, we perform an ablation study with and

without using uψ. As may be observed, none of the baselines show any sign of learning for

the tasks, except for ValueReward, which performs comparably with the proposed method

for AntTarget only. Our method, on the other hand, is able to learn and solve the tasks

consistently over multiple runs. The expert cumulative rewards are also drawn as straight

lines in the plots and imitation learning methods like DAgger [158] can only reach that

mark. Our method is able to surpass the expert for all the tasks. In fact, for AntMaze,

even with a rather sub-optimal expert (an average cumulative reward of only 0.0002), our

algorithm achieves about 0.012 cumulative reward at 100 million steps.

The poor performance of the ValueReward and AggreVaTeD can be attributed

to the imperfect value function learned with a limited number of trajectories. Specifically,

with an increase in the trajectory length, the variations in cumulative reward in the initial

set of states are quite high. This introduces a considerable amount of error in the estimated

value function in the initial states, which in turn traps the agent in some local optima when

such value functions are used to guide the learning process.

5.5.3 Ablation Study

In this section we perform ablation study of different modules of our framework.

We present ablation on the number of subgoals, effect of out-of-set augmentation, effect of

sub-optimal expert and visualizations of the learned subgoals.

Variations in Sub-Goals. The number of sub-goals ng is specified by the user, based on

domain knowledge. For example, in the BiMGame, the task has four bottle-necks, which

are states to be visited to complete the task and they can be considered as sub-goals. We
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Figure 5.6: This plot presents the comparison of our proposed method for with and without
using the one-class classification method for out-of-set augmentation.

perform experiments with different number of sub-goals and present the plots in Fig. 5.4. It

may be observed that for BiMGame and AntTarget, our method performs well over a large

variety of sub-goals. On the other hand for AntMaze, as the length of the task is much

longer than AntTarget (12m vs 5m), ng ≥ 10 learn much faster than ng = 5, as higher

number of sub-goals provides more frequent rewards. Note that the variations in speed of

learning with number of sub-goals is also dependent on the number of expert trajectories.

If the pre-training is good, then less frequent sub-goals might work fine, whereas if we have

a small number of expert trajectories, the RL agent may need more frequent reward (see

Fig. 5.5).

0 1 2 3 4
Number of samples (in Millions)

0.0

0.1

0.2

0.3

0.4

0.5

Ep
iso

de
 C

um
ul

at
iv

e 
Re

wa
rd

ng = 4, nd = 400
ng = 4, nd = 250
ng = 2, nd = 250
Expert

Figure 5.5: Effect of number of sub-
goals and trajectories on BiMGame.

Effect of Out-of-Set Augmentation. The set D

may not cover the entire state-space. To deal with

this situation we developed the extrinsic reward func-

tion in Eqn. 5.5 using uψ. To evaluate its effective-

ness we execute our algorithm using Eqn. 5.3 and

Eqn. 5.5, and show the results in Fig. 5.6, with leg-

ends showing without and with uψ respectively. For
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Figure 5.7: This plot presents a comparison of our proposed method for two different types
of expert trajectories. The corresponding expert rewards are also plotted as horizontal lines.

BiMGame, we used the optimal A3C trajectories, for this evaluation. This is because, us-

ing MPC trajectories with Eqn. 5.3 can still solve the task with similar reward plots, since

MPC trajectories visit a lot more states due to its short-tem planning. The (optimal) A3C

trajectories on the other hand, rarely visit some states, due to its long-term planning. In

this case, using Eqn. 5.3 actually traps the agents to a local optimum (in the outermost

ring), whereas using uψ as in Eqn. 5.5, learns to solve the task consistently (Fig. 5.6(a)).

For AntTarget in Fig. 5.6(b), using uψ performs better than without using uψ (and

also surpasses value-based Reward Shaping). This is because the trajectories only span a

small sector of the circle (Fig. 5.8(b)) while the Ant is allowed to visit states outside of it in

the RL step. Thus, uψ avoids incorrect sub-goal assignments to states not well-represented

in D and helps in the overall learning.

Effect of Sub-Optimal Expert. In general, the optimality of the expert may have an

effect on performance. The comparison of our algorithm with optimal vs. sub-optimal

expert trajectories are shown in Fig. 5.7. As may be observed, the learning curve for both

the tasks is better for the optimal expert trajectories. However, in spite of using such sub-

optimal experts, our method is able to surpass and perform much better than the experts.

99



(a) BiMGame ng = 4 (b) AntTarget ng = 10 (c) AntMaze ng = 15

Figure 5.8: (a) This figure presents the learned sub-goals for the three tasks which are
color-coded. Note that for (b) and (c), multiple sub-goals are assigned the same color, but
they can be distinguished by their spatial locations.

We also see that our method performs better than even the optimal expert (as it is only

optimal w.r.t. some cost function) used in AntMaze.

Visualization. We visualize the sub-goals discovered by our algorithm and plot it on the

x-y plane in Fig. 5.8. As can be seen in BiMGame, with 4 sub-goals, our method is able

to discover the bottle-neck regions of the board as different sub-goals. For AntTarget and

AntMaze, the path to the goal is more or less equally divided into sub-goals. This shows

that our method of sub-goal discovery can work for both environments with and without

bottle-neck regions. (See Appendix A for more visualizations).

5.6 Discussions

The experimental analysis we presented in the previous section contain the follow-

ing key observations:

• Our method to discover sub-goals works both for tasks with inherent bottlenecks (e.g.

BiMGame) and without any bottlenecks (e.g. AntTarget and AntMaze), but with tempo-

ral order between groups of states in the expert demos, which occurs in many applications.
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• Experiments show, that our assumption on the temporal ordering of groups of states in

expert trajectories is soft, and determines the granularity of the discovered sub-goals (see

Appendix A).

• Discrete rewards using sub-goals performs much better than value function based con-

tinuous rewards. Moreover, value functions learned from the along and limited number

of trajectories may be erroneous, whereas segmenting the trajectories based on temporal

ordering may still work well.

• As the expert trajectories may not cover the entire state-space regions the agent visits

during exploration in the RL step, augmenting the sub-goal based reward function using

out-of-set augmentation performs better compared to not using it.

5.7 Conclusion

In this chapter, we presented a framework to utilize the demonstration trajecto-

ries in an efficient manner by discovering sub-goals, which are waypoints that need to be

completed in order to achieve a certain complex goal-oriented task. We use these sub-goals

to augment the reward function of the task, without affecting the optimality of the learned

policy. Experiments on three complex task show that unlike state-of-the-art RL, IL, or

methods which combines them, our method is able to solve these tasks consistently. We

also show that our method is able to perform much better than sub-optimal experts used

to obtain the expert trajectories and at least as good as the optimal experts. Future work

will concentrate on extending our method for repetitive non-goal oriented tasks.
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Chapter 6

Conclusions

6.1 Thesis Summary

In this thesis, we focused on learning with limited supervision for a variety of

computer vision tasks and a sequential decision making task. We explored two different

dimensions of limited supervision - a limited number of labeled data points for classification

tasks and a limited level of supervision for dense prediction tasks. In Chapter 2, we pre-

sented our algorithm for learning with a limited number of labeled data via active learning.

However, in contrast to active learning in the literature which considers informativeness

scores individually for the data points, we devised a framework that utilizes the contextual

information often present in natural data. Our method is general enough to be applied to

a variety of tasks where contextual information can be exploited. Experimental results on

three different applications - object recognition, action recognition, and document classifi-

cation showed that our method can significantly reduce the number of labeled samples.

In Chapter 3 and 4 we looked into the second dimension of learning with limited
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supervision, i.e., reducing the level of supervision from strong labels to weak labels for

dense prediction tasks. In Chapter 3, we looked into the problem of weakly supervised

action detection. We developed a framework, which can learn to localize action categories

during test time while using only video-level categorical labels during training, compared

to dense frame-wise labeling used in the literature. We framed the problem as Multiple

Instance Learning with the pair-wise video feature similarity constraint, which empirically

proved to be very effective for the overall performance of the framework. In Chapter 4, we

looked into the problem of domain adaptation of semantic segmentation models with weak

image-level labels. We showed that we can either estimate the weak labels, which would be

Unsupervised Domain Adaptation (UDA), or we can obtain them from human annotators,

which would be Weakly-supervised Domain Adaptation (WDA). We showed via an array

of weak labels that our method brided the gap between UDA methods in literature and the

fully-supervised model while incurring none to very low annotation cost.

We finally looked into sequential decision-making tasks in Chapter 5 where we

developed a framework to learn from human demos in case of sparse terminal-only rewards.

As imitation learning using human demonstrations can produce errors at states out of the

distribution of the demonstrations, it may require an enormous amount of demonstrations

to cover the state-space. We developed a method that learns from the demonstrations to

divide the long complex task into subgoals which are much easier to solve. We used these

learned subgoals as an extrinsic reward function in reinforcement learning to mitigate the

errors learned in the first step via imitation learning. Results showed that our framework is

able to solve the tasks that other methods in the literature are not able to solve. Continuing
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with the lines of works discussed in this thesis, next we discuss some interesting research

directions for future works.

6.2 Future Research Directions

6.2.1 Integrating different levels of supervision with Human-in-the-loop

Data points vary widely in terms of complexity and the amount of information in

them. If we choose the informative samples to label using active learning, we may not need

to label some of the neighboring samples, thus leaving them unlabeled, but using them in the

learning process. Moving a step further, it is also an interesting problem to choose which of

the samples to label with strong vs weak supervision. This is because, as weak labels are for

the entire bag and not individual elements within the bag, the learning algorithm requires

some de-correlation in the label space [142]. In categories where natural de-correlation does

not occur, e.g., biker always occurs with a bike, cricket-shot always appears with cricket

bowling, we may need to label some samples via strong supervision. Then given a huge

corpus of unlabeled data for some task, the problem is to choose which samples we should

query the human oracle to label strongly, weakly, or leave unlabeled, given a certain budget

for manual annotation. Our works on active learning in Chapter 2 and weakly supervised

learning in Chapter 3 and 4 is a strong starting point for this problem.

6.2.2 Continuous Domain Adaptation

In our work on domain adaptation of semantic segmentation models in Chapter

4, we show how weak target labels can be effective in adaptation. However, in several

104



real-world applications, there is often drift in data distribution with time. A model learned

initially may not perform well after a certain period of time when the model is deployed

in changing environments, e.g. changes in geographic location, weather, light conditions,

demographics, and so on. Thus, we need our model to continuously adapt to the new

changes in the environment. More importantly, the adaptation needs to be such that the

knowledge about the past encountered environments is not forgotten, as the model might

encounter those data points at a later stage. Our works on active learning in Chapter 2 and

domain adaptation in Chapter 4 can be a strong starting point as for the new domains, we

may need to select informative samples for manual annotations to mitigate large domain

differences.

6.2.3 Learning from Interaction

We as humans learn about physical entities in our environment through a process

of constant interaction in our daily lives. The actions we take while interacting play an

important role in assigning and thus learning the categorical properties of the entities. Thus,

our data acquisition (via interaction) and processing (learning properties about them), are

correlated and it helps in better and much faster learning. However, this is not true for

learning algorithms in the current literature, where the acquisition and processing pipelines

are independent. It is an interesting research direction to correlate the acquisition and

learning problems in a way where both can help each other. The recent advances in high

fidelity simulators can play an important role to explore such research directions.
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6.2.4 Commonsense in Learning

Human cognition combines visual perception along with commonsense and knowl-

edge. While some commonsense, such as context information can be learned from the data,

other more complex commonsense is often not a part of the visual data. Commonsense such

as gravity pulls objects downwards, a pin is required to hang something onto the wall, a

natural indoor/outdoor scene is almost always navigable, are a few examples of common-

sense which is often not visible, but may help to learn, reason, infer and generalize about

scenes in new domains with much lesser samples. Introducing such commonsense in learning

algorithms is an interesting research direction beyond the context-based commonsense.

6.2.5 Adaptation of Policies

Similar to static tasks as recognition in computer vision, policies learned to solve

dynamic tasks may not work well when there are changes in the environment. Such changes

may be due to the shits in the distribution of the state space, changes in physical parameters

that affect the transition probabilities between states, and so on. However, we as humans

are able to quickly adapt to the changing environment around us with very little interaction

with the new environment. Thus, an interesting research problem may be to find a princi-

pled approach to adapt policies to changes in environments with a much lower number of

interactions with the new environment. Our work on domain adaptation of static tasks in

computer vision in Chapter 4 can be a strong starting point, especially for adaptation to

changes in state distribution with similar semantic meaning.
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Christopher Ré. Snorkel: Rapid training data creation with weak supervision. In
VLDB, volume 11, page 269. NIH Public Access, 2017.

[152] Alexander Richard and Juergen Gall. Temporal action detection using a statistical
language model. In CVPR, pages 3131–3140, 2016.

[153] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly supervised action learn-
ing with rnn based fine-to-coarse modeling. CVPR, 2017.

[154] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for
data: Ground truth from computer games. In ECCV, 2016.

[155] Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. NIPS,
2018.

[156] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M.
Lopez. The SYNTHIA Dataset: A large collection of synthetic images for semantic
segmentation of urban scenes. In CVPR, 2016.

[157] Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via
interactive no-regret learning. arXiv preprint arXiv:1406.5979, 2014.

117
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Appendix A

Variations in Learned Subgoals

with Trajectories

We show visualizations of the learned sub-goals for different number of sub-goals.

Fig. A.1 and Fig. A.2 shows the visualizations for the AntMaze task using sub-optimal

and optimal trajectories respectively. Fig. A.3 and Fig. A.4 shows the visualizations for

BiMGame and AntTarget respectively. It may be observed in Fig. A.1, that with high

ng, although our algorithm starts from the specified number of sub-goals, at the end of

the sub-goal learning process, it ends up discovering fewer sub-goals (shown in brackets),

25 → 21 and 20 → 18. However, with optimal trajectories (Fig. A.2), our algorithm is

able to discover the pre-specified number of sub-goals (at least till ng = 30). This is due

to the fact that the variations in the path taken by the optimal trajectories are much less

than the sub-optimal trajectories. Thus, our algorithm is able to cluster the states more

appropriately for optimal than sub-optimal trajectories. This actually shows the claim we
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(a) (5, 5) (b) (10, 10) (c) (15, 15) (d) (20, 18) (e) (25, 21)

Figure A.1: (a) This figure presents the visualizations of the discovered sub-goals for
AntMaze using the sub-optimal set of expert trajectories with different number of pre-
specified sub-goals (ng). The values as caption denote (no. of pre-specified sub-goals, no.
of sub-goals learned).

(a) (5, 5) (b) (10, 10) (c) (20, 20) (d) (25, 25) (e) (30, 30)

Figure A.2: This figure presents the visualizations of the discovered sub-goals for AntMaze
using the optimal set of expert trajectories with different number of sub-goals (ng) as input.
The values as caption denote (no. of pre-specified sub-goals, no. of sub-goals learned).

make in the chapter, that our assumption of certain groups of states should follow some

temporal ordering in the trajectories, are only soft and the degree by which they deviate

determine the number and thus the granularity of the discovered sub-goals. Moreover, as

we see in Fig. 5.4(c), even with sub-optimal trajectories, a low number of pre-specified

sub-goals (such as ng = 10) performs almost as good as with pre-specified ng = 25, which

actually discovers 21 sub-goals.
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(a) (2, 2) (b) (3, 3) (c) (4, 4) (d) (5, 5)

Figure A.3: This figure presents the visualizations of the discovered sub-goals for BiMGame
with different number of sub-goals (ng) as input. The values as caption denote (no. of pre-
specified sub-goals, no. of sub-goals learned).

(a) (2, 2) (b) (3, 3) (c) (4, 4) (d) (5, 5)

Figure A.4: This figure presents the visualizations of the discovered sub-goals for AntTarget
using the expert trajectories with different number of sub-goals (ng) as input. The values
as caption denote (no. of pre-specified sub-goals, no. of sub-goals learned).
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Appendix B

Semantic Segmentation

Visualization

Fig. B.1 presents the semantic segmentation results before and after using weak

labels for adaptation. The UDA method without using any weak labels produces more

erroneous results in some portions and may miss some of the categories within a small area,

such as sign, pole, etc. However, using the pseudo-weak labels enhances the segmentation

and helps our model better identify the categories which originally have a lower confidence.

Moreover, using oracle-weak labels is able to further improve the segmentation performance.
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Figure B.1: Example results of adapted segmentation for GTA5 → Cityscapes with and
without using weak labels for adaptation. The visualizations show that using pseudo-weak
labels, the segmentation become more structured and some of the categories are better
segmented. Using oracle-weak labels further improves the segmentation quality.

129




