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APPROXIMATIONS FOR HAND CALCULATORS USING 

SMALL INTEGER COEFFICIENTS 

Stephen E. Derenzo 
Lawrence Berkeley Laboratory 

University of California 
Berkeley CA 94720 

ABSTRACT 

LBL-3804 

Methods are presented for deriving approximations containing small 

integer coefficients. This approach is useful for electronic hand 

calculators and programmable calculators, where it is important to 

minimize the number of keystrokes necessary to evaluate the function. 

For example, the probability P(x) of exceeding x standard deviations of 

either sign (Gaussian probability integral) is approximated by 

p(x) ~ EXP[- (83x + 351)x + 562] 
703/x + 165 

with a relative error less than 0.042% over the_ range 0 < x < 5.5 

(1 > P(x) > 4 x 10-8). Other examples presented are the functional 

inverse of P(x); the Klein-Nishina cross section for Compton scattering; 

photoelectric cross sections in H2o, Bone, Fe, Nai, and Ph; and the pair 

production cross section in Ph. 
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1. Introduction 

By the use of suitable approximations most functions can be con-

1 2 
veniently evaluated on automatic digital computers. ' Howe•Jer; these 

approximations (usually polynomials or rational.functions) are often 

inconvenient for hand calculators because many keystrokes are required 

to enter the coefficients. In this paper we describe methods for de-

riving approximations containing small integer coefficients, which 

substantially reduce the number of keystrokes required. This approach 

is also important for programmable calculators, where the stored pro-

grams are usually limited to a certain number of keystrokes. 

In many cases such approximations can be evaluated as rapidly and 

will generally be as accurate as interpolation from tables, eliminating 

the need for tables in those cases. Although graphical representation 

permits ready interpolation it has limited accuracy, especially when the 

function spans many decades. 

The method consists of four parts: (1) selecting a suitable form 

for the approximation, (2) fitting the approximation to the function, 

(3) eliminating unnecessary terms in the approximation and (4) determin-

ing small integer coefficients that give a fit not substantially worse 

than the best fit of (2). 

2. Method 

2.1 Selecting a suitable form 

This part of the method rests heavily on the existing body of ap-

1 2 
proximation theory ' , but a few comments seem appropriate. (1) Many 
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electronic calculators are equipped with~ sin x, cos x, tan x, ex 

ln x, xY, etc., keys and these should be considered if the function to 

be approximated resembles one of them. (2) There is much merit however, 

in the polynomial, which (when arranged according to Horner's rule) has 

a repetitive pattern that lendsritself to a rapid keystroke pace. 

Moreover, electronic calculators can evaluate polynomials as rapidly as 

the keys are depressed but this is not so for the transcendental func-

tiona. (3) Asymptotic limits are important in the selection of a form. 

For example, the Klein-Nishina formula (discussed in Section 3.3) 

-1 
approaches a constant value at low photon energy E and decreases as E at 

large values of E. This suggests a form such as 

g(E) = 

Note that no simple power series can satisfy these limits. 

2.2 Fitting the approximation to the function 

After a form g(x) has been chosen, its (unknown) coefficients a 1 to 

~must be selected so that g(x) fits the function f(x) to be approximated. 

The usual criterion is the minimax (or least maximum) error criterion, 

requiring that the largest deviation of !d(x) I be·minimized, where 

d(x) = w(x)[g(x) -f(x)] (1) 

and w(x) is a weighting function. 3 Under this criterion, the function 

d(x) oscillates about zero with equal positive and negative excursions. 

For rational approximating forms Chebyshev's Theorem gives the minimum 
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number of excursions that are necessary and sufficient for a best 

. 2 
approximation •. 

Unfortunately, the minimax criterion does not lend itself to the 

4 minimization code used in this work, as the code assumes that the 

function to be minimized is locally quadratic in the coefficients ai. 

It was found, however that the code could minimize D given by: 

M 
D L 

j=l 

4 
d(x.) 

J 
( 2) 

where the base points xj were chosen with sufficient density that d(xj) 

was a reasonable representation of d(x). Moreover, the resulting de-

· viations d(xj) oscillated about zero with very nearly equal positive and 

negative excursions and had the necessary minimum number of excursions 

for a best fit (see figures). Thus, while the best fit coefficients 

given in Section 3 may not be unique, no other values can yield a 

5 significantly better fit. 

In the event that the deviations d(x.) are larger than the required 
J 

accuracy, it is necessary to go back and improve the form of the ap-

proximation. This usually means increasing the number of terms and 

consequently increasing the number of coefficients. 

2.3 Elimirtatirtg unnecessary terms 

As a rule, we started with a form that contained a sufficient 

number of terms to give a good fit. Then the computer code set each 

coefficient in turn to zero while all others were varied to minimize D. 
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If the best of these fits was acceptable, the related coefficient was 

set permanently to zero and the process was automatically repeated to 

try to eliminate other terms. 

2.4 Determining small integer coefficients 

The methods described in this section assume that the approximation 

remains numericalty unchanged when all coefficients are multiplied by a 

common factor. For example, this assumption is valid for power series 

(provided they are divided by a single coefficient) and more generally 

for the rational approximations,but not for expansions in transcendental 

functions. 

We now define a scale fact~r b1 that is allowed to take on the 

integer values 1,2,3, •••• Renaming the best fit coefficients a 1 to aN 

from Section 2.2 so that the coefficient closest to zero is a 1, the 

scaled best fit coefficient values are given by: 

and 

Clearly, in the limit of large integer values of b1 it is possible 

to round all the other coefficients to their nearest integer values and 

still remain very close to the best fit approximation. This suggests a 

straightforward integer search algorithm that consists of tabulating D 

(and the deviations d(xj)) for b
1 

= 1,2,3, ... where in each case the 

best fit values of b2 to bN are rounded to the nearest integer. Usually, 

the resulting values of D are far from monotonic and it is possible to 

stop the search at a downward fluctuation in D that corresponds to 
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an acceptable fit. 

The above search method was not used in this paper because, for a 

given b1 , the integer values of b2 to bN closest to the best fit are 

usually not the best integer values (i.e., those that result in the 

lowest value of D). 

By searching the space of b2 to bN it is often possible to find a 

set of integer values that result in a lower value of D because the 

variation in each coefficient from its best fit value has been nearly 

compensated by the variations in the other coefficients. 

As an example of the need for such a search, consider eq. 11 of 

Section 3.2. The best fit coefficients are (b 1 = 1), b2 = 260.40 ... , 

b3 = 503.60 .•. , b4 = 134.16 •.. , b5 = 543.36 .•. (D = G.412) and varying 

these coefficients by less than 0.15% to their nearest integer values 

b2 260, b3 = 504, b4 = 134, b5 = 543 yields a rather poor fit 

(D = 6.8). A complete search of the integer values of b2 to b5 for the 

lowest value of D results in coefficients that are far from their best 

fit values: b2 = 280, b3 = 572,' b4 = 144, b5 = 603 but D = 0.520, not 

much larger than the best fit value. 

Unfortunately, a straightforward search over a wide range of 

integer coefficient values requires calculating D an unacceptably large 

number of times (typically 107). Moreover, it is not obvious from the 

values of D how far each coefficient should be stepped. 

A more efficient algorithm was therefore devised that restricted 

the search (as much as possible) to the volume V' within which D < D' 

where D' is the lowest value of D yet achieved during the integer coefficient 

search. The appendix is an example of this algorithm as used in this 
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work to search V' and determine the best integer values of b2 to bN for 

each successive integer value b1• Although it only covers the case 

N = 4, it is clear from its structure how it may be modified to handle 

any other value of N. It is hoped that the way in which it was written 

is self-explanatory. 

This procedure permits a complete search for the smallest 

integer coefficients that result in an acceptable fit, subject to the 

condition that all subspaces of b
1 

to bN have a. single minimum value of D. 

It can search a deep, narrow valley while avoiding regions too far from 

the valley to be fruitful. The procedure involves typically 

104 to 106 evaluations of ~ depending on the number of coefficients and 

the efficiency of the minimizi~g code. 

3. Examples 

The examples that follow were chosen largely on the basis of their 

usefulness to physicists and engineers. No claim is made that the ap-

proximating forms are the best that could be chosen, only that no smaller 

integer coefficients can be used in those forms to give a significantly 

better fit. In each example the approximation with integer coefficients 

has deviations that are within a factor of two of those that result from 

using the best fit coefficients (this point is illustrated in the figures). 
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In our experience an integer coefficient fit that.approaches the best 

fit involves fewer keystrokes than a fit using smaller integers but one 

or two additional terms. 

The approximations make considerable use of polynomial forms and 

these have been arranged according to Horner's rule to minimize the 

number of keystrokes and the need for intermediate storage. 

3.1 Gaussian Probability Integral 

The probability P(x) of ~xceeding x stand~rd deviations of either 

sign is given by: 

Approximation 1: 

-P 1 (x) 

-
Error: 

P
1
(x) - P(x) 

P(x) 

-x
2
/2 e dx X~ 0 

EXP ·[- (83x + 351)x + 562] 
703/x + 165 

< 0.042% 

Range: 0 < x < 5.5 (Fig. 1) 
-8 

(1 > P(x) > 3.8 X 10 ) 

6 
Number of keystrokes 

Approximation 2: 

26. 

(3) 

(4) 

(5) 
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2
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~ 0.040% 

Range: x > 5.5 (Fig. 2) -8 (P(x) < 3.8 X 10 ) 

6 
Number of keystrokes = 20. 

In this example, the asymptotic limits 

P(x) ~ EXP (-~ x), x small 

-

(6a) 

(6b) 

suggested the form P (x) = EXP (p /p 2), where p is a polynomial (in x) 
n n- n 

of degree n and pn_2 is a polynominal o.f degree n-2. 

In the interval 0 < x < 5.5 the form 1n P(x) = p5/p
3 

gave an ex-

cellent fit and it was possible to eliminate four terms to yield the form: 

1n(P 
1 

(x)] 
((b 1x + b2)x + b3)x 

b
4
x + b

5 

7 with best fit values (b
1 

~ 1), b2 = 4.20075 ± 0.00020, 

(7) 

b
3 

= 6.72175 ± o.ooo83, b
4 

= 1.988778 ± o.oooo75, b
5 

= 8.39964 ± o.ooo36. 

-This approximation ln P1 (x) was fit to ln P(x) on a set of 60 base points 

x. from 0 to 5.5 with increments of 0.005 at the lower end increasing to 
]. 

increments of 0.25 at the upper end. 

For b1 = 1 a search of the b2 , b3 , b4 , b5 integer space yielded no 

acceptable D values and the coefficients were scaled by setting b1 to 
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increasingly larger integer values. The best integer coefficient fit 

between b 1 = 1 and b 1 = 99 occurred at b 1 = 83 (Eqn. 4). 

In the interval x > 5.5 the asymptotic form (Eqn. 6b) was modified 

slightly (Eqn. 5) to reduce the maximum deviation (Fig. 2). This single 

parameter fit was done by hand. 

3.2 Inverse of the Gaussian Probability Integral 

Defining P(x) by Eqn. 3: 

Approximation 1: 

((4y + 100)y + 205]y
2 

(2y + 56) y + 192)y + 131 

where y 1n(P) 

Error: ix1 -xi < 1.3 x 10=
4 

Range: 1 > X > 2 X 10-7 ( 0 < X < 5. 2) (Fig. 3) 

6 Number of keystrokes = 38. 

The approximation was fit to 59 function values over the range 

1 > p > 1.5 X 10-7 

Approximation 2: 

where y = -1n(P) 

Error: ix
2 

- xi < 4 x 10-
4 

((2y + 280)y + 572)y 
(y + 144)y + 603 

(8) 

(9) 
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Range: 2 X 10-7 
> P > 10-112 (5.2 < x < 22.6) (Fig. 4) 

6 
Number of keystrokes = 30. 

The approximation was fit to 26 function values over the range 

6 X 10-7 
> P > 1.5 X 10- 102 . 

The forms used were 

with best fit coefficients 7 (b
1 

2 1), b2 = 48.8740 ± 0.0024, 

b
3 

= 95.976 ± o.o15, b
4 

= 27.4283 ± o.oo16, b
5 

= 91.446 ± o.o12, 

b6 ·= 61.231 ± 0.025, and 

((2b1y + b2)y + b3)y 

(b1y + b4)y + b5 

with best fit coefficients7 (b
1 

= 1), b
2 

= 260.403 ± 0.016, 

b3 = 503.60 ± o.62, b4 = 134.1596 ± o.oo87, b
5 

= 543.36 ± o.37. 

3.3 Klein-Nishina Formula 

(10) 

(11) 

The Klein Nishina formula describes the narrow beam attenuation of 

8 
photons by Compton scattering on free electrons. . Its exact expression 

is given by: 

(a - 2)a - 2 1n(l + 2a)J 
za3 

(12) 
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where a = E/m c2 and ro is the classical electron radius (2.8179 X 1o-13cm). . e 

Although this expression may be evaluated directly, approximately 60 

keystrokes are required. 

Approximation 1: 

(E + 28) E + 16 
K ((E + 54) E + 134) E + 24) 

(13) 

E is the photon energy in MeV 

K 
. 2 

0.6000 Z/A (em /gm) 

K 0.9964 Z (barns/atom) 

K = 0.9964 (barns/electron) 

Range: 0 < E < 100 MeV. (Fig. 5) 

Number of keystrokes 6 31, using -the K values given in Table I. 

The approximation was fit to 52 function values from E = 0 to 

100 MeV. It is sufficiently accurate for most practical purposes. 

Note that electron binding effects (not included in the Klein-Nishina 

formula nor even in most tables of Compton cross sections) can be of 

9 the order of several percent. 

The form used was 

(14) 
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7 with best fit coefficients K = 0.9667 ± 0.0020 barns/electron 

b1 = 23.718 ± 0.098, b2 = 13.186 ± 0.050, b3 = 45.62 ± 0.22, 

b
4 

= 108.08 ± o.64, b
5 

= 19.206 ± o.097. 

Approximation 2: 

C1 = 
2 

where y = E/0.2555 MeV . 

. 'o;(JKN-(JKN I Error: < 0.60% 

Range: E > 100 MeV. 

2 
1 + 1n(y ) 

2y 
(15) 

6 Number of keystrokes = 21, using the K values given in Table I. This 

approximation is the well-known high energy limit of Eqn. (12). 

3.4 Photoelectric cross sections in H2o, Bone, Fe, Nal, and Pb 

It is well known that the photoelectric cross sections may be 

approximated 9 by expansions in inverse powers of the photon energy, 

and we have used the same form for our approximations (Table II). 

Each of these approximations was fit to typically 25 data points 

from Ref. 9; The deviations d(x.) (not shown) are not smooth functions 
J 

of xj because the data are partially based on experimental measurements. 

Moreover, as stated in Ref. 9 these cross sections have not been 

established with accuracies much better than 5%. 
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3.5 Pair production cross section in Ph 

Approximation: 

2 a <em 2 I gm) ~ -:-:-:--___..:(~x~+.:..__:9'-')...::x~-.,....:::..1 ---=-=--::-
P ((4x + 55)x - 168)x + 358 

(16) 

where x = log10 (E) and E is the photon energy in MeV. 

Error: Ia - o I < 8 x 10-4 cm2/gm 
p p 

Range: 1.5 MeV< E < 105 MeV (Fig. 7). 

Number of keystrokes = 28. 

The approximation (J was fit to 26 data points o from 1. 5 MeV to p p 

105 MeV (Ref. 9). The deviations d(x.) are not smooth functions of x 
J 

because the data were only given to three significant figures. Also, 

the lower energy data points are quite sparse and the error bound given 

above is only an estimate. 
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Table I. K values for the Klein-Nishina a~~roximation {Egn. 9) 

K = K = 
Material z 0.6Z/A 0.9964Z density 

2 (em /gm) (barns/atom) 3 (gm/cm ) 

H2 1 0.5953 0.996 0.0763 (0.070)a 
,' 

c 6 0.2997 5.98 2.25 

H20 0.3330 1 

N 7 0.2999 6.97 

0 8 0.3000 7.97 

Al 13 0.2891 12.95 2. 692 

Si 14 0.2991 13.95 2.4 

Ar 18 0.2704 17.93 1. 65 (1.40)a 

Ca 20 0.2994 19.92 1. 54 

Fe 26 0.2793 25.90 7.86 

Ge 32 0.2645 31.88 5.4 

Nal 0.2563 3.67 

Xe 54 0.2468 53.8 3.5 (3.06) a 

w 74 0.2415 73.7 19.3 

Pb 82 0.2375 81.7 11.35 

u 92 0.2319 91.7 18.7 

a Solid (liquid) 



Table II. Photoelectric cross sections. 

Errord 

Energy 
Keystrokese Material Density range Photoelectric cross section e1 e~ 

3 2 c 
(g /em ) (MeV) (em /gm) (%) (em /gm) 

H20 1 > 0.01 (((x/7+35)x-97)x+196)x/107 1.1 lx10-s 23 

Compac~ 
((20x-3l)x+52)x/106 

bone "' 2 > 0.01 2.7 I. SxlO -5 18 

Fe 7.87 > 0.01 (((-x/23+22)x-11)x+25)x/105 2.9 2x10-S 24 

Nai 3.67 > 0.0332a (((-x+107)x+62)x+82)x/7x104 2.8 2x10-S 23 
I 

0.0159-0.088b 2 4 '':, 
..... 

Pb 11.35 ((-x/26+8)x+32)x /10 1.4 0 19 0' 
I 

Pb 11.35 > 0.088a (((-x+52)x+93)x+42)x/104 1.4 1x10-5 21 

a above K edge. 

b between Ll and K edges. 

c . -1 
x = 1/E in units MeV . 

d Error is the greater of e
1 

and e2• 

~ef. 6. 
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APPENDIX 

EXAMPLE OF INTEGER COEFFICIENT SEARCH PROCEDURE FOR 4 COEFFICIENTS 

Al = 1 
DETERMINE BEST FIT VALUES OF A2,A3,A4 BY MINIMIZING D 

RENAME Al,A2,A3,A4 SO THAT Al IS CLOSEST TO ZERO 

LOOP Bl=l,2,3 
B2=A2•Bl/Al 
B3=A3•Bl/Al 
B4=A4•Bl/Al 
D'=D EVALUATED AT" Bl, [·B2] , [ B3] , [ B4] 

LOOP J2=0,1 
LOOP I2=1,2,3,. 
El=Bl 

*E2 = [B2] + J2 + (-1) 32 • I2 
**MINIMIZE D BY VARYING PARAMETERS E3 AND E4 (HOLDING El AND E2 FIXED) 

***IF D > 1.2 D', EXIT I2 LOOP AND TAKE NEXT J2 

LOOP J3=0,1 
LOOP I3=1,2,3,. 
Fl=El 
F2=E2 
F3 = [E3] + J3 + (-1) 33 • 13 
MINIMIZE D BY VARYING PARAMETER F4 (HOLDING Fl, F2, AND F3 FIXED) 
IF D > 1.2 D', EXIT I3 LOOP AND TAKE NEXT J3 

(CONTINUED) 

*For J2=0, the I2 loop sets E2 to successive values [ B2] + 1, [B2] + 2, 
. whe.re [B2] is the integer part of B2. For J2 = 1 the I2 loop sets 

E2 to successive values ( B2] , [ B2] -1, [ B2] -2, . 

**For efficiency, the starting values E3 and E4 are determined whenever 
possible by a linear extrapolation of previous best fit values of E3 and 
E4 (obtained at this point in the code) as a function of E2. Moreover, 
this minimization can be skipped if the D value associated with El, E2 and 
the extrapolated values of E3 and E4 is less than D'. Similar efficiencies 
are employed for the minimizations in all the other loops. 

***This test assumes that the preceding step has found the true minimum 
rather than a local minimum. If the minimum D is greater than 1. 2 D' then 
this value of E2 (and all subsequent values) define a subspace within 
which D > 1.2 D', and the I2 loop is ended. 



LOOP J4=0,1 
LOOP 14=1,2,3, •.•. 
Gl=Fl 
G2=F2 
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G3=F3 
G4 • [F4) + J4 + (-l)J4 · I4 
CALCULATED USING PARAMETERS G1, G2, G3, AND G4 
IF D > 1.2 D', EXIT I4 LOOP AND TAKE NEXT J4 
If D ~ 1.2 D', SET D'=D AND PRINT OUT ALL RELEVENT QUANTITIES 

ASSOCIATED WITH THIS FIT 

NEXT I4 
NEXT J4 
NEXT I3 
NEXT J3 
NEXT I2 
NEXT J2 
STOP PROCEDURE IF D' IS SUFFICIENTLY SMALL 
NEXT Bl 
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Figure Captions 

1. Solid curve- relative deviation between approximation P1(x) with 

integer coefficients (Eqn. 4) arid the Gaussian probability P(x) of ex-

ceeding x standard deviations of either sign (Eqn. 3). Dashed curve-

same but with best fit coefficients (Eqn. 7). 

2. Relative deviation between approximation P2 (x) (Eqn. 5) and the 

Gaussian probability P(x) of exceeding X standard deviations of either 

sign (Eqn. 3). 

3. Solid curve- deviation between approximation x1 with integer coef

ficients (Eqn. 8) and the number of standard deviations associated with 

the Gaussian probability P(x) of exceeding lxl. Dashed curve- same but 

with best fit coefficients (Eqn. 10). 

4. Solid curve- deviation between approximation x2 with integer 

coefficients (Eqn. 9) and the number of standard deviations associated 

with the Gaussian probability P(x) of exceeding jxj. Dashed curve- same 

but with best fit coefficients (Eqn. 11). 

5. Solid curve- relative deviation between approximation a 1 with 

integer coefficients (Eqn. 13) and the Klein-Nishina formula (Eqn. 12). 

Dashed curve- same but with best fit ceofficients. For descending values 

of photon energy below 0.01 MeV both curves descend monotonically. 

-3 
At E = 0 the dashed curve reaches -2.3 x 10 and the solid curve 

-3 reaches -1.5 x 10 . 

6. Relative deviation between approximation cr2 (Eqn. 15) and the 

Klein-Nishina formula (Eqn. 12). 
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7. Deviation between approximation a with integer coefficients p 

(Eqn. 16) and the pair production cross section in Ph for 26 data points 

(Ref. 9). The curve is provided to guide the eye. 
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.---------LEGAL NOTICE-----------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe pri11ately 
owned rights. 
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