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Abstract

How do my mental states compare to yours? We suggest
that, while we may not be able to compare experiences, we
can compare neural representations, and that the correct way
to compare neural representations is through analysis of the
distances between them. In this paper, we present a tech-
nique for measuring the similarities between representations
at various layers of neural networks. We then use the measure
to demonstrate empirically that different artificial neural net-
works trained by backpropagation on the same categorization
task, even with different representational encodings of the in-
put patterns and different numbers of hidden units, reach states
in which representations at the hidden units are similar.

Introduction

Many psychologists have postulated models of semantic
memory that identify semantic similarity with proximity in
a high-dimensional space of concepts. Some use techniques
from psychophysics, performing multidimensional scaling on
large numbers of human similarity judgements (Rips et al.,
1973). Others have extracted cooccurrence matrices with se-
mantic properties from large text corpora (Lund et al., 1995).
Paul Churchland has argued that the activation state space of
neural networks captures semantic similarity by the proxim-
ity of activation vectors (Churchland, 1989). This view has
much to be said for it. It explains the psychometric data that
human judgements of similarity tend to be robust across sub-
jects; it explains the data from lexical decision experiments
that semantically-related pairs of words presented sequen-
tially are identified more quickly than non-related words; and
it explains many prototypicality effects in categorization.

Calling Churchland’s view “state-space semantics”, how-
ever, Jerry Fodor and Ernest Lepore have mounted a power-
ful argument against it (Fodor and Lepore, 1992). They argue
that state-space semantics entails semantic holism, and that
semantic holism is intolerable. Semantic holism is the view
that the content (meaning) of each one of a particular per-
son's thoughts depends on the content of every other one of
that person’s thoughts (what I mean when I think That'’s a
dog depends on what I mean when I think That's a lightbulb,
and so on). Fodor and Lepore argue that semantic holism is
intolerable on the grounds that it would entail that commu-
nication, language learning, psychological explanation, and
scientific progress are impossible'

''We will not go into the details of their arguments against holism,
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Fodor and Lepore argue that state-space semantics is per-
niciously holistic because it postulates: (1) that the meanings
of representations in semantic space are determined by their
relations to other representations in semantic space; and (2)
that we could never determine whether two semantic spaces
exhibit identical, or even similar, sets of relations. We agree
with (1) but deny (2). In this paper, we present a concrete
method for measuring the similarity between two seman-
tic spaces and we demonstrate empirically that the semantic
spaces of different neural networks trained on similar prob-
lems are often similar, even when their input encodings or
number of hidden units are different.

Fodor and Lepore state their argument as follows:

What Churchland has on offer is the idea that two con-
cepts are similar insofar as they occupy similar positions
in the same state space. The question thus presents it-
self: When are 5, and Sy the same state space? When,
for example, is your semantic space a token of the same
semantic space state type as mine? Well, clearly a nec-
essary condition for the identity of state spaces is the
identity of their dimensions; specifically, identity of their
semantic dimensions, since the current proposal is that
concepts be located by reference to a space of seman-
tically relevant properties. We are thus faced with the
question of when z and y are the same semantic dimen-
sions....But this is surely just the old semantic identity
problem back again (Fodor and Lepore, 1992, pp. 197-
8).

Putting the argument explicitly in terms of neural networks,
it goes like this: suppose you have two networks, possibly
with different numbers of nodes (i.e., different dimensionality
of the activation space) and differently-weighted connections
(i.e., different dimensions in the activation space). How then
can you tell when the networks are representing their inputs
the same way?

We propose the following answer: because state-space se-
mantics claims that the proximities of points in activation
space capture semantic content, points in two different se-
mantic spaces represent the same thing just in case they con-
form to the same set of distance relations. Thus, we needn’t

because we intend to show that state-space semantics is not perni-
ciously holistic. See (Fodor and Lepore, 1992, pp. 8-16) for the
details of their arguments.
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determinc whether the dimensions of the spaces are the same,
but only whether points in two spaces have the same distances
relative to each other. The question then becomes: how do we
determine whether two different activation spaces have the
same set of distance relations among their points, regardless
of the number of dimensions they may have or the interpreta-
tions of those dimensions?

Assuming that we have labeled points (that is, that we can
label each representation by the stimulus that induced it), one
approach is to use cluster analysis to visualize the relation-
ships between points. In the application of cluster analy-
sis to networks, patterns of activation at the hidden units are
measured for each input; the patterns are then progressively
matched with each other according to their proximity. The
result is a dendogram, or tree structure, which shows the
proximities of the input patterns as they are represented at
the hidden layer. In the first application of cluster analysis
to representation in artificial neural networks, Sejnowski and
Rosenberg showed that similarities among hidden-layer rep-
resentations in their NETTalk network matched the phono-
logical similarities that humans perceive in spoken phonemes.
For example, hard-‘c’ and ‘k’ sounds were grouped together,
and at the highest level, consonants were grouped together, as
were vowels. (Sejnowski and Rosenberg, 1987). Given two
networks, then, one could do cluster analyses of the same in-
puts to each and compare the resulting dendograms. This is
fine if all we want to do is “eyeball” the similarity, but it does
not yield a number that tells us how similar the two repre-
sentations are. We know of no accepted way of rigorously
assessing the similarity of different dendograms.

Hence, instead of using cluster analysis, we propose a dif-
ferent method of measuring representational similarity: cor-
relation between inter-point distances in the respective net-
works. We start by computing the Euclidean distance be-
tween pairs of points in each of the two activation spaces.
By comparing only distances between points, we achieve in-
variance to uniform global translation, rotation, and reflection
of representational space.

Next, we calculate correlation between the two sets of dis-
tances. Suppose the rows of a matrix X are the activation
patterns generated by various stimuli in Network X. X; desig-
nates the pattern of activation (row of the matrix) correspond-
ing to stimulus 1 as it is represented by Network X. Likewise,
suppose the representation of the same stimuli from a differ-
ent network is encoded in the matrix Y. Then for m stim-
uli, we calculate the distances between the hidden activation
vectors in the two networks, giving two length m(m — 1)/2
vectors of distances. We than compute similarity between the
two representations by calculating correlation between these
two vectors. Taking correlation also gives us one more invari-
ance: correlation is invariant to differences in scale between
the two spaces.

We believe that calculating correlation between distances
among points in the hidden-unit representations in two neural
networks gives us a number which tells us how similar the
“semantic structures’ are in the two networks. Correlating
distances between points answers Fodor and Lepore’s chal-
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lenge: we needn’t know the meanings of the dimensions in
the two networks and, indeed, the number of dimensions need
not even be the same so long as they preserve the distances
between points.

Experiment 1

As an example of how our technique for measuring similari-
ties in network representations can be used, we modeled color
calegorization in artificial ncural networks using a variety of
input encodings. The different encodings might be thought
of as ways in which different “species” encode the impact of
various wavelengths of light on their sensory systems. We
were interested in two questions. First, to what extent would
different “species” agree about their internal representations
of the concepts when they all carved up the world in the same
way (i.e., all agreed about the color labels)? Second, to what
extent would members of the same species agree, given that
they may have different numbers of neurons (while all had
sufficient numbers to do the task)?

Procedure

We trained a number of networks on a color categorization
task; inputs were based on spectrophotometer readings, and
outputs were localist representations of S color categories
(red, yellow, green, blue, and purple). For inputs, we used
a database of spectrophotometer readings from color samples
(anonymous, 1995). The original data were 61-element vec-
tors of integers between 0 and 4095, read at 5nm intervals of
the visual spectrum between 400nm and 700nm. We used the
red, yellow, green, blue, and purple patterns, scaled the in-
puts to 0-255 integers, and selected every 5th field from the
original data, leaving 12 input elements. We used a localist
encoding for the outputs (red=10000, yellow=01000,
and so on).

From this base data set, we created four different encodings
of the input patterns to be used in training the networks: The
real encoding was formed by scaling the 0-255 integer inputs
to decimal representations between 0 and 1. Thus, each pat-
tern had 12 input elements in the real encoding, each element
a rational number between 0 and 1. For example, the real
representation of the first pattern was <0.827451 0.835294
0.827451 0.815686 0.796078 0.827451 0.874510 0.874510
0.862745 0.847059 0.827451 0.815686>. The binary encod-
ing was formed by representing the 0-255 integer inputs as
8-bit binary numbers. Thus, each pattern had 96 (=12x8)
input elements in the binary encoding, each element valued
either 0 or 1. For example, the binary representation of the
first pattern was <1 101001111010101110

1001111010000110010111101001
11710111111101111111011100110
110001101001111010000>. The gaus-

sian encoding was formed by dividing the interval between
0 and 255 into quarters, and using five units to represent the
endpoints of the intervals. A particular value was coded as
a Gaussian “bump” on this interval, with a standard devia-
tion of 32 and mean at the point to be represented. The input
gaussians were thus centered at 0, 63.75, 127.5, 191.25 and
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Figure 1: Representative clusterings of hidden-unit activations from two of the five networks trained on the “real” encoding (31

of 627 patterns shown).

255. For example, the gaussian representation of the first pat-
tern was <0.000000 0.000004 0.003024 0.193481 0.976358
... 0,000000 0.000006 0.004143 0.228310 0.992218>. The
sequential encoding was formed by numbering the patterns
sequentially with 3-digit decimal numbers from 001 to 627.
Each 3-digit number was then represented by a single unit
with an activation between 0 and 1. For example, the sequen-
tial representation of the first pattern was <0.0 0.0 0.1>. Be-
cause the input patterns in the data set were ordered by color,
this representation makes more sense than it may appear at
first.

From each representation, we selected every sixth line for
the holdout set (104 patterns) and left the rest for the training
set (523 patterns). Because we were not exploring general-
ization in this experiment, we did not use a testing set.

Using backpropagation, we trained 3-layer networks, each
with 3 hidden units, on each input encoding for a maximum
of 10,000 cycles using a learning rate of 0.25. Training was
stopped before epoch 10,000 if the root mean-squared error
of the holdout patterns had not declined in as many epochs as
taken to reach the previous low. For example, if a minimum
root mean-squared error was reached after epoch 2,500 and
no subsequent epoch had a lower error, then training would be
stopped after epoch 5,000. For each encoding, the experiment
was repeated with 5 networks, each starting with a different
set of initial random weights.

Using the best learned weights (the ones between the be-
ginning and end of training with the best error on the holdout
set), we computed activations at the hidden nodes on each in-
put pattern, thereby obtaining each network’s representation
of the input patterns at its hidden layer. We then computed
the Euclidean distances, for each activation matrix, between
each pattern and each other pattern in that matrix. We then
computed correlation between each set of distances and ev-
ery other set of distances.

Results

In the input encodings, the clustering of the intensities of light
at various wavelengths do not match very well with our quali-
tative perceptions of color similarities. Hence, the cluster dia-
grams for the real, binary, and gaussian input patterns appear
disorganized, in the sense that colors that we would group to-
gether (e.g., greens) were interspersed with other colors (data
not shown). Thus, we expected the different input encodings
to not be very highly correlated. Contrary to our expectations,
the binary, real and gaussian input encodings were highly cor-
related with each other (see Figure 2, part a). The correlation
between the real and gaussian encodings was nearly 1, and
the binary encoding had a correlation of about 0.6 with both
the real and the gaussian encodings. The sequential encoding,
on the other hand, was almost completely uncorrelated with
the other encodings.

The measured difference between the sequential input en-
coding and the other input encodings may be due to the fact
that the original data were grouped by color. That is, the
first 115 patterns were reds, the next 120 patterns were yel-
lows, and so on. Because the patterns to which the sequen-
tial encoding was applied were ordered by their color cate-
gory, the sequential numbers with which they are encoded
contain some information about their category. Most colors
that should be categorized together are nearby in the input
pattern space, but there are two kinds of exceptions. The first
is that patterns differing in the ordering by as much as 100
can be as close together as patterns differing by only one in
the ordering. For example, pattern 345 (represented as <0.3,
0.4, 0.5>) is as close to pattern 245 (<0.2, 0.4, 0.5>) as 245
isto 244 (<0.2,0.4, 0.4>).

The second exception is caused by the fact that all neigh-
bors in the ordering are 0.1 apart in the encoding except points
with a 0 element. Each pattern with a O element in the se-
quential encoding comes right after one with a 0.9 element
(and hence the two are at least 0.9 units apart). For example,
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Figure 2: Hinton diagrams showing correlation among input patterns (Part (a), on the left), and among hidden unit activations
(Part (b), on the right). Part (a) shows correlation among the input patterns used in training the networks. Part (b) shows mean
correlation between hidden unit activations of 5 networks trained on each encoding and hidden unit activations of 5 networks
trained on each other encoding (e.g., binary vs. real), as well as mean correlation between hidden unit activations among the 5
networks trained on each encoding (e.g., binary vs. binary). The sides of the boxes are proportional to the values.

although patterns 458, 459, and 460 are right next to each
other in the data set, the sequential representation of pattern
459 (<0.4, 0.5, 0.9>) is much closer to that of pattern 458
(0.4, 0.5, 0.8>), than it is to that of pattern 460 (<0.4, 0.6,
0.0>).

Correlations between the hidden unit activations for each
of the five networks trained on the same representations were
all greater than 0.87. Different networks, starting from dif-
ferent random initial weights, found similar solutions to the
color categorization problem for each input encoding. The
similarities are reflected in their cluster diagrams, which show
colors grouped in human-like ways (see Figure 1). Even more
striking, the hidden unit representations of networks trained
on different input representations were also highly correlated
(see Figure 2 part b). Correlations between hidden unit acti-
vations of networks trained on the binary, gaussian, and real
input encodings are all greater than 0.8, while correlations of
these networks with networks trained on the sequential en-
coding are somewhat lower.

Experiment 2

We also conducted a second set of experiments, varying the
numbers of hidden units in the networks, and using only the
real encoding and a variation on the sequential encoding, in
order to determine whether networks with different numbers
of hidden units would develop similar representational struc-
tures.
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Procedure

We used the same color categorization task for the second ex-
periment as for the first, but the input representations were
slightly different. For the real encoding, we used all 61 el-
ements of the original dataset, rather than sampling at 12
evenly-spaced intervals. We did not use the gaussian or bi-
nary encodings, because they had proved in the first experi-
ment to be highly similar to the real encoding. We also ran-
domized the order of presentation of the patterns during each
training epoch, and used a separate testing set in addition to
the training and holdout sets of the first experiment.

The most important difference between the first and sec-
ond experiments, however, was that we varied the number of
hidden units in the second experiment. Whereas in the first
experiment, all of the networks had 3 hidden units, in the sec-
ond experiment, the number of hidden units was varied from
1 to 10. For each of the two input encodings (real and se-
quential), we trained 3-layer networks with 1 to 10 hidden
units. Each network was trained a minimum of 500 epochs,
and training was stopped after the 500th epoch whenever the
root mean-squared error on the holdout set had not decreased
in 50 epochs. We also replicated the training regime on 10 ad-
ditional networks with 5 hidden units each, in order to demon-
strate that the results with networks with different initial ran-
dom weights were robust and to compare the new procedures
with the previous ones.

Results

Networks with 1 and 2 hidden units failed to learn, and so
will not be considered further. Networks with 3 to 10 hidden
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of hidden units for networks trained on the “r
encoding (Part (b), on the right).

units trained on the real input encoding again learned hidden-
layer representations that were very similar to each other, re-
gardless of the number of hidden units in the network. Cor-
relations between hidden-unit activations and input patterns
were low (mean=0.232, sd=0.040), but average correlations
between hidden-unit activations over networks with different
numbers of hidden units were high (mean=0.934, sd=0.020).

The same was true of networks trained on the sequential
encoding (see Figure 3). Correlations between hidden-unit
activations and input patterns were low, although higher than
they were for the “real” encoding (mean=0.333, sd=0.061),
but average correlations between hidden-unit activations over
networks with different numbers of hidden units trained
on the “sequential” encoding were still high (mean=0.934,
sd=0.013). The correlation between the hidden unit activa-
tions of networks trained on the real encoding and networks
trained on the sequential encoding, however, was even lower
than in the first experiments reported here (about 0.3), most
likely due to the reduced amount of training in this experi-
ment.

For networks with 5 hidden units, 10 replications start-
ing from different initial random weights confirmed that net-
works with different weights trained on the same encod-
ing found very similar solutions to the problem. Average
correlation among the 10 different networks trained on the
real encoding was 0.929, while average correlation among
the 10 different networks trained on the sequential encod-
ing was also 0.944, demonstrating that networks with differ-
ent weights trained on the same encoding found very similar
solutions to the problem regardless of which encoding they
used. Average correlation between the hidden unit activations
of the 10 5-unit networks trained on the sequential encoding
and the sequential encoding itself was 0.325, whereas aver-
age correlation between the hidden unit activations of the 10
S-unit networks trained on the real encoding and the real en-
coding itself was 0.202, demonstrating that the hidden unit

" encoding (Part (a), on the left) and for networks trained on the “sequential”

representations, while not completely unrelated to the input
patterns, were not simply copies of the input patterns.

Discussion

It is well known that different networks trained on the same
problem may partition their activation spaces in similar ways.
We have presented a way to measure this. Our results indicate
that it is also possible for networks from different “species”
(i.e., trained from different input encodings) to partition their
activation spaces in similar ways. Even though we trained our
networks on different input representations, the high corre-
lations between their hidden-layer representations show that
they partition their activation spaces similarly. Evidently, it is
possible for the representational states of two individuals who
categorize their inputs the same way to be similar even though
they have different “sensory systems” (i.e., input encodings)
and different numbers of units. Finally, it is remarkable that
individuals from the same “species”, with different numbers
of hidden units, all achieve essentially identical representa-
tional structures when they agree on the category structure.
There is some hope for communication between us, even in
the world of state space semantics.

Conclusions

In response to Fodor and Lepore's challenge to state-space se-
mantics, we have argued that representational similarity can
be measured by correlation between inter-point distances in
any two activation state spaces. Moreover, we have given
a technique for measuring representational similarity. Our
measure is a robust criterion of content similarity, of just
the sort that Fodor and Lepore demanded in their critique
of Churchland. It can be used to measure similarity of in-
ternal representations regardless of how inputs are encoded,
and regardless of number of hidden units. Furthermore, we
have used our measure of state-space similarity to demon-
strate empirically that different individuals, even individuals
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with different “sensory organs” and different numbers of neu-
rons, may represent the world in similar ways.
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