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Abstract 

Space matters not only because of the transportation costs it imposes on the economy but 
also because it can serve as an effective instrument to control pollution damages. Previous 
models of pollution either disregard space altogether or presume a predetermined 
separation between polluters and pollutees, usually into a CBD where the polluting 
industry is located and a residential ring where the city's laborers reside. All possible 
location combinations of housing and industry are considered in this study. The results 
demonstrate that the management of pollution must recognize the trade-off between two 
cost components: pollution costs and transportation costs. This trade-off along with the 
non-convexity inherent in spatial models results in multiple local optima. Negligible 
commuting costs combined with pollution emissions bearing ill effects at a rate declining 
with distance leads to an allocation with one industrial zone and one residential zone. As 
commuting costs increase, the optimal allocation passes through an endogenously 
determined series of increasing thresholds. Each time a threshold is crossed the number of 
zones of each type increases until the internal solution is reached after the final threshold 
has been crossed. In the internal solution, there is no commuting, and housing and industry 
assume adjacent locations. In such an economy, Pigouvian taxes are generally inefficient. 
Instead, the efficient tax is a per unit land tax equal to the additional damages contributed 
by that land unit's pollution. 
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I. Introduction 

Space matters not just because of the transportation costs incurred by land users, but also 

because it can and should be utilized as a means of controlling pollution. Pollution is defined as 

the external negative effect a particular land use has on other types ofland use. Generally, 

separating polluter and pollutee reduces pollution damages but leads to increased commuting 

costs. Accordingly, an obvious trade-off arises between pollution damages and commuting costs; 

when commuting costs are sufficiently high it is uneconomic to control pollution damages by 

physical separation of the polluter and pollutee. Similarly, as the damages from pollution rise 

relative to commuting costs, increasing separation is justified. 

Congestion is defined as the negative external effect a particular land use by one agent has 

on other agents or participants in the same land use. Space cannot have the same role in 

controlling congestion as pollution since both damaging and damaged parties coincide. 

Pollution, along with congestion, are the two major types of local externalities recognized in the 

literature. While both pollution and congestion effects have been extensively examined (e.g., 

Solow and Vickery, Mills and deFeranti, Amott (1979b), Starrett, Tietenberg, Henderson, 

Baumol, Baumol and Oates, Coase, Hochman Pines and Zilberman, and others), the problem of 

pollution externalities has been inadequately and in some instances incorrectly analyzed. The 

purpose of this paper is to characterize the optimal resource allocation and joint location of a 

polluting industry and housing in which employees and laborers of industry reside. 

In the existing literature on spatial pollution (Henderson 1977, 1985, 1996, Hochman and 

Ofek 1979, Baumol and Oates, Tietenberg 1974a and b,1978), separation between residential 

pollutees and polluting producers is taken as given and a single zone for each type of use is 

presumed. In the case of pollution, the issue of endogenous separation between types of land 
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uses has never been investigated. Only recently has the endogenous location of a single activity 

in more than one zone been analyzed (e.g., Fujita and Ogawa), without, however, the 

consideration of pollution. 

Certainly, many possible combinations of industry and residential locations exist that 

could be optimal. For example, the number of consecutive sets of residential and industrial zones 

can be greater than one, buffer zones can exist between industrial and residential zones thus 

separating residential pollutees and polluting producers, or residential and industrial land uses can 

be mixed. Aside from the recommended use oflocation differentiated pollution taxes (see 

Titenberg 1978, Seskin et al. 1983, Kolstat 1987), zoning has not been analyzed as an 

endogenous instrument for controlling pollution. 

Even without any externalities, the inherent non-convexities in spatial models may lead to 

zoning and multiple optima. For example, in the basic Muthian city model there are two optima: 

one is the well known solution with residents/workers commuting from the residential zone to the 

industrial zone and back, and the second is the optimal internal solution in which there is no zonal 

distinction between residents and industry and there is no commuting see Mills (Ch.5). The 

second solution is the global optimum when commuting costs exceed a certain threshold level. 

Mills is one of very few who modeled the well known empirical fact that there are areas in which 

industry and housing are located in the same place. More recently, Dipasquale and Wheaton (Ch. 

5) investigate this case empirically as well. 

In the model advanced in this paper, the presence of pollution can lead to an infinite 

number of local optima. To eliminate any assumptions which are not essential for isolating the 

role of zoning for pollution control we follow Solow and Vickery by specifying a city without a 

predetennined center. We also assume a constant returns to scale production function and thus 
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production processes will not be the source of any endogenous separation of housing and 

industry. Therefore, zoning will not emerge if ill effects of pollution do not exist. A ring-shaped 

city is also specified to avoid dealing with edge-of-city-effects. Accordingly, if pollution does 

not exist, a uniform layout of the city emerges from the specified model in which the work place 

and the household residences are adjacent in the same location. 

The results of our model show that while there is only one global optimum for every 

specified level of commuting costs (except perhaps for a set of zero measures), there can be an 

infinite number of local optimum. When commuting costs are very low, maximum separation 

between polluters and pollutees is the optimal policy. Depending on the parameters of the system, 

empty buffer zones may exist between the occupied zones of industry and household residence. 

As commuting costs rise above a certain threshold level, the global optimum changes to an 

allocation of more than a single industrial zone and a single residential zone. As such costs rise, 

this process continues until a final threshold is reached above which the global optimum is a 

uniform allocation of mixed residential and industrial land uses without commuting. 

Along with the endogenous land use patterns and zoning comer solutions, our model 

demonstrates that spatially differentiated Pigouvian taxes per unit emission levied on industrial 

polluters will not generally support the optimum either in the short or the long run. Only if the 

dispersion function is linear in emissions or if locations are predetermined and fixed and the 

dispersion function is convex in emissions, independent of whether the solution includes zoning 

or not, will the typical Pigouvian taxes offered in the literature (Baumol and Oates, Spulber) be 

optimal. Initially, Henderson (1977) showed the insufficiency ofPigouvian taxes, proposing an 

additional lump sum tax along with the Pigouvian tax. However, Hochman and Ofek proved that 

the correct tax levied on each unit of industrial land must equal the spatial aggregate of added 
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damages contributed by that unit of land. In a non-spatial model, Polinsky demonstrated the 

failure of the Pigouvian tax and also derived a tax equal to the added damages caused by a firm. 

In this paper, we show that a spatially differentiated added-damages-tax is also sufficient to 

achieve the optimal number of zones. 

In the following section the formal spatial model is specified. From the specification of the 

model, we derive the optimal and decentralized solutions in Section 3. To gain insight and 

intuitive understanding we characterize a number of special cases by the use of bid rent analysis 

in Section 4. Section 5 characterizes the general zoning local optima solutions based on the 

interpretation of the special cases and Section 6 describes the global optimum. Implications for 

effective pollution control are examined together with a few concluding remarks in Section 7. 

2. Model Specification 

Assume a ring-shaped featureless strip ofland of unit width. Let L be the circumference of 

the inner circle located at equal distance from the two boundary circles of the ring (see Fig. 1). 

As a result, L is also the total area of the ring. We use this inner circle as the location axis in the 

. ring. An arbitrary point 0 on this axis is chosen as the origin. The distance from the origin is 

designated by x and clockwise as the positive direction; x=o and x = L are the two coordinates of 

the origin and 0 ~ x ~ L. As previously noted, a ring-shaped city avoids the edge-of-city-effects 

and thus allows us to concentrate on the interior structure ofthe city. We also impose the 

standard assumption by which commuting costs accrue only when traveling along the 

circumference of the ring and no horizontal traveling costs are incurred (Solow and Vickery). 

For industrial output, a linear homogeneous production function is specified. The 

relevant inputs are: a(x) = the fraction of land occupied by the industry at x ; n(x) = number of 

workers per unit of industrial land at x; and e(x) = amount of emissions of the industry per unit of 

industrial land at x. The production function is assumed to be an increasing function of these 
def 

inputs, but at a decreasing rate. In addition F(a,an,ae)=a!(n,e) is a constant returns to scale 
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(CBS) function in inputs a, an and ae. Note that f(-) as such fulfills, 

f(J..n,J...e) < Af(n,e)for A ~ 1. 

A linear homogeneous production function along with a fixed and predetermined city size L 

allows pollution effects to be easily identified under varying conditions. The layout of the city 

under the constant returns to scale without pollution is simple and straightforward; hence, any 

deviation from this simple pattern when pollution is introduced is easily detectable and entirely 

due to its effects. 

Free and costless population mobility in the economy as a whole is presumed, including 

mobility within the presumed city. Thus, utility level Uo must be fixed everywhere in the 

economy as well as in all residential locations within the city. It should be noted that mobility 

means moving from one residential location to another and it does not refer to commuting. Thus, 

(1) U[h(x), z(x), c(x)] = Uo 

where 

U(-) = the utility function 

h(x) = the amount of housing consumed by a household at x 

z(x) = the amount of composite good consumed by a household at x (the price of z is 

assumed to be a unit) 

c(x) = the concentration of pollution at x which results from emissions of the 

industry throughout the city. 

The utility function U(-) is assumed to be quasi concave in h, z, and (-c). 

Concentrations of pollution at location x are linked to industrial production activities 

through the generation of pollution emissions at locationy, viz., e (y). This linkage is specified 

by dispersion functions, D[e(y),ty-xl}, which convert contamination emissions at y per unit of 
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land, e (y), to its contributor to pollution concentrations at x (Tietenberg (1974a, 1974b)).! Two 

different functions are specified to allow for the possibility of different dispersion effects 

depending upon the direction (North verses South) from the emission site. The positive direction 

of x is defined as north (N) and the opposite direction as south (S). Pollution concentrations at 

location x are determined by the emissions in all locations y, viz. 

The functions Di (e, y) ,i = S or N, have the following properties for positive pollution emissions 

e and distance y. 

(3) ai(e,y) = Di > 02 ai(e,y) = Di 0 DN(e,O) = DS(e,O) & J '~ 2<' 

Note also that D( e, y) = 0 , for all y;;:: L /2, or y < 0 prevents the same emissions 

affecting the same location more than once. The requirement DN (e,O) = DS(e,O) prevents 

discontinuity at the emission source. 3 Instead of housing we assume h(x) to be the amount of 

! It should be noted that D is a function of the density of emissions and to capture the total contributions of a given location 
x to concentrations at y requires multiplication by a(x). This makes concentrations additive across space in the direction of 
width and thus is the same as the additivity of integration specified in the direction of x (length). We thank an anonymous 
reviewer for pointing out the need of this assumption to achieve consistency. 

2 A subscripted function indicates the differential of the function with respect to the variable whose order is indicated by 
iJDi . iJ Di . 

the subscript. Thus --2- = D; J and --2 = D~2 . 
& oy 

3 As shown in Arrow, et. ai. and references contained therein, economies or diseconomies of scale can exist in the 
assimilative powers of the environment when the density of concentrations at a given location gets closer to, or further 
away from a breakdown point of biological systems. This means that concentration at a given location is not just the 
addition of contributions from different sources, as implied from the use of integration in equation (2), but is a complex 
process of concentration and emissions levels at different locations. Indeed regulatory agencies have been employing 
complex nonlinear simulation models to represent the emission/dispersion process (see, for example, Allegrini and De 
Santis, 1996 and the NTIS, US Department of Commerce, 1997). Here we use a simplifying additivity assumption in the 
form of an integral in (2). We could not solve the model analytically without making this simplifying assumption. An 
assumption of the same nature would be that dispersion is a linear function of e(x), the density of emissions at x, i.e., 

DJJ = O. However, in this case we can solve the model even if we assume more realistically that DJJ :f:. 0 (note that both 

Tietenberg (1974) and Henderson (1977) made the assumption of non linearity of the dispersion function). As we shall see 
in what follows assuming non linearity of D, if only with respect to emissions, has important policy implications. In view 
of our simplifying assumptions we shall discuss the robustness of these implications as well. Since according to Arrow et 
aI., there are several biological systems, we assume D \I can change its sign as e(x) increases and be positive in parts of the 
emissions domain and in the rest of it negative. It is however, rarely zero. 
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land occupied by the household as ifit consumes land only. This is a standard simplifying 

assumption in the urban economics literature which in most models, including ours, does not 

affect the outcome but saves complex calculations. Commuting costs are determined, in part, by 

the number of commuters, T(x), traveling from home northward crossing x minus the number of 

workers crossing x traveling from home to work southward. This addition to T( x) by moving 

marginally north at location x is the number of residents at x, b(x)/h(x) minus the number of 

workers, a(x)n(x), where b(x) is the proportion ofland at x occupied by housing. Specifically, 

(4a) 
. b(x) 

T(x) = --a(x)n(x),4 
hex) 

with 

(4b) T(O) = T(L) and 

(4c) T(O)=O 

The equality in equation (4b) implies that the total number of households in the city also equals 

the total number of city workers, with each household contributing a single worker to the labor 

force. The equality in equation (4c) forces the origin to be a point not crossed by commuters, i.e., 

commuters either both reside and work north or south of the origin, and thus do not cross the 

origin when commuting. This does not cause any loss of generality since, as shown later, every 

solution has at least two points commuters do not cross and equation (4b) implies that one of 

these points will be the origin. Accordingly, T(x) also equals the number of households minus 

the number of workers south ofx and north of the origin and it can be either positive, negative or 

zero. Equations (4a) and (4c) also imply that: 

(4d) T(x) = iX[b(Y) -a(y)n(Y)]dY , 
o hey) 

Operationally, the sign of D22 depends on the geography and weather conditions and can be either negative, positive or 
zero. 

4 A dot above the function indicates differentiation with respect to distance. 



9 

Since the optimum implies the minimum of total travel costs, crossing at the same point in 

opposite directions is ruled out. Hence, the gross and net crossings must be equal. Accordingly, 

T(x) is also the total number of commuters crossing x daily; all cross northbound if T(x) is 

positive and southbound if it is negative. 

The relevant land-utilization constraints are: 

(Sa) a(x)+b(x)-1~O (5b) a(x);::: 0 b(x);::: o. 

When these constraints are not binding, it means that at least some land at x is vacant. 

Moreover, the Solow and Vickrey specification of a city surrounded by an interstate highway is 

presumed so that differences in shipping costs ofthe city's export good due to differences in 

relative locations in the city are negligible. This means that the f.o.b. price of the export good in 

the city is independent of x, the mill's location in the city. If this specification is not imposed, 

separate industrial and residential zones may arise even without pollution.5 The parameter P 

represents this given constant f.o.b. price ofthe city's export good. Finally, V will represent the 

cost of a single worker commuting a unit distance. 

Given the above definitions, the net city surplus is given by 

(6) 

where Y, the non-earned income of a household, is independent of location.6 Maximization of S 

in (6), subject to (1), (2), (4a), and (5) with (4b) and (4c) as terminal conditions, provides the 

necessary and sufficient conditions for local efficiency which is part of the necessary conditions 

for Pareto optimum for the economy as a whole (see Hochman, 1981). S may be interpreted as 

the net gains of a profit maximizing developer who owns the city and who provides workers with 

5Indeed, traditionally the Muthian model of a monocentric city assumes a central location in the city to which all products 
have to be shipped, thus making the product f.o.b. price differ from one location to another. These added transport costs 
may lead to separate designations for an industrial zone (CBD) and a residential zone. In such a model it is extremely 
difficult to distinguish between the pollution zoning effect and the transportation zoning effect. In order to avoid obscuring 
these separate effects, for the model presented in this paper zoning will not occur when there is no pollution. 
6 Note that for simplicity of notation, the variable x is omitted whenever there is no risk of confusion. 
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sufficient housing and composite consumption goods to sustain their predetermined utility level. 

In return she receives the residents' unearned income and their labor services. If the developer is 

a public company for which every household in the economy owns an equal share, the sum of all 

the S's of cities in the economy becomes the source of the unearned income in the economy. 

With free entry of cities, provided there is no shortage of land, S is driven to zero and each 

household's utility level is maximized. 

(7) 

To facilitate solving this problem, we define the function 

{ 

+1 ijJx>o 

sign (x) = 0 ijJx= 0 

-lijJx<O 

Sign(x) is differentiable and its derivative equals zero everywhere except at x = 0 where the 

derivative is not defined. The function sign can be used to enable differentiation of JT(x)J 

everywhere except at zero, i.e., 

(8) IT(x)1 = [sign (T(x))]- T(x) 

3. The Local Optimum Solution and its Supporting Price System 

The necessary conditions for the resulting maximization problem are derived in Hochman 

and Rausser (Appendix A). 

Definition 3.1: A local maximum solution is an allocation which satisfies the necessary and 

sufficient conditions of the above maximization problem, and attains the highest value of the goal 

function in a sufficiently small neighborhood of the optimum contained in the initial domain of 

the problem. 

In our case the maximization problem is specified in the previous section. Since we are dealing 

with a non-convex problem there might be more than one such local optimum, even an infinite 
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number of local optima. Our definition states that if we change slightly the variables of a local 

optimum, the value of the goal function will decrease. 

Definition 3.2. A global maximum solution is the local maximum solution with the highest value 

of the goal function S. 

It may occur that there are several global optimum solutions, all having the same value of S, in 

which case we are indifferent to the different global optima. 

According to the Second Welfare Theorem each efficient allocation (Pareto Optimum) has 

a market equilibrium solution which yields the same allocation. We tenn this solution the 

supporting market equilibrium of the (pareto) optimal allocation, and the price system in it as the 

supporting price system. In the presence of externalities, as is the case here, to achieve the 

optimum via market equilibrium a local government intervention in the fonn of corrective taxes 

or subsidies and/or regulations is required as well. In this and the following sections, together 

with the optimum, we investigate this supporting price system, which we also refer to as the 

market allocation, equilibrium, etc. Note that different allocations have different supporting price 

systems. In what follows, unless specified otherwise, we investigate only allocations which are 

locally optimal and their supporting price systems. 

Let ljI(x) be the costate of the commuter equation (4a). From the necessary and sufficient 

conditions for a local optimum,7 employment is detennined by the typical marginal productivity 

of labor equality to 1jI( x) , 

(9) a(x){Pft[n(x),e(x)]-IjI(x)} = 0, 

The fact that a(x) multiplies the expression in (9) means that the equality of the expression in the 

brackets must hold only where industry is located (not necessarily exclusively). 

7 Khun-Tucker rules apply also for comer solutions of problems with non convexities. The comer solutions are of special 
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Choosing optimally the number of commuters yields 

(10) ¥rex) = sign[T(x)]. 

The function sign [ T( x )] is constant and continuous as long as T( x) does not change its sign. 

Therefore, along a segment where the sign of T( x) remains constant, (10) indicates that If/( x) is 

a linear function of x and increases by V per unit distance in the direction of commuting. 

Definition 3.3: Let w(x) be the local net earnings (LNE) at location x in the supporting market 

solution. In a location where an industry is located, w(x) is the wage rate, and in a location 

where there is no industry, w(x) is the wage rate where the household works minus commuting 

cost to the work place. 

It follows that w(x)=If/(x) and that w(x) is well defmed. If the industry operates at x, 

equation (9) implies that w(x) is the wage rate at x. However, if the industry does not operate at 

x, then T(x) does not vanish and equation (10) implies that the wages actually received by the 

residents at x exceed If/( x) by the amount of commuting costs to their workplace. 

The next condition states that the marginal rate of substitution between housing and the 

composite good must never exceed p(x), the shadow price of the land constraint (Sa), 

and will be equal to this shadow value in residential areas. The slack r b is the shadow price of 

b(x) in (5b). Ifwe let r(x) be the land rent in the supporting price system, it is quite clear from 

(11) that at least in residential areas r(x) = p(x). 

interest here because of their correspondence with the zoning solutions. 
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For the next condition, the expression in the brackets must be zero in residential areas. 

This expression is the household's budget at x and accordingly this condition implies that the 

budget constraint must equal zero in locations where b(x) is positive, i.e., where residents live. 

For the remaining argument of the utility function (c), the relevant condition is 

(13) 

where 'lex) is the shadow price associated with pollution concentrations, (2) (and thus can be 

interpreted as the marginal damage of pollution concentration at location x), b(x)/h(x) is the 

population residing at x, and Uc(x)/Uz(x) is the marginal rate of substitution between the 

composite good and pollution concentrations. In the case of pollution emissions, 

(14a) a(x)[PJ; - M(x)] = 0 

where 

(14b) M(x) = jX+L/2 TJ{y)Dt[e(x ),y - x]dy + IX TJ{y )D1S[e(x),x - y]dy. 
x ~~ 

is the marginal damages of pollution emitted at x. An increase of pollution emitted at x augments 

concentrations aty by D:[e(x),ly -xl], i=N or S. When these concentrations are multiplied by 

TJ{y) , the marginal damage caused by a unit concentration, and summed over all possible y, we 

obtain M(x). In the supporting price system, M(x) is equal to the well-known differential 

Pigouvian tax at x, and when it is levied on every unit of emissions at x, we obtain condition 

(14a). 
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For industrial land utilization, a(x}, the residual condition emerges 

(15a) Pf[ n(x),e(x)] - VI(x)n(x) - Q(x) = p(x) - r a(x) r a ~ O,r aa(x) = 0 

where 

J
x+Ji JX (15b) Q(x) = x 1J{y)DN[ e(x), y -x ]dy + x-Ji 1J{y)DS[e(x),x - y]dy 

is the additional damages caused by the total emissions from a unit land at x. The first term of 

the left hand side (LHS) of (15a) stands for total industrial revenue per unit of land at x and the 

second is the total wage bill per unit land at x. The first term on the right hand side (RRS) of 

(15a) is the shadow price of the land utilization constraint (5a). The last term is the shadow price 

of industrial land utilization and its existence requires that the left hand side of (15a) will not 

exceed p( x), which in turn must fulfill: 

(16) p(x)~O; p(x)[1-a(x)-b(x)]=0 

If in the supporting equilibrium we levy Q(x} as a tax per unit of industrial land instead of 

the Pigouvian tax, p( x) will be equal to the land rent r(x}. The problem is that in order to satisfy 

(14a), M(x} must be levied as a per unit emission tax and only when the dispersion functions are 

linear is the tax burden the same in the two cases. The following proposition, however, resolves 

the relevant distinction. 

Proposition 3.4: To achieve efficiency in a market economy by taxing pollution emissions, a tax 

per unit of industrial land must be levied at every location x where the industry exists. This tax 

must be equal to the added damages caused by the pollution emissions from this unit of land, viz. 

Q(x}. 

Proof If an industrial producer pays Q(x} for emitting e(x} per unit land, wages of w(x}, and land 

rent of r(x} , a long run equilibrium with zero profits will satisfy both (14) and (15) since 



q?(x) = M(e(x)) , QED. 
O(e(x)) 
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Corollary 3.4.1:8 Each local and each global optimal solution has a supporting equilibrium 

solution with its own price system and corrective pollution taxes. 

In what follows we shall use the supporting price system and the supporting equilibrium 

relations together with optimum relations to characterize the optimal local optimum. The key 

elements of the supporting equilibrium can be structured by both industrial and residential bid 

rent functions at the optimum.9 Specifically, 

Definition 3.5: Let RJ , the bid rent function of the industry, be defined for all x by 

(17) RJ(x) = Pf[n(x),e(x)] -Ij/(x)n(x) - Q(x), 

where n(x), e(x), Ij/(x) and Q(x) are evaluated at the optimum. 

This bid rent equation follows from (15) and is the maximum amount the industry can pay for 

land at x without suffering losses (provided all variables are optimal and Q(x) in (15b) is imposed 

as a tax per unit of industrial land at every x). 

Definition 3.6: Let Rh(x) be the household's bid rent function for land at x. It is defined to 

satisfy, for every x, given c(x), Y + Ij/ (x), and Uo' 

1 U (x) 
(18) Rh(x) = -(Y + Ij/(x)-Z(x)) = _h_, 

hex) Uz(x) 

where the last equality in (18) holds in the optimum only where b(x»O andfollowsfrom (11). 

8 Another interesting equilibrium solution is the laissez fa ire allocation in which the government does not interfere with the 
market allocation and therefore no corrective taxes or regulations of any kind are imposed. This allocation is defmitely not 
optimal. In this case, industry will always locate next to housing to avoid commuting costs, not realizing that by so locating 
it causes wage increases to compensate for added pollution damages. Thus there is no commuting and the marginal 
productivity of emissions is zero. Note that this allocation is the only one in this paper not related to a local optimum 
allocation and it is only mentioned in this footnote. 
9 Allonso (1964) ftrst used these functions in depicting an equilibrium. 
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As with R[(x), in the supporting competitive solution Rh(x) is the maximum amount 

households are willing to pay per unit of housing (land). 

Using equations (15) and (17) we obtain 

(19) R/x)sr(x),R[ = r(x)<::>a(x» O. 

From equations (11), (12) and (18), note also that 

(20) Rh(x) S r(x);Rh(x) = rex) <::> b(x) > O. 

Equations (19) and (20) actually imply that an activity (of production or consumption) will take 

place at a given location if, and only if, its bid rent function equals the land rent. Finally, from 

(19) and (20) the land rent r(x) can be determined by: 

The above definitions and relations imply the following bid rent rule (BRR), 

Lemma 3. 7. (Bid Rent Rule) :!!!. Consider two non negative bid rents in a local optimum solution, 

one for housing and one for industry, that intersect at a location x. At the point of intersection, 

the land use with the larger derivative (with respect to x) of its bid rent function is located only 

north of the intersection point and the other land use is located only south. If the two derivatives 

are equal at the point of intersection, the two bid rent functions coincide at a neighborhood of 

this point and housing and industry coexist in this neighborhood. If the two bid rents do not 

intersect, but instead both are non positive between two different locations, then the area 

between these two points is an empty buffer zone. 
We can now demonstrate the following corollary. 

Corollary 3.4.2: Pigouvian taxes are distortive when Du ;t:. O. 

10 See proof in Hochman and Rausser, Appendix B. 
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We first investigate the case of Du <0, then necessarily Q> eM .. This, in turn, implies that 

levying an emission tax M(x) on the industry is insufficient to maintain the optimum. For a 

solution without zoning, in which industry and housing are located next to each other, when the 

Pigouvian tax eM replaces the optimal tax Q, the industry's bid rent function rises above its 

optimal value which in turn causes r, the land rent, to be too high as well. Since r, a supporting 

price, is higher than its optimal value, the allocation supported will not be optimal. However if 

the optimal proportion of the two land uses are imposed everywhere, the Pigouvian taxes support 

the optimum. Nevertheless this allocation can hardly be considered an equilibrium, not even in 

the short run, since at the same location housing and industry have different rents. 

Consider the same situation of under-taxation in a zoning solution, i.e., the Pigouvian tax 

eM replaces Q, in an area where only industry is located and housing is located in a separate 

area. Once again, industry's bid rent function and hence land rents, are higher than their optimal 

values, but now only in the industrial area. This leads to an industrial zone larger than its optimal 

size. The residential zone is smaller and more heavily polluted than its optimal counterpart. From 

the restriction of the industrial zone to its optimal boundaries and in addition levying the 

Pigouvian taxes, the resulting decentralized solution will yield the optimum allocation. In this 

situation, over the short run when locations are fixed, Pigouvian taxes are optimal. 11 

11 Henderson (1978) has shown that in a spatial setting over the short run, the period in which the location of activities is 

fIxed, the Pigouvian taxes are effIcient when the dispersion function is weakly convex in emissions (Dll:S; 0). In a non 

spatial model Spulber (1985) and Baumol and Oates (1975) have shown that Pigouvian taxes provide the proper incentive 
for fIrms to produce the optimal output in the short run by using the optimal mix of inputs. Spulber has also argued that 
when the damage function is convex in emissions, Pigouvian taxes provide the proper incentives for entry and exit of fIrms 
in the long run. However, Pigouvian taxes fail to achieve effIciency in our spatial framework because the generated 
externality does not cause the actual damages. The emissions are the direct external effects of the production process, but. 
what causes the damages are concentrations. Concentrations are created by emissions from different sources via non-linear 

(dispersion) functions. It is clear from equations (15) that if rt<Y) could be levied as a tax per unit of concentration 
contributed by the fIrm, effIciency would be attained. This means that Pigouvian taxes are effIcient when levied on 
concentrations rather than on emissions. However, producers create emissions, and only when the relation between 
emissions and concentrations is linear can optimal taxes on emissions be Pigouvian. Accordingly, in order for Pigouvian 
taxes to be effective, we need the accumulation process of concentrations from different sources to be additive in emissions, 
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When Dl! >0, eM>Q, the industry's bid rent function is higher under the optimal supporting 

value than under the Pigouvian tax. Hence, so is the land rent r. Once again this implies that the 

price system resulting from the Pigouvian tax rate does not sustain the optimal allocation either 

in the case of both land uses coexisting in the same location or in the case of zoning. In both 

cases when Du >0 the industry under Pigouvian taxes will occupy less land, produce less output 

and pay lower wages. Under these circumstances a short run zoning solution is inefficient with 

Pigouvian taxes. 12 

In what follows we discuss the robustness ofthe per unit land corrective tax Q(x) 

introduced in Proposition 3.4. What we tax is determined in this model by equation (15) to be a 

unit of land. This results from the assumptions of constant returns to scale (CRS) in production 

and the additivity of the dispersion function (DF) (see footnote 3). It seems that in general we 

should levy the tax not necessarily on a unit of land, and if our assumptions differ (e.g. external 

scale economies and lack of additivity of the DF) and lead to the formation of firms in the city, 

then the unit to tax will be a firm. In such a case the corrective tax will still be equal to the 

pollution damages added by the firm, i.e., total pollution damages with the firm's emissions 

minus pollution damages without it. This conjecture seems more plausible in view of the of 

Polinsky's results (see footnote 12). The mathematical formulation of Q(x) may be very different 

in other models from our Q(x) and will depend on the particular DF and the particular production 

function assumed. 

the external effect itself. This will occur only when Dll =0, a result rarely satisfied here (see footnote 3). 

12polinsky (1980) provides a non spatial example, where Pigouvian taxes fail to achieve efficiency. In his model for strict 
liability and negligence, Polinsky utilizes a partial equilibrium model almost identical in its mathematical exposition to that 
of Spulber's model, with one small difference. In Polinsky's model, 'care' (the equivalent of negative emissions in our and 
Spulber's models) reduces external damages caused by the individual firm, i.e. the amount of care provided by a firm is an 
argument with a negative effect in a separate damage function of the individual firm which transforms emissions of each 
firm into monetary terms. These individual money damages are then accumulated to the total social damages. In Spulber's 
model, the emissions of the individual firms are added first and the accumulated amount of emissions is then converted to 
monetary terms via a single social damage function. Both models are correctly specified and the differences in their 
specifications follow from differences in the issues examined. These differences lead to what appear to be contradictory 
results of the two models. Thus, while in Spulber's model Pigouvian taxes provide long run efficiency, in Polinsky'S model 
they cause inefficiency in the long run. In Polinsky's model, separate damage functions introduce the non-linearity which in 
our model is introduced via the dispersion function. 
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4. Preliminaries and Special Caseill 

The optimal land allocation may be an" empty" city, i.e., no households and no industry. 

This outcome will occur if the price of the export good produced within city limits fails to 

maintain a sufficiently low level of pollution emissions and pay sufficiently high wages so that 

the labor employed in the city can sustain its predetermined economy-wide utility level. In the 

following analysis, only non-empty allocations (N)O) which satisfy the necessary and sufficient 

conditions are considered. 

There are two principal solution types of relevance. One is an interior solution in which 

land use is mixed; i.e., a(x» 0, b(x» 0 and a(x)+b(x)=l. Such an allocation satisfying the 

necessary conditions is always a local optimum. 14 In this case the two bid rent functions R/·) 

and RhO coincide everywhere (see Fig. 2(c)). All other possible allocations are comer solutions 

and involve zoning. 15 

Definition 4.1: A zoning solution is an optimal allocation in which each land use is located in a 

separate zone--a continuous area (i.e., a segment of the ring) in which only one land use is 

located. Thus there are industrial zones or residential zones. An empty area with no land use is 

also included; such an area is termed a buffer zone. 

The possible zone types of relevance are: (i) an industrial zone in which a( x) = 1 , b(x) = 

o for some segment of x, (ii) a residential zone in which a(x) = 0, b(x)=l, and (iii) a completely 

empty buffer zonel6 in which both a(x) = 0 and b(x) = O. In each zoning allocation, designated 

13 Proofs and technical elaboration of some cases appear in Appendix B. 
14 Note that often in problems involving inequalities only one type of an extremum can result as in our case in which only 

local maxima can occur. To see this, note that a solution with a positive S cannot be a local minimum since a( x) and 

b( x) can be reduced continuously while maintaining their ratio intact and thus reducing S until it disappears. Since we can 
increase density and commuting distances indefmitely we can always increase a deficit (-5) indefinitely. 
15 There might be comer solutions which do not involve zoning, e.g. an optimal allocation in which e(x) =0. We consider 
only comer solutions that involve zoning. 
16 A buffer zone will exist between an industrial and a residential zone if there is a segment of land between the two zones 
in which the two bid rents are not positive. This may occur if, on one hand, at these locations, concentration levels are too 
high and wages are too low to support the predetermined economy-wide household utility level and, on the other hand, for 
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consecutive industrial and residential zones will emerge, but solutions can also include buffer 

zones. 17 To investigate these allocations, it will prove useful to define a no-crossing point and an 

associated lemma. 

Definition 4.2: A no-crossing point (NC point) is a point in the industrial or residential zones not 

crossed by commuters. No one commutes from one side of this point to the other. 

Lemma 4.3: The value of the function TO at an NC point is zero. 

Proof By definition, T( x) equals the net number of commuters crossing x to the north. Since 

minimizing commuting costs is necessary for the optimization, no commuting path of one 

household will cross the path of another commuting in the opposite direction; the path of a 

household commuting south cannot intersect with that of a household commuting north. If this 

outcome is violated, the two households with crossing paths can be exchanged and commuting 

costs will be reduced accordingly. Therefore the net and gross number of commuters crossing a 

point is equal. Defmition 4.1 makes this number zero at an NC point. 

Lemma. 4.4 In each residential and each industrial zone there is one and only one NC point 

(which may sometimes be extended to an NC segment). 

the specified emission taxes and wages the industry suffers losses. 
17 The types of land use patterns considered in this paper, in which all zoned land has a specific use (residential zones and 
industrial zones), are not exhausted by empty buffer zones and completely occupy mixed land use areas. Zones with 
partially occupied and partially empty locations are also a possibility. Housing in a partially empty location cannot arise, 
since positive marginal utility of housing implies that households in a particular location will use all or none of the available 
land at that location. A similar outcome exists in the case of industry: the linear homogeneous production functions' 
together with the diminishing marginal productivity, which implies that there will not be empty space where industry is 
located because by keeping constant overall emissions, (a(x)e(x)), as well as overall labor, (a(x)n(x)) , and expanding 
industry across the entire space in that location x (i.e. a(x) = J) output could increase without changing inputs. Furthermore, 

when D22 >0, the reduction in emissions density also leads to a reduction in the contribution to concentrations which in 

turn strengthens the tendency to fill an empty space or leave it entirely empty. However, whenD22 <0, reducing the density 
of emissions while keeping their total at the given location constant increases concentrations. In this case the last effect 
works to reduce the population's well-being and therefore should be avoided. Consequently we cannot rule out the 
possibility that increases in the concentrations will outweigh the effect of the constant returns of scale in production and 
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Proof Since paths of commuters cannot cross, in the residential zone there must be a point 

where all those living north of it commute northward and all those living south commute 

southward and no resident crosses this point. In the industrial zone there must be a point at which 

commuters employed north come from the north and similarly from the south. Each of these NC 

points can extend to an empty segment, although this is not likely to happen at a global optimum. 

It should be noted that two or more NC points with occupied space between them cannot exist in 

the same non buffer zone, since such occupants would have to cross one of the NC points when 

commuting. 

In respect to NC points, it is also helpful to define an autonomous area (AA). 

Definition 4.5: An autonomous area (AA) is the area between two consecutive NC points 

Thus an autonomous area includes part of a residential zone and part of an industrial zone and all 

households who reside in an AA also work there and vice versa. If the allocation includes buffer 

zones, each AA includes an empty buffer zone between its designated residential and industrial 

segments. Without loss of generality, in what follows the origin will be placed at an NC point 

where residents are located. 

Armed with the above definitions we can now interpret diagramatically the bid rent rule 

(BRR) in three typical situations: Let Xo and Xl be two consecutive NC points, the former in the 

residential zone and the latter in the industrial zone. In Fig. 2(a) a case of zoning without buffer 

zones is depicted and x is the boundary between the residential and the industrial zones in which 

the two bid rent functions intersect. An industrial zone exists at the locations where Rj > Rh ; 

where Rh > Rj' a residential zone is designated and at the point of intersection, i.e., where 

result in an optimal solution with industrial zones of only partially occupied areas near the boundary. In subsequent 
analyses we shall disregard this case. 
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R[ = Rh , the rents must be non negative. In Fig. 2(b) the bid rents result in a buffer. In this case 

both bid rents disappear at the boundaries of the buffer zone and remain non positive everywhere 

over these locations. In Fig. 2( c) the two bid rents are constants and coincide everywhere. 

Therefore industry and residency coexist everywhere, each at its own constant density. 

Assumption 4.6. (Symmetric Dispersion Assumption): DS(e,y) = DN (e,y) for all e>O and y>O 

From this stage on we shall restrict our analysis to a more specific case in which the 

symmetric dispersion assumption holds. The assumption is that pollution spreads to the north and 

to the south in the same way. This may happen in practice with respect to air pollution if the 

wind blows in each direction the same length of time at all seasons and at similar times of the 

day. The model can be solved for other assumptions (e.g., D S (-) = Oand DN (-) > 0), but the 

solution under each assumption is different and since the scope of the paper is limited we chose 

only one such case. 

From the above definitions, the solutions of three special cases can be characterized, each 

with one parameter having an extreme value (zero or infinity). Each case is simple and intuitive. 

These special cases capture the essence of the solution in general and specify the range of 

possible outcomes. 

First Case (Base): 

In this case all parameters are presumed to be finite and have positive absolute values 

except V, the commuting cost per unit distance, which is assumed to be zero. As in the general 

case, pollution causes positive damages that increase with concentrations at any level of 

consumption, i.e., -<X! < Uc(h,z,c) < O. A superscript zero designates variables for this base 

case, e.g., rO(x),RJ(x) and R~(x) specify respectively the value of the rent function, the 

industrial bid rent function and the residential bid rent function. 

Since the dispersion function decays with distance (i.e., D2 < 0), the greater the distance 

between polluter and pollutee, the lower the concentrations experienced by the pollutee which 

contributes to a higher utility level for a given level of the composite good and housing. Since 

commuting costs are zero, i.e., V=O, this separation does not involve any loss of resources. 
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Under these conditions, the maximum possible separation between housing and production is 

obtained, implying separate industrial and residential zones. Hence,ao(x)bO(x) = 0 for all x. 

Moreover, only one industrial zone and one residential zone should exist and there mayor 

may not be a buffer zone between these zones. The distance between polluter and pollutee 

reduces concentrations and thus will generate benefits without increasing costs. Any solution 

with many industrial zones could be restructured as a single industrial zone without decreasing 

the distance between any residential and any industrial location with some distances actually 

increasing. The same could be carried out for many residential zones. This implies that 

concentration levels at residential locations will not increase and will decrease for locations 

where distances to the industrial zone increase. Since all other factors remain unchanged, the 

utility level must increase in the locations where concentrations decrease and hold steady 

elsewhere. This implies that the initial allocation cannot be Pareto optimal and that an efficient 

allocation with zero commuting costs will contain exactly one residential and one industrial zone, 
I 

possibly with two additional empty buffer zones. 

Essentially, ifthere is empty space in the midst of one of the occupied zones, land uses 

can be moved from the boundaries of the zone to fill it. Such reallocations increase the distances 

between the two land uses and thus reduce effective concentrations without incurring any cost. 

As a result, an initial allocation with empty space in the midst of an occupied zone cannot be 

optimal. Therefore for all x in an occupied area (a residential or an industrial zone), 

aO(x) + bO(x) = 1. This condition together with aO(x)bO(x) = 0 implies that if one of these two 

variables is positive, its value must be one. 

Since V = 0, Eq. (10) implies "o(x) = 0, thus'l'°(x) is spatially constant. This is no 

surprise since when commuting costs are zero, workers are unaffected by employment location. 

Two NC points emerge, one, the origin, in the residential zone and the other in the 

industrial zone. T(x) are zero at the NC points. For these specifications together with the 

symmetric dispersion assumption, DN (-) = D S 
(-), Fig. 3 depicts the layout of the city ring with 

. the boundaries of the different zones being designated by x~ , 0::;; x~ ::;; L, i = 0,1,2,3 . 
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Specifically, Xo is the southern boundary of the residential zone; Xl the northern boundary of the 

residential zone and the southern boundary of the northern buffer zone; and x 2 and X3 are the 

boundaries of the industrial zone and the northern and southern buffer zones, respectively. Note 

that Xo is also the boundary between the southern buffer zone and the residential zone (if there are 

no buffer zones Xl = X2 and X3 = xo)' The symmetric dispersion assumption (DN (-) = D S (.» 

implies that the allocation has 00' as the symmetry axis. 
The bid rent functions are equivalent to the residual income per unit land in each location 

(Eqs. (17) and (18». The density ofland use is an increasing function ofthe rent. When V=O, the 

rent together with the density of land use reach their peak at the center of each zone. The centers 

of each zone are also the NC points and the boundaries between the AAs. In the industrial zone, 

the center is the pollution-generating location furthest from all residential locations. At this 

location, the optimal tax Q will be at its lowest level, and R/ at its highest (see Eq. (17». 

Similarly, the center ofthe residential zone is least affected by pollution since it is located 

farthest from any emission source. Accordingly, rents will expand at this location. 

When V is positive the centers are also the least accessible to commuters because they are 

the most remote locations. Remoteness is a positive trait from the standpoint of pollution and a 

negative from the standpoint of commuting. When V is zero, commuting is of no consequence 

and only pollution counts; hence the highest rents are at the centers. Similarly, the lowest rents 

and densities are at the boundaries. In the residential zone the boundary is the closest to the 

polluting industry and hence suffers the most relative to other residential locations. Within the 

industrial zone, the boundary is the closest to all residential locations, and producers located here 

must pay the highest pollution taxes with corresponding reduced rents. When moving from the 

boundary to the center of the zone these outcomes change steadily and monotonously. In a buffer 

zone and its boundaries, rents vanish as does all economic activity. 
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Second Case (Test), This case presumes U c = 0 and 0 < V < 00 , namely there are no ill effects 

of pollution and there are positive commuting costs. This is a pollution free solution that serves 

as a natural test of comparison. We designate the solution of this case by superscript 1. 

Since pollution causes no damages to households, households and industry will gravitate to 

the same location in order to mitigate commuting costs. For commuting costs to approach zero 

all workers at x also must live there. Since conditions are the same everywhere symmetry 

implies that: alex) = a > 0, bl(x) = b > 0 and a + b = 1. As a result, 

rl(x) = tl(X) =Ml(X) = Ql(X) = o. Clearly Tl(x) = 0 r = rl(x) = R;(x) = R!(x), and thus r, 

the land rent, is spatially constant. Note that f.,(nl(x),el(x)) = 0, pf,,(nl(x),el(x)) = If/, and If/, 

the wage rate is also spatially constant. 

This pollution free outcome serves as the point of departure when assessing the 

implications of alternative solutions with pollution. 

Third Case (Interior Solution): In this case we again assume pollution causes ill effects, i.e., for 

all positive arguments -<X! < Uc(h,z,c) < o. In addition, we assume a finite V, but one that is 

sufficiently large to deter commuting. The superscript 2 distinguishes this solution. 

Obviously, sufficiently large costs deter commuting, hence as in the second case laborers 

reside next to their working place, i.e., t2 = T2 = ~2 = o. Actually, in this case, as in the test 

case, all variables are spatially constant. Since there is no travel, all points are NC points. The 

differences between the test case and this case is that commuting is no longer economically 

feasible. Also, contrary to the prior case, the ill effects of pollution are spatially constant, i.e., 

rl(x) = 172 > o. Accordingly, zoning is ruled out as a means of controlling pollution and thus 

concentrations can be affected only through the production process. 
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This case satisfies the necessary conditions for any given level of commuting costs V. 

Under the specified assumptions, the solution for this case is a local optimum for all V and a 

global optimum when V is sufficiently large. Contrary to zoning solutions, this solution is an 

interior solution, since the location variables a 2(x) and b2(x) are constants and positive 

everywhere, i.e. a 2(x) = a2 > 0, b2(x) = b2 > 0, and a2 + b2 = 1 for all x. Hence, this solution is 

naturally referred to as the Internal Solution. 

5. Local Optimum. 18 

In general, local optima can be either internal solutions (e.g., third case) or comer solutions 

of which we are interested in the solutions with zoning. There might be more than one internal 

solution and for a given number of zones there might be more than one local optimum. In this 

section we concentrate on characterizing the general zoning allocation by investigating the 

changes due to an increase of commuting costs in a local optimal solution with two symmetric 

AAs and its supporting price system simultaneously. 

For the general zoning case, an AA consists of a residential zone portion, the equivalent 

portion of an industrial zone and, if one exists, a buffer zone. Obviously, there is no commuting 

in or out of an AA, and for symmetric pollution dispersion, each AA is the mirror image ofthe 

adjacent AA.19 In Fig. 3, an allocation of two AAs is depicted. While the number of zones is 

two, as in the base case where V is zero, the remaining variables change continuously when V 

increases. These relationships will be investigated by allocating two AAs in which the origin is 

located at the NC point of the residential zone. Similar relationships exist when the number of 

zones is larger. 

18 Proofs of the Lemmas and Propositions of this section not proved in the text appear in Appendix C. 
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Lemma 5.1: In an AA, w(x), the local net earnings, is a linear function ofx and its slope is equal 

to V, i.e., 

{ 
IJI(V,x~) + (x - x~)· V, for 0 5: x 5: L12} 

(22) w(x, V) = 0 0 
IJI(V,x )+(x -x)·v, for LI25:x5:L 

3 3 

Hence, IJI(V,x~) (also equal to IJI(V,x~)) is only afunction of V, and in what follows we refer to 

it as the intercept ofw(x). 

Note that the ftrst line on the right hand side of (22) is the value of lJI(x, V) in the northern 

AA and the second line is the value in the southern AA. In what follows, we deal only with the 

northern AA while keeping in mind that the southern AA is symmetric with 00' as the axis of 

symmetry (see Fig. 3). 

Lemma 5.1 implies that if V is positive, the LNE (the wage rate) in the industrial zone 

increases at the rate of V per unit distance when moving from the boundary towards the NC 

poinpo The opposite occurs when moving into the residential zone and away from its boundary. 

If there is no buffer zone, at the boundary of the industrial and residential zones the LNE has a 

single value. The difference between the LNEs on the respective boundaries of a buffer zone is 

equal to V times the length of the buffer zone. Lemma 5.1 is a standard result in models where 

separation into distinct industrial and residential zones occurs. 

Corollary 5.1.1: An increase of V augments the multiplier of x in '1'( x), and moves the intercept 

IJI(V,x~) by the shift factor, defined as the derivative oflJl at the boundary of the industrial zone 

19 The symmetry follows from assuming divisibility of the ring to the size of the optimal AA. If the solution of the optimal 
AA is not unique we may have asymmetric solutions as well, however here we consider only the symmetric case. 
20 NC points are the boundaries of an AA and are located in the middle of a zone. In an AA the residential portion has only 
one boundary and so does the industrial portion. If it exists, a buffer zone have two boundaries in an AA. 
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with respect to V, viz., Oty(x~). The shift factor can be positive, negative, or zero, depending on 
OV 

the model's specifications. 

For ease of exposition, henceforth we restrict the analysis only to cases without buffer 

zones. If notable differences arise from the existence of buffer zones to zoning without buffers, 

such instances will be examined in footnotes. 

Fig. 4 demonstrates the possible effects of an increase of Von 'fI( x) in the AA of the 

northern hemisphere of the ring that stretches from the origin in the positive direction ofx to the 

next NC point at Ll2, viz., the domain in which T(x) is positive, as in Lemma 5.1. There are two 

fundamental types of outcomes of vr(x, V) resulting from an increase in V. In Fig. 4, the line 

A' AI depicts vr(x, V) after it shifted by an increase of V from C'C', which depicts vr(x, V = 0). 

For the first, the boundary point x~ is at x A' to the right of x, the location where vr(x, V = 0) 

intersects vr(x, V> 0). The shift factor, depicted in Fig. 4 by the segment at x~ between A' A' 

and C'C', i.e., x~ = x A' is positive. The result is an increase in the wage rate in the AA 

throughout the industrial zone, while the LNE in the residential zone is increased near the 

boundary and decreased near the NC point O. For the second, x~ = X B is to the left of x, the shift 

factor is negative, and the LNE is decreased throughout the residential zone while the wage rate 

in the industrial zone is reduced near the boundary and increased near the NC point L/2. 

The total derivative ofthe functions Rk , k = h or I with respect to V is given by 

dR (x) OR (x) "OR (x) or. . 
k = k + L..J k I , where ti are the controls and shadow pnces of the system. 

dV 8V i ori 8V 
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Lemma 5.2. In the optimum allocation, both bid rents21 are functions ofx and of V, and 

i. In the residential zone dRh(x) = ORh(x) = (8ty(x)/8V) 
dV 8V hex) 

d I dR/ex) = OR/(x) = -n(x) 8ty(x). ii. In the in ustria zone 
dV OV 8V 

Lemma 5.2 demonstrates that commuting costs affect the bid rent functions only through If(x); 

the terms for the other controls disappear. The change in the industrial bid rent at a given 

location is inversely proportional to the change of the wage rate and the factor of proportionality 

equals n, the local labor density. The change in the residential bid rent at a given location is 

proportional to the change of the LNE and the factor of proportionality equals (1/ h), the local 

residential density. 

Two patterns in which the optimal bid rent functions change when V changes, emerge s 

while the number of zones remains constant. From the bid rent rule (Lemma 3.7) the optimal AA 

changes with the bid rents. The results below follow directly when Lemma 5.2 is applied to Fig. 4 

to obtain Fig. 5. Parts (a), (b) and (c) of Fig. 5 address pattern A, which results when the shift 

factor is positive. Part (d) of Fig. 5 depicts the synthesis of pattern B which emerges when the 

shift factor is negative.22 Note that x is the point in which the bid rent functions do not change 

with V. As seen from Lemma 5.2, this is the same point in which If(x) does not change (see Fig. 

4). An intersection point such as x and the bid rent rule (Lemma 3.7) provide the basis for the 

results. 

21 Note that although the bid rent functions have their economic interpretation in the realm of market equilibrium, in 
defInitions 3.5 and 3.6 they are well defmed by variables of the optimum. In what follows we shall often analyze an 
optimum allocation through its supporting price system. 
22 In Fig. 5 all of these rent curves are depicted as straight lines only for the sake of convenience. 
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In Fig. 5(a), R~(x), the residential bid rent function in the base case, i.e. V=O, is depicted 

by the downward sloping line C'CC' ,i.e., ..k~(x) < O. The industrial bid rent function in the 

base case, R~ (x) , is depicted by the upward sloping line C" CC" in 5(b), which intersects 

C' CC' (R~ (x) ) at xg = x A with a positive value C. 

The patterns are as follows: 

Pattern A (a positive shift factor) emerges when V increases from zero to VA >0 and the 

intersection point x is left of the boundary point xg = x A (see Fig. 4). The bid rent curves before 

and after the shift, which are of the same type (industrial or residential), also intersect at x . 

Thus, in this pattern the increase of V causes the residential bid rent function to increase near the 

boundary (Xl = x 2 ) and decrease near the NC point (the origin). In Fig. 5( a), the line A'AA' 

represents R; (x, VA) and C'CC' represents R~ (x). The industrial bid rent function, however, is 

lower everywhere in the industrial zone for v=o relative to VA, less so near the boundary (x2 ) 

and more so near the NC point (Ll2). The line A"AA" in Fig. 5(b) represents R:(x, VA)' and 

C"CC" is R~(x). The rent functions before and after the shift depicted in Fig. 5c are the upper 

envelope curves of the before and after bid-rent functions. The boundary moves from xg = x A , 

the point of intersection of the residential and industrial bid rent curves before the shift to x; , the 

point of intersection of the same two bid rents after the shift. The net result of pattern A is that 

relative to the case where commuting costs vanish, an increase of V causes the boundary to move 

towards the industrial NC point, the residential zone expands and the industrial zone shrinks by 

the same amount. In the industrial zone, the rent declines everywhere, less near the boundary 

( x2 ) and more near the NC point (Ll2). The rent function in the residential zone increases near 

the boundary (Xl) and decreases near the NC point (the origin). 
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Pattern B (a negative shift factor) in which V increases from zero to VB resulting in an 

intersection point x to the right of the boundary point xg = x B' The increase of V causes the 

residential bid rent function to decline throughout the residential zone (relative to V=O), more 

near the origin than close to the boundary. In Fig. 5( d), the line B' B represents R: (x, VB)' 

When V increases, the industrial bid rent function increases near the boundary ofthe 

.industrial zone and decreases near the NC point. In Fig. 5(d), BB" represents R:(x, VB)' where 

R~(x), the difference between R:(x,VB) and RJ(x) reflects the shift in R/x) due to the 

increase of V from zero to VB' The boundary point between the two zones moves from x~ = x B 

towards the origin to x: so that the industrial zone expands and the residential zone shrinks. The 

rent reduces everywhere except near the boundary ofthe industrial zone. 

In both patterns, the density of popUlation in the residential zone and the density of 

employment in the industrial zone follow the same trends as the rents across the zones. Overall, 

the total AA's popUlation falls when V increases. To be sure which of these patterns the optimum 

follows depends on the particular technology. of the industry, the environment, and the tastes of 

the population.23 

Note, in general, near the boundary, bid rents are increasing with x at a non decreasing rate 

as we move in the direction of the NC points. As we move from the boundary and closer to the 

23 The same results along with a shrinking of the buffer zone occur when a buffer zone is embedded in the AA. In this 
instance, however, an outcome in which both occupied zones shrink and the buffer zone increases (when V increases) 

cannot be ruled out. This will occur when '1'( x, V + L1 V) intersects '1'( x, V) at the buffer zone. The intuition is that with 
an expanding buffer zone, both distances and emissions increase and thus cancel each other out while employment density 
decreases and wages increase. Indeed, within the residential zone the LNE and the rent may be lower but pollution 
concentrations can fall due to the increased distance. 
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NC points, the bid rent functions can become convex, decline, or even disappear altogether in the 

neighborhood of the NC points. 

For zero commuting costs, i.e., v=o (the base case), the rent function is at a local 

maximum at the NC points, gradually declining with distance when moving towards the 

boundary where it reaches its lowest level (see the discussion of the base case in section 4) 

Lemma 5.3: When Vincreases, the slope of the rent function in the direction away from the NC 

point and towards the boundary declines at every location except perhaps near the boundary, 

where it may increase with V. 

Lemma 5.3 states that the slope of the rent function (see Fig. 5) becomes flatter everywhere 

except perhaps for pattern A at section [xA,xg] and for pattern B at section [xB,xg]. 

The above an,alysis pertains only to the case of two AAs. Symmetry dictates through 

Lemma 5.4 (see also footnote 19) that the analysis can apply with no significant changes to any 

even number of AAs. 

Lemma 5.4: For each V> 0, there may exist a local optimum solution with 2m zones, where m 

can be part of or all the integers fulfilling 1 :$ m :$ 00. If 2m, m = 1,2, ... , is the flXed number of 

AAs in an allocation, so is the number of NC points which are located at the boundaries of the 

AAs (and in the middle of the occupied zones). All AAs are of the same size with an area ofL/2m 

and each AA is the mirror image of the adjacent AA. The qualitative results discussed previously 

in this section of the effects of an increase of V (from zero to infinity) on the internal structure of 

an AA hold for the general case as well. 
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Aside from symmetric solutions discussed in the lemma above, there may be solutions with 

AAs of varying sizes. Disregarding problems of indivisibility, each of the AAs in a mixed 

solution will also appear in a symmetric solution of a different number of zones. Of any two such 

symmetric solutions one is superior to the other and therefore superior to the solution where the 

two are mixed. We will ignore the case where we are indifferent to the two solutions and their 

mixture. Note that there always must be a symmetric solution in the optimum. 

Also note that the parameter V does not always have a finite upper bound, above which the 

zoning local optimum does not exist (note that m = 00 is equivalent to the internal solution). It 

might occur that as V grows larger, buffer zones disappear and the density ofland use in the 

occupied areas become lower and more concentrated around the boundaries of the occupied 

zones. A further increase of V may cause the centers of the occupied zones to become empty, 

thus changing the no-crossing points to no-crossing segments, and when V approaches infinity, 

the actual occupied areas in the zones shrink towards the boundaries approaching zero, but never 

completely disappear while V is finite. It is clear that an allocation with a no-crossing segment in 

the middle of the two occupied areas cannot be a global optimum since a solution with a larger 

number of fully occupied smaller zones is clearly more efficient. 

The following Lemma does not deal with the characterization of a solution but rather with 

the applicability of a local optimum solution. 

Lemma 5.5: A developer who wants to implement the allocation of a given local optimum 

solution has only to choose an origin and impose on each unit of land the optimal corrective tax 

of the supporting market allocation of this desired local optimum. Under this condition, market 

competition will lead to the desired local optimum allocation. Note that the optimal tax, Q(x), is 

well-defined everywhere (see eq. (i5B)) where e(x) is the actual emissions emitted by the industry 
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at location x and 17 * (y ), the marginal damages of pollution concentrations at y, are evaluated 

at the optimum. 

Proof: Throughout this section we showed that under the above conditions the industry outbids 

housing in the industrial zone and residents outbid the industry in the residential zone. 

Furthennore, we demonstrated that in a buffer zone both the industry and the residents do not 

bid. Since the bid rents reflect the highest amount each sector is willing to pay under these 

conditions, the desired local optimum is the only outcome which can result from the competition 

between the industry and housing. QED 

It should be noted that a local government should behave like the developer and simply 

imposing the correct land taxes is enough to achieve a desired local optimum allocation. 

6. Global Optimum. 

Initially, when V=O, the global optimum consists of two AAs (the base case). In this case, 

RAx2 ) > 0 > Rh(x\). It is possible that any increase in V, even an infinitesimal one, will cause the 

internal solution to become the global optimum. In this section, only cases in which zoning is the 

global optimum for at least some positive V are investigated. For simplicity, we assume each 

positive integer m has no more than one local optimum solution with 2m occupied zones (or AAs)24. 

Definition 6.1: Let sm (n, V) designate the maximized surplus of a local zoning optimum solution 

with commuting cost V;?: 0 and 2m AAs, m being a positive integer. 

The commuting cost and the second variable in SX , V, is a parameter of the initial problem. 

The first variable in SX is m, the number of occupied zones of the same type in the local optimum 
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solution has to be detennined endogenously in the global solution. In what follows we try to 

detennine the number of zones in the global optimum by finding the m which maximizes SX for a 

given V. 

Lemma 6.2: The following are properties of the function sm (n, V): 

andfor all Vo for which both functions are positive and well-defined. 

Lemma 6.2 reveals (see Fig. 6) that: (i) The slope of Sm(n, V) in the (S, V) plane is non 

positive and strictly negative as long as m is finite (since I T(x) I in a zoning solution is positive 

almost everywhere); (iz) In the (S, V) plane the slope of Sm(n,V) at a given Vis steeper for smaller 

m (because IT(x) I attains higher values in larger zones); and (iii) The intercept on the S axis of 

Sm(n, V) in the (S, V) plane is decreasing with m (since pollution damages increase and therefore 

the value of SX(m,O) decreases with the number of zones, see the base case for proof) . 

The corollary below now follows directly from Lemma 6.2: 

Corollary 6.2.1: In the (S, V) plane, two Sm(n,V) curves with different m's may intersect in the 

upper right quarter of the plane at most once (see Fig. 6). 

24 In general, there may exist more than one local optimum for a given number of zones. The assumption made here of a 
single local optimum for each m simplifies the exposition. Yet it is easy to extend the analysis to the more general case and 
we leave this to the devices of the reader. 



36 

The above corollary follows directly from (ii) in Lemma 6.2 which implies that the smaller m 

is, the steeper the slope of SX is for a given V. The lemma below actually follows from the 

definition of SX and the nature of the global optimum for a given V. 

Lemma 6.3: For a given V, the global optimum allocation is the local optimum allocation in which 

the number of AAs, m*(V), is obtainedfrom Sm(n*, V) = max Sm(n, V) (note that m*(V) may be 
n 

infinite for all V) . 

We can now make the following definition, 

Definition 6.4: Let S* (V) = sx (m * (V), V) be the global optimum value of the surplus as a 

function of V. 

Lemma 6.3 implies that S*(V) is the upper envelope curve of all the sm (n, V) in the (S, V) 

plane. Lemma 6.2, Corollary 6.2.1 and Lemma 6.3 provide the basis for Proposition 6.5. 

Proposition 6.5: Let 2m * (V) be the number of AAs in the global optimum solution of the problem 

with commuting costs V. The function m *(V) is defined in Lemma 6.3,' its range is in the set of 

natural numbers and it is a non decreasing step function of V, 0:$ V :$ 00 . 

The proof of proposition 6.5 is straightforward. Lemma 6.2 and Corollary 6.2.1 imply that 

two Sm(n, V) curves intersect only once in the (S, V) plane, and the one with lower m intersects the 

one with the higher m from above. Thus if nj < nj and both are in the global solution, nj will be 

associated with lower Vs than nj • The remaining results follow immediately. 

> * 2:: * Corollary 6.5.1: If V; = Vj , then m (V;) = m (V). 
< :$ 

The proof of the corollary follows immediately from Proposition 6.5 and Fig.6 
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Corollary 6.5.2: Let mi be an integer such that 2mi is the number of AAs in the global optimum for 

all i E (1, ... , J). Then the set of all Vs, for which mi = m * (V), is a segment of the non negative V 

axis for all i E (1, ... ,1). The intersection of each pair of segments is at most a single point and the 

union of all I segments of Vs exhaust the half line V 2': O. (1, ... ,1) consists of increasing consecutive 

indices, S.t. m*(V) = mi • If m*(~) = mi , m*(V2 ) = mj and i> j, then mi > mj and ~ > V;. 

The proof follows immediately from the proposition above and corollary 6.5.1. 

Note that I in the corollary above--the number of different segments of Vs and each V in a 

given segment has the same number of zones in the global optimum--can be any positive integer or 

infinity (see Fig. 6). In other words, the number of solutions which differ by their number of zones 

can be any positive integer including infinity. 

To complete the characterization of the global solution, the concept of a threshold commuting 

cost can be introduced by means of Definition 6.6. 

Definition 6. 6: Define V (mi ), i = 1,2, ... , J, as the commuting cost threshold of an allocation with 2mi 

AAs .. V(m;) is the lowest commuting cost in which 2 mi zones are the number of AAs in the global 

optimum, i.e., V(mi ) = min {V / S.t. m*(V) = mJ. 

In Fig. 7, V (mi ), i = 1,2, ... , I are the jump points of the step function m * (V) , and in Fig. 6 

they are the value of Vat the intersection points ofthe SX curves in the global optimum. Note that 

the domain of V (m;), i.e., (1, ~, ... , mI _p 00) is a set of increasing, not necessarily consecutive 

positive integers whose number, L mayor may not be infinite. 

Proposition 6.7: The Threshold Theorem. 

(i) When V increases and reaches V(m i ) , the number of zones in the global optimal allocation 

changes from mi-\ to mi and remains at this level until V reaches V( mi+1) 
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(it) ml = 00 always, even when I is finite and V( (0).:$ 00. 

(iii) ~ = 1 and V (1) = 0 . 

In the proposition above (i) follows from the definition of VO as the lower bound of all Vs in 

the group of solutions having the same number of zones; (ii) follows from the fact that the internal 

solution which is equivalent to a solution with infinite number of zones is always the solution when 

V becomes sufficiently large to deter commuting and the value of SX (V, (0) is therefore independent 

of V;(iii) follows from the fact that the base case is always the solution when V=O . 

The following proposition is once more about the implementation of optimal corrective taxes, 

this time in the global optimum. 

Proposition 6.8: To achieve global efficiency, including optimal zoning, a developer (or a local 

government) has only to levy at every location x the global optimal corrective tax per unit of land. 

The global corrective tax is the corrective tax Q(x) of the particular local optimum solution which is 

in the global optimum for the given V. 

The proof follows directly from Lemma 5.5. 

7. Policy Implications and Concluding Remarks. 

The results derived in this paper have a number of policy implications with respect to the 

optimal control of pollution. First, levying efficient taxes is sufficient to achieve a global optimum 

(proposition 6.9). Then the optimal number of zones, the optimal level of emissions as well as the 

optimal level of the rest of the variables are determined by a competitive equilibrium. 

Secondly, the correctly determined spatially differential tax per unit ofland equals the 

additional damages caused by the total emissions from this unit of land (industrial or residential, see 

Lemma 5.5). The economic literature, spatially or non-spatially based, has recommended what 
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appears to be contradictory pollution tax regulations. Some contributions argue that Pigouvian taxes 

are the correct policy (Baumol and Oates, Spulber) while others have argued that such taxes provide 

the wrong incentives (Henderson, Hochman and Ofek, Polinsky). Our results demonstrate that the 

correct tax policy is not a spatially differentiated Pigouvian tax, but instead a land tax, determined 

by a per unit ofland additional contributions to total pollution concentrations (Q(x), not M(x) ). 

These results may not all be robust, but it is certain that, in general, Pigouvian taxes are not 

sufficient. Taxing a unit of land does not seem to be a robust result; in other models the firm may be 

the unit of tax. Our result showing that the tax itself should be equal to the additional pollution 

damages contributed by the taxed unit is probably robust, however. Since in practice corrective taxes 

are difficult, ifnot impossible, to determine, a major policy instrument for controlling pollution 

might be the implementation of zoning regulations. 

The trade-off between commuting and pollution costs along with the non convexity inherent 

in spatial models leads to multiple zoning optima. Zoning is therefore a critical means for 

controlling pollution. As commuting costs increase, the optimal land utilization passes through an 

endogenously determined series of increasing thresholds. Each time a threshold is crossed the 

number of zones of each type increases until an internal solution is reached once the final threshold 

has been crossed. Operationally, this solution can be pursued by first setting the long-run zoning 

allocations, whose boundaries, with or without geographic buffer designations, move with 

commuting costs through their effects on wages, local net earnings, and land bid rents, given a 

particular pollution emission and dispersion process. The second setting is the per unit land pollution 

tax. Some experimentation is possible with this instrument (Hochman and Ofek). Emission 

standards per unit land can be established which enhance land rents to include optimal pollution land 

taxes. Moreover, these and other instruments could be introduced and experimentally adjusted in the 



40 

short-run to provide pollution abatement incentives (Rausser and Lapan) so long as the long-run 

global optimum zoning allocation has been appropriately determined by the local authority. 

In simplifying the specifications advanced in this paper, the industry is assumed to exhibit 

constant returns to scale and there is no spillover of pollution between cities. In order to attain 

agglomeration in the long run, either scale economies in production or local public goods must be 

specified. Pollution itselfhas no agglomeration effects; on the contrary, it tends to enhance 

dispersion of activities. The optimal allocation of a single city is only a portion of the short-run 

economy-wide maximization problem with a fixed number of city sites. From the standpoint of the 

entire economy beyond the city in question, an internally consistent economy-wide goal is the 

maximization ofthe common utility level ofthe population. This goal is subject to both the overall 

population constraint and to the constraint requiring the sum of all the cities' surpluses to be non­

negative and equal to total unearned income which becomes a choice variable. In this more generic 

setting and an infinite supply of city sites, optimal city size is one household. 

In pursuing her self-interest, the developer-owner of the city can either provide residents with 

housing, consumption goods, commuting and can engage in production activities, or simply rent 

land to the highest bidder, and like a local authority, impose optimal taxes. We just showed that her 

gains are the same in both cases. 
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Introduction 

This working paper contains appendixes of mathematical derivations and proofs 

of Lemmas and Propositions in the paper" Zoning As A Control Of Pollution 

Externalities In A Spatial Environment" by Hochman and Rausser. 

In Appendix A the necessary and sufficient conditions are derived. In Appendix B 

proof of the bid rent rule ( Lemma 3.1 ) is provided and some elaboration and proofs of 

the cases discussed in Section 4 of the paper. Proofs of lemmas of Sections 5 and 6 not 

proved in the text, are included in Appendix C. 



3 

Appendix A 

Let L be the Lagrangian ofthe model, where the variables, constraints and shadow 

prices are as defined in sections 2 and 3 of the paper. 

(A. 1) I
L b IL L = [Paf(n, e) + -( 1- z) -ITIV]th + A(X) [U(h, z, c) - uo] th 
o h 0 

rL 
{ rx N JX+Yz s } +Jo th'f/(x) c(x)- Jx_Yza(y)D [e(y),x- y]dy- x a(y)D [e(y),x- y]dy 

+ rL 
((x){T(x) - rx [bey) _ a(y)n(y)]dy} th - r[p(a + b -1) - (tl-,lIb] th 

k k hey) k 

It should be noted that ~(x ), the shadow price of the commuters constraint, is different 

from 'I'(x) , the co-state ofT(x) as defined in the text. We elaborate below on the relation 

between the two. The necessary conditions are as follows. (The variable of 

differentiation is noted on the left-hand side of each equation. Note that a function with a 

number as a SUbscript indicates derivations of the function with respect to the variable of 

the order of the SUbscript.) 

n(x) (A2) a(x)[Ph + r~(y)dy] = 0 

e(x) (AJ) a(x)[Pfz-J:+
Yz

17(t)D1
N(e(x),t-x)dt 

- J:-
Yz 

'f/(t) D\S(e(x) , x - t) dt] = 0 

a(x) (A.4) PI -[ J:+Yz 'f/(t) DN(e(x) , t -x )dt 

hex) (A.S) 

+ J:-
Yz 

17(t) D S 
( e( x) , x - t) dt] + n( x) f?( t) dt 

- p(x)+ rex) = 0 

- b(x{[I-z(x)]+A(X)U
h

+ b(x{J?(t)dt=O 
hex) hex) x 
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Appendix B. 

Proof of Lemma 3.1: 

Consider the boundary points of the zones in an optimal allocation, e.g. XI and Xl' XI < Xl' 

as deppicted in Fig.3 of the paper. The bid rent rule implies that at such boundary points the 

slopes with respect to distane (designated by a dot over the function) of thee bid rent 

functions must fulfill RA Xl) :::: Rh (XI) , otherwise the allocation is not optimal. Suppose, 

only for the sake of proving a contradiction, that R/( Xl) < Rh (XI) , then industry outbids 

housing in the residential zone and housing outbids industry in the industrial zone. A single 

household at XI can then be transferred into the industrial zone in exchange of industry 

occupying the same amount of land at Xl' The fact that industry outbids housing in the 

residential zone and vice-versa in the industrial zone implies that this transfer increases total 

rents. It also increases total pollution damages since it shortens distances between polluters 

and pollutees. Total pollution taxes therefore increase as well. According to the Henry 

George rule (JJr( x) + Q( x)]dx = S ), total rents and optimal taxes together constitute the 

goal function. Since both are increased, the goal function of the initial allocation can be 

increased and is therefore not optimal in the first place; a contradiction. Hence 

R,(xl ) 1. Rh(xl ) , QED 

Calculating the Spatial Derivatives of the Bid Rent Functions 

We differentiate the bid rent functions with respect to distance x,). First we differentiate Eq. 

(17) at locations where a(x) > 0 and substitute Eqs. (9) and (10) into the result to obtain, 

R/ = -nlj/-Q= 
(Bl) - sign(T(x))Vn - {7](x + L/2)[DN (e(x),L/2)- D S (e(x),L/2)] 

Ix S rx+1i N + x_1i7]{y)Dl (e(x),x- y)dy- Jx 7]{y)Dl (e(x),y-x)dy} 
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b(x) (A.6) ~(1-z)--I-f?(t) dt - p(x)+ Ji(x) = 0 
h hex) x 

z(x) (A.7) -~+A,U = 0 h Z • 

By using equation (S) from the text while differentiating L with respect to T(x)we 

obtain: 

T(x) (A.S) -[signT(x)]·V+s(x)=O. 

c(x) (A.9) A,(x)Uc + 77Cx) = 0 

Define the co-state of T(x) to be '1'( x) , 

def fL 
(AIO) If/(x) =- /;(x)dt 

then 

(AIO') tit(x)=S(x) 

By substituting Sex) in the above equations withy(x) and tit(x) from (A 10), and 

then eliminating /(x) from the equations by substituting from (A7), we obtain the 

necessary conditions as specified in the text. 
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where we obtained the second equality by first substituting riJ from Eq. (10) into the first 

equality. Then we differentiate Eq. (15b) and the result for Q we also substitute into the 

first equality to obtain the second. Use has also been made ofthe continuity assumption 

DN (e,O) = D S (e,O). It should be noted that our assumptions also imply 

1](x + L/2) = 1](x - L/2) because (x + L/2) and (x - L/2) are the same point. 

By differentiating (1) with respect to x and substituting the last equality of (18) into 

the result, we get the expression RJz + z + (Uc/Uz)c = Rhh + Z + h1]c = 0, where the second 

equality is obtained by substitution of(13) with b(x) =1 into the first equality. We then 

differentiate the first equality in the chain (18) and substitute the last equality of the chain 

above into the result to obtain the first equality of the chain below 

(B2) Rh = riJ -1]c = _1_[sign(T(x))V + Uc(x) c(x)] 
h h(x) Uz(x) 

Once again we obtained the second equality after substitution of(13) and (10) into the 

previous term. Differentiating (2) with respect to x yields 

(B2a) 
rx rx+~ 

C(x) = Jx_~a(Y)D:[e(y),x- y]dy- J
x 

a(y)D;[e(y),y-x]dy 

-a(x + L/2)[DN (e(x - L/2),L/2)- DS(e(x + L/2),L/2)] 

where once more we have made use of the fact that x + L/2 = x - L/2 and that 

DN (e,O) = D S (e,O) . Substituting (B2a) into (B2) yields the desired expression for Rh • 

Buffer Zones and Boundary Conditions In a Two AA 's Case 

In Fig.3 of the paper the following chain of inequalities holds: 

where Xi' i = 0,1,2,3 are the boundaries of the different zones. 

A necessary condition for optimal boundaries is R[ (X2 ) = Rh (XI) and R[ (X3 ) = Rh (xo ). If 

XI = x2 and X3 = Xo , buffer zones do not exist and there is only a residential zone and an 
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industrial zone. However if in the optimum only strong inequalities hold between the 

boundaries specified in (B3), the solution also includes buffer zones. 

A segment ofthe ring is a buffer zone if for all x ofthe segment, RJ(x):::; 0, Rh(x):::; 0 

(by saying that Rh (x) < 0 we mean that if ~(x) fulfills U ( 00, ~(x ), c( x)) = uo' then 

Y + If/(x) - ~(x)(=h(x) Rh(x))<O. At the boundary of a buffer zone and an industrial 

zone RJ(x) = 0, and at the boundary of a residential zone and a buffer zone Rh (x) = 0 . 

Additional necessary conditions for the general zoning case are, 

(B4) 
R/ x) < Rh (x) > 0, for Xo :::; x :::; L; and 0 :::; x :::; XI 

0< R/x) > Rh(x), for X2 :::; x:::; X3 

and the following conditions are specific to buffer zones. 

Rh (x) :::; 0, R/ x) :::; 0 for XI :::; X :::; x2 and X3 :::; x :::; XO 

(BS) Rh(xO) = Rh(xl ) = RJ(x2 ) = R/x3) = 0 and 

Rh(X2 ):::;0, Rh(X3):::;0 RJ(xo):::;O RJ(xl):::;O 

Since we use the assumption DN (e, y) = D S (e, y) (Assumption 4.1) and disregard 

problems of indivisibility and multiple optima (see footnote 14 in the paper), there is 

complete symmetry between north and south. That is 00', the line through the origin and 

the second fixed point, divides the circle into two halves and serves as an axis of symmetry 

between two mirror images. Thus Xo + XI = L = x2 + X3 , see Fig. 3 which depicts a case 

where this assumption holds. 

Application Of The Bid Rent Rule To The Base Case: 

Consider first the southern boundary ofthe residential zone, xg . It is either an 

intersection point of the two bid rent curves and there is no buffer zone south of the 

residential zone, or Rh (xg) = 0, R/ xg) < 0 and an empty buffer zone exists between the 

residential and industrial zones (see Fig. 3). Since in the base case V=O, the first term in 

the RHS of (B2) disappears. The second term there depends on c(xg) given in (B2a). The 
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assumption DN (e, y) = D S 
( e, y) implies that the last tenn of c( xg) is zero. Upon 

substitution ofx= xg into the appropriate places in the integrals in the RHS of (B2a), we 

obtain 

Note that for y>L, a(y)=a(y-L). Because there is no industrial activity in the 

residential zone a(y) = 0, for xg :::;; y :::;; L + x~. Substituting this tenn into the second 

integral in the above expression yields 

0L/ 0L/ 0 

fXO+ /2 S 0 JXO+ /2 S 0 fX
3 0 ° a(y)D2 [e(y),y -xo]dy = ° a(y)D2 [e(y),y -xo]dy = ° L/a(y)D2[e(y),xo - y]dy 

~ ~ ~+n 

Where the last equality is a result of the symmetry between the south and north directions 

due to assumption 4.1. It should be noted that if X2 ~ Xo + L/2 the last two tenns in the above 

chain do not exist c( xg) = ex! +~ a(y )D2 [e(y), xg - y]dy and the first tenn disappears. Substituting 
JXO-72 

the above chain into c( xg) yields c(x~) = . ex;o +~ a(y )D2 [e(y ),x~ - y]dy, and by substituting this 
JX~-72 

expression into ( c( xg) ) we obtain, 

(B6a) 

The sign in (B6a) results from 1J(x) being positive (see (13)) and D2 negative. Note that if 

xg = x~ , i.e. there is no buffer zone, (B6a) is also the value of Rh(X~). However if xg > x~ , 

namely a buffer zone exists, Rh (x~) = ° and Rh (x~) =0 since b( x~) =0. 

Consider now R/x~). By substituting V=O and utilizing the symmetry assumption, 

the first line in the RHS ofEq. (B 1) disappears. Next consider rJ(y) , the shadow price of 

concentrations. Equation (14) with b(x)=O outside the residential zone, imply 
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'f/(y) = 0, for x lo < Y < xg. Upon substituting it into the second line in the RHS of (B 1) we 

obtain, 

(B6b) 

Note that R/xg) is negative and equal to R/x~) only when e(xg) is positive which 

happens when there are no buffer zones and xg = x~ . Otherwise e(xg) =0, xg ;f:. x~, buffer 

zones exist and R/(xg) =0. 

Since xg and x~ are boundary points they are also points of intersection of bid rent 

curves and as such satisfy the bid rent rule. Equations (B6a) and (B6b) imply that north of 

xg housing outbids the industry and south of x~ industry outbids housing. In complete 

symmetry to the case of xg and x~ , we obtain the expressions below for the slopes ofthe 

bid rent functions in x~ and x~ , 

(B6c) 

and if x~ = x~ and there is no buffer zone, (B6c) is also the value of Rh (x~). However if 

° ° . ° x2 > XI ' Rh(X2 ) = o. Similar arguments also lead to 

(B6d) 

whereasbefore,fory>L, 'f/(y)='f/(y-L) andR/x~)= / 2 2. I .Eqs.(B6c)and 
. {R (xo) if Xo = Xo 

. ° otherwlse 

(B6d) imply that since x~ and x~ are boundary points, hence left of x~ housing outbids the 

industry and right of x~ the industry outbids housing. 

In a similar way it can be established that Rh(X) is positive for xg ~ X < L and 

negative for ° < X ~ x~ and R/x) is positive for x~ ~ x < L/2 and negative for 

L/2 < x ~ x~. It follows that Rh(x) is positive in the residential zone and R/x) is 
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positive in the industrial zone. Consequently Eqs. (18) and (19) imply that all land is fully 

occupied in these two zones. 
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Appendix C. 

Proof Of Lemma 5.1. 

The commuting cost parameter V, appears in the necessary conditions explicitly, only in 

the expression of tfr (Eq. (10)). We already established that choosing the NC point of 

the residential zone as the origin, makes T(x) positive north of the origin up to the second 

NC point at L12, from which point on sign(T(x)) is negative, up to x=L. Substituting + 1 

and -1 for sign(T(x)) in the appropriate places in (10) 

{
V for 0 < x < L / 2} 

yields, tfr( x) = V fi / 2 which upon integration yields (22). From (9) we 
- or L <x <L 

learn that '!I(x) in the industrial zone is equal to the wages paid at x and from (12), the 

budget constraint, we learn that in the residential zone, '!I ( x) the LNE, is the household 

earned income after commuting costs have been deducted. From (22) it is clear that the 

highest wages are paid at x=L12 (0' at Fig. 3). In the residential zone, '!I(x) the LNE, is 

independent of work location and depends only on the place of residence. 

Proof of corollary 5.1.1 

By differentiating (22) with respect to V, we obtain 

(C1) 

where x2 is the boundary of the industrial zone and the term Ovt(x2 )/OV represents the 

change in the wage rate there. It is a shift parameter which has the same effect everywhere 

in the city and is therefore independent of location. 

Proof of Lemma 5.2 

The generalized Henry George rule (see Amott 1979b) implies that the net city 

surplus S, satisfies S = fo~(x)dx + S:Q(x)dx , (see also Hochman and Ofek 1979) where 
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r( x) the rent function, equals Rh (x) in the residential zone and R/ (x) at the industrial 

zone. Therefore the envelope theorem implies !!....-l~(x)dx = -!!....-lLQ(x)dx where t; is any a. 0 a. 0 
I I 

control variables or shadow prices except for a(x) and b(x) whose derivatives are 

everywhere zero except at the boundary points in which they are discontinuous. Out of 

these variables only r;(y) and e(x) appear in Q(x}. Thus since in the residential zone, 

where Q(x) is zero, rex) = Rh(x) we have CRh(x)/ a(x) = -oQ(x)/a(x) =0, and in the 

industrial zone where rex) = R/x), the non zero differentials are 

iR/x)/O'rJ(y) = -oQ(x)/O'rJ(y) and CR/(x)/ &(x) = -oQ(x)/&(x). However we observe 

in (13) that r;(y) is independent of V, and from the rest of the production equations so is 

e(x) (Actually V'(x) is the only variable which depends on V and it does not appear in Q). 

From (15b) we learn that Q is also directly independent of V, hence iQ/ bV =0. 

Consequently by differentiating (17) with respect to V we get, 

(C2) dR/x)/dV =oRAx)/bV = -n(x) Ov.r(x)/bV 

Similarly, by differentiating (18) we obtain 

We just proved that (i) and (ii) in the Lemma hold. QED 

Proof of Lemma 5.3 

By differentiating (C2) with respect to x we obtain, 

(C4) 
ii?Ax)/bV = -n(x) Of;/(x)/bV - fl(x) Ov.r(x)/bV 

= -n(x)sign(T(x)) + flex) iR/(x)/bV 
n(x) 

and by differentiating (c3) we obtain, 

(C5) 

cRh(x)/bV = _1_(Of;/(x)/bV - il(X) (Ov.r(x)/OV)) 
hex) hex) 

_ sign(T(x))-h(x)CRh(x)/OV 

hex) 
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We are still looking at the northern hemisphere in the two AA's case. Consider the 

RHS of the second equality in (C4), the first tenn is always negative and the second tenn 

has the sign of CR/ x) / OV. This sign is essentially negative except in Pattern B near the 

boundary where RJ has increased with V and with it the whole tenn. Thus the whole of the 

RHS of (C4) mayor may not have increased as well in this location, depending on the 

relative size of the two tenns in it. 

A similar argument holds for (C5) but with an opposite sign. QED. 

Proof of Lemma 6.1 : 

We obtain (i) in the lemma by differentiating (6) with respect to V and utilizing the envelop 

theorem. When n approaches infinity, AA's become infinitesimal and therefore commuting 

costs approach zero. The solution then approaches the internal solution of pollution without 

zones (case II). An infonnal proof of (ii)! is as follows: An increase of n implies shorter 

commuting distances and shorter distances for pollution dispersion before concentrations 

reach residential land use. This implies that in two allocations with the same V, overall 

commuting costs will be lower and overall concentration levels will be higher in the 

allocation with more zones. Subsequently, the negative slope of SX(n, V) with respect to V 

is steeper the smaller n is; the reason being that an increase of V when commuting distances 

are longer is costlier and therefore causes a larger reduction in the surplus. To prove (iii) we 

should note that the smaller n is, the higher is SX(n,O), because commuting costs are zero 

for all n while concentrations are lower when n is smaller. 

! A formal proof of these statements can be devised along the following lines. Consider (i) in the Lennna. 
Increasing the number of zones while keeping V constant, shorten commuting distances thus the highest 

values of IT(x ~ are replaced with lower absolute values. Accordingly the total value of the integral is 

reduce. 




