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Selling Demand Response Using Options

Deepan Muthirayand, Dileep Kalathilc, Sen Lib, Kameshwar Poollaa, Pravin Varaiyaa

Abstract—Wholesale electricity markets in many jurisdictions
use a two-settlement structure: a day-ahead market for bulk
power transactions and a real-time market for fine-grain supply-
demand balancing. This paper explores trading demand response
assets within this two-settlement market structure. We consider
two approaches for trading demand response assets: (a) an in-
termediate spot market with contingent pricing, and (b) an over-
the-counter options contract. In the first case, we characterize
the competitive equilibrium of the spot market, and show that it
is socially optimal. Economic orthodoxy advocates spot markets,
but these require expensive infrastructure and regulatory bless-
ing.In the second case, we characterize competitive equilibria and
compare its efficiency with the idealized spot market. Options
contract are private bilateral over-the-counter transactions and
do not require regulatory approval. We show that the optimal
social welfare is, in general, not supported. We then design
optimal option prices that minimize the social welfare gap. This
optimal design serves to approximate the ideal spot market for
demand response using options with modest loss of efficiency.
Our results are validated through numerical simulations.

I. INTRODUCTION

Wholesale electricity markets in many jurisdictions use a

two-settlement structure: a day-ahead market for bulk power

transactions and a real-time market for fine-grain supply-

demand balancing. Forecast errors in the day-ahead market

necessitate subsequent balancing in the real-time market. With

deeper penetrations of wind and solar generation, markets must

be able to contend with greater levels of uncertainty stemming

from renewable intermittency. Forecast errors increase, and

balancing supply and demand becomes more challenging. The

traditional approach of balancing using conventional fossil fuel

based reserves is untenable: it is expensive and defeats the

emissions benefits of renewables. Balancing the variability of

intermittent renewable generation through demand flexibility is

a far better alternative to reserve generation, as it produces no

emissions and consumes no resources. This is recognized and

encouraged by the Federal Energy Regulatory Commission

(FERC) through its Order 745, which mandates that demand

response be compensated on par with the conventional gen-

eration that supplies grid power [1]. Commercial buildings,

light industry, and households are flexible in their electricity

consumption. These agents can be induced to yield this

flexibility in exchange for monetary compensation. This paper
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explores trading demand response assets within a traditional

two-settlement market structure.

We consider the setting where a Load Serving Entity (LSE)

supplies electricity to a collection of consumers at the delivery

time T . An aggregator manages the aggregate load flexibility

of these consumers. The LSE interacts directly with the

aggregator and can request a certain aggregate load reduction

which will be reliably produced at the delivery time. The

LSE can purchase bulk power in the day-ahead market and

can also buy balancing power in the real-time market. It also

has access to zero marginal cost renewable generation. We

consider the situation where excess renewable generation is

spilled, and cannot be sold back into the real-time market.

Other generalizations of our results are possible, but we choose

to explore the simplest situation.

When should demand response assets be traded? Well in

advance of the delivery time, the LSE has poor forecasts of

its renewable generation and of clearing prices in the real-

time market. So the LSE prefers to delay its demand response

request close to the delivery time. Conversely, the aggregator

prefers to receive any load curtailment requests well before the

delivery time. This affords its client consumers sufficient lead

time to organize their electricity use and cede their demand

reduction. These considerations argue that demand response

assets should be traded in an intermediate market as a recourse

between the day-ahead and real-time markets.

What is an appropriate mechanism for the intermediate

time trading of demand response assets? Economic orthodoxy

argues in favor of an idealized spot market with contingent

prices from the perspective of efficiency. In this intermediate

spot market, trading takes place after counter-parties digest all

information that is revealed. Therefore, the clearing prices are

contingent on the realized information. While the spot market

is efficient, it has two main drawbacks: (a) pricing is typically

very volatile and does not offer guaranteed income to demand

response assets to compensate for yielding their load flexibility

and for the associated capital costs, and (b) an intermediate

spot market requires organized infrastructure and regulatory

approval which can be very expensive.

To overcome these difficulties, we propose to trade demand

response assets using call options. In our scheme, the LSE

buys a number of call options contracts from the aggregator

at time to, coincident with the gate closure of the day-ahead

market. It pays an option price πo per contract. Each call

option contract affords the LSE the right, but not the obliga-

tion, to receive one unit of load reduction from the aggregator.

These options expire at the intermediate time t1 by which

time they must be exercised or forfeited. To exercise these

options the LSE must pay the aggregator the strike price πsp

per unit of load reduction. The strike price is not contingent,

http://arxiv.org/abs/1906.01069v5
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it is fixed and known at time to. Payment from the sale of

option contracts provides a guaranteed income to flexible loads

for their demand response capability. Subsequent payment

from the exercise of option contracts compensates loads for

the provision of demand response. Since option contracts can

be viewed as private over-the-counter transactions between

the LSE and the aggregator, our scheme does not require

regulatory blessing or organized market infrastructure.

A. Our Contributions

Our principal contributions are:

• First, we consider optimal energy scheduling from the

perspective of a social planner. We formulate this as a

three stage optimization problem and characterize the op-

timal decisions at each stage: the optimal energy purchase

in the day-ahead market, the optimal demand response (or

load curtailment) decision at the intermediate stage, and

the balancing energy purchase in the real-time market.

This serves as a benchmark for evaluating other market

designs.

• Second, we consider an intermediate spot market with

contingent pricing. We study the interactions of the LSE

and the aggregator in a spot-market. We show that there

exists a competitive equilibrium, and the equilibrium is

socially optimal, i.e., it realizes the same system cost as

the benchmark.

• Third, we study the options market for the LSE and

the aggregator. We show that under some conditions,

a competitive equilibrium always exists, and it is the

optimal solution to a convex optimization problem. We

compare the efficiency of the equilibrium for the options

market and the spot market, and show that the options

market is not necessarily socially optimal. We then design

optimal option and prices which minimize the welfare gap

at the competitive equilibrium.

B. Related Work

There is extensive literature on demand response and work

related to managing the uncertainty with renewable integration

[2]–[17]. These works can be broadly classified as price-based

or contract-based.

Price-based Demand Response: This is a type of demand

response where the consumers alter their energy consumption

based on time varying prices determined apriori by the LSE.

The objective here is to improve overall system benefits by

influencing the consumers to shift their demand. The works

in [2]–[4] propose different approaches to determine the time

varying prices such that the overall system benefits, measured

in terms of efficiency and load variability, are improved. The

authors in [7], [8] study a game theoretic formulation and

propose a pricing strategy that improves system benefits in

Nash equilibrium. Closely related works such as [6] propose

a time varying price policy to utilize flexible storage of EVs

in order to manage load variability. Other works such as

[5] propose a demand response management strategy using

a stochastic optimization procedure that accounts for financial

risks associated with time varying prices.

Distributed Price-based Demand Response: Authors in

[12], [13] and [14] propose iterative distributed load control

schemes with the objective of meeting system requirements

and minimizing consumer discomfort. They primarily address

the coordination of multiple demand response users by iter-

atively discovering the most appropriate electricity price and

its variation with time.

The setting we consider is different from the above works,

which are primarily concerned with price-responsive demand

response. We propose a market mechanism for direct calling

of a certail level of demand response instead of using price

to influence demand. Here, a LSE can buy DR contracts

from aggregators of DR in the day-ahead market and can

determine the amount of DR to call in the real-time market at

an intermediate stage when more information is available on

renewable generation at real-time.

Multi-stage Stochastic Decision: Varaiya et al. [18] propose

a risk-limiting dispatch approach for integrating renewable

energy in the grid. They formulate a multi-stage stochastic

control problem where at each stage the utility makes purchase

decisions based on the available information. Rajagopal et

al. [19] extend this approach and characterize optimal power

procurement policies as threshold based decisions. Our work

parallels the approach of Varaiya et al. [18]. In particular, we

extend their approach to a contract setting as proposed in this

paper, where the decision of two entities are coordinated in

a multi-stage decision problem through an options contract

mechanism.

Contract-based Demand Response: The works in [10], [11],

[20] address the problem of demand response aggregation

from a mechanism design perspective. The objective of the

mechanism design is to gather demand response contracts

at minimal cost and at preferrably maximal privacy so that

the aggregator or the LSE can meet the DR requirements

of the system. Alternatively, demand response contracts that

treat demand response as a differentiated good, based on their

power level and duration, have also been proposed [21], [22].

Our work is different from these set of works in the sense that

we provide a multi-settlement market framework for trading

the aggregated demand response in the electricity markets.

Options: Authors in [23]–[27] discuss the pricing of elec-

tricity options for hedging price risks in deregulated electricity

markets. Authors in [28] provide a forward electricity con-

tract with a call option to hedge against price risks while

exercising load flexibility. Authors in [29] provide a similar

forward contract bundled with a option to hedge against price

for interruptible services. In [30] a forward contract with

a bilateral financial option for buyers and sellers to take

advantage of their flexibility and reduse their price risks is

discussed. In [31], a options based hedging mechanism for

a LSE is discussed and in [32] an options contract for a

producer is discussed. There are works such as [33] that

discuss long term options contract as a mechanism for ensuring

generation adequacy. Other works such as [34]–[36] provide

option models for assessment of the value of generation

and demand response investment decisions. Authors in [37]

provide a review of application of real option models for

valuing electricity generation projects and renewable energy
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Flexible
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DAM & RTM
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(time t)

buy DAM power q at πda

buy x options at πo

based on wind forecast f0

t0

exercise
y options at πsp

based on wind forecast f1

t1

renewables w revealed
buy RTM power qrt at πrt

to balance power at delivery

T

• • •

Fig. 1: Players, interactions, and decision time-line.

projects. In this work we propose options market for trading

aggregated DR in an intermediate market that allows the LSE

to call for load curtailment based on an improved forecast of

the wind power that is available at this intermediate time. The

options market is proposed as an alternative to the intermediate

spot market that can be cumbersome to organize and volatile

in terms of the revenue it generates for the service providers.
The paper is organized as follows. We introduce the basic

notions and notation in Section II. In Section III, we consider

the problem of energy scheduling with demand response from

the perspective of a system planner. In Section IV we discuss

the implementation of intermediate spot market for scheduling

demand response. We present the options market mechanism

in Section V. Finally, we conclude the paper with a brief

description of future research directions in Section VII.

II. PRELIMINARIES

The setting we consider is shown in Figure 1. A load serving

entity (LSE) supplies l units of electricity to a collection of

consumers for delivery at time T . The demand l is considered

inelastic and known at time to. Indeed, day-ahead load forecast

errors are within 1%−2% [38]. The LSE buys q units of energy

in the day-ahead market at price πda. At the intermediate

time t1, he extracts y units of demand response, which incurs

a disutility of φ(y). The LSE has access to zero marginal

cost random renewable generation w which is realized at the

delivery time T . To meet its demand obligations, the LSE buys

the remaining energy required qrt in the real-time market at

price πrt. The total energy purchase must satisfy:

l ≤ q + qrt + w + y. (1)

Note that we consider the situation where excess renewable

generation is spilled, and cannot be sold back into the real-

time market. This is necessary to ensure that the LSE does

not sell all of the renewable generation back in the real-

time market and can be imposed as a regulation. The demand

response purchase made at the intermediate time t1 is based

on a forecast f1 of w and forecast of πrt.

A. Model Uncertainties

Let f0 denote the information available at to. Let p(w|S) be

the conditional probability of the wind given the intermediate

forecast state S at time t1. The forecast state S can be regarded

as a sufficient statistic which parameterizes the information on

wind at time t1. We parameterize S ∈ [0, 1]. We call this an

information state. Define

ps(w) = p(w|S = s), Ps(z) =

∫ z

w=0

ps(w)dw,

where Ps(z) is the probability that the wind at time T is less

than z given the information state s. Let α(s) be the prior

probability density function of the information state, i.e.,

α(s) = P (S = s|f0)

We assume that real-time price πrt is a random variable

and denote the expected real-time price conditioned on the

information state by,

πrt
s = E[πrt|S = s]

The day-ahead price πda is known at time t0. We use ES [·] and

Ew [·] to denote the expectation with respect to the information

state and the randomness in wind, respectively. Let E [·] denote

the joint expectation. We make the following assumptions.

Assumption 1. (i) P(w ≥ z|S = s) < P(w ≥ z|S = s′),
∀z, if s′ > s, (ii) πrt

s′ < πrt
s , if s′ > s, (iii) πrt and w are

conditionally independent given the information state s.

Assumption (i) imposes a stochastic ordering on wind

conditioned on the information state s ∈ [0, 1]. The intuitive

interpretation is that larger values of s indicate (stochasti-

cally) more wind. This assumption guarantees that Ps′(z) <
Ps(z), ∀z, if s′ > s so that the cumulative distribution Ps(·)
and Ps′(·) do not intersect. Assumption (ii) similarly imposes

an ordering on the expected value of the real-time price

conditioned on the information state. The ordering is such that

higher values of s correspond to a lower expected real-time

price (because more wind power reduces demand in the real-

time market). Assumption (iii) imposes that the information

state s contains all the causal factors that determine the real-

time price and wind power w. This is a reasonable assumption

because the information state s represents the underlying state

of nature.

B. Decision Making of Players

The players of the problem include an LSE, an aggregator,

and a social planner. We model them as follows.
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Load Serving Entity (LSE): The LSE is responsible for

satisfying the energy balance specified by equation (1). At time

t0, it buys q units of energy at a price πda from the day-ahead

market. At time t1, it receives a load reduction of ys units

from the aggregator when the information state s is revealed,

and makes a payment Rs(ys). At time T , the renewable w is

revealed, and the LSE purchases the remaining energy from

the real-time market, i.e., qrt = (l−q−ys−w)+. The ex-post

cost for the LSE given the information state s is,

JLSE
s = πdaq +Rs(ys) + πrt(l − q − ys − w)+ (2)

Aggregator: The aggregator suffers a disutility φ(ys) for

a load reduction of ys units, and receives a compensation

payment Rs(ys) from the LSE. The ex-post cost for the

aggregator, given the information state s, is as follows,

Jagg
s = φ(ys)−Rs(ys) (3)

We assume that the disutility function satisfies the assumption

given below.

Assumption 2. φ(ys) is twice differentiable, and is strongly

convex in ys, i.e., φ′′(ys) > 0.

Social Planner or Entity (e): We consider a hypothetical

agent, the social planner, which combines the roles of the

LSE and the aggregator. We denote decision variables and

cost functions of the social planner with the superscript e for

entity. This social planner buys q units of energy from the

day-ahead market, receives a load curtailment of ys units at

an intermediate time t1, acquires zero marginal-cost realized

wind power w at time T , and purchases the remaining energy

(l− q− ys−w)+ from the real-time market for load balance.

Given s, the ex-post cost for the social planner (also called

the system cost) is:

Je
s = πdaq + φ(ys) + πrt(l − q − ys − w)+ (4)

Payment for demand response is an internal exchange between

the LSE and aggregator, and does not appear in the social

planner ledger. In the sequel, we first discuss the optimal

scheduling problem for the social planner, and then we study

the interaction between the LSE and the aggregator in the

intermediate market and options market. We characterize the

competitive equilibrium in both markets, and compare the

system costs.

III. OPTIMAL SCHEDULING FOR THE SOCIAL PLANNER

This section studies the optimal scheduling of energy from

the perspective of the social planner. We separately consider

the scheduling problems with and without demand response.

We use these solutions as benchmarks to compare the various

market mechanisms we propose in subsequent sections.

A. Optimal Scheduling without Demand Response

In the absence of demand response, the social planner is

confined to purchase energy from the day-ahead and real-

time markets. Let Je
ndr(q) be the expected cost for the social

planner in the absence of demand response. This is a function

of the day-ahead purchase q and is

Je
ndr(q) = πdaq + E[πrt(l − q − w)+] (5)

This implicitly accounts for the balance inequality (1) neces-

sary to service the load l. The optimal decision of the social

planner is

qendr = argmin
q≥0

Je
ndr(q) (6)

We have the following:

Proposition 1. Je
ndr(·) is convex. The minimizer qendr solves

πda − Es[π
rt
s Ps(l − qendr)] = 0 (7)

Assumption 3. To avoid trivial results, we assume that the

day-ahead market price is discounted from the expected real-

time market price, i.e., πda < Es[π
rt
s Ps(l)]. This will ensure

that qendr > 0.

B. Optimal Scheduling with Demand Response

With demand response, the net expected cost for the social

planner as a function of the first-stage purchase is given by,

Je(q) = πdaq + Es

[

min
ys≥0

Je
s (ys; q)

]

(8)

where Je
s (ys; q) is the expected second-stage cost conditioned

on s and q and is given by,

Je
s (ys; q) = φ(ys) + Ew

[

πrt
s (l − q − ys − w)+|s

]

(9)

The optimal first-stage and second-stage decisions, qe and yes
respectively, are

{

qe = argminq≥0 J
e(q),

yes = argmin0≤ys≤l J
e
s (ys; q

e)
(10)

The optimal system cost is then J∗e = Je(qe). Using the fact

that both (8) and (9) are convex, we can solve for qe and yes
using the conditions given in the following proposition.

Proposition 2. Je(·) and Je
s (·) are convex. For any given first

stage decision q, the second-stage decision yes is given by,
{

φ′(yes) = πrt
s Ps(l − q − yes), if φ′(yes) < πrt

s Ps(l − q)

yes = 0, if φ′(yes) ≥ πrt
s Ps(l − q)

(11)

The first-stage decision qe is given by the solution of,

πda − Es[π
rt
s Ps(l − qe − yes)] = 0 (12)

The proof is offered in Appendix B.

C. Socially Optimal Costs

The optimal costs for the social planner with and without

demand response are

J∗
dr = Je(qe) and J∗

ndr = Je
ndr(q

e
ndr)

respectively. Clearly, J∗
dr ≤ J∗

ndr. These social cost values

serve as benchmarks for our market mechanism designs. In

Section IV, we show that a spot market with contingent prices
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realizes the socially optimal cost J∗
dr. In Section V, we show

that trading demand response in an options market will, in

general, result in a loss of social welfare. We further select

options prices so that this welfare gap is modest. As a result,

the over-the-counter options market can well approximate the

idealized spot market.

IV. SPOT MARKETS WITH CONTINGENT PRICES

In Section III, we considered the optimal scheduling of

energy from the perspective of a hypothetical social planner.

We now show that the optimal scheduling decisions of the

social planner can be realized through a spot market with

contingent prices. In this market, the LSE is a buyer, and the

aggregator is the seller.

At time t0, the LSE buys q units of energy from the day-

ahead market at a price πda. At time t1, the information state s
is revealed. Depending on this revelation, the LSE purchases

ys units of energy curtailment from the aggregator, paying

a price πin
s . This is a contingent price as it depends on the

realized information state s. At time T , the LSE receives wind

energy w and purchases the required balancing energy (l−q−
ys−w)+ from the real-time market at a price πrt. The expected

cost for the LSE as a function of the first-stage purchase q is

given by,

JLSE(q) = πdaq + Es[min
ys≥0

JLSE
s (ys; q)] (13)

where JLSE
s (ys; q) is the second stage cost and is given by,

JLSE
s (ys; q) = πin

s ys + Ew[π
rt
s (l − q − ys − w)+] (14)

The optimal first and second-stage purchase decisions of the

LSE are qLSE and yLSE
s respectively. These are given by

{

qLSE = argminq≥0 J
LSE(q)

yLSE
s = min0≤ys≤l J

LSE
s (ys; q

LSE)

The expected cost for the aggregator under the information

state s is

Jagg
s (ys) = φ(ys)− πin

s ys. (15)

The optimal selling decision of the aggregator is

yaggs = min
0≤ys≤l

Jagg
s (ys)

Note that the optimal buying/selling decisions of agents

(LSE/aggregator) depend on the contingent prices πin
s . The

market is said to be in equilibrium if the prices are such that

the optimal buying and selling decisions of the agents are

consistent under all realizations of s. We make this notion

more precise below.

Definition 1 (Competitive Equilibrium with Contingent

Prices). The contingent prices {π∗in
s }, optimal buying deci-

sions of the LSE q∗LSE, {y∗LSE
s }, optimal selling decisions of

the aggregator {y∗aggs } constitute a competitive equilibrium,

if the following holds for all s ∈ S:






























JLSE(q∗LSE) = min
q≥0

JLSE(q) (16a)

JLSE
s (y∗LSE

s ) = min
0≤ys≤l

JLSE
s (ys; q

∗LSE) (16b)

Jagg
s (y∗aggs ) = min

0≤ys≤l
Jagg
s (ys) (16c)

y∗LSE
s = y∗aggs (16d)

Here (16a) and (16b) require (q∗LSE , y∗LSE
s ) to be the

optimal decision of the buyer, (16c) requires y∗aggs to be the

optimal decision of the seller, and (16d) ensures that the traded

demand response quantities are in balance. We require this

balance at all realizations of s.

Let J∗LSE be the expected cost for the LSE, and let J∗agg

be the expected cost for the aggregator at any competitive

equilibrium. The system cost of the market at any competitive

equilibrium is

J∗cp = J∗LSE + J∗agg. (17)

Define the minimum system cost for the social planner as

J∗e = Je(qe). This is a lower bound of the system cost for

any market. Therefore, we can use J∗e as a benchmark to

evaluate the efficiency of the options market. The market is

called efficient (or socially optimal) if the system cost for

the market attains the lower bound J∗e at the competitive

equilibrium. We make this precise in the following definition.

Definition 2 (Socially Optimal Equilibrium with Contingent

Prices). An equilibrium with contingent prices is said to be

socially optimal, if J∗cp = J∗e.

We now offer the main result of this section.

Theorem 1. (a) There exists at least one competitive equilib-

rium under contingent pricing. (b) All competitive equilibria

are socially optimal. Equivalently, define y∗s = y∗LSE
s = y∗aggs

at any competitive equilibrium, then






Je(q∗LSE) = min
q≥0

Je(q), (18a)

Je
s (y

∗
s ) = min

0≤ys≤l
Je
s (ys; q

∗LSE). (18b)

The proof is deferred to Appendix C. Condition (18) re-

quires that competitive equilibrium is the optimal solution to

the social planner’s problem. Therefore, it can be computed

by solving (11) and (12). This result implies that the optimal

scheduling of the social planner can be realized though an

intermediate spot market with contingent prices.

V. OPTIONS MARKETS AND COMPETITIVE EQUILIBRIUM

In the previous section, we showed that the intermediate

spot market is efficient. However, implementing intermediate

spot markets requires organized infrastructure and regulatory

approval which can be prohibitive. We now present an interme-

diate market for demand response using call options. These are

private over-the-counter transactions which do not need utility

blessing or organized infrastructure.
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A. Options Market

At time t0, the LSE purchases energy q in the day-ahead

market. Concurrently, he buys x units of options from the

aggregator at the option price πo. By purchasing these options,

the LSE acquires the right, without the obligation, to receive y
units of load reduction from the aggregator where 0 ≤ y ≤ x.

At time t1, the LSE can exercise these options by paying a

strike price πsp per contract. Clearly, the number of exercised

options ys depends on the information state s revealed at time

t1. The strike price πsp is ex ante, and does not depend on

the information state. At time T , the aggregator delivers the

contractually obligated load reduction ys. The LSE observes

the wind energy w and purchases the remaining balancing

energy (l − q − ys − w)+ in the real time market.

Since we are considering a competitive market, we assume

the agents are rational and price takers. They make their

buying/selling decisions based on the market prices πo and

πsp. The expected cost for the LSE is a function of the first

stage decisions q and x:

J̃LSE(q, x) = πox+ πdaq + Es[ min
0≤ys≤x

J̃LSE
s (ys)], (19)

Here J̃LSE
s (·) is the second stage cost for the LSE given by

J̃LSE
s (ys) = πspys + Ew[π

rt
s (l − q − ys − w)+]. (20)

Denote the optimal first and second-stage decisions of the LSE

by q̃LSE , x̃LSE and ỹLSE
s . These decisions solve

{

(q̃LSE, x̃LSE) = argmin(q,x) J̃
LSE(q, x),

ỹLSE
s = argminys≤x J̃

LSE
s (ys)

In the options market, the expected cost for the aggregator

is

J̃agg(x) = Es[φ(ys)− πspys]− πox, (21)

The decision variable of the aggregator is the quantity of

options x offered for sale. The optimal selling decision is:

x̃agg = argmin
x≥0

J̃agg(x) (22)

We now define an equilibrium notion for our options market.

Definition 3 (Competitive Equilibrium for Options Market).

The options price π∗o, the strike price π∗sp, the optimal day-

ahead purchase q̃∗, the optimal buying decision of the LSE

x̃∗LSE and the optimal selling decision of the aggregator

x̃∗agg constitute a competitive equilibrium if


















J̃LSE(q̃∗, x̃∗LSE) = min(q,x) J̃
LSE(q, x)

J̃LSE
s (ỹ∗LSE

s ) = min0≤ys≤x̃∗LSE J̃LSE
s (ys)

J̃agg(x̃∗agg) = min0≤x≤l J̃
agg(x)

x̃∗LSE = x̃∗agg

At the competitive equilibrium, the volume of options that

the LSE is willing to buy balances the volume of options that

the aggregator is willing to sell. Therefore, we have x̃LSE =
x̃agg . We now offer the main results of this section.

Theorem 2. There exists a competitive equilibrium for options

market. Define the following at a competitive equilibrium,

q̃∗ = q̃LSE , x̃∗ = x̃∗LSE = x̃∗agg and ỹ∗s = ỹ∗LSE
s . Then

the competitive equilibrium satisfies,

πda − Es[π
rt
s Ps(l − q̃∗ − ỹ∗s)] = 0

π∗o + π∗LSE
Es[I{ỹ

∗
s = x̃∗}]

− Es[π
rt
s Ps(l − q̃∗ − ỹ∗s)I{ỹ

∗
s = x̃∗}] = 0

π∗o + π∗LSE
Es[I{ỹ

∗
s = x∗}]− φ′(x∗)Es[I{ỹ

∗
s = x̃∗}] = 0,

where ỹ∗s satisfies,

ỹ∗s =







0, if Ps(l − q̃∗) < π∗sp/π̄rt
s

x̃∗, if Ps(l − q̃∗ − x̃∗) > π∗sp/π̄rt
s

l − q̃∗ − P−1
s (π∗sp/π̄rt

s ), otherwise

The proof of this theorem is given in Appendix D. We

comment that the competitive equilibrium consists of four

variables (π∗o, π∗sp, q̃∗, x̃∗) determined by three equations.

Therefore, there is one degree of freedom which induces mul-

tiple competitive equilibria. We will illustrate these equilibria

prices through a numerical simulation in Section VI.

B. Redesign of Options Market

The options market proposed in the previous section is

asymmetric with respect to the decision of the buyer and the

seller. That is the decision of the LSE is q and x, while

the decision of the aggregator is only x. This asymmetry

can provide market advantage to the buyer. To address this

concern, we propose a redesign of the options market where

the decision of the buyer and the seller is symmetric. We

show the existence of a competitive equilibrium, and study

its various properties.

B.1 Symmetric Decision Making

Consider the following modification to the options market:

before time t0, the aggregator proposes a demand response

offer to the LSE. The aggregator chooses l′ > 0 and dictates

that x + q = l′. This endows the aggregator the power to

negotiate on q: the aggregator offers x units of options, only

if the LSE buys l′−x units of energy in the day-ahead market.

For the moment, we treat l′ as given.

Upon receiving the demand response offer, the LSE decides

whether or not to accept it. There is no trade of load reduction

if the offer is not accepted. When the offer is accepted, the

expected cost for the LSE is

J̃LSE(x) = πox+ πda(l′ − x) + Es[ min
ys,ys≤x

J̃LSE
s (ys;x)],

(23)

where J̃LSE
s (·) is the second stage cost and is given by,

J̃LSE
s (ys;x) = πspys +Ew [π

rt
s (l− l′ + x− ys −w)+]. (24)

The optimal first and second-stage decisions of the LSE are
{

x̃LSE = argminx≥0 J̃
LSE(x),

ỹLSE
s (x) = argminys≤x J̃

LSE
s (ys;x)

(25)

Note that the second-stage decision ỹLSE
s depends on x. From

now on, we do not express this dependence explicitly as it is

implied by context. The expected cost for the aggregator and

its optimal decisions remain as in (21) and (22).
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We assume that the LSE and the aggregator are price takers.

The options market attains a competitive equilibrium if the

supply of options balances the demand of options.

Definition 4 (Competitive Equilibrium for Options Market).

Given any l′ such that 0 ≤ l′ ≤ l, the options price π∗o,

the strike price π∗sp, the optimal buying decision of the LSE

x̃∗LSE and the optimal selling decision of the aggregator

x̃∗agg constitute a competitive equilibrium if:






























J̃LSE(x̃∗LSE) = min
0≤x≤l′

J̃LSE(x), (26a)

J̃LSE
s (ỹ∗LSE

s ) = min
0≤ys≤x

J̃LSE
s (ys;x

∗LSE) (26b)

J̃agg(x̃∗agg) = min
0≤x≤l′

J̃agg(x) (26c)

x̃∗LSE = x̃∗agg. (26d)

The choice of l′ is determined by the willingness of the LSE

to accept the demand response offer. If the LSE accepts the

offer, its optimal cost is J̃LSE(x̃LSE). Else, its cost is equal

to that of optimal cost without DR, i.e., J∗e
ndr. Thus, the LSE

will accept the contract proposed by the aggregator if

J∗e
ndr ≥ J̃LSE(x̃LSE). (27)

However, J̃LSE(xLSE) depends on the options price πo,

which is not revealed when the LSE makes the decision.

Ideally, l′ should be such that (27) holds for any πo. We present

a candidate of l
′

that satisfies this condition:

Proposition 3. If l′ = qendr, the LSE always accepts the

demand response offer, i.e., J∗e
ndr ≥ J̃LSE(xLSE) for ∀πo ≥ 0.

The idea is as follows: q = qendr is the optimal decision of

the LSE if it declines the demand response offer. Therefore,

when l′ = qendr, the LSE loses nothing if it accepts the demand

response offer. This is because, there exists a LSE decision,

i.e., x = 0 and q = qendr, that satisfies the condition x + q =
qendr and also attains the same cost.

B.2 Properties of Competitive Equilibrium

We now focus on the existence, efficiency and optimality

of the competitive equilibrium for options market.

Theorem 3. Given any l′ ∈ [0, l], there exists a competitive

equilibrium (π∗o, π∗sp, x̃∗LSE , x̃∗agg) for the options market,

and x̃∗LSE = x̃∗agg is the optimal solution to:

min
0≤x≤l′

πda(l′ − x) + Es[φ(ỹ
LSE
s ) + J̃LSE

s (ỹLSE
s )], (28)

where ỹLSE
s is the second stage optimal decision for the LSE

and,

ỹLSE
s =







0, if Ps(l − l′ + x) < π∗sp/π̄rt
s

x, if Ps(l − l′) > π∗sp/π̄rt
s

l − l′ + x− P−1
s (π∗sp/π̄rt

s ), otherwise

(29)

The proof is given in Appendix E. The optimization problem

(28) is convex, and the optimal value of (28) is the social cost

at the competitive equilibrium of the options market.

Similar to the options market in Section V-A, there are

multiple competitive equilibria because for any equilibrium

price pair πs∗o and π∗sp, a higher options price with a

lower strike price can be equally acceptable to both the LSE

and the aggregator. To compare the efficiency of different

markets, let J̃∗LSE(πsp) and J̃∗agg(πsp) be the expected cost

at competitive equilibrium for the LSE and the aggregator,

respectively. Define the system cost at competitive equilibrium

by,

J̃∗cp(πsp) = J̃∗LSE(πsp) + J̃∗agg(πsp). (30)

In addition, let J∗e
ndr be the optimal value of problem (5), then

the following proposition provides a comparison of the optimal

cost of the different markets that we have discussed so far.

Proposition 4. Given any l′ and πsp, the social cost of

the options market at the competitive equilibrium is lower

bounded by J∗cp and upper bounded by J∗e
ndr, i.e., J∗cp ≤

J̃∗cp(πsp) ≤ J∗e
ndr.

The proof of Proposition 4 is given in the Appendix. It

indicates that the efficiency of the options market outperforms

that of the market without demand response, but is no better

than that of the spot market with contingent prices.

The following theorem presents the optimal strike price that

minimizes the social cost at the competitive equilibrium:

Theorem 4. There exists an optimal strike price π̃∗LSE ,

such that J̃∗cp(π̃∗LSE) ≤ J̃∗cp(πsp) for all πsp, and π̃∗LSE

satisfies:

π̃∗LSE =

∫ s2
s1

φ′(ys)β(s)ds
∫ s2
s1

β(s)ds
(31)

where β(s) =
α(s)

π̄rt
s ps(l − q − ys)

.

The proof of Theorem 4 is in the Appendix. It shows that

the optimal strike price is the average of the marginal disutility

over a skewed distribution β(s).

VI. CASE STUDIES

This section illustrates the proposed options market and

validates the results through numerical simulation. We con-

sider a particular time interval where the LSE needs to deliver

electricity to a total load of l = 3MW. We emphasize that

this is without any loss of generality because larger or smaller

load can be captured by scaling the size of the options and

load reduction.

Define the information state s as a real number between 0
and 1. i.e., s ∈ [0, 1]. We assume that s is unknown at time t0
(e.g., one day ahead), but it known at time t1 (e.g., one hour

ahead). Here we associate s with the average hourly wind

energy level on the next day1. The probability distribution of

s and w can be derived based on historic data. In particular,

we collect the 5-minute wind generation data between Nov

2019 - May 2020 in California from CAISO [39]. The data

is scaled based on the size of the case study, where s = 0
represents zero wind generation, and s = 1 represents the

maximum wind generation over this period. The histogram

of s is shown in Figure 2. The empirical distribution of s

1Since the realization of wind is a random variable, s is monotonically
associated with the expectation of w.
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can be constructed accordingly. To simplify the computation,

we approximate the empirical distribution with a polynomial

function to obtain closed-form expression of α(s).
To obtain the conditional probability distribution ps(w),

we represent the wind generation of each time instance as

w = w̄(1 + σ), where w̄ denotes the average wind generation

of the hour2, and σ is the percentage of deviation from w̄.

Assume that σ is i.i.d. for each data sample within the dataset

[39] of 5 minute resolution. The empirical distribution of σ
can be constructed from the dataset. We observe that the

empirical distribution of σ is symmetric with respect 0 and

displays exponential decay. Therefore, we approximate it using

a symmetric piece-wise exponential function. The empirical

distribution (bar plot) and its analytic approximation are shown

in Figure 3. Clearly, the approximation is rather accurate.

2Based on our definition, w̄ is a monotone function of s. Here we set
w̄ = 2s+ 0.5.

We randomly select several day-ahead and real-time prices

in Berkeley, California, Jan, 2020 [40], and derive that the

average day-ahead and real-time LMP are $26.76/MWh and

$29.86/MWh, respectively. Suppose the conditional expecta-

tion of the real-time price is a linear function of s in the form

π̄rt
s = 31.71 − 3.71s3. For simplicity, consider a quadratic

distutility function φ(y) = 15y + 15y2. In this example, both

Assumptions 1 and 2 are satisfied.

We consider four cases: (a) optimal scheduling without

demand response, (b) spot market with contingent pricing,

(c) options market and (d) redesign of options market. We

compute the optimal decisions in each case and derive the

competitive equilibrium for these market setups. The system

costs in these cases are compared.

3We set the parameter of this linear model so that (i) the average real-time
price equals the real data, i.e., $29.86/MWh, and (ii) wind energy affects
real-time price by the maximum of 10%.
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1. Optimal Scheduling without Demand Response: The LSE

buys energy from the day-ahead and real-time markets. Using

Proposition 1, the optimal day-ahead purchase is qendr =
1.35 MW. The optimal system cost is Je

ndr(q
e
ndr) = $55.469.

2. Optimal Scheduling with Demand Response: With demand

response, the optimal day-ahead purchase is qendr = 1.19 MW

and the optimal system cost is Je
ndr(q

e
ndr) = $52.127.

3. Spot Market with Contingent Price: Solving equation (18),

the optimal day-ahead purchase is q∗ = 1.19 MW. The optimal

load reduction and contingent price given the information state

s are shown in Figures 4 and 5 respectively. Figure 4 reveals

that when s is larger, the LSE expects more wind at the

delivery time T and therefore calls on less load reduction at the

intermediate time t1. As a result, the competitive equilibrium

price is lower when s is larger, as shown in Figure 5.

4. Options Market: The competitive equilibrium of the options

market can be derived based on Theorem 2 and Theorem 3,

respectively. The setup of these two options markets are

distinct. Here we solve the competitive equilibria under both

market schemes and compare their performances in terms of

the system cost at the competitive equilibria.

We first compute the competitive equilibrium of the options

market presented in Section V-A. Based on Theorem 2, the

competitive equilibrium constitutes four decision variables

(π∗o, π∗sp, x̃∗, q̃∗) that are determined by three equations.

This indicates that there is an extra degree of freedom,

which induces multiple competitive equilibria. Figure 8 shows

competitive equilibrium prices of the options market. Clearly,

there is a continuum of competitive equilibrium prices and the

options price is a decreasing function of the strike price. This

is intuitive since the objective functions of the LES and the

aggregator are jointly determined by πo and πsp. Therefore,

for any pair of (πo, πsp) at the competitive equilibrium, the

combination of a higher πo and lower πsp is equally acceptable

as another competitive equilibrium price. Figure 7 shows that

as the strike price increases, the traded options increases due

to the decrease of options price. Figure 8 shows that the day-

ahead purchase q at the competitive equilibrium first decreases

(π∗sp ≤ $3.4/WMh) and then increases ($3.4/WMh <
π∗sp ≤ $31.3/WMh). The first regime (π∗sp ≤ $3.4/WMh)
is accompanied with a sharp increase in traded options as

shown in Figure 7. Figure 9 shows the exercised load reduction

in real time under different information state when the strike

price is at $22.6/WMh. Clearly, ys is a decreasing function

of s, which indicates that less load reduction is called when

more wind energy is available for free.

Figure 10 compares the system costs at the competitive

equilibria of the original (Section V-A) and the redesigned

options market (Section V-B) under different equilibrium strike

prices. The equilibrium of the redesigned market is derived

based on (28). It is clear that the system cost at the competitive

equilibrium for the redesigned market is consistently lower

than than that of the original one, while the difference of

these two markets is more significant when the strike price is

smaller. At the optimal strike price that minimizes the system

cost, both the original options market and the redesigned

market attained a cost of 52.154, which is close to the system

cost for the spot market,i.e., 52.127. This indicates that by

carefully choosing the strike price, the options market can

almost achieve the same system cost as the efficiency spot

market. However, obtaining the optimal options market price

may require information not possessed by the system operator.

VII. CONCLUSION

We have studied a novel market model for trading demand

response using options. We have shown that demand response

can be used as an intermediate recourse between the real-time

market and the day-ahead market. Under some conditions,

this options market admits a competitive equilibrium. We

studied the efficiency of this equilibrium, and obtained the

optimal strike price that yields the minimum system cost at

the competitive equilibrium. In future work we plan to address

option markets with multiple intermediate stages and also the

case where the LSE can exercise market power.
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VIII. PROOFS

A. Proof of Proposition 1

The objective function Je
ndr is,

Je
ndr(q) = πdaq+

∫ 1

s=0

∫ (l−q)

w=0

πrt
s (l−q−w)ps(w)dw α(s)ds

(32)

By taking partial derivative we get,

dJe
ndr

dq
= πda −

∫ 1

s=0

πrt
s Ps(l − q)α(s)ds

d2Je
ndr

dq2
=

∫ 1

s=0

πrt
s ps(l − q)α(s)ds

Since the second derivative is non-negative, Je
ndr is convex.

The solution is obtained by equating the first derivative to zero.

B. Proof of Proposition 2

Proof. The cost of the second stage is,

Je
s (ys) = φ(ys) +

∫ (l−q−ys)

w=0

πrt
s (l − q − w − ys)ps(w)dw.

Taking partial derivatives, we have,

∂Je
s

∂ys
= φ′(ys)− πrt

s Ps(l − q − ys)

∂2Je
s

∂y2s
= πrt

s ps(l − q − ys)

Since the second order derivative is non-negative, Je
s (ys) is

convex. Using first derivative, if φ(ys)
′ ≥ πrt

1 Ps(l − q), then

the optimal load curtailment is yes = 0. If φ(ys)
′ < πrt

s Ps(l−
q), yes is given by equating the first order condition to zero,

∂Je
s

∂ys
= φ(ys)

′ − πrt
s Ps(l − q − ys)

∣

∣

ys=ye
s

= 0. (33)

This leads to (11). Next, we compute the right derivative of

the first stage cost Je(q),

d+Je

dq
= πda +

∫ 1

0

∂+yes
∂q

φ′(ys)α(s)ds.

−

∫ 1

0

(1 +
∂+yes
∂q

)πrt
s Ps(l − q − yes)α(s)ds (34)

Here
∂+ye

s

∂q is the right partial derivative of yes with respect to

q. Note that when φ′(ys) ≥ πrt
s Ps(l − q),

∂+ye
s

∂q = 0. When

φ′(ys) < πrt
s Ps(l − q), we have (33). In either case, (34) is

equivalent to,

d+Je

dq
= πda −

∫ 1

0

πrt
s Ps(l − q − yes)α(s)ds. (35)

Similarly, we can derive the left derivative of Je(q). It equals

the right derivative. Therefore, Je(q) is differentiable with

respect to q. The second-order right derivative of Je(q) is

as follows,

d2Je

dq2
=

∫ 1

0

πrt
s ps(l − q − yes)

(

1 +
∂+yes
∂q

)

α(s)ds.

To prove Proposition 2, it suffices to show that Je(q) is

convex with respect to q. If so, the optimal decision is

obtained by equating the first derivative to 0, which leads to

(12). To this end, we show that d2Je

dq2 ≥ 0. Note that when

φ′(ys) ≥ πrt
s Ps(l − q),

∂+ye
s

∂q = 0. It trivially holds. When

φ′(ys) < πrt
s Ps(l− q), we take partial derivative with respect
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to q on both sides of (33). This indicates that,

πrt
s ps(l − q − yes)

(

1 +
∂+yes
∂q

)

= 0

Therefore, d2Je

dq2 = 0. This completes the proof.

C. Proof of Theorem 1

Proof. It suffices to show there exists a solution to (16), and

any solution to (16) satisfies (18). According to Proposition

2, it suffices to show that (16) is equivalent to (11) and (12).

Given any q, the optimal solution to (16b) is given by

yLSE
s =

{

l − q − P−1
s (πin

s /π̄rt
s ), if πin

s < πrt
s Ps(l − q),

0, if πin
s ≥ πrt

s Ps(l − q).

(36)

For any q, the optimal solution to (16c) is given by,

yaggs =

{

0, if φ′(0) > πin
s ,

(φ′)−1(πin
s ), if φ′(0) ≤ πin

s

(37)

Proof for (36) and (37) is similar to that of Proposition 2

and hence we skip the details. Since (36) is continuous and

decreasing, and (37) is continuous and increasing, there is an

intersection. Thus the competitive equilibrium exists. It can be

verified that at the intersection, the equilibrium satisfies (11).

In addition, based on (36), the derivative of the first stage cost

of the LSE is given by,

dJLSE

dq
= πda −

∫ 1

0

πrt
s Ps(l − q − yLSE

s )α(s)ds. (38)

At the optimal decision q∗LSE , we have,

πda = Es[π
rt
s Ps(l − q∗LSE − y∗s )] = 0. (39)

Therefore, (16) is equivalent to (11) and (12). This completes

the proof.

D. Proof of Theorem 2

We first prove a series of lemmas before giving the proof

of Theorem 2.

Lemma 1. The function J̃LSE
s (·) is convex for all s ∈ S. The

unique minimizer ỹLSE
s is given by,

ỹLSE
s =















0, if Ps(l − q) < πsp/πrt
s

x, if Ps(l − q − x) > πsp/πrt
s

l − q − P−1
s (

πsp

πrt
s

), otherwise

(40)

Proof. The second-stage cost for the LSE is,

J̃LSE
s (ys) = πspys + πrt

s

∫ l−q−ys

0

(l − w − q − ys)ps(w)dw,

The first-order and second-order derivative are as follows,






∂J̃LSE
s

∂ys
= πsp − πrt

s Ps(l − q − ys),
∂2J̃LSE

s

∂y2
s

= πrt
s ps(l − q − ys).

Since the second derivative is positive, J̃LSE
s (y) is strictly

convex. Then using first derivative and the strict convexity

property the expression for the unique minimizer ỹLSE
s fol-

lows.

Lemma 2. The function J̃LSE(q, x) is jointly convex in q and

x. The minimizers (q̃LSE , xLSE) are given by,

πda − Es[π
rt
s Ps(l − q̃LSE − ỹLSE

s )] = 0

πo + πsp
Es[I{ys = xLSE}]

− Es[π
rt
s Ps(l − q̃LSE − ỹLSE

s )I{ys = xLSE}] = 0
(41)

Proof. Let s1, s2 ∈ S be such that ys = x for 0 ≤ s ≤ s1
and ys = 0 for s2 ≤ s ≤ 1. Note that s1 and s2 depends on

q and x from the first stage. Then, J̃LSE(q, x) (c.f. (19)) can

be written as,

J̃LSE(q, x) = (πox+ πdaq)

+

∫ s1

s=0

πspxα(s)ds

+

∫ s1

s=0

πrt
s

∫ (l−q−x)

w=0

(l − q − x− w)ps(w)dwα(s)ds

+

∫ s2

s=s1

πspysα(s)ds

+

∫ s2

s=s1

πrt
s

∫ (l−q−ys)

w=0

(l − q − ys − w)ps(w)dwα(s)ds

+

∫ 1

s=s2

(

πrt
s

∫ (l−q)

w=0

(l − q − w)ps(w)dw

)

α(s)ds

We give simplified expressions for the partial derivatives of

J̃LSE w.r.t q and x below,

∂J̃LSE

∂q
= πda −

∫ 1

s=0

πrt
s Ps(l − q − ỹLSE

s )α(s)ds

∂J̃LSE

∂x
= πo + πsp

∫ s1

s=0

α(s)ds

−

∫ s1

s=0

πrt
s Ps(l − q − x)α(s)ds

Once again differentiating the above expressions w.r.t q and x
we get,

∂2J̃LSE

∂x∂q
=

∫ s1

s=0

πrt
s ps(l − q − x)α(s)ds

∂2J̃LSE

∂q2
=

∫ s1

s=0

πrt
s ps(l − q − x)α(s)ds

+

∫ 1

s=s2

πrt
s ps(l − q)α(s)ds

∂2J̃LSE

∂x2
=

∫ s1

s=0

πrt
s ps(l − q − x)α(s)ds

It follows that the Hessian will be of the form
[

(a+ b) a
a a

]

, where a =

∫ s1

s=0

πrt
s ps(l − q − x)α(s)ds,

b =

∫ 1

s=s2

πrt
s ps(l − q)α(s)ds.
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It is easy to show that a > 0 and b > 0 always. We give a

very brief argument here. If πsp is large then s2 < 1 trivially

and so b > 0 trivially. But πsp cannot be set large enough

that s2 = 0 because it obviates the need for an intermediate

DR market. Then there will necessarily exist a s1 > 0 and so

a > 0 in this case. If πsp is small then s1 > 0 trivially and

there will always exist a s2 < 1 such that πrt
s Ps(l− q) = πsp.

It follows that, a > 0 and b > 0 in this case as well. Hence,

by Silvester’s criterion, the Hessian is positive definite. Hence,

by convexity the minimizers of LSE cost satisfy (41).

Lemma 3. The cost function of the aggregator J̃agg(x) is

convex in x.

Proof. Define s1 and s2 in the same way as in the proof of

Lemma 2. Recall that s1 denotes the information state below

which the LSE schedules all of the options and s2 denotes the

information state above which the LSE does not schedule any

of the demand response at all. These variables depend on the

decision of the LSE, which are in turn only dependent on the

option prices πo and πsp, which are fixed. As a result, s1 and

s2 will not be affected by the aggregator’s decision x.

The cost function J̃agg(x) is as follows:

J̃agg(x) = −πox+

∫ s1

s=0

(φ(x) − πspx)α(s)ds

+

∫ s2

s=s1

(φ(ỹLSE
s )− πspỹLSE

s )α(s)ds +

∫ 1

s=s2

φ(0)α(s)ds.

The first order derivative of J̃agg(x) is given by,

∂J̃agg

∂x
= −πo +

∫ s2

s=0

(

φ′(ỹLSE
s )− πsp

)

α(s)ds. (42)

The second order derivative is given by,

∂2J̃agg

∂x2
=

∫ s2

s=0

φ′′(x)α(s). (43)

Clearly, J̃agg(x) is convex.

Next we show the continuity of q̃LSE(πo, πsp) and

xLSE(πo, πsp) in (πo, πsp) using the implicit function the-

orem. We omit the details for the proof of continuity of

xagg(πo, πLSE).

Lemma 4. The minimizers of LSE cost J̃LSE(q, x) i.e.

(q̃LSE(πo, πsp), x̃LSE(πo, πsp)) are continuous in its argu-

ments.

Proof. By Lemma 2, the minimizers q̃LSE, xLSE satisfy con-

ditions (41). Define,

f(q, x, πo, πsp) =

(

f1(q, x, π
o, πsp)

f2(q, x, π
o, πsp)

)

Where f1(q, x, π
o, πsp) =

∂J̃LSE

∂q

= πda − Es[π
rt
s Ps(l − q − ys)]

f2(q, x, π
o, πsp) =

∂J̃LSE

∂x
= πo + πsp

Es[I{ys = x}]

− Es[π
rt
s Ps(l − q − ys)I{ys = x}]

(44)

Then the minimizers q̃LSE , xLSE , satisfy f = 0. From Lemma

2 the partial derivatives of ∂J̃LSE

∂q and ∂J̃LSE

∂x exist. Hence

f(q, x, πo, πsp) is continuously differentiable w.r.t q and x.

Also the derivatives of f1 and f2 w.r.t πo and πsp exists and

is given by,

∂f

∂πo
=

(

0
1

)

,
∂f

∂πsp
=

(

−Es[I{0 < ys < x}]
Es[I{ys = x}]

)

This implies that f is continuously differentiable w.r.t q, x, πo

and πsp. From Lemma (2),

H =
[

∂f
∂q

∂f
∂x

]

> 0

at points (q, x, πo, πsp) where πo > 0, πsp ≥ πda and f = 0.

Then by implicit function theorem there exists continuous

functions g1 : (πo, πsp) → q and g2 : (πo, πsp) → x such

that the minimizers of LSE cost J̃LSE(q, x) are given by

q̃LSE = g1(π
o, πsp) and xLSE = g2(π

o, πsp). Hence the

minimizers (q̃LSE(πo, πLSE), x
LSE(πo, πsp)) are continuous

in its arguments.

Similarly we can show that the minimizer of the aggre-

gator’s cost, xagg(πo, πsp) is a continuous function of its

arguments.

We now show the existence of competitive equilibrium for

the options market. Let

z(πo, πsp) = xLSE(πo, πsp)− xagg(πo, πsp)

By Lemma 4, z(πo, πsp) is a continuous function of πo and

πsp. According to the definition, prices π∗o, π∗LSE supports

an equilibrium if z(π∗o, π∗LSE) = 0. So, it is sufficient

to show that there exists two pair of prices (πo
1 , π

sp
1 ) and

(πo
2 , π

sp
2 ) such that

z(πo
1 , π

sp
1 ) > 0, z(πo

2 , π
sp
2 ) < 0

Then the existence of prices (π∗o, π∗LSE) at which

z(π∗o, π∗LSE) = 0 follows from the continuity of the function

z(·, ·).

If πo
1 and πsp

1 are very small, the LSE will prefer to get

more load reduction. But the aggregator may not want to offer

any load reduction because the reward is not enough to offset

the disutility from load curtailment. So, xLSE(πo
1 , π

sp
1 ) −

xagg(πo
1 , π

sp
1 ) will be positive.
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On the other hand, if πo
2 and πsp

2 are very high, the

aggregator may offer more load curtailment. But the LSE may

prefer very small or no load curtailment at all. It may be better

for the LSE to purchase energy from DAM or RTM. So, in

this case, xLSE(πo
2 , π

sp
2 )− xagg(πo

2 , π
sp
2 ) will be negative.

Now, the existence of (π∗o, π∗LSE) follows from the con-

tinuity of z(·, ·).

E. Proof of Theorem 3

We first prove the following lemma before giving the proof

of Theorem 3.

Lemma 5. The function J̃LSE(x) is convex with respect to

x.

Proof. We first plug in the second-stage decision (40) in the

net expected cost function (19). We define two variables, s1
and s2, as follows: s1 and s2 are such that,

ỹLSE
s =











0, s2 ≤ s ≤ 1,

x, 0 ≤ s ≤ s1,

l − l′ + x− P−1
s (πsp/πrt

s ), s1 ≤ s ≤ s2.

(45)

Then, J̃LSE(x) (c.f. (19)) is given by,

J̃LSE(x) = πox+ πda(l − l′) +

∫ s1

0

πspxα(s)ds

+

∫ s2

s1

πsp

(

l − l′ + x− P−1
s (

πsp

πrt
s

)

)

α(s)ds

+

∫ s1

s=0

∫ l−l′

w=0

πrt
s (l − l′ − w)ps(w)dwα(s)ds

+

∫ s2

s=s1

∫ P−1
s (πsp/πrt

s )

w=0

πrt
s (P−1

s (
πsp

πrt
s

)− w)ps(w)dwα(s)ds

+

∫ 1

s=s2

∫ l−l′+x

w=0

πrt
s (l − l′ + x− w)ps(w)dwα(s)ds

Using Leibniz rule, the first order derivative of J̃LSE with

respect to x is given by,

∂J̃LSE

∂x
=π0 − πda +

∫ s2

s=0

πspα(s)ds

+

∫ 1

s=s2

πrt
s Ps(l − l′ + x)α(s)ds (46)

Then the second order derivative is given by,

∂2J̃LSE

∂x2
=

∫ s1

s=0

πrt
s ps(l − q − x)α(s)ds

Since the second order derivative is positive, J̃LSE(x) is

convex.

Similar to the proof of Theorem 3 and using the above

lemma we can show that there exists an intersection to the

supply and demand curve, which is the competitive equilib-

rium.

Next we show that the competitive equilibrium is the

solution to (28). Let (π∗o, x̃∗LSE , ỹLSE
s , x̃∗agg) be a com-

petitive equilibrium. For notation convenience, we define the

following,
{

J̃LSE(x) , CLSE(x) + πox,

J̃agg(x) , Cagg(x)− πox.

By definition, the competitive equilibrium satisfies














x̃∗LSE = arg min
0≤x≤l′

CLSE(x) + πox, (47a)

x̃∗agg = arg min
0≤x≤l′

Cagg(x) − πox (47b)

x̃∗LSE = x̃∗agg. (47c)

Let x∗ = x̃∗LSE = x̃∗agg , then (47a) is same as,

CLSE(x∗) + πox∗ ≤ CLSE(x) + πox, ∀0 ≤ x ≤ l′, (48)

and (47b) is same as,

Cagg(x∗)− πox∗ ≤ Cagg(z)− πoz, ∀0 ≤ z ≤ l′. (49)

Let z = x, then (48) plus (49) gives,

Cagg(x∗)+CLSE(x∗) ≤ Cagg(x)+CLSE(x), ∀0 ≤ x ≤ l′.

This is equivalent to (28), which completes the proof.

F. Proof of Proposition 4

According to Theorem 1, J∗cp equals the optimal value of

minq J
e(q). Clearly, minq J

e(q) is smaller than the optimal

value of (28). This is because (8) optimizes over ys, while

(28) fixes ys according to (29). Therefore, J∗cp ≤ J̃∗cp(πsp).
To show that J̃∗cp(πsp) ≤ J∗e

ndr, we simply note that when

x = 0, the value of (28) attains J∗e
ndr. Therefore, the optimal

value of (28) is smaller than J∗e
ndr. This completes the proof.

G. Proof of Theorem 4

Based on Theorem 3, the optimal strike price is the optimal

solution to the following problem,

min
πsp,x∈[0,l′]

πda(l′ − x) + Es[φ(ỹ
LSE
s ) + J̃LSE

s (ỹLSE
s )], (50)

where ỹLSE
s is defined as (29). The first order derivative of

(50) with respect to πsp can be computed as,

∂J̃e(x, πsp)

∂πsp
=

∫ s2

s1

1

π̄rt
s

(P−1
s )′(

πsp

π̄rt
s

)[πsp − φ′(ys)]α(s)ds

=

∫ s2

s1

[πsp − φ′(ys)]

π̄rt
s ps(l − l′ + x− ys)

α(s)ds,

where the second equation is based on the fact that

(P−1
s )′(

πsp

π̄rt
s

) =
1

ps(P
−1
s (πsp/π̄rt

s ))
=

1

ps(l − l′ + x− ys)
.

Note that
∂J̃e(x, πsp)

∂πsp
≤ 0 when πsp ≤ φ′(0), and

∂J̃e(x, πsp)

∂πsp
≥ 0 when πsp ≥ φ′(l′). Since

∂J̃e(x, πsp)

∂πsp

is continuous with respect to πsp, there exists an optimal

strike price π̃∗LSE , such that φ′(0) ≤ π̃∗LSE ≤ φ′(l′)

and
∂J̃e(x, π̃∗LSE)

∂πsp
= 0. The final expression fpr π̃∗LSE
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follows trivially from the condition
∂J̃e(x, π̃∗LSE)

∂πsp
= 0. This

completes the proof.
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