
Lawrence Berkeley National Laboratory
LBL Publications

Title
Performance Modeling: The Convolution Approach

Permalink
https://escholarship.org/uc/item/0qs3s709

ISBN
9781439815694

Authors
Bailey, David H
Snavely, Allan
Carrington, Laura

Publication Date
2010-11-23

DOI
10.1201/b10509-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0qs3s709
https://escholarship.org
http://www.cdlib.org/

Chapter 9

The Roofline Model

Samuel W. Williams

Lawrence Berkeley National Laboratory

9.1 Introduction . 196
9.1.1 Abstract Architecture Model . 196
9.1.2 Communication, Computation, and Locality 197
9.1.3 Arithmetic Intensity . 197
9.1.4 Examples of Arithmetic Intensity . 198

9.2 The Roofline . 199
9.3 Bandwidth Ceilings . 201

9.3.1 NUMA . 201
9.3.2 Prefetching, DMA, and Little’s Law . 203
9.3.3 TLB Issues . 203
9.3.4 Strided Access Patterns . 203

9.4 In-Core Ceilings . 204
9.4.1 Instruction-Level Parallelism . 204
9.4.2 Functional Unit Heterogeneity . 205
9.4.3 Data-Level Parallelism . 206
9.4.4 Hardware Multithreading . 207
9.4.5 Multicore Parallelism . 208
9.4.6 Combining Ceilings . 208

9.5 Arithmetic Intensity Walls . 208
9.5.1 Compulsory Miss Tra�c . 210
9.5.2 Capacity Miss Tra�c . 210
9.5.3 Write Allocation Tra�c . 210
9.5.4 Conflict Miss Tra�c . 211
9.5.5 Minimum Memory Quanta . 211
9.5.6 Elimination of Superfluous Floating-Point Operations . 211

9.6 Alternate Roofline Models . 212
9.6.1 Hierarchically Architectural Model . 212
9.6.2 Hierarchically Roofline Models . 212

9.7 Summary . 213
9.8 Acknowledgments . 214
9.9 Glossary . 214

195

196 Performance Tuning of Scientific Applications

The Roofline model is a visually intuitive performance model constructed
using bound and bottleneck analysis [362, 367, 368]. It is designed to drive
programmers towards an intuitive understanding of performance on modern
computer architectures. As such, it not only provides programmers with re-
alistic performance expectations, but also enumerates the potential impedi-
ments to performance. Knowledge of these bottlenecks drives programmers
to implement particular classes of optimizations. This chapter will focus on
architecture-oriented roofline models as opposed to using performance coun-
ters to generate a roofline model.

This chapter is organized as follows. Section 9.1 defines the abstract ar-
chitecture model used by the roofline model. Section 9.2 introduces the basic
form of the roofline model, where Sections 9.3–9.6 iteratively refine the model
with tighter and tighter performance bounds.

9.1 Introduction

In this section we define the abstract architectural model used for the
Roofline model. Understanding of the model is critical in one’s ability to ap-
ply the Roofline model to widely varying computational kernels. We then in-
troduce the concept of arithmetic intensity to the reader and provide several
diverse examples that the reader may find useful in their attempt to estimate
arithmetic intensity for their kernels of interest. Finally, we define the requisite
key terms in this chapter’s glossary.

9.1.1 Abstract Architecture Model

The roofline model presumes a simple architectural model consisting of
black boxed computational elements (e.g., CPUs, Cores, or Functional Units)
and memory elements (e.g., DRAM, caches, local stores, or register files) in-
terconnected by a network. Whenever one or more processing elements may
access a memory element, that memory element is considered shared. In gen-
eral, there is no restriction on the number or balance of computational and
memory elements. As such, a large number of possible topologies exist, allow-
ing the model to be applied to a large number of current and future computer
architectures. At any given level of the hierarchy, processing elements may
only communicate either with memory elements at that level, or with mem-
ory elements at a coarser level. That is, processors, cores, or functional units
may only communicate with each other via a shared memory.

Consider Figure 9.1. We show two di↵erent dual-processor architectures.
Conceptually, any processor can reference any memory location. However,
Figure 9.1(a) partitions memory and creates additional arcs. This is done to
convey the fact that the bandwidth to a given processor may depend on which

The Roofline Model 197

CPU0 CPU1

memory0 memory1

CPU0 CPU1

memory0

(a) (b)

1 2 4 3
5 6

FIGURE 9.1: High-level architectural model showing two black-boxed pro-
cessors either connected to separate memories (a) or to a common shared
memoryi (b). The arrows denote the ISA’s ability to access information and
not necessarily hardware connectivity.

memory the address may lie in. As such, these figures are used to denote non-
uniform memory access (NUMA) architectures.

9.1.2 Communication, Computation, and Locality

With this model, a kernel can be distilled down to the movement of data
from one or more memories to a processor where it may be bu↵ered, dupli-
cated, and computed on. That modified data or any new data is then com-
municated back to those memories.

The movement of data from the memories to the processors, or communica-
tion, is bounded by the characteristics of the processor-memory interconnect.
Consider Figure 9.1. There is a maximum bandwidth on any link as well as
a maximum bandwidth limit on any subset of links i.e., the total bandwidth
from or to memory

0

may be individually limited.
Computation, for purposes of this chapter, consists of floating-point oper-

ations including multiply, add, compare, etc. Each processor has an associated
computation rate. Nominally, as processors are black boxed, one does not dis-
tinguish how performance is distributed among cores within a multicore chip.
However, when using a hierarchical model for multicore (discussed at the end
of this chapter), rather than only modeling memory-processor communica-
tion and processor computation, we will model memory-cache communication,
cache-core communication, and core computation.

Although there is some initial locality of data in memoryi, once moved to
processorj we may assume that caches seamlessly provide for locality within
the processor. That is, subsequent references to that data will not generate
capacity misses in 3C’s (compulsory, capacity, conflict) vernacular [165]. This
technique may be extended to the cache hierarchy.

198 Performance Tuning of Scientific Applications

(a) (b) (c)

temp=0.0;
for(i=0;i<N;i++){

 temp = A[i]*A[i];
}

magnitude = sqrt(temp);

C[i,j]=0.0;

for(i=0;i<N;i++){
 for(j=0;j<N;j++){

 for(k=0;k<N;k++){
 C[i,j] += A[i,k]*B[k,j];
}}}

for(i=0;i<N;i++){
 for(j=0;j<N;j++){

 C[i,j] = a*A[i,j] +
 b*(A[i,j-1] +

 A[i-1,j] +
 A[i+1,j] +
 A[i,j+1]);

}}

0.125 0.25 N / 16

FIGURE 9.2: Arithmetic Intensities for three common HPC kernels includ-
ing (a) dot products, (b) stencils, and (c) matrix multiplication.

9.1.3 Arithmetic Intensity

Arithmetic intensity is a kernel’s ratio of computation to tra�c and is
measured in flops:bytes. Remember tra�c is the volume of data to a par-
ticular memory. It is not the number of loads and stores. Processors whose
caches filter most memory requests will have very high arithmetic intensities.
A similar concept is machine balance [77] which represents the ratio of peak
floating-point performance to peak bandwidth. A simple comparison between
machine balance and arithmetic intensity may provide some insight as to po-
tential performance bottlenecks. That is, when arithmetic intensity exceeds
machine balance, it is likely the kernel will spend more time in computation
than communication. As such, it is likely compute bound. Unfortunately such
simple approximations gloss over many of the details of computer architecture
and result in performance far below performance expectations. Such situations
motivated the creation of the roofline model.

9.1.4 Examples of Arithmetic Intensity

Figure 9.2 presents pseudocode for three common kernels within scientific
computing: calculation of vector magnitude, a stencil sweep for a 2D PDE, and
dense matrix-matrix multiplication. Assume all arrays are double precision.

Arithmetic intensity is the ratio of total floating-point operations to total
DRAM bytes. Assuming N is su�ciently large that the array of Figure 9.2(a)
does not fit in cache and enough to amortize the poor performance of the
square root, then we observe that it performs N flops while transferring only
8 ·N bytes (N doubles). The second access to A[i] exploits the cache/register
file locality within the processor. The result is an arithmetic intensity of 0.125
flops per byte.

Figure 9.2(b) presents a much more interesting example. Assuming the pro-
cessor’s cache is substantially larger than 8 ·N , but substantially smaller than
16 · N2, we observe that the leading point in the stencil A[i,j+1] will even-
tually be reused by subsequent stencils as A[i+1,j], A[i,j], A[i-1,j], and
A[i,j-1]. Although references to A[i,j] only generate 8 · N2 bytes of com-
munication, accesses to C[i,j] generate 16 · N2 bytes because write-allocate

The Roofline Model 199

cache architectures will generate both a read for the initial fill on the write
miss in addition to the eventual write back. As the code performs 6 ·N2 flops,
the resultant arithmetic intensity is (6 · N2)/(24 · N2) = 0.25.

Finally, Figure 9.2(c) shows the pseudocode for a dense matrix-matrix
multiplication. Assuming the cache is substantially larger than 24 · N2, then
A[i,j], B[i,j], and C[i,j] can be kept in cache and only their initial and
write back references will generate DRAM memory tra�c. As such, we observe
the loop nest will perform 2 · N3 flops while only transferring 32 · N2 bytes.
The result is an arithmetic intensity of N/16.

9.2 The Roofline

Given the aforementioned abstract architectural model and a kernel’s es-
timated arithmetic intensity, we create a intuitive and utilitarian model that
allows programmers rather than computer architects to bound attainable per-
formance. We call this model the “Roofline Model.” The roofline model is
built using Bound and Bottleneck analysis [207]. As such we may consider
the two principal performance bounds (computation and communication) in
isolation and compare their corresponding times to determine the bottleneck
and attainable performance. Consider Figure 9.1(b). Consider a simple homo-
geneous kernel that must transfer B bytes of data from memory

0

and perform
F
2

floating-point operations on both CPU
0

and CPU
1

. Moreover, assume the
the memory can support PeakBandwidth bytes per second and combined, and
the processors can perform PeakPerformance floating-point operations per
second. Simple analysis suggests it will take B

PeakBandwidth

seconds to transfer
the data and F

PeakPerformance

seconds to compute on it. Assuming one may
perfectly overlap communication and computation it will take:

Total Time = max

⇢
F / PeakPerformance
B / PeakBandwidth

(9.1)

Reciprocating and multiplying by F flops, we observe performance is bound
to:

AttainablePerformance (Gflop/s) = min

⇢
PeakPerformance
PeakBandwidth⇥ArithmeticIntensity

(9.2)

Where Arithmetic Intensity is F/B.
Although a given architecture has a fixed peak bandwidth and peak perfor-

mance, arithmetic intensity will vary dramatically from one kernel to the next
and substantially as one optimizes a given kernel. As such, we may plot attain-
able performance as a function of arithmetic intensity. Given the tremendous
range in performance and arithmetic intensities, we will plot these figures on
a log-log scale.

200 Performance Tuning of Scientific Applications

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p
/s

Arithmetic Intensity

1

peak performance (73.6 Gflop/s)

Opteron 2356

(Barcelona)

Kernel #1

Kernel #2

Kernel #3
processor-bandwidth

roofline

(slope is bandwidth)

each kernel’s
range in

arithmetic
intensity

performance roofline
(Y-coordinate is

performance)

each kernel’s
performance

bound

1

2

3

4

FIGURE 9.3: Roofline Model for an Opteron SMP. Also, performance
bounds are calculated for three non-descript kernels.

Using the Stream benchmark [317], one may determine that the maximum
bandwidth one can attain using a 2.3 GHz dual-socket ⇥ quad-core Opteron
2356 Sun 2200 M2 is 16.6 GB/s. Similarly, using a processor optimization man-
ual it is clear that the maximum performance one can attain is 73.6 Gflop/s.
Of course, as shown in Equation 9.2, it is not possible to always attain both,
and in practice may not be possible to achieve either.

Figure 9.3 visualizes Equation 9.2 for this SMP via the black line. Observe
that as arithmetic intensity increases, so to does the performance bound. How-
ever, at the machine’s flop:byte ratio, the performance bound saturates at the
machine’s peak performance. Beyond this point, although performance is at
its maximum, used bandwidth decreases. Note, the slope of the roofline in
the bandwidth-limited regions is actually the machine’s Stream bandwidth.
However, on a log-log scale the line always appears at a 45-degree angle. On
this scale, doubling the bandwidth will shift the line up instead of changing
its perceived slope.

This Roofline model may be used to bound the Opteron’s attainable perfor-
mance for a variety of computational kernels. Consider three generic kernels,
labeled 1, 2, and 3 in Figure 9.3, with flop:DRAM byte arithmetic intensities
of about 1, 4, and 16 respectively. When mapped onto Figure 9.3, we observe
that the Roofline at Kernel #1’s arithmetic intensity is in the bandwidth-
limited region (i.e., performance is still increasing with arithmetic intensity).
Scanning upward from its X-coordinate along the Y-axis, we may derive a per-
formance bound based on the Roofline at said X-coordinate. Thus, it would be
unreasonable to expect Kernel #1 to ever attain better than 16 Gflop/s. With
an arithmetic intensity of 16, Kernel #3 is clearly ultimately compute-bound.
Kernel #2 is a more interesting case as its performance is heavily dependent

The Roofline Model 201

on exactly calculating arithmetic intensity as well as both the kernel’s and
machine’s ability to perfectly overlap communication (loads and stores from
DRAM) and computation. Failure on any of these three fronts will diminish
performance.

In terms of the Roofline model, performance is no longer a scalar, but a
coordinate in arithmetic intensity–Gflop/s space. As the roofline itself is only
a performance bound, it is common the actual performance will be below the
roofline (it can never be above). As programmers interested in architectural
analysis and program optimization, we are motivated to understand why per-
formance is below the roofline (instead of on it) and how we may optimize
a program to rectify this. The following sections refine the roofline model to
enhance its utility in this field.

9.3 Bandwidth Ceilings

Eliciting good performance from modern SMP memory subsystems can be
elusive. Architectures exploit a number of techniques to hide memory latency
(HW, SW prefetching, TLB misses) and increase memory bandwidth (multiple
controllers, burst accesses, NUMA). For each of these architectural paradigms,
there is a commensurate set of optimizations that must be implemented to
extract peak memory subsystem performance. This section enumerates these
potential performance impediments and visualizes them using the concept of
bandwidth performance ceilings. Essentially a ceiling is structure internal to
the roofline denoting a complete failure to exploit an architectural paradigm.
In essence, just as the roofline acted to constrain performance to be beneath
it, so too do ceilings constrain performance to be beneath them. Software
optimization removes these ceilings as impediments to performance.

9.3.1 NUMA

We begin by considering the NUMA issues in the Stream benchmark as it
will likely be illustrative of the solution to many common optimization mis-
takes made when programming multisocket SMPs. As written, there is a loop
designed to initialize the values of the arrays to be streamed. Subtly, this loop
is also used to distribute data among the processor sockets through the combi-
nation of a OpenMP pragma (#pragma omp parallel for) and the use of the
first touch policy [134]. Although the virtual addresses of the elements appear
contiguous, their physical addresses are mapped to the memory controllers
on di↵erent sockets. This optimized case is well visualized in Figure 9.4(a).
We observe the array (grid) has been partitioned with half placed in each of
the two memories. When the processors compute on this data they find that
the pieces of the array they’re tasked with using are in the memory to which

202 Performance Tuning of Scientific Applications

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p
/s

Arithmetic Intensity

1

peak GFlop/s

Opteron 2356

(Barcelona)

CPU0 CPU1

memory0 memory1

0
1

(b)

CPU0 CPU1

memory0 memory1

0 3

(a)

 #pragma omp parallel for
 for (j=0; j<N; j++){

 a[j] = 1.0;
 b[j] = 2.0;

 c[j] = 0.0;
 }

 for (j=0; j<N; j++){
 a[j] = 1.0;

 b[j] = 2.0;
 c[j] = 0.0;

 }

FIGURE 9.4: NUMA ceiling resulting from improper data layout. The codes
shown are initialization-only (a) with and (b) without proper exploitation
of a first-touch policy. Initialization is completely orthogonal to the possible
computational kernels.

they have the highest bandwidth. If, on the other hand, the pragma were
omitted, then the array would likely be placed in its entirety within memory

0

.
As such, not only does one forgo half the system’s peak bandwidth by not
using the other memory, but he also looses additional performance as link 1
likely has substantially lower bandwidth than 0 or 3, but must transfer just
as much data. We may plot the resultant bandwidth on the Roofline figure to
the right. We observe a 2.5⇥ degradation in performance. Not only will this
depress the performance of any memory-bound kernels, but it expands the
range of memory-bound arithmetic intensities to about 10 flops per DRAM
byte.

Such performance bugs can be extremely di�cult to find regardless of
whether one uses OpenMP, POSIX threads, or some other threading library.
Under very common conditions, it can also occur even when binding threads
to cores under pthreads because data is bound to a controller by the OS,
not by a malloc() call. For example, an initial malloc() call followed by an
initialization routine may peg certain virtual addresses to one controller or
the other. However, if that data is freed, it is returned to the heap, not the
OS. As such, a subsequent call to malloc() will use data already on the heap,
and already pinned to a controller other than the one that might be desired.
Unless cognizant of these pitfalls, one should strongly consider only threading
applications within a socket instead of across an entire SMP node.

The Roofline Model 203

9.3.2 Prefetching, DMA, and Little’s Law

Little’s Law [41] (see also Chapter 1) states that the concurrency (indepen-
dent memory operations) that must be injected into the memory subsystem
to attain peak performance is the product of memory latency and peak mem-
ory bandwidth. For processors like Opterons, this translates into more than
800 bytes of data (perhaps 13 cache lines). Hardware vendors have created a
number of techniques to generate this concurrency. Unfortunately, methods
like out-of-order execution operate on doubles, not on cache lines. As such,
it is di�cult to get 100 loads in flight. The more modern methods include
software prefetching, hardware prefetching, and DMA. Software prefetching
and DMA are similar in that they are both asynchronous software methods of
expressing more memory-level parallelism than one could normally achieve via
a scalar ISA. The principal di↵erence between the two is granularity. Software
prefetching only operates on cache lines, whereas DMA operates on arbitrary
numbers of cache lines. Hardware prefetchers attempt to infer a streaming
access pattern given a series of cache misses. As such they don’t require soft-
ware modifications, and express substantial memory-level parallelism, but are
restricted to particular memory access patterns.

It is conceivable that one could create a version of Stream that mimics
the memory access pattern observed in certain applications. For example,
a few pseudorandom access pattern streams may individually trip up any
hardware or software prefetcher, but collectively allow expression of memory-
level parallelism through DMA or software prefetch. As such, one could draw
a series of ceilings below the roofline that denote an every decreasing degree
of memory-level parallelism.

9.3.3 TLB Issues

Modern microprocessors use virtual memory and accelerate the translation
to physical addresses via small highly-associative translation lookaside bu↵ers
(TLBs). Unfortunately, these act like caches on the page table (caching page
table entries). If a kernel’s working set, as measured in page table entries,
exceeds the TLB capacity (or associativity), then one generates TLB capacity
(or conflict) misses. Such situations arise more often than one might think.
Simple cache blocking for matrix multiplication can result in enough disjoint
address streams, which although they may fit in cache, do not fit in the TLB.

One could implement a version of Stream that scales the number of streams
for operations like TRIAD. Doing so would often result in a about the same
bandwidth for low numbers of streams, but would suddenly dip for an addi-
tional array. This dip could be plotted on the roofline model as a bandwidth
ceiling, and labeled with the number of arrays required to trigger it.

204 Performance Tuning of Scientific Applications

9.3.4 Strided Access Patterns

A common solution to the above problems is to lay out the data as one
multicomponent array (i.e., an array of cartesian vectors instead of three ar-
rays one for each component). However, the computational kernels may not
use all of these components at a time. Nevertheless, the data must still be
transfered. Generally, small strides (less than the cache line size) should be
interpreted as a decrease in arithmetic intensity, where large strides can rep-
resent a lack of spatial locality and memory-level parallelism. One may plot a
ceiling for each stride with the roofline being stride-1 (unit-stride).

9.4 In-Core Ceilings

Given the complexity of modern core architectures, floating-point perfor-
mance is not simply a function of arithmetic intensity alone. Rather architec-
tures exploit a number of paradigms to improve peak performance including
pipelining, superscalar out-of-order execution, SIMD, hardware multithread-
ing, multicore, heterogeneity, etc. Unfortunately, a commensurate set of op-
timizations (either generated by the compiler or explicitly expressed by the
user) are required to fully exploit these paradigms. This section enumerates
these potential performance impediments and visualizes them using the con-
cept of in-core performance ceilings. Like bandwidth ceilings, these ceilings act
to constrain performance coordinates to lie beneath them. The following sec-
tion enumerates some of the common ceilings. Each is examined in isolation.
All code examples assume an x86 architecture.

9.4.1 Instruction-Level Parallelism

Every instruction on every architecture has an associated latency repre-
senting the time from when the instruction’s operands are available to the
time where the results are made available to other instructions (assuming no
other resource stalls). For floating-point computational instructions like mul-
tiply or add, these latencies are small (typically less than 8 cycles). Moreover,
every microprocessor has an associated dispatch rate (a bandwidth) that rep-
resents how many independent instructions can be executed per cycle. Just
as Little’s Law can be used to derive the concurrency demanded by the mem-
ory subsystem using the bandwidth–latency product, so too can it be used
to estimate the concurrency each core demands to keep its functional units
busy. We define this to be the instruction-level parallelism. When a thread of
execution falls short of expressing this degree of parallelism, functional units
will go idle, and performance will su↵er [73].

As an example, consider Figure 9.5. In this case we plot scalar floating-

The Roofline Model 205

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p
/s

Arithmetic Intensity

no ILP

1

peak GFlop/s

Opteron 2356

(Barcelona)

2-way ILP

3-way ILP

FMA, perfect load balance,
etc…

peak scalar GFlop/s

without ILP,
many more

kernels become
compute-bound

without ILP,
loose 75%

of potential
performance

(a) (b)

 for(i=…){
 sum+=a*b[i];

 }

 for(i=…){
 sum+=a*b[i];

 sum+=a*b[i+1];
 }

 for(i=…){
 sum+=a*b[i];

 sum+=a*b[i+1];
 sum+=a*b[i+2];

 sum+=a*b[i+3];
 }

 for(i=…){
 sum0+=a*b[i];

 sum1+=a*b[i+1];
 }

 for(i=…){
 sum0+=a*b[i];

 sum1+=a*b[i+1];
 sum2+=a*b[i+2];

 sum3+=a*b[i+3];
 }

FIGURE 9.5: Performance ceilings as a result of insu�cient instruction-
level parallelism. (a) Code snippet in which the loop is unrolled. Note (FP
add) instruction-level parallelism (ILP) remains constant. (b) Code snippet
in which partial sums are computed. ILP increases with unrolling.

point performance as a function of DRAM arithmetic intensity. However, on
the roofline figure we note the performance impact from a lack of instruction-
level parallelism through instruction-level parallelism (ILP) ceilings. Fig-
ure 9.5(a) presents a code snippet in which the loop is näıvely unrolled either
by the user or the compiler. Although this has the desired benefit of amortizing
an loop overhead, it does not increase the floating-point add instruction-level
parallelism — the adds to sum will be serialized. Even a superscalar processor
must serialize these operations. Conversely, Figure 9.5(b) shows an alternate
unrolling method in which partial sums are maintained within the loop and
reduced (not shown) upon loop completion. If one achieves su�cient cache
locality for b[i] then arithmetic intensity will be su�ciently great that Fig-
ure 9.5(b) should substantially outperform (a).

Subtly, without instruction-level parallelism, the arithmetic intensity at
which a processor becomes compute-bound is much lower. In a seemingly
paradoxical result, it is possible that many kernels may show the signs of
being compute-bound (parallel e�ciency), yet deliver substantially suboptimal
performance.

9.4.2 Functional Unit Heterogeneity

Processors like AMD’s Opteron’s and Intel’s Nehalem have floating-point
execution units optimized for certain instructions. Specifically, although they
both have two pipelines capable of simultaneously executing two floating-
point instructions, one pipeline may only perform floating-point additions,

206 Performance Tuning of Scientific Applications

while the other may only perform floating-point multiplies. This creates a
potential performance impediment. For codes that are dominated by one or
the other, attainable performance will be half that of a code that has a perfect
balance between multiplies and adds. For example, codes that solve PDEs on
structured grids often perform stencil operations which are dominated by adds
with very few multiplies, where codes that perform dense linear algebra often
see a near perfect balance between multiplies and adds. As such, we may
create a series of ceilings based on the ratio of adds to multiplies. As the ratio
gets further and further from 1, the resultant ceiling will approach one half of
peak.

Processors like Cell, GPUs, POWER, and Itanium exploit what is known
as fused-multiply add (FMA). These instructions are implemented on execu-
tion units where instead of performing multiplies and adds in parallel, they are
performed in sequence (multiply two numbers and add a third to the result).
Obviously the primary advantage of such an implementation is to execute the
same number of floating-point operations as a machine of twice the instruction
issue width. Nevertheless, such an architecture creates a similar performance
issue to the case of separate multipliers and adders in that unless the code is
entirely dominated by FMA’s, performance may drop by a factor of two.

9.4.3 Data-Level Parallelism

Modern microprocessor vendors have attempted to boost their peak per-
formance through the addition of Single Instruction Multiple Data (SIMD)
operations. In e↵ect, with a single instruction, a program may express two or
four-way data-level parallelism. For example, the x86 instruction addps per-
forms four single-precision floating-point add operations in parallel. Ideally the
compiler should recognize this form of parallelism and generate these instruc-
tions. However, due to the implementation’s rigid nature, compilers often fail
to generate these instructions. Moreover, even programmers may not be able
to exploit them due to rigid program and data structure specifications. Failure
to exploit these instructions can substantially depress kernel performance.

Consider Figure 9.6. The code is a simplified version of that in Fig-
ure 9.5(b). We observe there is substantial ILP, but only floating-point adds
are performed. As such, there is no data-level parallelism, and performance
is bounded to less than 18.4 Gflop/s. Most x86 compilers allow the user to
SIMDize their code via intrinsics — small functions mapped directly to one
or two instructions. We observe that the first step in this process is to replace
the conventional C assignments with the scalar form of these intrinsics. Of
course doing so will not improve our performance bound because it has not
increased the degree of data-level parallelism. However, when using the pd
form of the intrinsics we should unroll the loop 8 times so that we may simulta-
neously express both 2-way data level parallelism and 4-way instruction-level
parallelism. Doing so improves our performance bound to 36.8 Gflop/s. As

The Roofline Model 207

 for(i=…){
 sum01=_mm_add_pd(sum01,…b[i]…);

 sum23=_mm_add_pd(sum23,…b[i+2]…);
 sum45=_mm_add_pd(sum45,…b[i+4]…);

 sum67=_mm_add_pd(sum67,…b[i+6]…);
 }

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p
/s

Arithmetic Intensity

no SIMD

1

peak GFlop/s

Opteron 2356

(Barcelona)

50% SIMD
75% SIMD

full ILP, TLP, …

without SIMD,
codes become

compute-bound
earlier

without SIMD,
loose 50%

of potential
performance

peak FP Add GFlop/s

 for(i=…){
 sum0=_mm_add_sd(sum0,…b[i]…);

 sum1=_mm_add_sd(sum1,…b[i+1]…);
 sum2=_mm_add_sd(sum2,…b[i+2]…);

 sum3=_mm_add_sd(sum3,…b[i+3]…);
 }

 for(i=…){
 sum0+=b[i];

 sum1+=b[i+1];
 sum2+=b[i+2];

 sum3+=b[i+3];
 }

FIGURE 9.6: Example of Ceilings associated with data-level parallelism.

discussed in the previous subsection, we cannot achieve 73.6 due to the fact
that this code does not perform any floating-point multiplies.

9.4.4 Hardware Multithreading

Hardware multithreading [164] has emerged as an e↵ective solution to
the memory- and instruction-level parallelism problems with a single archi-
tectural paradigm. Threads whose current instruction’s operands are ready
are execute while the others wait in a queue. As all of this is performed
in hardware, there is no apparent context switching. There are no ILP ceil-
ings, as typically there is enough thread-level parallelism (TLP) to cover the
demanded instruction-level parallelism. Moreover, the exemplar of this archi-
tecture, Sun’s Niagara [273], doesn’t implement SIMD or heterogeneous func-
tional units. However, a di↵erent set of ceilings normally not seen on super-
scalar processors appear: the floating-point fraction of the dynamics instruc-
tion mix. All processors have a finite instruction fetch and decode bandwidth
(the number of instructions that can be fetched per cycle). On superscalar
processors, this bandwidth is far greater than the instruction bandwidth re-
quired under ideal conditions to saturate the floating-point units. However,
on processors like Niagara, as the floating-point fraction dips below 50%, the
non-floating-point instructions begin to sap instruction bandwidth away from
the floating-point pipeline. The result: performance drops. The only e↵ective
solution here is improving the quality of code generation.

More recently, superscalar manufactures have begun to introduce hard-
ware multithreading into their processor lines including Nehalem, Larrabee,
and POWER7. In such situations, SPMD programs may not su↵er from ILP

208 Performance Tuning of Scientific Applications

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p

/s

Arithmetic Intensity

FP add only

1

peak GFlop/s

Opteron 2356

(Barcelona)

no SIMD

no ILP

100% SIMDized

full ILP

balanced mul/add

load balanced multicore

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p

/s

Arithmetic Intensity

FP add only

1

peak GFlop/s

Opteron 2356

(Barcelona)

no SIMD

no ILP

100% SIMD

full ILP

balanced mul/add

load balanced multicore

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p

/s

Arithmetic Intensity

FP add only

1

peak GFlop/s

Opteron 2356

(Barcelona)

no SIMD

no ILP
100% SIMDized

full ILP

balanced mul/add

load balanced multicore

FIGURE 9.7: Equivalence of Roofline models.

ceilings but may invariably see substantial performance degradation due to
data-level parallelism (DLP) and heterogenous functional unit ceilings.

9.4.5 Multicore Parallelism

Multicore has introduced yet another form of parallelism within a socket.
When programs regiment cores (and threads) into bulk synchronous compu-
tations (compute/barrier), load imbalance can severely impair performance.
Such an imbalance can be plotted using the roofline model. To do this, one
may count the total number of floating-point operations performed across all
threads and the time between the start of the computation and when the last
thread enters the barrier. The ratio of these two numbers is the (load imbal-
anced) attained performance. Similarly, one can sum the times each thread
spends in computation and divide by the total number of threads. The ra-
tio of total flops to this number is the performance that could be attained if
properly load balanced. As such, one can visualize the resultant performance
loss as a load balance ceiling.

9.4.6 Combining Ceilings

All these ceilings are independent and thus may be combined as needed.
For example, a lack of instruction-level parallelism can be combined with a lack
of data-level parallelism to severely depress performance. As such, one may
draw multiple ceilings (representing the lack of di↵erent forms of parallelism)
on a single roofline figure as visualized in Figure 9.7.

However, the question of how ceilings should be ordered arises. Often,
one uses intuition to order the ceilings based on which are most likely to be
implicit in the algorithm or discovered by the compiler. Ceilings placed near
the roofline are those that are not present in the algorithm or unlikely to be
discovered by the compiler. As such, based on this intuition, one could adopt
any of the three equivalent roofline models in Figure 9.7.

The Roofline Model 209

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p
/s

Arithmetic Intensity

+
w

ri
te

 a
llo

c
a

ti
o

n
s

1

peak GFlop/s

Opteron 2356

(Barcelona)

+
c
a

p
a

c
it
y
 m

is
s
e

s

c
o

m
p

u
ls

o
ry

 m
is

s
e

s

+
c
o

n
fl
ic

t

 m

is
s
e

s

to eliminate,
pad arrays

to eliminate,
restructure loops

(cache block)

to eliminate, use
cache bypass

instructions
92% loss in

potential

performance

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p
/s

Arithmetic Intensity

+
w

ri
te

 a
llo

c
a

ti
o

n
s

1

peak GFlop/s

Opteron 2356

(Barcelona)

c
o

m
p

u
ls

o
ry

 m
is

s
e

s

to eliminate, use
cache bypass

instructions

30% loss in
performance

FIGURE 9.8: Performance interplay between Arithmetic Intensity and the
Roofline for two di↵erent problem sizes for the same nondescript kernel.

9.5 Arithmetic Intensity Walls

Thus far, we’ve assumed the total DRAM bytes within the arithmetic
intensity ratio is dominated by “compulsory” memory tra�c in 3C’s par-
lance [165]. Unfortunately, on real codes there are a number of other significant
terms in the arithmetic intensity denominator.

AI =
Total FP Operations

Compulsory + Allocation + Capacity + Conflict Memory Tra�c + ...
(9.3)

In much the same way one denotes ceilings to express a lack of instruction,
data, or memory parallelism, one can denote arithmetic intensity walls to
denote reduced arithmetic intensity as a result of di↵erent types superfluous
memory tra�c above and beyond the compulsory memory tra�c — essen-
tially, additional terms in the denominator. As such, Equation 9.3 shows that
write allocation tra�c, capacity cache misses, and conflict cache misses, among
others, contribute to reduced arithmetic intensity. These arithmetic intensity
walls act to constrain arithmetic intensity and, when bandwidth-limited, con-
strain performance and is visualized in Figure 9.8. As capacity and conflict
misses are heavily dependent on whether the specified problem size exceeds the
cache’s capacity and associativity, the walls are execution-dependent rather
than simply architecture-dependent. That is, a small, non-power-of-two prob-
lem may not see any performance degradation due to capacity or conflict miss
tra�c, but for the same code, a large, near power-of-two problem size may

210 Performance Tuning of Scientific Applications

result in substantial performance loss, as arithmetic intensity is constrained
to be less than 0.2.

The following subsections discuss each term in the denominator and pos-
sible solutions to their impact on performance.

9.5.1 Compulsory Miss Tra�c

It should be noted that compulsory tra�c is not necessarily the mini-
mum memory tra�c for an algorithm. Rather compulsory tra�c is only the
minimum memory tra�c required for a particular implementation. The most
obvious example of elimination of compulsory tra�c is changing data types.
e.g., double to single or int to short. For memory-bound kernels, this trans-
formation may improve performance by a factor of two, but should only be
performed if one can guarantee correctness always or through the creation of
special cases. More complex solutions involve in-place calculations or register
blocking sparse matrix codes [346].

9.5.2 Capacity Miss Tra�c

Both caches and local stores have a finite capacity. In the case of the
former, when a kernel’s working set exceeds the cache capacity, the cache
hardware will detect that data must be swapped out, and capacity misses
will occur. The result is an increase in DRAM memory tra�c, and a reduced
arithmetic intensity. When performance is limited by memory bandwidth, it
will diminish by a commensurate amount. In the case of local stores, a program
whose working size exceeds the local store size will not function correctly.

Interestingly, the most common solution to eliminating capacity misses on
cache-based architectures is the same as to obtaining correct behavior on local
store machines: cache blocking. In this case loops are restructured to reduce
the working set size and maximize arithmetic intensity.

9.5.3 Write Allocation Tra�c

Most caches today are write-allocate. That is, upon a write miss, the cache
will first evict the selected line, then load the target line from main memory.
The result is that writes generate twice the memory tra�c as reads: cache line
fill plus a write back vs. one fill. Unfortunately, this approach is often wasteful
on scientific codes where large blocks of arrays are immediately written with-
out being read. There is no benefit in having loaded the cache line when the
next memory operations will obliterate the existing data. As such, the write
fill was superfluous and should be denoted as a arithmetic intensity wall.

Modern architectures often provide a solution to this quandry either in the
form of SSE’s cache bypass instruction movntpd or PowerPC’s block init in-
struction dcbz. The use of the movntpd instruction allows programs to bypass
the cache in its entirety and write to the write combining bu↵ers. The advan-

The Roofline Model 211

tage: elimination of write allocation tra�c and cache pressure is reduced. The
dcbz instruction allocates a line in the cache and zeros its contents. The ad-
vantage is that write allocation tra�c has been eliminated, but cache pressure
has not been reduced.

9.5.4 Conflict Miss Tra�c

Similarly, unlike local stores, caches are not fully associative. That is, de-
pending on address, only certain locations in the cache maybe used to store
the requested cache line — a set. When one exhausts this associativity of the
set, one element from that set must be selected for eviction. The result: a
conflict miss and superfluous memory tra�c.

Conflict misses are particularly prevalent on power-of-two problem sizes
as this is a multiple of the number of sets in a cache, but can be notoriously
di�cult to track down due to the complexities of certain memory access pat-
terns. Nevertheless for many well structured codes, one may pad arrays or
data structures cogniziant of the memory access pattern to ensure that di↵er-
ent sets are accessed and conflict misses are avoided. Conceptually, 1D array
padding transforms an array from Gird[Z][Y][X]) to Gird[Z][Y][X+pad])
regardless of whether the array was statically or dynamically allocated.

9.5.5 Minimum Memory Quanta

Näıvely, one could simple count the number of doubles a program refer-
ences and estimate arithmetic intensity. However, one should be mindful that
both cache- and local store-based architectures operate on some minimum
memory quanta hereafter referred to as cache lines. Typically these lines are
either 64 or 128 bytes. All loads and stores after being filtered by the cache are
aggregated into these lines. When this data is not subsequently used in its en-
tirety, superfluous memory tra�c has been consumed without a performance
benefit. As such another term is added to the denominator and arithmetic
intensity is depressed.

9.5.6 Elimination of Superfluous Floating-Point Operations

Normally, when discussing arithmetic intensity walls, we think of adding
terms to the denominator of arithmetic intensity. However, one should con-
sider the possiblity that the specified number of floating-point operations may
not be a minimum, but just a compulsory number set forth by a particular
implementation. For instance, one might calculate the number of flops within
a loop and scale by the number of loop iterations to calculate a kernel’s flop
count. However, the possibility of common subexpression elimination (CSE)
exists when one or more loop iterations are inspected in conjunction. The re-
sult is that the flop count may be reduced. This has the seemingly paradoxical
results of decreased floating-point performance, but improved application per-

212 Performance Tuning of Scientific Applications

formance. The floating-point performance may decrease because arithmetic
intensity was reduced while bandwidth-limited. However, because the total
requisite work (as measured in floating-point operations) was reduced, the
time to solution may have also been reduced.

Although this problem may seem academic, it has real world implications
as a compiler may discover CSE optimizations the user didn’t. When coupled
with performance counter measured flop counts, the user may find himself in
a predicament rectifying his performance estimations and calculations and the
empirical performance observations.

9.6 Alternate Roofline Models

Thus far, we’ve only discussed a one-level processor-memory abstraction.
However, there are certain computational kernel–architecture combinations
for which increased optimization creates a new bandwidth bottleneck — cache
bandwidth. One may construct separate roofline models for each level of the
hierarchy and then determine the overall bottleneck. In this section we discuss
this approach and analyze example codes.

9.6.1 Hierarchically Architectural Model

One may refine the original processor–memory architectural model by hi-
erarchically refining the processors into cores and cache (which essentially
look like another level of processors and memories). Thus, if the CPUs of Fig-
ure 9.1 were in fact dual-core processors, one could construct several di↵erent
hierarchical models (Figure 9.9) depending on the cache/local store topology.
Figure 9.9(a) shows it is possible for core

0

to read from cache
3

(simple cache
coherency), but on the local store architecture, although any core can read
from any DRAM location, core

0

can only read LocalStore
0

.
Just as there were limits on both individual and aggregate processor-

memory bandwidths, so too are there limits on both individual and aggre-
gate core-cache bandwidths. As a result, what were NUMA ceilings (arising
when data crossed low bandwidth/high load links) when transferring data
from memory to processor, become NUCA (non-uniform cache access) ceilings
when data resident in one or more caches must cross low bandwidth/high load
links to particular cores

Ultimately, this approach may be used to refine cores down to the register
file–functional unit level. However, when constructing a model to analyze a
particular kernel, the user may have some intuition as to where the bottleneck
lies — i.e., L2 cache–core bandwidth with good locality in the L2. In such a
situations, there is no need to construct a model with coarser granularities
(L3, DRAM, etc...) or finer granularities (register files).

The Roofline Model 213

memory0 memory1

(a)

core0 core1

LS0 LS1

core2 core3

LS2 LS3

memory0 memory1

(b)

core0 core1

cache0 cache1

core2 core3

FIGURE 9.9: Refinement of the previous simple bandwidth-processor model
to incorporate (a) caches or (b) local stores. Remember, arrows denote the
ability to access information and not necessarily hardware connectivity.

9.6.2 Hierarchically Roofline Models

Given this memory hierarchy, we may model performance using two
roofline models. First, we model the performance involved in transferring
the data from DRAM to the caches or local stores. This of course means
we must calculate an arithmetic intensity based on how data will be dissemi-
nated among the caches and the total number of floating-point operations. Us-
ing this arithmetic intensity and the characteristics of the processor–DRAM
interconnect, we may bound attainable performance. Second, we calculate
core-cache arithmetic intensity involved in transferring data to/from caches
or local stores. We may also plot this using the roofline model. This bound
may be a tighter or looser bound depending on architecture and kernel.

Such hierarchical models are especially useful when arithmetic intensity
scales with cache capacity as it does for dense matrix-matrix multiplication.
For such cases we must select a block size that is su�ciently large that the
code will be limited by core performance rather than cache-core or DRAM-
processor bandwidth.

9.7 Summary

The roofline model is a readily accessible performance model intended
to provide performance intuition to computer scientists and computational
scientists alike. Although the roofline proper is a rather loose upper bound to
performance, it may be refined through the use of bandwidth ceilings, in-core

214 Performance Tuning of Scientific Applications

ceilings, arithmetic intensity walls, and hierarchical memory architectures to
provide much tighter performance bounds.

9.8 Acknowledgments

The author wishes to express his gratitude to Professor David A. Pat-
terson and Andrew Waterman for their help in creation of this model. This
work was supported by the ASCR O�ce in the DOE O�ce of Science un-
der contract number DE-AC02-05CH11231, Microsoft (Award #024263), In-
tel (Award #024894), and by matching funding through U.C. Discovery
(Award #DIG07-10227).

9.9 Glossary

3C’s: is a methodology of categorizing cache misses into one of three types:
compulsory, capacity, and conflict. Identification of miss type leads pro-
grammers to software solutions and architects to hardware solutions.

Arithmetic Intensity: is a measure of locality. It is calculated as the ratio
of floating-point operations to DRAM tra�c in bytes.

Bandwidth: is the average rate at which tra�c may be communicated. As
such it is measured as the ratio of total tra�c to total time and today is
measured in 109 bytes per second (GB/s).

Ceiling: a performance bound based on the lack of exploitation of an archi-
tectural paradigm.

Communication: is the movement of tra�c from a particular memory to a
particular computational element.

Computation: represents local FLOPs performed on the data transfered to
the computational units.

DLP: data-level parallelism represents the number of independent data items
for which the same operation can be concurrently applied. DLP can be
recast as ILP.

FLOP: a floating-point operation including adds, subtracts, and multiplies,

The Roofline Model 215

but often includes divides. It is generally not appropriate to include oper-
ations like square roots, logarithms, exponentials, or trigonometric func-
tions as these are typically decomposed into the base floating-point oper-
ations.

ILP: instruction-level parallelism represents the number of independent in-
structions than can be executed concurrently.

Kernel: a deterministic computational loop nest that performs floating-point
operations.

Performance: Conceptually similar to bandwidth, performance is a measure
of the average rate computation is performed. As such it is calculated as
the ratio of total computation to total time and today is measured in 109

floating-point operations per second (Gflop/s) on multicore SMPs.

Roofline: The ultimate performance bound based on peak bandwidth, peak
performance, and arithmetic intensity.

TLP: instruction-level parallelism represents the number of independent
threads (instruction streams) than can be executed concurrently.

Tra�c: or communication is the volume of data that must be transfered to or
from a computational element. It is measured in bytes. Often, we assume
each computational element has some cache or internal storage capacity
so that memory references are e�ciently filtered to compulsory tra�c.

