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Toward improved prediction of the bedrock depth underneath
hillslopes: Bayesian inference of the bottom-up control
hypothesis using high-resolution topographic data
Guilherme J. C. Gomes1,2, Jasper A. Vrugt2,3, and Eur�ıpedes A. Vargas Jr.1

1Departamento de Engenharia Civil, Pontif�ıcia Universidade Cat�olica do Rio de Janeiro, Rio de Janeiro, Brazil, 2Department
of Civil and Environmental Engineering, University of California, Irvine, California, USA, 3Department of Earth System
Science, University of California, Irvine, California, USA

Abstract The depth to bedrock controls a myriad of processes by influencing subsurface flow paths, ero-
sion rates, soil moisture, and water uptake by plant roots. As hillslope interiors are very difficult and costly
to illuminate and access, the topography of the bedrock surface is largely unknown. This essay is concerned
with the prediction of spatial patterns in the depth to bedrock (DTB) using high-resolution topographic
data, numerical modeling, and Bayesian analysis. Our DTB model builds on the bottom-up control on fresh-
bedrock topography hypothesis of Rempe and Dietrich (2014) and includes a mass movement and
bedrock-valley morphology term to extent the usefulness and general applicability of the model. We recon-
cile the DTB model with field observations using Bayesian analysis with the DREAM algorithm. We investi-
gate explicitly the benefits of using spatially distributed parameter values to account implicitly, and in a
relatively simple way, for rock mass heterogeneities that are very difficult, if not impossible, to characterize
adequately in the field. We illustrate our method using an artificial data set of bedrock depth observations
and then evaluate our DTB model with real-world data collected at the Papagaio river basin in Rio de
Janeiro, Brazil. Our results demonstrate that the DTB model predicts accurately the observed bedrock depth
data. The posterior mean DTB simulation is shown to be in good agreement with the measured data. The
posterior prediction uncertainty of the DTB model can be propagated forward through hydromechanical
models to derive probabilistic estimates of factors of safety.

1. Introduction

The depth to bedrock (DTB) controls a large array of geomorphologic, hydrologic, geochemical, ecologic,
and atmospheric processes, yet is large unknown as hillslope interiors are very difficult and costly to illumi-
nate and access. The regolith thickness determines groundwater flow [Freer et al., 2002; Lanni et al., 2012],
infiltration and redistribution [Kosugi et al., 2006], subsurface saturation [Tromp-van Meerveld and McDonnell,
2006b; Ebel et al., 2007; Liang and Uchida, 2014], runoff generation [Troch et al., 2002; Tromp-van Meerveld
and McDonnell, 2006a], storage capacity [Ohnuki et al., 2008], the shape of the hydrograph [Hopp and
McDonnell, 2009], and variably saturated water flow [Fujimoto et al., 2008]. The bedrock topography is also
of paramount importance in geotechnical engineering as it determines slope stability [Mukhlisin et al., 2008;
Ho et al., 2012; Kim et al., 2015], pore pressure responses to infiltration [Vargas Jr. et al., 1990; Askarinejad
et al., 2012; Lanni et al., 2013], and landslide potential [Borja and White, 2010; Milledge et al., 2014; Bellugi
et al., 2015]. An accurate characterization of the DTB is thus a prerequisite to describe adequately many dif-
ferent Earth-surface processes.

Spatial patterns in the bedrock depth arise from complex interactions between a myriad of biologic [Jenny,
1941], (geo)chemical [Lebedeva and Brantley, 2013], and hydrologic [Rempe and Dietrich, 2014] processes,
and factors including surface topography, lithology [Catani et al., 2010], climate [Anderson et al., 2013], and
long-term human activities [Kuriakose et al., 2009]. As a consequence, the thickness of the regolith can vary
considerably within a hillslope and watershed, thereby complicating tremendously the characterization and
point prediction of the bedrock depth topography [Catani et al., 2010]. Until hillslope interiors are more
readily accessible through geophysical imaging or extensive deep drilling, the transition of the underlying
fresh bedrock will remain largely unknown [Rempe and Dietrich, 2014].

Key Points:
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During the past decades, a great deal of research has been devoted to characterization of the soil and rego-
lith depth in headwater hillslopes and catchments. That research has focused primarily on four different
issues: (1) the development of specialized measurement techniques for (in)direct observation of the bed-
rock depth, (2) the application and use of interpolation methods to predict the bedrock depths from sparse
direct observations and/or secondary data, (3) the development and application of empirico-statistical
methods that predict the spatial continuum of the regolith depth with the help of easily measurable envi-
ronmental covariates, and (4) the development of landscape evolution models that predict the soil/regolith
depth by solving numerically or analytically the soil mass conservation equation.

Research into measurement methods has led to the development and use of direct and indirect sensing
techniques to determine the bedrock depth at point and larger support. Examples of direct measurement
methods include rod penetrometers [Kuriakose et al., 2009; Tesfa et al., 2009; Fu et al., 2011; Lanni et al.,
2012; Luc�a et al., 2014], excavated pits [Boer et al., 1996; Heimsath et al., 2001; Pelletier and Rasmussen, 2009;
Catani et al., 2010; Pelletier et al., 2011], hand and gasoline or electric-powered augers [Fernandes et al.,
1994; Ziadat, 2010; Liu et al., 2013], road cuts, and erosion gullies [Kuriakose et al., 2009; Wilford and Thomas,
2013], and dynamic cone penetrometers [Kosugi et al., 2006, 2009; Fujimoto et al., 2008; Ohnuki et al., 2008;
Tsuchida et al., 2011; Askarinejad et al., 2012; Wiegand et al., 2013; Athapaththu et al., 2014; Liang and Uchida,
2014]. This last measurement device is particularly promising as it can help delineate soil stratigraphy and
layers with contrasting hydraulic properties [Eguchi et al., 2009; Masaoka et al., 2012]. Examples of indirect
bedrock depth measurement methods include the use of gravity survey [Stewart, 1980; Bohidar et al., 2001],
geophysical exploration [Dahlke et al., 2009], seismic refraction [Zhou and Wu, 1994], electrical resistivity
tomography [Zhou et al., 2000; Luc�a et al., 2014], and airborne electromagnetic [Christensen et al., 2015].
These latter five measurement methods make it possible to determine noninvasively the physical properties
of the subsurface, yet inversion methods are required to interpret these indirect observations of the bed-
rock depth. Much effort is required to use these measurement methods to characterize bedrock depth var-
iations at the spatial scale of a hillslope or watershed.

Research into interpolation methods has led to the development and use of (non)linear regression methods
to derive regolith depth maps compatible with the application scale of hydrologic and/or geotechnical
models. These methods can be classified in two main groups including deterministic and geostatistical
interpolation approaches. Deterministic interpolation techniques create a bedrock depth map from meas-
ured DTB observations, based on either the extent of similarity between nearby regolith depth observations
or the degree of smoothing. Examples include the use of triangulated irregular networks [Kim et al., 2015],
inverse distance weighting [Stewart, 1980], and radial basis functions, and these approaches work well in
the absence of spatial correlation between the measured regolith depth data [Freer et al., 2002; Wiegand
et al., 2013]. Geostatistical interpolation techniques capitalize on the spatial structure and semivariance of
the measured bedrock depth data [Goovaerts, 1997]. Examples include ordinary kriging [Sitharam et al.,
2008; Tye et al., 2011], cokriging [Chung and Rogers, 2012], and regression-kriging [Odeh et al., 1995; Sarkar
et al., 2013]. These methods can incorporate topographic control points derived from digital elevation mod-
els and other primary (topographic variables) and secondary (other covariates) variables. Conditional sto-
chastic (Gaussian) simulation can be used to better represent the short-range regolith depth variability
derived from geostatistical interpolation [Kuriakose et al., 2009; Luc�a et al., 2014]. Interpolation methods are
easy to use in practice but require large amounts of field data to derive high-resolution and high-fidelity
maps of the bedrock surface topography [Dietrich et al., 1995; Catani et al., 2010; Liu et al., 2013].

Research into empirico-statistical methods has led to the development of multivariate linear/nonlinear or
logistic regression methods that predict the bedrock depth from environmental covariates deemed impor-
tant in soil and regolith formation. These soil-forming factors have been discussed by Jenny [1941] in his
famous equation and include climate, organisms, relief, parent material, and time. Topographic variables
(terrain and landform), bedrock properties (geology and geochemistry), and climatologic characteristics
(radiation, precipitation, and temperature) have all been used as predictors of the regolith depth in regres-
sion models [DeRose et al., 1991; Boer et al., 1996; Ziadat, 2010; Wilford and Thomas, 2013; Yang et al., 2014].
Other regression-type methods published in the geomorphologic literature include the use of artificial neu-
ral networks [Zhou and Wu, 1994; Mey et al., 2015], principal component analysis, and maximum likelihood
classification [Boer et al., 1996; Ziadat, 2005], canonical correspondence analyses [Odeh et al., 1991], support
vector machines [Sitharam et al., 2008], and generalized additive models and random forests [Tesfa et al.,
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2009; Shafique et al., 2011]. These latter two methods use secondary data of land cover and other soil attrib-
utes derived from remote sensing products. Although regression methods have the advantage of being
practical and relatively easy to use, the relationship between the regolith depth and exogenous variables
(covariates) is empirical and poorly rooted in geomorphologic theory. This complicates their application to
out-of-sample prediction in areas outside the domain spanned by the observations.

Research into modeling approaches has led to the development of landscape evolution models that solve
the soil mass-balance equation over geological time scales using forward [Dietrich et al., 1995; Roering,
2008] or backward simulation [Pelletier et al., 2011]. These geomorphic models simulate processes such as
tectonic uplift, regolith production by the underlying bedrock, colluvial transport of the unconsolidated
material, erosion, and sedimentation, and have shown to be particularly useful for validation of field obser-
vations and hypothesis testing of different soil transport equations. However, the output of landscape evo-
lution models is subject to considerable uncertainty due to errors in the initial states (e.g., topography one
or more relief replacement times ago), boundary conditions (climate and tectonic forcing), geologic charac-
terization (e.g., bedrock properties), parameter values, model structure, and equations. If conditions of
dynamic equilibrium between soil production and erosion are assumed, then simple closed-form paramet-
ric solutions can be derived for the soil thickness by solving analytically the soil conservation equation for
certain specific formulations of the soil transport equation and/or soil production function [Bertoldi et al.,
2006; Saco et al., 2006; Pelletier and Rasmussen, 2009]. These analytic solutions allow for predictive mapping
of the soil thickness from high-resolution topographic data and field-based calibration [Pelletier and
Rasmussen, 2009]. Examples include the nonlinear slope-dependent, nonlinear depth, and slope-dependent,
and nonlinear area and slope-dependent transport functions of Pelletier and Rasmussen [2009]. These
analytic models describe accurately thin soil depth beneath hillslope ridges, but it has yet to be established
whether they can predict adequately concave hillslopes with relatively thin soils. This may give preference
instead to simulation of instantaneous DTB maps using high-resolution topographic data [Saulnier et al.,
1997; Bertoldi et al., 2006; Catani et al., 2010].

In a separate line of research, Catani et al. [2010] have proposed an empirical geomorphology-based model
to predict the bedrock depth at the catchment scale using relative position, hillslope gradient, and curva-
ture. This model was shown to describe accurately the observed regolith depths of Italian watersheds. Liu
et al. [2013] have derived a simple analytic expression of the soil mass balance equation for humid and
semihumid climates without tectonic activity in the immediate geological past. The simulated soil depths of
this model match closely the observed bedrock depths at the 7.9 ha Shale Hills catchment in the United
States with root mean square error of 0.39 m and R250:74. These closed-form analytic models of the rego-
lith thickness are much easier to implement and use in practice than numerical landscape evolution models
requiring only a high-resolution topographic map and some calibration against observed regolith depth
data to predict the bedrock surface. Recently, Rempe and Dietrich [2014] have introduced an alternative ana-
lytic model that predicts the hillslope form and the vertical extent of the weathered rock underling soil-
mantled hillslopes using physical parameters such as permeability of the intact rock mass, porosity, and the
rate of channel incision at the base of the hillslope. This model builds on the assumption that once the fresh
bedrock, saturated with nearly stagnant fluid, is advected into the near surface through uplift and erosion,
channel incision produces a lateral head gradient within the fresh bedrock inducing drainage toward the
channel. The slow drainage of the fresh bedrock exerts an bottom-up control on the advance of the weath-
ering front, suggesting that bedrock discontinuities and fractures can play a major role in regolith produc-
tion [Clair et al., 2015]. The model of Rempe and Dietrich [2014] produces thick weathered zones beneath
ridges and thin regolith depths beneath valleys, and has the advantage of being fully testable. Most of the
model parameters can be measured directly in the laboratory or field using experiments on soil and rock
mass samples, and the simulated variables can be verified using cosmogenic nuclide measurements, geo-
physical imaging, topographic surveying, and drilling.

Whereas much progress has been made on the development and use of models for prediction of the rego-
lith thickness, surprisingly little attention has been given to inference of their parameters. Many of the
parameters in these models cannot be measured directly in the field but can only be meaningfully inferred
from field data. What is more, some parameters might be depth-dependent or vary spatially depending on
hillslope position and lithology. In this paper, we build on the ideas of Pelletier and Rasmussen [2009], Catani
et al. [2010], and Rempe and Dietrich [2014] and introduce a Bayesian framework for DTB model parameter
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estimation. The Bayesian paradigm provides a simple way to address systematically different sources of
uncertainty within a single cohesive, integrated framework [Vrugt et al., 2008]. We use Markov chain Monte
Carlo (MCMC) simulation with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm [Vrugt
et al., 2008, 2009] to infer the parameters of the DTB model from spatially distributed regolith depth obser-
vations. This model builds on the bottom up control of fresh bedrock hypothesis of Rempe and Dietrich
[2014] and uses a slope-dependency and a bedrock-valley shape term to extent the usefulness and general
applicability of the model. The DREAM algorithm has been applied to many different fields of study involv-
ing lumped [He et al., 2011; Scharnagl et al., 2011] and spatially distributed, high-dimensional, parameter
spaces [Keating et al., 2010; Laloy et al., 2013; Linde and Vrugt, 2013; Lochb€uhler et al., 2014]. We investigate
explicitly the benefits of using spatially distributed DTB parameter values for the prediction of bedrock
depths. Such parameterization provides a means to account implicitly, and in a relatively simple way, for
system heterogeneities that are difficult, or impossible, to characterize adequately in the field. We illustrate
our method using synthetic bedrock depth observations and validate our approach with real-world data
collected at the Papagaio river basin (PRB) in Rio de Janeiro, Brazil. The PRB watershed has been the subject
of much study in the literature [Guimar~aes et al., 2003; Fernandes et al., 2004; Vieira and Fernandes, 2004;
Gomes et al., 2008, 2013] but this previous work has focused primarily on unraveling the mechanisms of
mass movement rather than modeling of the bedrock depth.

The remainder of this paper is organized as follows. Section 2 reviews the basic building blocks of the DTB
model. Then in section 3, we evaluate the sensitivity of each of the DTB model parameters to the simulated
bedrock surface for a synthetic hillslope topography. This section will help build awareness and intuition on
how the different DTB model parameters affect the simulated bedrock profiles. This is followed in section 4
with a short introduction to Bayesian analysis (inversion) for inference of the DTB model parameters. In this
section, we are especially concerned with the description of the DREAM algorithm used to sample the pos-
terior parameter distribution. We then proceed with a discussion of the DTB inversion results for a synthetic
(section 5) and real-world (section 6) regolith depth data set using lumped and spatially distributed parame-
ter values. Section 7 of this paper discusses the implications of our results for hydrologic and geotechnical
modeling and engineering. Finally, section 8 concludes this paper with a summary of the main findings.

2. Model Description

In this section, we introduce the different building blocks of our DTB model which is used herein to predict
the hillslope form and the vertical extent of the weathered rock underling soil-mantled hillslopes from a
high-resolution topographic map of the soil surface. We assume herein that regolith thickness depends on
the interplay between erosion, which removes unconsolidated material from the ground surface, and
weathering, which promotes rock fragmentation in the soil-bedrock interface. Our model builds on the
bottom-up control on fresh-bedrock hypothesis of Rempe and Dietrich [2014] and calculates the thickness
of the weathered zone from the difference between the measured surface topography and predicted
groundwater profile derived from analytic solution of the one-dimensional steady state Boussinesq equa-
tion [Bear, 2013]. Two additional terms are used to characterize adequately the morphology of the bedrock
surface beneath the drainage valley, and the regolith thickness on steep slopes subject to an increased sedi-
ment flux due to mass movement.

The regolith thickness, h [L] of a soil-mantled hillslope can be derived by calculating the difference between
the elevation of the ground surface, Zs [L] and the underlying topography, Zb [L] of the fresh bedrock

hðx; yÞ5Zsðx; yÞ2Zbðx; yÞ; (1)

where the coordinates (x, y) are used to denote spatial location. Spatial maps of Zs are readily available from
digital elevation models (DEMs), yet the topography of the fresh bedrock, Zb is largely unknown as the inte-
rior of a hillslope is very difficult and costly to access. Relatively few publications can be found in the geo-
morphologic literature that have documented directly the depth to the fresh bedrock underlying ridge and
valley topography [Ruxton and Berry, 1959; Thomas, 1966]. Those studies that have mapped Zb have illumi-
nated that the weathered zone is thickest at the ridge top and gets progressively thinner downslope [Rux-
ton and Berry, 1959; Thomas, 1966; Ruddock, 1967; Feininger, 1971]. What is more, detailed studies of
weathering profiles published many decades ago have identified that groundwater can impede chemical
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weathering thereby restricting the depth of the weathered zone [Ruxton and Berry, 1959; Thomas, 1966].
These early experimental findings have stimulated Rempe and Dietrich [2014] to suggest a new hypothesis
for rock mass weathering underlying soil-mantled hillslopes. This hypothesis assumes that the groundwater
exerts a bottom-up control on fresh bedrock topography, and explains published experimental findings of
progressively thinner weathered zones downslope. This hypothesis is diametrically opposed to the classic
top-down hypothesis that is used by many soil depth models. The top-down hypothesis links the soil thick-
ness to processes taking place at the ground surface by assuming that the thickness of the weathered zone
is set by the relative rates of erosion and the soil production in the weathering front.

The bedrock depth model of Rempe and Dietrich [2014] builds on the one-dimensional, steady state form of
the Boussinesq equation for groundwater flow [Bear, 2013]

1
2

K
@2Z2

b

@x2
1/Co50; (2)

where K [LT21] denotes the saturated hydraulic conductivity of the bedrock, x [L] is the horizontal distance
from the ridge, / [-] signifies the saturated drainable pore space of the bedrock (5 porosity), and Co [LT21]
represents the channel incision rate at the base of the hillslope. By assuming strictly horizontal flow, topo-
graphic symmetry about the ridge, and a channel elevation at the bottom of the hillslope, the following
closed-form equation can be derived for the elevation of the transition from fresh to weathered bedrock

ZbðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/Co

K
ðL22x2Þ

r
; (3)

where L [L] is the hillslope length, and the term ðL22x2Þ can be interpreted as distance to the drainage
channel. A step-by-step derivation of equation (3) is given in the supporting information of Rempe and
Dietrich [2014], and thus will not be repeated herein. Equation (3) predicts that the depth of the weathered
zone decreases from the hilltop to the valley floor with convexity and depth of the bedrock surface deter-
mined by the parameters /, Co, K.

Our DTB model uses as basic building block the analytic solution of equation (3) but includes two important
extensions that enhance applicability of the model to watersheds with convex and/or concave bedrock
surfaces underneath the drainage valley and thin weathered zones and/or exposed rock on steep hillslopes
subject to mass movement. This DTB model solves for the bedrock depth at two spatial coordinates, x and y
and contains two new variables, W and K whose values are derived from the slope angle and drainage dis-
tance, respectively, and three additional (quasi)-physical parameters. The basic formulation of the DTB
model is given by the following closed-form equation

Zbðx; yÞ5 W
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UL2

dðx; yÞ
q

; (4)

where W [-] measures the effect of mass movement on the bedrock surface, K [-] determines the shape and
depth of the bedrock valley, and is hereafter also referred to as the bedrock-valley shape term, Ld [L] denotes the
horizontal distance from the drainage, and U5/C0=K [-] is a scalar that summarizes conveniently the combined
effect of rock porosity, permeability, and the channel incision rate on the elevation of the fresh bedrock, Zb. The
scalar variables K and W are bounded between zero and one and determine the regolith thickness underneath
valleys and steep slopes. The drainage distance, Ldðx; yÞ, of each spatial location in the watershed is derived from
the surface topography using recursive DEM computation [Tesfa et al., 2009; Catani et al., 2010]. No distinction

has to be made between drainage
lines and hillslope lines to predict Zbðx
; yÞ underneath the watershed. Thus a
single call to equation (4) suffices to
derive the elevation of the bedrock
surface for given (x, y) coordinates.

Mass movement is described in
analogy with the nonlinear slope-
dependent model of Roering et al.
[1999]

Table 1. Summary and Description of the Main Variables of the DTB Model

Symbol Unit Type Description

Zx [-] Model input Slope gradient in x direction
Zy [-] Model input Slope gradient in y direction
Ld [L] Model input Drainage distance
�Ld [-] Model input Normalized drainage distance
U [-] Model parameter Equivalent to /Co=K
k1 [-] Model parameter Bedrock-valley morphology parameter
k2 [-] Model parameter Bedrock-valley morphology parameter
Sc [-] Model parameter Critical angle of slope stability
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W512min ½1; ðjrZsj=ScÞ2�; (5)

where rZs [-] denotes the slope gradient of the surface topography and Sc [-] signifies the critical slope
angle beyond which mass movement is initiated. We follow Perron [2011], and calculate the norm jrZsj
using

jrZsj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

s;x1Z2
s;y

q
; (6)

where Zs;x [-] and Zs;y [-] are the gradients of the slope in the x and y direction, respectively. Equation (5) pre-
dicts regolith loss on hillslopes steeper than the threshold angle Sc. This movement of mass (due to land-
slides) gives rise to exposed rock.

The variable K in equation (4) determines the hillslope-to-valley transition morphology and is computed as
follows

K5exp ½2k1ð12�LdÞk2 �; (7)

where �Ld [-] denotes the normalized drainage distance, and k1 and k2 are dimensionless shape parameters
that determine the bedrock shape (curvature) and depth in the valley at the base of the hillslope. This pro-
vides a mechanism to better describe the topographic signature of valley incision by debris flow and land-
slides [Tarolli and Fontana, 2009]. Table 1 summarizes the main variables and parameters of the DTB model.
The effects of the variables W and K on the predicted spatial distribution of the regolith thickness are dis-
cussed in the next section.

3. Parameter Sensitivity Analysis

To test the predictive capability of the DTB model, we confront the model with regolith depth data of a typ-
ical hillslope of Rio de Janeiro. We first benchmark the model using an artificial topographic surface derived
from ns different sine waves

ZsðxÞ5
Xns

i51

xisin ðbix1viÞ; (8)

where x [L] is the horizontal distance along the hillslope, and x, b, and v are unitless coefficients that sig-
nify the amplitude, frequency, and phase of each individual sine wave. The synthetic surface topography
used herein was derived by setting ns52 and using values of the coefficients of equation (8) listed in
Table 2.

Figure 1 now presents a sensitivity analysis of the parameters of the DTB model. The four different horizon-
tal plots show the DTB model predicted regolith profiles underneath the artificial hillslope for different val-
ues of the parameters U (top), k1 (top-middle), k2 (bottom-middle), and Sc (bottom). The artificial
topography (surface) of equation (8) is separately indicated in each plot with the black line. The results of
Figure 1 will help build intuition and insights on how the different parameters of the DTB model affect the
simulated bedrock surface topography. The landscape elements ‘‘hilltop,’’ ‘‘sideslope,’’ and ‘‘drainage’’ are
used herein to discuss our findings. Their position is indicated in Figure 1a.

Before we proceed with the main findings of the sensitivity analysis, we first interpret all the simulated bed-
rock depth profiles of the DTB model displayed in Figure 1. Regardless of the parameter values used in the
DTB model, the weathered zone appears largest at the hilltop and then progressively thins downward. This
profile of the bedrock depth underneath the hillslope is in agreement with field observations of upland and

lowland areas [Liang and Uchida, 2014;
Kim et al., 2015] and mimics qualita-
tively the output of the Rempe and Die-
trich [2014] model. The effect of the
parameter Sc (regolith movement due
to landslides) on the output of the DTB
model is shown in Figures 1g and 1h
and reduces, as expected, the thickness

Table 2. Parameters of the Synthetic Topographic Surface Model

Description Symbol

Index of sine wave

1 2

Amplitude x 11,880 11,630
Frequency b 0.012 0.012
Phase constant v 0.661 3.790
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of the weathered zone along the sideslope. The effect of the DTB variable K (hillslope-to-valley morphol-
ogy) is visible in most of the displayed bedrock depth profiles with a shape and curvature of the bedrock
surface in the valley (drainage) that deviates considerably from the concave drainage profiles simulated
exclusively by equation (3) of Rempe and Dietrich [2014].

We now move on to the results of the sensitivity analysis. The top plot in Figure 1a shows that larger values
of the parameter U increase the thickness of the unweathered zone underneath the hillslope. This increase
in bedrock depth is largest at the hilltop (as explained by for instance a high rock permeability), and gets

Figure 1. Sensitivity of the bedrock depth profile predicted by the DTB model to the values of the parameters U (a and b), k1 (c and d), k2

(e and f), and Sc (g and h). The dotted lines in red, blue, and gray display the simulated bedrock profiles for the listed values of the DTB-
model parameters. The surface topography is separately indicated in each plot with the solid black line. The top-left graph (a) clarifies the
position of the landscape elements ‘‘hilltop,’’ ‘‘sideslope,’’ and ‘‘drainage’’ that are used to discuss our findings.
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progressively smaller downslope toward the base of the hillslope (drainage). The morphology of the bed-
rock surface in the valley appears gently convex, but assumes a concave shape when the value of parame-
ter k1 is increased from 0.5 to 2 (see Figure 1b).

The top-middle plot (second from top) of Figure 1 illustrates the effect of k1 on the simulated bedrock
depth profiles. It is evident that this parameter affects only the bedrock depth topography and curvature in
the valley. For k1 5 0.5 in Figures 1c and 1d, the unweathered zone in the valley (drainage) is really thin and
the bedrock surface is almost exposed at the center of the channel. As will be shown in the next plot (bot-
tom-middle) this result is independent on the value of k2. A convex curvature of the bedrock surface
emerges below the channel when W is increased from 0.005 in Figure 1c to 0.02 in Figure 1d. For larger val-
ues of k1, the thickness of the unweathered zone increases with a smooth bedrock-valley shape for k151:5
and V-shape bedrock surface for k152:5.

The bottom-middle plot in Figure 1 displays how parameter k2 affects the predicted elevation of the bedrock
surface topography. The DTB simulated bedrock depth on the hilltop and sideslope appears insensitive to
parameter k2. Indeed, values of k2 of 10, 20, and 50 give an exactly similar bedrock elevation underneath the
sideslope and hilltop. The same holds true for the thickness of the weathered zone exactly at the midpoint of
the drainage channel. The elevation of the fresh bedrock at this lowest point of the surface topography is
fixed for different values of k2. Beyond this center-point, the bedrock depth varies as function of k2, the extent
to which depends on the value of k1. As is evident from Figure 1e, for relatively low values of k1 the bedrock
topography simulated by the DTB model does not depend on k2. However, this sensitivity of the DTB model
output to k2 increases for larger values of k1. Indeed, Figure 1f shows an increasingly V-shaped morphology
of the bedrock surface underneath the drainage valley. The results presented herein demonstrate that the
shape and depth of the bedrock surface underneath the valley is determined by parameters k1 and k2 and
thus the value of K in equation (4) of the DTB model. Recent research indicates that the elevation and curva-
ture of the bedrock surface in the valley might be explained by the horizontal stress field [Clair et al., 2015].

The bottom plot in Figure 1 shows the effect of Sc on the simulated regolith profiles. The effect of mass
movement is most noticeable for the bedrock topography underneath the sideslope as the depth of the
weathered zone at the hilltop and the drainage valley appear unaffected. The larger the value of the critical
slope angle, the more unlikely mass movement will take place, and thus the more similar the DTB model
simulated depth to bedrock underneath the slope. Indeed, the bedrock profiles for Sc51 and Sc51:3 are in
excellent agreement and follow closely the shape of the topographic surface. For smaller values of Sc, how-
ever the slope angle simulated by the DTB model approaches a critical threshold of about 27

�
and the thick-

ness of the weathered zone beneath the hillslope decreases considerably. This is readily visible in Figure 1h
(dotted red line). The thickness of the regolith has decreased substantially in the steepest part of the hill-
slope just below the hilltop, and the weathered zone approaches an approximately fixed depth from the
inflection point downwards toward the drainage valley. This trend is in agreement with our field knowledge
from hillslopes in Rio de Janeiro, Brazil. We therefore posit that our DTB model can be used for hillslopes
with steep gradients whose underlying fresh-bedrock surface is determined by rock properties (low values
of U in Figure 1g) and surface steeping (Figure 1h). Note that for Sc50:65 the DTB model predicts a rather
peculiar bedrock depth at the sideslope. At this point, it is not clear whether this constitutes a structural
limitation (epistemic error) of equation (4) or whether this highlights an issue with the parameter values.

In summary, the parameter U (rock properties) determines the depth to bedrock underneath the sideslope
and hilltop. The parameter Sc (critical slope angle) can activate the process of mass movement (if set suffi-
ciently small) and this affects the angle of the bedrock surface and depth of the regolith beneath the side-
slope. The parameters k1 and k2 determine the shape (convex/concave) and depth of the bedrock surface
in the drainage valley. With these four fitting parameters the DTB model as proposed herein, can simulate
the bedrock surface of convergent and divergent hillslopes.

A final remark about the results of the sensitive analysis is appropriate. The bedrock depths shown in Figure
1 suggest that the parameters k1 and k2, as they appear in equation (7), might be correlated as they both
determine the topography of the valley-bedrock surface. We will revisit this issue of parameter identifiability
(and lack thereof) in section 5.1 of this paper. We are now left with a treatment of the DTB model parame-
ters. Their values are catchment (hillslope)-dependent and need to be derived by fitting the model against
spatially distributed observations of DTB.
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4. Inverse Modeling

The DBT model contains several coefficients that are difficult to be measured directly in the field at the
application scale of interest, and thus have to be determined by calibration instead using some spatially dis-
tributed map of regolith depth observations. If we denote with F equation (4), then we can write our DTB
model as follows

H Fðh;rZs; LdÞ1e; (9)

where H5fh1; . . . ; hng is a n-vector of simulated bedrock depths at spatial coordinates, ðx1; y1Þ . . . ðxn; ynÞ;
h5fU; k1; k2; Scg signifies the d-vector of model parameters, Ld5fLdðx1; y1Þ; . . . ; Ldðxn; ynÞg stores the n-val-
ues of the drainage distance of each measurement location, and e5fe1; . . . ; eng represents the vector of
observation errors. The vector e includes observation error as well as error due to the fact that the DTB
model, Fð�Þ may be systematically different from reality, =ðhÞ for the parameters h. The latter may arise
from an improper model formulation (epistemic errors) and topographic uncertainty (due to DEM measure-
ment errors and/or inadequate resolution).

If we adopt a Bayesian formalism then we can derive the posterior distribution of the parameters, pðhj~HÞ,
by conditioning the spatial behavior of the model on the n-measured values of the bedrock depth, ~H5f~h1;

. . . ; ~hng using

pðhj~HÞ5 pðhÞpð~HjhÞ
pð~HÞ

; (10)

where pðhÞ is the prior parameter distribution, Lðhj~HÞ � pð~HjhÞ denotes the likelihood function, and pð~HÞ
signifies the evidence. This latter variable is a constant that is independent of the parameter values and acts
as a normalization constant (scalar) so that the posterior distribution integrates to unity

pð~HÞ5
ð

H
pðhÞpð~HjhÞdh5

ð
H

pðh; ~HÞdh; (11)

over the parameter space, h 2 H 2 Rd . In practice, pð~HÞ is not required for posterior estimation as all statis-
tical inferences about pðhj~HÞ can be made from the unnormalized density

pðhj~HÞ / pðhÞLðhj~HÞ: (12)

We conveniently assume that the prior distribution, pðhÞ is uniform, pðhÞ / c, where c is a constant. This
means that we a-priori do not favor any values of the model parameters, and instead use uniform prior
ranges. The main culprit now resides in the definition of the likelihood function, Lðhj~HÞ, used to summarize
the distance between the model simulations, HðhÞ, and corresponding observations, ~H. If we assume the
error residuals of the observed and simulated bedrock depths to be normally distributed and uncorrelated,
then the likelihood function can be written as

Lðhj~HÞ5
Yn

i51

1ffiffiffiffiffiffiffiffiffiffi
2pr̂2

i

q exp 2
1
2

~hi2hiðhÞ
r̂ i

 !2" #
; (13)

where r̂ i is an estimate of the standard deviation of the measurement error of the ith regolith depth obser-
vation. This formulation allows for homoscedastic (constant variance) and heteroscedastic measurement
errors (variance dependent on magnitude of each data point). If homoscedasticity is expected and the var-
iance of the error residuals, s25 1

n21

Pn
t51ðetðhÞÞ2 is taken as sufficient statistic for r2, then one can show

that the likelihood function simplifies to

Lðhj~HÞ /
Xn

i51

j~hi2hiðhÞj2n: (14)

Once the prior distribution and likelihood function have been defined, what is left in Bayesian analysis is to
summarize the posterior distribution. For models such as equation (4) which is nonlinear in its parameters,
the posterior distribution pðhj~HÞ cannot be obtained by analytic means nor by analytic approximation. We
therefore resort to iterative methods that approximate the posterior probability density function by
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generating a large sample from this distribution. The most powerful of such sampling methods is Markov
chain Monte Carlo (MCMC) simulation using the Metropolis algorithm [Metropolis et al., 1953]. The basis of
MCMC simulation is a Markov chain that generates a random walk through the search space and succes-
sively visits solutions with stable frequencies stemming from a stationary distribution, �pð�Þ. To explore the
target distribution, �pð�Þ, a MCMC algorithm alternates between three basic steps. First, a proposal hp is gen-
erated from the current state of the Markov chain, ht using some jumping distribution, qðht ! hpÞ. Next,
this proposal is accepted with Metropolis probability

Paccðht ! hpÞ5min 1;
pðhpÞqðhp ! htÞ
pðhtÞqðht ! hpÞ

� �
: (15)

Finally, if the proposal is accepted, the chain moves to hp, and thus ht115hp, otherwise the current position
is retained, ht115ht . Repeated application of these three steps results in a Markov chain which, under cer-
tain regularity conditions, has a unique stationary distribution with posterior probability density function,
�pð�Þ. In practice, this means that if one looks at the values of h sufficiently far from the arbitrary initial value,
that is, after a burn-in period, the successively generated states of the chain will be distributed according to
�pð�Þ, the d-dimensional posterior probability distribution of h. Burn-in is required to allow the chain to
explore the search space and reach its stationary regime.

If a symmetric jumping distribution is used, that is qðht ! hpÞ5qðhp ! htÞ, then equation (15) simpli-
fies to

Paccðht ! hpÞ5min 1;
pðhpÞ
pðhtÞ

� �
: (16)

This selection rule has become the basic building block of the random walk Metropolis (RWM) algorithm,
the earliest MCMC method. This RWM algorithm can be coded in just a few lines and requires only a jump-
ing distribution, a function to generate uniform random numbers, and a function to calculate the probabil-
ity density of each proposal, which is simply equivalent to the product of the prior distribution and
likelihood function of equation (14).

The efficiency of the RWM algorithm is determined by the choice of the proposal distribution, qð�Þ used to
create trial moves (transitions) in the Markov chain. When the proposal distribution is too wide, too many
candidate points are rejected, and therefore the chain will not mix efficiently and converge only slowly to
the target distribution. On the other hand, when the proposal distribution is too narrow, nearly all candidate
points are accepted, but the distance moved is so small that it will take a prohibitively large number of
updates before the sampler has converged to the target distribution. The choice of the proposal distribution
is therefore crucial and determines the practical applicability of MCMC simulation in many fields of study
[Vrugt, 2016].

In this paper, MCMC simulation of the DTB model has been performed using the DREAM algorithm [Vrugt
et al., 2008, 2009]. This multichain MCMC simulation algorithm automatically tunes the scale and orientation
of the proposal distribution, qð�Þ en route to the target distribution. This is one of the reasons DREAM exhib-
its excellent sampling efficiencies on complex, high-dimensional, and multimodal target distributions. The
use of multiple chains offers a robust protection against premature convergence, and opens up the use of a
wide arsenal of statistical measures to test whether convergence to the posterior distribution has been
achieved. We evaluate the DTB model using lumped and spatially distributed parameter values. These val-
ues are stored in the d-vector h.

5. Bayesian Inference With Dream: Synthetic Data

We now proceed with fitting of the DTB model parameters using Bayesian inference with DREAM. To be
able to benchmark our findings we start with a synthetic record of regolith depth observations created on a
regular DEM. This DEM is presented in Figure 2 and simply copies equation (8) to the y direction of the xy
plane using 100 different replicates of the topographic surface with Dy52. This DEM is now sampled at ran-
dom 100 different times (see black dots in Figure 2a) and the regolith depth at each sampled (x, y) location
of the grid is computed using
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~hðx; yÞ5Zsðx; yÞ2a1 a21Ldðx; yÞ=max ðLdÞ½ �21�m; (17)

where Zsðx; yÞ [L] is the elevation of the surface topography at spatial coordinates x, y, and a1 [L] and a2 [-]
are two coefficients whose values determine the borehole depth, and �m [L] denotes the measurement data
error of the bedrock depth data. Thus, the regolith depth at any location in the DEM is computed by sub-
tracting from the surface elevation the borehole depth and adding a measurement error.

We assume that a158 and a250:1 and draw the measurement data error from a normal distribution with
a 5 0 mean and standard deviation b51=2r̂Zb , or �m � Nða; bÞ, where r̂Zb denotes the standard deviation
of the n 5 100 bedrock depth observations before their corruption with a measurement error. Table 3 sum-
marizes the statistical properties of the resulting bedrock depth data set, including sample size and the min-
imum, maximum, mean, and standard deviation of the regolith thickness. This latter statistic determines the
measurement error of the bedrock depth observations, r̂Zb 51:43 m and provides a benchmark of the
‘‘best-fit’’ attainable by the DTB model (of which more later). The final data set of bedrock depth observa-
tions is stored in the n-vector ~H5f~h1; . . . ; ~hng and is now used to calibrate the DTB model using lumped
and spatially distributed parameter values.

5.1. DTB Model With Lumped Parameter Values
The DTB model has four parameters h5fU; k1; k2; Scg whose values are difficult to be measured directly in
the field and hence require calibration against observed bedrock depth data. In the absence of detailed
geologic data, we conveniently hypothesize the underlying rock mass to be homogeneous and use spatially
invariant values of the DTB parameters, h. We will revisit this hypothesis in the next section of this paper
using spatially distributed parameter values. We adopt the likelihood function of equation (14) and use a
multivariate uniform prior distribution for the DTB model parameters. With such noninformative prior, the
posterior density in equation (16) is then simply proportional to equation (14) and used herein for inference
of the DTB model parameters. The prior ranges of the parameters are listed in Table 4. The minimum and
maximum value of parameter U are set to 1024 and 1021, respectively. These ranges are rather wide, and
with a bedrock porosity of /50:1 and values for the hydraulic conductivity of consolidated crystalline rocks
that range between 1028 and 10213 m/s, gives values of the channel incision rate, Co of 0.03 to 3 mm/yr.
These ranges of Co are in agreement with values reported in Rempe and Dietrich [2014]. The prior ranges of

k1 2 ½0:1; 3� and k2½1; 20� are
derived from the results of
section 3, and the bounds of Sc

2 ½0:8; 1:5� are inspired from the
literature.

Figure 3 presents a scatter plot
matrix of the posterior samples
derived with the DREAM

Figure 2. Plot of the synthetic topography of the spatial domain of interest, (a) boreholes (red line) that reach to the bedrock surface (black dot), and (b) measurement locations (red
dots). The thin black lines represent the DEM grid with pixels (cells) of 8 3 8 meters, whereas the dark black lines represent the block pattern used in our distributed parameterization of
the DTB model.

Table 3. Summary Statistics of the Bedrock Depth Observations of the Synthetic and
Real-World Data Set Used Herein

Data Set Minimum [m] Maximum [m] Mean [m] ra [m] nb

Synthetic 0.13 11.60 4.36 2.97 100
Real world 0.35 14.00 6.20 3.67 137

aStandard deviation.
bNumber of point observations.
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algorithm. The main diagonal displays histograms
of the marginal distribution of each individual
DTB model parameter, whereas the off-diagonal
graphs display bivariate scatter plots of the poste-
rior samples. The x axes matches exactly the prior
ranges of the parameters (except for the parame-

ter U) and the maximum a-posteriori (MAP) solution is separately indicated in each histogram with the blue
cross. These parameter values ðfhMAPg � hargmaxðjH~Þ are associated with the highest value of the likeli-
hood function of equation (14) of all posterior samples generated by DREAM, and this MAP solution coin-
cides almost perfectly with the posterior median values.

The posterior histogram of the DTB model parameter U centers nicely around its MAP solution and follows
an approximately normal distribution. The marginal distribution of this parameter occupies a (very) small
portion of its uniform prior distribution, which demonstrates that this parameter is very well defined by cali-
bration against the observed (synthetic) bedrock depth data. The posterior histograms of the two bedrock-
valley shape parameters, k1 and k2 are not particularly well identifiable. The marginal distribution of k1 in
Figure 3f exhibits normality, although the histogram is somewhat skewed to the left and occupies a large
part of the prior distribution. The MAP solution of k1 between 1 and 2 indicates that the bedrock surface in
the valley does not reach the ground surface (see Figure 1). In other words, the valley is mantled with a thin
layer of soil. The marginal distribution of parameter k2 deviates considerably from normality and is much
better described with an uniform distribution. Note that the histogram of k2 appears truncated at the upper
end by its prior distribution. As the probability mass is distributed mainly at higher values of k2, we con-
clude that the shape of the bedrock surface in the valley follows closely that of the surface topography in
the channel. The parameter Sc follows a log-normal distribution and is truncated at the lower boundary of
its prior distribution. That relatively low values of Sc are perhaps not that surprising as the artificially gener-
ated bedrock depth observations were made close to the ground surface in a relatively steep hillslope. We
will revisit the posterior distribution of Sc later in this paper. The bivariate scatter (off-diagonal) plots
highlight negligible the presence of some correlation between the DTB parameters. For instance, consider

Table 4. Prior Uncertainty Ranges of the DTB Parameters for the
Artificial and Observed Bedrock Depth Data

Range U k1 k2 Sc

Minimum 1024 0.1 1.0 0.8
Maximum 1021 3.0 20.0 1.5

Figure 3. Lumped DTB parameterization: scatter-plot matrix of the posterior samples generated with the DREAM algorithm. The main diagonal plots histograms of the marginal posterior
distribution of the DTB model parameters, U, k1, k2, and Sc, respectively, and the off-diagonal graphs present bivariate scatter plots of the posterior samples of the different parameter
pairs. The MAP solution (value associated with highest likelihood) is separately indicated in each histogram with the blue cross symbol. The parameters exhibit a negligible correlation
by calibration against the observed bedrock depth data.
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the ðU; ScÞ scatter plots (top right,
bottom left) which depicts a some-
what nonlinear dependency between
these two parameters.

The performance of the DTB model is
now evaluated using two statistical
metrics including the root mean
squared error (RMSE) and the Pearson
product moment correlation coeffi-
cient, or q-statistic. Mathematical for-
mulas for both are readily found in
statistics textbooks. The RMSE meas-
ures the average distance between
the observed and simulated bedrock
depth data. This statistic has a similar

unit as the observations themselves. The lower the value of the RMSE the closer the model predictions to
the data. The q-statistic measures the strength and direction of a linear relationship between two variables.
It is used herein to quantify how well the DTB model predicted bedrock depths fall on the (1:1) line with
their observed values. Table 5 summarizes the performance of the DTB model using the posterior mean
parameter values. The calibrated DTB model has a q-value of 0.86 and RMSE of approximately 1.52 m. This
value of the RMSE is much lower than that derived from an uncalibrated DTB model (not shown) and of sim-
ilar magnitude as the measurement data error, r̂51:43 m. This latter finding is particularly important and
demonstrates the ability of the DTB model to describe accurately the observed bedrock depth data with
spatially invariant parameter values.

The assumption of parameter homogeneity is convenient but might not be borne out by the actual proper-
ties of the hillslope or watershed which can exhibit significant system heterogeneities at different spatial
scales. Much effort would be required to characterize adequately the rock mass properties such as disconti-
nuities, saturated permeability, and porosity for a reasonably sized watershed. The use of spatially distrib-
uted parameter values provides a means to account implicitly, and in a relatively simple way, for system
heterogeneities that are difficult, or sometimes impossible, to characterize adequately in the field. For exam-
ple, if the value of the parameter U is varied spatially, then the DTB model will assume spatially varying per-
meability and/or porosity values, given measured values of the channel-incision rate, Co.

In the next section of this paper, we will investigate the benefits of using a distributed DTB parameteriza-
tion. This distributed approach is of particular relevance to real-world data sets, but cannot be expected a
priori to improve significantly upon the fitting results of our lumped DTB parameterization for the synthetic
data set which already achieved posterior RMSE values close to the measurement data error. Any further
improvements in quality of fit of the DTB model must be carefully interpreted.

5.2. DTB Model With Spatially Distributed Parameter Values
The use of a distributed parameterization requires some changes to the setup of the DTB model. This is
depicted schematically in Figure 4 which summarizes the setup of the DTB model for an invariant (lumped)
and variant (distributed) parameterization. The top plot displays the surface of an idealized DEM consisting
of P cells (pixels). To simplify notation, we use a single variable, i5f1; . . . ; Pg to denote the xy coordinates
of a DEM cell. The input data of the DTB model in equation (4) differs per grid cell and is stored in the vec-
tor, Ui5frZbi; Ldig. If a lumped parameterization of the DTB model is used, then it suffices to use the same
parameter values, h5fU; k1; k2; Scg for each cell of the xy grid. This approach is most convenient and wide-
spread in the geomorphologic literature. A distributed DTB parameterization uses different parameter val-
ues for each region of the DEM. This approach increases significantly the dimensionality of the parameter
estimation problem and the required CPU-time for DTB calibration. Also, the spatially distributed framework
requires the user to define a spatial pattern for each of the model parameters. For example, in Figure 4 we
assume a simple block pattern of r 5 16 equal-sized squares for each of the parameters. Each individual
square thus consists of four different grid cells. In a distributed parameterization, the values of the parame-
ters of the first square (top left) are thus assigned to grid cells 1, 2, 9, and 10. After the parameterization of

Table 5. Performance Statistics of the Calibrated DTB Model After Bayesian
Inversion With the DREAM Algorithma

Data Set Case Dimension (d) RMSE [m] q AIC

Synthetic Lumped 4 1.52 0.86 192.30
Distributed 7 1.47 0.87 191.74
Distributed 28 1.40 0.88 221.43

Real world Lumped 4 1.80 0.83 194.00
Distributed 5 1.76 0.83 191.10
Distributed 8 1.76 0.82 193.90

aWe list separately the results for the synthetic (case-study I: top) and real-
world (case study II: bottom) data set of bedrock depth observations using
lumped and spatially distributed parameter values. The listed values of the root
mean square error (RMSE) and correlation coefficient, q pertain to the calibra-
tion data set for the synthetic bedrock topography and evaluation data set for
the real-world regolith depth observations. The AIC values in the last column
are computed with equation (18) using the maximum likelihood (5 MAP)
values of the parameters derived from the calibration data set.
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the DTB model has been defined, the DREAM algorithm proceeds with statistical inference of the model
parameters using distributed observations of the bedrock depth. Both implementations use the same
source code of the DTB model but differ in their assignment of the parameter values.

We are now left with the question of how to distribute the values of U, k1, k2, and Sc over the grid domain
of interest. Care should be exercised not to use too many parameters in lieu of overfitting. Two main
approaches can be used to determine the spatial distribution of the parameter values. The first approach
fixes a priori the spatial structure of the parameters and then determines the actual values of this pattern
by fitting the DTB model to the observed bedrock depth data. An example of this approach is found in Fig-
ure 2b for a block pattern and this design is used herein for illustrative purposes. One can also link the spa-
tial structure of h to properties of the DEM to guide the spatial structure of the parameter values. The
topographic position index [Tesfa et al., 2009; Reu et al., 2013] can be used as guiding metric to determine
the spatial structure of the parameters. This approach fixes a priori the spatial structure of the DTB parame-
ters, and this pattern might therefore not necessarily honor the underlying bedrock heterogeneity. Alterna-
tively, one can use so-called model-reduction techniques and let the actual regolith depth observations
determine simultaneously the pattern and values of the DTB model parameters. Examples of such model-

Figure 4. Schematic overview of the DTB modeling framework for a lumped (left) and distributed (right) parameterization of the water-
shed. The idealized DEM consists of P different grid cells and each have their own specific vector, Ui ; i5f1; . . . ; Pg, of DTB input data con-
sisting of slope gradient and the drainage distance. The lumped (default) DTB model parameterization uses a single realization of the
parameter values, h5fU; k1; k2; Scg for all P grid cells of the DEM. This requires calibration of just a handful of parameters. A distributed
parameterization, on the contrary, assumes different parameter values for each grid cell of the DEM. A simple block pattern is used to dis-
tribute the DTB parameters over the spatial domain of interest. The DREAM algorithm then proceeds with statistical inference of the model
parameters by fitting the model to spatially distributed bedrock depth observations.
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reduction approaches include
the discrete cosine transform
[Linde and Vrugt, 2013;
Lochb€uhler et al., 2015], wavelet
transform [Davis and Li, 2011;
Jafarpour, 2011], and singular
value decomposition [Laloy
et al., 2012; Oware et al., 2013].
We have tested this alternative
approach in the present study
but found little improvements
in the quality of fit of the DTB
model (not shown).

We now illustrate the results of
the DTB model using two differ-

ent distributed parameterizations of U. In our first trial, we divide the xy plane of the DEM into r 5 4 equal-
sized rectangles and assume a different value of U for each oblong. The remaining parameters (k1, k2, and
Sc) continue to take on a single lumped value that pertains to the entire spatial domain (Figure 4). The
parameter dimensionality has increased from d 5 4 in the first case study to d 5 7 in the present study. In
the second trial, we increase the number of square blocks for the parameter U to 25 as shown in Figure 2b.
This then leaves us with a total of d 5 28 parameter values that require calibration against the observed
bedrock depth data using the DREAM algorithm.

Figure 5 displays trace plots of the R̂-statistic of Gelman and Rubin [1992] for each of the model parameters
(d 5 28) using the last 50% of the samples stored in each of the N 5 15 Markov chains. This convergence
diagnostic compares the within-chain and between-chain variance of each parameter j5f1; . . . ; dg of the
DTB model. The different parameters are color coded. Convergence to a stationary distribution can be
declared if the R̂j-statistic of each of the d 5 28 parameters drops below the critical value of 1.2. Results
demonstrate that about 50,000 DTB model evaluations are required for DREAM to converge successfully to
a stationary distribution and satisfy the convergence threshold. This rather large number of model evalua-
tions involves a rather low computational effort due to the relative CPU efficiency of the DTB model. If
desired, each Markov chain sampled with DREAM can be evaluated on a different processor permitting
inference of CPU-demanding transient models. Most of the DTB parameters appear well defined by calibra-
tion to the observed bedrock depth data (not shown). We will investigate this further in the next section of
this paper using real-world observations of the depth to bedrock.

To determine which of the model complexities is best supported by the available regolith depth data, we
use Akaike’s Information Criterion (AIC) [Akaike, 1974]. This metric takes into consideration model complex-
ity (5 parameter dimensionality) and the goodness of fit. Hence, AIC provides a means for model selection.
The value of AIC is computed as follows

AIC522ln fLðhMAPj~HÞg12d; (18)

where LðhMAPj~HÞ is the maximum value of the likelihood function derived from the MAP (5 best) parameter
values. Given a collection of models for the data, AIC estimates the quality of each model, relative to each
of the other models. Models with lower AIC values are preferred statistically. Note, AIC does not give a warn-
ing if all models fit poorly, and hence this metric has to be interpreted jointly with other model performance
criteria.

Table 5 summarizes the performance of the DTB model with a distributed parameterization of U. The RMSE
has reduced from 1.52 (lumped: d 5 4) to 1.47 m (distributed: d 5 7) and the q-statistic has slightly increased
from 0.86 to 0.87. The results of the second trial (d 5 28) show a further reduction of the RMSE and another
increase of the q-statistic. In fact, the RMSE is now slightly lower than the (Gaussian) measurement error of
r̂Zb 51:43 used to corrupt the n 5 100 bedrock depth observations.

To understand whether these improvements in fit are statistically warranted, we also list, in the last column
of Table 5, the AIC values for each of the three DTB model parameterizations. The lowest value of the AIC is

Figure 5. Distributed calibration case: evolution of the R̂-convergence diagnostic of Gel-
man and Rubin [1992] for each individual parameter of the DTB model (d 5 28). Each
parameter is coded with a different color. The dashed black line depicts the default thresh-
old used to diagnose convergence to a limiting distribution.
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found for the first distributed
parameter case with d 5 7. This
constitutes a marginal improve-
ment over the value of
AIC 5 192.30 for the lumped
parameterization with d 5 4.
This suggest that U is better
characterized with the use of
spatially distributed values. The
second distributed case with
d 5 28 parameters, albeit hav-
ing the lowest value of the
RMSE and highest q-statistic,
has a value of AIC 5 221.43
which is much larger than the
other two model parameteriza-
tions. These results caution

against the use of an excessive number of parameters due to potential problems of overfitting. Indeed, a
lumped or a spatially distributed parameterization (d 5 7) of the DTB model suffices for this synthetic data
set, and any further improvements in fit are not warranted by the available bedrock depth observations.

Thus far, we have focused our attention on the posterior parameter distributions of the DTB model and
summary statistics of the quality of fit of the mean solution. We now turn our attention to the simulated
output of the DTB model and plot in Figure 6 the bedrock surface of the posterior mean solution of the
lumped (solid red) and distributed (dashed red) parameterization for a synthetic hillslope transect. The
dark and light gray regions display the 95% prediction uncertainty ranges of the simulated bedrock
depths using lumped (d 5 4) and distributed (d 5 7) parameter values, respectively. The topographic sur-
face is indicated with the black line, and the observed regolith depth data are separately indicated with
the solid blue dots. The posterior mean simulation of the lumped and distributed parameter case appears
rather similar (as expected from Table 5) and tracks closely the observed bedrock depth data. The simu-
lated bedrock surface is much smoother than expected from the observed data and does not fit the mali-
cious small-scale variations of the regolith thickness induced by the measurement error. These erroneous
small-scale variations in the bedrock depth appear to be largest at the side slope, generating a thin rego-
lith thickness in this region. This might explain why the marginal distribution of Sc in Figure 3p favors rela-
tively small values. The prediction uncertainty of the lumped DTB calibration is much smaller than its
counterpart derived from a distributed parameterization, except at the drainage channel. This is a com-
mon finding and highlights a trade-off between model complexity (5parameter dimensionality) and pre-
diction uncertainty. We will discuss later the implications of this bedrock prediction uncertainty on
hydrologic and geotechnical analysis.

6. Bayesian Inference With Dream: Application to the Papagaio River Basin

We now apply the DTB model to a real-world data set. In the next sections, we describe the experimental
field site, data collection, and present the results of DTB model calibration and evaluation for a lumped and
distributed parameter case.

6.1. Experimental Field Site
Field investigations were carried out in two adjacent watersheds in the Papagaio river basin in Rio de
Janeiro, Brazil. These two watersheds have been studied extensively by many different authors in the litera-
ture after mass movement occurred in 1996 [Guimar~aes et al., 2003; Fernandes et al., 2004; Vieira and
Fernandes, 2004; Gomes et al., 2008, 2013] (among others). A detailed description of the field site appears in
these cited publications, and thus will not be repeated herein. The geographic location of the field sites is
depicted with a red cross in Figure 7 which also presents (left hand side) the topography of the two experi-
mental basins. The white dots signify the measurement locations, and the hillslope transects AA’ and BB’

Figure 6. Lumped and distributed calibration case: simulated bedrock surface of the DTB
model for the lumped and distributed parameter case. The mean posterior solution is indi-
cated with the solid (lumped) and dashed (distributed) red line, respectively, and the light
and dark gray region represent the 95% prediction intervals due to parameter uncertainty
for each case. The observed bedrock depth data are separately indicated with the blue
dots.
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are of particular interest herein. The elevation in the surveyed region ranges between 190 and 360 m above
sea level with slopes that vary between 0 and 57

�
.

The local bedrock consists of high-grade metamorphic rocks (Archer gneiss is most frequent) with granite
intrusions of coarse-medium granular texture [Fernandes et al., 2004; Vieira and Fernandes, 2004]. Human
impact in the region has been limited to a few small areas used for agricultural activities [Gomes et al., 2008]
and the vegetation (Atlantic forest) has been preserved in most parts of the basin. DTB observations were
made at n 5 137 different locations in the two watersheds using a light dynamic cone penetrometer (DPL).
These locations were carefully selected to maximize information retrieval about the underlying bedrock sur-
face and include a rich sample of convex, concave, planar, convergent, and divergent slopes. Statistical
properties of the regolith depth observations are listed in Table 3.

Our definition of soil-bedrock interface using DPL tests follows many approaches published in the literature
[Kosugi et al., 2006, 2009; Fujimoto et al., 2008; Ohnuki et al., 2008; Askarinejad et al., 2012; Wiegand et al.,
2013; Athapaththu et al., 2014; Liang and Uchida, 2014]. The test consists of a steel cone (10 cm2 area) that is
driven into the soil by the falling energy of a 10 kg hammer. The hammer transmits an exact amount of
energy (of a fixed height of 50 cm) to a set of 1 m length steel rods. With the hammer impact, the set of
rods penetrates vertically and number of blows to advance 10 cm is computed. The definition of the rego-
lith depth depends on DPL type and site-specific conditions. Each one of the cited publications above have
adopted a different approach to measure bedrock topography. In this paper, we implement the following
procedure to measure the bedrock-depth surface: (1) 100 blows to advance 10 cm; (2) 80 or more blows to
advance three consecutive segments of 10 cm; (3) 60 or more blows to advance five consecutive segments
of 10 cm; and (4) depth greater than 12–13 m. DPL has a limitation to achieve depths greater than 13 m,
since the extraction of the rods may be compromised. However, our field experiments demonstrated that

Figure 7. (right) Geographic overview and (left) shaded relief image of the PRB experimental field site in Rio de Janeiro, Brazil. The PRB
field site is indicated with a red cross. The white circles (left) denote the measurement locations of the regolith depth observations using a
dynamic cone penetrometer. The transect AA’ is used to demonstrate the effects of DEM smoothing. The transect BB’ is a cross-section in
the south subbasin and used herein to compare the simulated bedrock profile against observations of the regolith depth to unweathered
bedrock.
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measured regolith depth was predominantly in the range between 0 and 13 m. What is more, our criteria
used to define the soil-bedrock boundary is consistent with approaches adopted in the literature.

The smallest of the two experimental watersheds was used primarily to study small-scale variations in the
depth to bedrock. This requires the use of neighboring boreholes that measure DTB within a few meters of
each other. The southerly and larger watershed was populated more uniformly with different boreholes to
investigate more deeply the bedrock surface along a hillslope. This difference in objective is readily appa-
rent in the areal view of the two catchments in Figure 7. The borehole pattern of the larger watershed in
the south appears much more uniform and organized than its counterpart from the northerly watershed
(left), which contains many more adjacent boreholes. A differential GPS system was used to determine as
accurately and consistently as possible the {x, y, z} location of each borehole. We estimate the remaining
location error to be on the order of 0.5 m for all the n 5 137 different boreholes.

6.2. Model Input Data
The topographic surface is one of the most important input variables of the DTB model. Some correction of
this surface is usually required to remove small-scale imperfections arising from (among others) three
throw, animal burrows, and LiDAR measurement errors [Pelletier and Rasmussen, 2009]. Such DEM errors can
otherwise corrupt the results of models which rely heavily on the first and second-order derivative of the
topography (slope and curvature of DEM) in their calculation of the soil/bedrock depths. Indeed, when a
DEM is differentiated, the small-scale variability of the topographic data is amplified relative to large-scale
topographic variations that define the overall shape of the hillslope.

Even the most accurate and advanced topographic surveying methods such as high-resolution LiDAR
exhibit measurement errors that can introduce small-scale defects in the DEM and deteriorate the simulated
bedrock depths by introducing erratic and malicious spikes and dips in first and higher-order topographic
derivatives used by different models. A generally practiced method to avoid this issue is a smoothing
approach [Saco et al., 2006; Pelletier and Rasmussen, 2009]. We here smooth the DEM prior to application of
the DTB model using

Zk
i;j5
h

Zk21
i;j 1w Zk21

i;j211Zk21
i;j111Zk21

i21;j1Zk21
i11;j

� �i.
ð114wÞ; (19)

where Zi;j 5 elevation of a spatial location given by coordinates i and j [L]; k 5 iteration; and w 5 empirical
weight [-]. The degree of smoothing can be controlled by the iteration number k and by w 2 ð0; 1�. The
exact value of the weight is not particularly important as the degree of smoothing can be controlled by iter-
ation number. The smaller the value of the weight the more iterations are required to reach a certain
smoothed topography. The number of iterations required to remove small-scale topographic imperfections
depends on the accuracy of the LiDAR observations, and is thus data set dependent.

To better understand how the number of iterations affects the smoothed topographic, please consider Fig-
ure 8 which plots the outcome of equation (19) for different values of k and w 5 0.2 using a cross section of
the DEM of the PRB. The plot shows the topographic surface for values of k 5 5 (blue), k 5 10 (green), k 5 30

Figure 8. The effect of the number of iterations of the smoother algorithm on the topographic surface. The large black rectangles are
zoomed insets of the smaller rectangles of the footslope (depositional area) and sideslope (steepest gradient). Ten iterations are deemed
sufficient to remove the small topographic defects of the DEM.

Water Resources Research 10.1002/2015WR018147

GOMES ET AL. BAYESIAN INFERENCE FOR BEDROCK MAPPING 3102



(red), and k 5 50 (cyan). The original LiDAR measured (nonsmoothed) surface is separately indicated with
the dashed black line. The large black rectangles are zoomed insets of the smaller rectangles of the foot
slope (depositional area) and sideslope (steepest gradient) and much better demonstrate the effect of the
different iterations on the topographic surface. A few iterations (5–10) with the smoothing kernel of equa-
tion (19) is sufficient to remove the small-scale defects (roughness) so clearly visible in the insets but does
not affect the main properties of the DEM. The use of a larger number of iterations (k> 10) compromises
unnecessarily the DEM and introduces topographic discrepancies in the drainage and hilltop regions of the
hillslope. In summary, a value of k 2 ½5; 10� is sufficient to correct for small-scale topographic imperfections
and maintains the overall integrity and characteristics of the measured DEM. For other values of w 2 ð0; 1�,
the same analysis can be repeated to determine a suitable value for k.

Different approaches have been used in the literature to remove the pit-and-mound topography captured
by LiDAR DEM but also retain the hillslope scale pattern [Saco et al., 2006; Pelletier and Rasmussen, 2009].
Recent studies have attempted to extract relevant scales for smoothing high-resolution surfaces [Roering
et al., 2010; Hurst et al., 2012]. However, a discussion about different smoothing methods is outside the scope
of the present paper and we refer to these publications for further information. We now use the smoothed
DEM as input to DTB model and fit the model against observed bedrock depth data using a lumped and dis-
tributed parameterization with the DREAM algorithm.

6.3. DTB Model With Lumped Parameter Values
The method proposed in section 5.1 is now applied to the borehole observations at the experimental site.
The bedrock data set is split randomly into two parts, designated for DTB-model calibration (75%) and eval-
uation (25%). The observations that were affected by tree roots and boulders were removed from the data
set. A pixel size of the DEM of 4 m was deemed an acceptable trade-off between model accuracy and com-
putational efficiency. We now estimate the posterior distribution of the DTB model parameters, h5fU; k1;

k2; Scg using Bayesian inference with DREAM. The prior ranges for the parameters are listed in Table 4. We
now discuss the results.

Figure 9 presents a scatter plot matrix of the posterior samples derived from DREAM. The graphs on the
main diagonal present marginal distributions of each of the parameters, whereas the off-diagonal elements

Figure 9. Lumped DTB parameterization: scatter-plot matrix of the posterior samples generated with the DREAM algorithm. The main diagonal plots histograms of the marginal posterior
distribution of the DTB model parameters, U, k1, k2, and Sc respectively, and the off-diagonal graphs present scatter plots of the posterior samples of the different parameter pairs. The
MAP solution (solution with highest likelihood) is separately indicated in the histograms with the blue cross symbol. The parameters pairs exhibit a negligible correlation.
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display bivariate scatter plots of
the posterior samples. The pos-
terior distribution of the param-
eter U follows closely a normal
distribution with median poste-
rior solution that is in excellent
agreement with the MAP value,
separately indicated in the his-
togram with the blue cross sym-
bol (A). The posterior histogram
of U has many elements in
common with its counterpart
derived in the synthetic study
case (Figure 9a). Indeed, the
marginal distribution extends
only a small portion of the uni-

form prior distribution, which demonstrates that this parameter is well defined by calibration against the
real-world bedrock depth data. The marginal distributions of the other three parameters occupy almost
their entire prior distribution, which suggest that these parameters are poorly defined by calibration against
our bedrock depth observations. The relatively low values of the parameter k1 (including the MAP value)
suggest that the bedrock is close to the surface in the channel zone with a thin soil mantle overlying a
weathered bedrock zone (Figure 9f). The high MAP value for k2 (Figure 9k) signifies that the bedrock valley
topography approximates a smooth concave shape (see Figure 1). The marginal distribution of parameter
Sc is quite different from its synthetic case (Figure 9p). Indeed, Sc now attains much higher values, demon-
strating the presence of a much thicker regolith zone underneath steep slopes. The bivariate scatter plots
(off-diagonal) highlight the presence of some negligible correlation between the DTB parameters, U and k2

and U and Sc as in section 5.1.

The posterior mean parameter values derived from the calibration are now used to determine the perform-
ance of the DTB model on the independent evaluation data set. The performance of the DTB model is sum-
marized in Table 5. The listed value of the RMSE of 1.80 m and the q-statistic of 0.83 can be considered
acceptable for the PRB experimental watershed. These performance metrics might be improved upon if a
distributed parameterization of the DTB model is used. We therefore turn our attention again to the
assumption that the parameter U might contain information about rock heterogeneity not explicitly
accounted for in the DTB model formulation. We discuss the results of such distributed parameterization in
the next section.

6.4. DTB Model With Spatially Distributed Parameter Values
In a previous section of this paper, we have shown (see Figure 1) that the DTB model simulates a smooth
bedrock surface from the hilltop to the drainage channel in the valley. Such regular surface does not do jus-
tice to the rather dynamic variations of the regolith thickness at different experimental sites in Rio de
Janeiro. This DTB variability is partly explained by measurement errors of the dynamic cone penetrometer
but cannot be described and mimicked accurately with an analytic solution. The assumptions of the DTB
model are convenient in deriving analytic solutions of the bedrock surface but might not characterize
adequately three-dimensional topographic effects arising from ridge and valley topography and vertical or
lateral heterogeneities, particularly the K=/ relation [Rempe and Dietrich, 2014]. What is more, the channel
incision rate, Co is unlikely to be constant over large timescales, due to (among others) a variably bedrock
resistance, lateral movement of the channel, and internal dynamics of stream capture at the PRB field site.
Furthermore, the bedrock is assumed to be spatially homogeneous and rock mass discontinuities are
ignored. These processes (and properties) are very difficult to characterize adequately with an analytic solu-
tion, and instead warrants numerical modeling of the bedrock depth.

We now discuss the results of the DTB model for two different distributed parameter cases. In the first trial,
a different value of U is assumed for each sub watershed of the PRB, and the other three parameters (k1, k2,
and Sc) assume lumped values over the domain of interest (Figure 4). This involves the inference of d 5 5
parameters. In the second trial, all four DTB-model parameters are varied per subcatchment within the PRB,

Figure 10. Distributed calibration case: trace plot of the R̂-convergence diagnostic of Gel-
man and Rubin [1992] for each individual parameter of the DTB model (d 5 8). Each param-
eter is coded with a different color. The dashed black line depicts the default threshold
used to diagnose convergence to a limiting distribution. About 10,000 model evaluations
are needed with DREAM to converge to the posterior distribution.
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Figure 11. Lumped and distributed calibration case: spatial distribution of the regolith thickness predicted at the PRB experimental watershed using a (a) lumped and (c,e) distributed
parameterization. The DTB model predicts deep soils at the hilltop and relatively thin weathered zones in the channel, a result which is in agreement with regolith depth observations at
the PRB and field expertise of hillslopes in Rio de Janeiro. The bivariate scatter plots at the right hand side compare the observed and simulated bedrock depths of the evaluation data
set of the PRB. Summary statistics of the goodness-of-fit (RMSE, q and AIC) are listed in each plot along with the number of model parameters, d. The color coding of these regression
plots matches exactly that of the bedrock depth maps.
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thereby increasing further the
model complexity to d 5 8. Fig-
ure 10 presents the evolution of
the sampled R̂-values for each
DTB model parameters of the
distributed parameterization
with d 5 8. About 10,000 DTB
model evaluations are required
for DREAM to converge success-
fully to a stationary distribution.
This requires a few minutes of
calculation on a standard laptop
computer. Parallel computing
can be used to reduce further
the CPU budget.

Table 5 summarizes the per-
formance statistics of the two
distributed parameterizations
for the evaluation data set. The
listed RMSE and q-statistics
appear very similar with RMSE

that has decreased from 1.80 m for the lumped case to 1.76 m for both distributed parameterizations. The
q-statistic appears rather unaffected and actually has deteriorated somewhat from 0.83 to 0.82 when the
number of parameters is increased beyond four (lumped case) or five (first distributed case). The distributed
parameterization of the DTB model with d 5 5 receives the lowest value of the AIC metric, and is thus most
supported by the available soil depth data. This value of 191.10 is somewhat lower than its counterpart of
194.00 and 193.90 for the lumped and most distributed parameter case, respectively. Altogether, we con-
clude that the distributed parameterization with d 5 5 is statistically preferred.

We now plot in Figure 11 the DTB simulated regolith thicknesses at the PRB experimental watershed using
the mean posterior solution of the lumped (A: d 5 4) and distributed parameterizations (C: d 5 5; E: d 5 8).
To simplify graphical interpretation, a common color bar is used for all three calibration cases. The scatter
plots at the right hand side compare the observed and simulated regolith depth values at the different
measurement locations. The solid black line is used to denote the identity or 1:1 line. The color coding in
these regression plots matches the color bar used in the figures at the left hand side. The simulated bedrock
depth maps of the different calibration cases appear very similar and exhibit only small differences if a dis-
tributed parameterization is used. The DTB model predicts a smooth topography from the hilltop (thick
regolith) to the drainage channel (thin or even exposed rock), a pattern that agrees well with field observa-
tions. These results are in agreement with theory [Rempe and Dietrich, 2014; Clair et al., 2015] and field
expertise [Liang and Uchida, 2014; Kim et al., 2015] for a geologically similar environment with steep slopes
on a granitic rock mass, and provides support for the claim that the DTB model gives an adequate descrip-
tion of the bedrock surface at the PRB field site.

We conclude this section with Figure 12, which plots the DTB simulated bedrock profile of the mean pos-
terior solution for the BB’ transect (Figure 7) using the distributed (d 5 5) parameterization. The topo-
graphic surface is indicated with the black line and the observed bedrock depth data are indicated
separately with a blue dot. The dark gray region represents the 95% confidence intervals of the output
prediction due to parameter uncertainty, whereas the light gray region denotes the corresponding total
prediction uncertainty. The simulated posterior mean bedrock surface (solid red line) appears rather
smooth and fits nicely the observed bedrock depth observations. The 95% parameter uncertainty
bounds appear relatively small and track closely the observed regolith depth data. The total (mod-
el 1 parameter) 95% prediction uncertainty intervals are rather large and encompass the observations.
The different DTB model parameterizations predict a very similar posterior mean bedrock depth surface
(not shown), but the prediction uncertainty increases (as expected) with increasing dimensionality of the
parameter space.

Figure 12. Distributed calibration case: simulated DTB bedrock surface of the posterior
mean solution (solid red line) derived from DREAM for the transect BB’ at the PRB experi-
mental watershed. The dark and light gray region plots the 95% prediction intervals due
to the parameter and total simulation uncertainty. The topographic surface is indicated
with the black solid line, and the observed regolith depth data are separately indicated
with the blue dots.
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7. Discussion

The Bayesian inversion framework used herein enables synthesis of geomorphic models with spatially dis-
tributed field observations. This approach uses MCMC simulation with DREAM to search efficiently the
model parameter space in pursuit of so-called posterior samples that honor best the observed data. The
quality of fit is quantified by a likelihood function which takes into explicit account the calibration measure-
ment data error. A prior distribution can be used to constrain the ranges of each parameter and/or to favor
values in better agreement with yet available geologic data. The posterior samples of DREAM are then
visualized using marginal distributions and pairs of bivariate scatter plots. These plots can be used to assess
parameter sensitivity and correlation. Predictive uncertainty can be assessed by evaluating the model with
each posterior parameter solution. The posterior mean simulation can then be compared to validation data
to benchmark the performance of the model and help verify the main assumptions and equations it is
based on. This step is an integral part of the scientific method and key to model (hypothesis) refinement.

The DREAM algorithm is designed specifically to solve for the target distribution in high-dimensional param-
eter spaces. Parameters whose marginal distribution is relatively tight appear well resolved by the available
data. If, on the contrary, the marginal distribution occupies a large portion of the prior distribution, then the
parameter cannot be constrained by the calibration data and can be classified as insensitive. The use of spa-
tially distributed parameter values provides a means to account implicitly, and in a relatively simple way, for
system heterogeneities that are difficult, or sometimes impossible, to characterize adequately in the field.
For example, the DTB model can simulate spatially varying /Co=K if the value of U is varied over the water-
shed of interest. One should be particularly careful however not to use too many distributed parameters to
characterize spatially the geomorhic processes and bedrock properties of the watershed of interest as this
increases significantly the chances of overfitting. An example of this was given in the first case study involv-
ing synthetically generated bedrock depth observations. The closest match with the bedrock data is
achieved with a distributed implementation of the DTB-model involving inference of d 5 28 parameters.
The RMSE of this parameterization (1.40 m) is considerably lower than its counterpart of 1.52 m derived
from a lumped calibration, nonetheless a comparison of their AIC values (221.43 versus 192.30) suggests
that the lumped parameterization is preferred statistically. Thus among competing hypothesis the one with
the lowest value of the AIC should be selected. This principle of parsimony is also known as Occam’s razor.
Indeed, in both our case studies, the simplest distributed DTB-model parameterization (d 5 5 for the real-
world case) is most supported by the available regolith depth data.

Bayesian analysis coupled with MCMC simulation has several key advantages over standard optimization
approaches, one of which is the explicitly characterization of model simulation (prediction) uncertainty. The
depth to bedrock, for instance, is a key input variable in hydromechanical and geotechnical studies, but
without underlying estimates of uncertainty, this boundary is treated instead as a fixed entity in slope stabil-
ity analysis and debris-flow studies [Guimar~aes et al., 2003; Fernandes et al., 2004; Gomes et al., 2008, 2013].
As the posterior mean simulation of the bedrock depth underneath the hillslope or watershed was shown
to be in excellent agreement with the observed data, the DTB model output should improve considerably
simulation of large-scale shallow landslides and debris-flow events [Gomes et al., 2013]. What is more, we
can also propagate forward the bedrock depth uncertainty through hydromechanical models to quantify
prediction intervals of key output variables such as landslide potential and factor of safety. The availability
of an accurate bedrock depth map also makes it easier to characterize adequately the impact of soil hydrau-
lic and soil strength properties on slope stability. Previous work at the PRB published in Guimar~aes et al.
[2003] treated bedrock topography and soil cohesion as a single variable-controlling shallow landslides.

A lumped parameterization of the DTB model is warranted for a sparse data set of regolith depth observa-
tions. The number of degrees of freedom, df 5n2d, then remains sufficiently large to minimize the chances
of overfitting. If a sufficiently large number of bedrock depth measurements is available, then a distributed
DTB model parameterization can be used. The most promising results for the PRB were derived if the parame-
ter U is varied spatially per subcatchment. The parameter Sc enables simulation of varying bedrock depths
along the hillslope and allows the DTB model as proposed herein to reproduce accurately the presence of
thin soils and/or exposed rock at the steep slopes in the upland portion of the PRB. The bedrock-valley mor-
phology in the DTB model is controlled by the variable K and inference of its parameters k1 and k2 allows sim-
ulation of many different shapes and depths of the bedrock surface underneath the drainage channel.
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In this paper, we have used spatially distributed observations of the bedrock depth as a calibration target.
This integrated variable summarizes the cumulative history of a myriad of different geologic processes such
as climate cycles, internal dynamic, episodic instabilities (mass movements), variable resistant rock mass,
and nonuniform channel incision [Rempe and Dietrich, 2014]. These processes act together in the watershed,
and their complex (nonlinear) relationships with surface topography, soil, and/or rock mass properties give
rise to a spatially variable bedrock depth. By using observations of the bedrock depth at different locations
in the watershed, we can constrain sufficiently the parameters (and output) of the DTB model, yet other
data types are needed to verify whether the processes simulated by the model are adequately described.
Without such data, it will be very difficult to benchmark the adequacy of the different components of the
DTB-model in pursuit of epistemic errors. It is not particularly difficult to adapt the likelihood function of
equation (14) to include other calibration data types as well.

If the main application of our DTB model is to produce accurate maps of the bedrock depth for geotechni-
cal analysis, then model adequacy is not as important as long as the simulated bedrock depths are in rea-
sonable agreement with their point observations. High-fidelity and high-resolution bedrock depth maps
can then be generated (with estimates of uncertainty) using a distributed parameterization of the DTB
model. This does require the availability of a relatively dense network of borehole/geophysical observations
and careful analysis of overfitting using split sampling and/or uncertainty analysis of the posterior maps
sampled with DREAM. The simulation result of such distributed calibration approach was plotted in Figure
12 using a different gray color for the DTB parameter and model uncertainties. This posterior simulation of
the bedrock depth can now be used for probabilistic geotechnical analysis to derive 95% uncertainty inter-
vals of common metrics of slope stability and landslide potential. This framework embraces the conclusions
of Catani et al. [2010], who used an infinite slope stability model with distributed bedrock depths and found
that the soil thickness was probably the most significant ‘‘parameter’’ controlling the factor of safety. Indeed,
one would expect the explicit treatment of bedrock depth uncertainty in geotechnical analysis to improve
risk analysis and decision making.

In this paper, we have used a classical residual based likelihood function to quantify the agreement
between the model and observational data. This statistical measure of model/data similarity is not rooted
properly in geologic/geomorphic theory and has little correspondence to specific behaviors of the system.
This makes it very difficult to detect model structural errors, our main intended goal in application of Bayes-
ian methods. We therefore recommend the use of summary metrics of the calibration data instead. These
statistics can be designed to measure theoretically relevant parts of system behavior, and diagnostic evalua-
tion then proceeds with analysis of the behavioral (signature) similarities and differences between the sys-
tem data and corresponding model simulation [Gupta et al., 2008; Vrugt and Sadegh, 2013]. Ideally, these
differences are then related to individual process descriptions, and model correction takes place by refin-
ing/improving these respective components of the model. Recent work has shown that such an approach
provides better guidance on model malfunctioning and related issues than the conventional residual-based
paradigm [Sadegh et al., 2015]. The DREAM toolbox supports the use of summary statistics and diagnostic
model evaluation [Vrugt, 2016].

The focus of our study has been only on a relatively small part of the PRB. A relatively large monetary invest-
ment would be required to obtain a high-quality bedrock depth data set for the entire watershed. This
would also involve significant human commitment particularly on the steepest hillslopes of the PRB which
are specifically difficult to access and dangerous to measure, even for well-trained professionals.

8. Summary and Conclusions

The depth to bedrock beneath soil-mantled landscapes controls a myriad of ecologic, hydrologic, geomor-
phologic, and atmospheric processes as it influences subsurface flow paths, erosion rates, soil moisture sta-
tus, water uptake by plant roots, and latent and sensible heat fluxes. As hillslope interiors are very difficult
to illuminate and access, the direct measurement of the bedrock depth is rather time consuming, and
much effort and human commitment would be required to characterize adequately bedrock depth varia-
tions at spatial scales of a hillslope and watershed. Thus, a computer model that can simulate high-
resolution spatial maps of the depth to bedrock is of great value and importance.
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In this paper, we have introduced the different building blocks of a DTB model to predict the vertical extent
of the weathered rock underling soil-mantled hillslopes from a high-resolution topographic map of the soil
surface. Our model builds on the bottom-up control on fresh-bedrock hypothesis of Rempe and Dietrich
[2014] and calculates the thickness of the weathered zone from the difference between the measured sur-
face topography and predicted groundwater profile derived from analytic solution of the one-dimensional
steady state Boussinesq equation. Two additional terms are used in our DTB model to characterize
adequately the effect of mass movement on steep hillslopes, and the shape and depth of the bedrock sur-
face in the drainage valley. Most of the model parameters can be measured directly in the laboratory or
field using experiments on soil and rock mass samples, and simulated variables can be verified using cos-
mogenic nuclide measurements, geophysical imaging, topographic surveying, and drilling.

Bayesian analysis was used to reconcile the DTB-model predicted bedrock depths beneath hilltops, side-
slopes, and valleys with field observations. This approach uses MCMC simulation with DREAM to search effi-
ciently the model parameter space in pursuit of so-called posterior samples that best mimic the observed
data. The quality of fit is measured by a likelihood function which summarizes in a single value the distance
between the observed and simulated bedrock depths. The prior distribution summarizes all our knowledge
about the model parameters before the field data are collected. This distribution should honor soft data,
geologic observations, field expertise, and literature findings. Marginal distributions and pairs of bivariate
scatter plots of the posterior samples generated with DREAM are used to assess parameter sensitivity and
correlation. Predictive uncertainty can be assessed by evaluating the DTB model with each posterior param-
eter solution. The posterior mean bedrock depth map can then be compared to observed data to bench-
mark the performance of the DTB model and help verify structural weaknesses. This step is an integral part
of the scientific method and key to model (hypothesis) refinement.

Two case studies with synthetic and real-world regolith depth data from the Papagaio river basin in Rio de
Janeiro, Brazil were used to illustrate the usefulness and applicability of our DTB model and methodology.
Our results demonstrate that the proposed DTB model with lumped parameters mimics reasonably well the
observed regolith depth data with root mean square error (RMSE) of the posterior mean simulation of
1.52 m and 1.80 m for the synthetic and PRB evaluation data set, respectively. The performance of the DTB
model can be enhanced if a distributed parameterization of U is used with RMSE for both data sets reduced
to 1.47 and 1.76 m, respectively. The use of a distributed parameterization provides a means to account
implicitly, and in a relatively simple way, for geologic/geomorphic watershed heterogeneities that are diffi-
cult, or impossible, to characterize adequately in the field.

The DTB simulated bedrock surface underneath the watershed can be used as input to hydromechanical
models and should improve considerably the reliability of hillslope-scale simulations of shallow landslides
and debris-flow. The posterior bedrock depth simulations of the DTB model also allow uncertainty quantifi-
cation of some key output variables of hydromechanical models such as landslide potential and factor of
safety. What is more, the availability of an accurate bedrock depth map also makes it easier to characterize
adequately the impact of soil hydraulic and soil strength properties on slope stability.
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