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Joint Indirect Standardization when Only Marginal Distributions 
are Observed in the Index Population

Yifei Wang,
Department of Radiology, University of California, San Francisco

Daniel J. Tancredi,
Department of Pediatrics, University of California, Davis

Diana L. Miglioretti
Department of Public Health Sciences, University of California, Davis

Abstract

It is a common interest in medicine to determine whether a hospital meets a benchmark created 

from an aggregate reference population, after accounting for differences in distributions of 

multiple covariates. Due to the difficulties of collecting individual-level data, however, it is often 

the case that only marginal distributions of the covariates are available, making covariate-adjusted 

comparison challenging.

We propose and evaluate a novel approach for conducting indirect standardization when only 

marginal covariate distributions of the studied hospital are known, but complete information is 

available for the reference hospitals. We do this with the aid of two existing methods: iterative 

proportional fit, which estimates the cells of a contingency table when only marginal sums are 

known, and synthetic control methods, which create a counterfactual control group using a 

weighted combination of potential control groups. The proper application of these existing 

methods for indirect standardization would require accounting for the statistical uncertainties 

induced by a situation where no individual-level data is collected from the studied population. We 

address this need with a novel method which uses a random Dirichlet parametrization of the 

synthetic control weights to estimate uncertainty intervals for the standard incidence ratio.

We demonstrate our novel methods by estimating hospital-level standardized incidence ratios for 

comparing the adjusted probability of computed tomography examinations with high radiations 

doses, relative to a reference standard and we evalauate out methods in a simulation study.

Keywords

Hospital Profiling; Iterative Proportional Fit; Synthetic Control; Survey Sampling; Causal 
Inference

1 Introduction

For assessing hospital performance (g.e., hospital profiling), it is often of interest to compare 

the incidence of a binary outcome in an index hospital to the expected incidence of this 

outcome based on patterns of a wider population (Ash et al. (2011)), represented by a 
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collection of multiple well-studied reference hospitals. The outcome incidences may be 

affected by covariates, such as patient characteristics, whose distributions may vary greatly 

between hospitals (Christiansen and Morris (1997), Woodard et al. (2007)), motivating the 

need to adjust for them before fair comparisons can be made.

One commonly-used method for making this adjusted comparison is indirect 

standardization, using the “Standardized Mortality Ratio” or “Standardized Incidence Ratio” 

(SIR), given the first name because it was developed to compare death rates (Farr (1859)). 

Traditional indirect standardization methods generally adjust for a single confounding 

variable, but often multiple covariates must be considered. For example, for radiation safety 

quality assurance, a hospital may wish to evaluate the probability of computed tomography 

exams with high radiation dose relative to other hospitals while adjusting for several patient 

factors such as body size, age, and sex (Smith-Bindman et al. (2015)).

If the full joint distribution of all covariates were known, such a problem could still be 

addressed using existing indirect standardization methods by applying a risk prediction 

model that is a function of this full joint distribution. However, the index hospital may not 

have the capacity to collect, or may not have the willingness or permission to share, 

individual-level patient data, making it challenging to observe even a sample from this joint 

distribution. On the other hand, index marginal covariate distributions may still be observed 

or approximated, and may be used along with supplementary data from reference hospitals 

to estimate the index joint covariate distribution.

A related challenge exists in survey sampling, where individual-level data of multiple 

covariates are sampled from a population of interest, and the population covariate marginal 

distributions are known from auxiliary sources. The goal is to estimate the joint covariate 

distribution of the population by adjusting the joint covariate distribution observed in the 

sample. This adjusted estimate should be consistent with known population marginal 

distributions but minimize divergence from the sampled joint distribution. This problem was 

first popularized and addressed through a computationally simple algorithm called iterative 

proportional fit, or raking (Deming and Stephan (1940)). Alternative approaches (Stephan 

(1942)) and expansions (Deville et al. (1993)) have been proposed, but traditional raking 

continues to be commonly used (Singh and Rao (1995)).

One important issue, however, limits our ability to directly use raking and related methods 

for hospital profiling. In survey sampling, the population of interest and the population from 

which individual-level data are drawn are the same or assumed to be very similar. This 

assumption cannot be made about our index and reference populations. While some 

reference hospitals may behave similarly to the index hospital, assuming the same for all 

reference hospitals or for “the average hospital” may be inappropriate when the reference 

hospitals are very different from each other.

One solution to this is viewing the index hospital as similar to a weighted combination of the 

reference hospitals. In causal inference, synthetic control methods (Abadie et al. (2010)) 

weight clusters of a data set combined from multiple sources to create a control group 

comparable to the population of interest. The motivating goal of this method is to evaluate 
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an intervention whose effect cannot be observed through experimentation, such as 

estimating the effect of enacted gun control law in Connecticut (Rudolph et al. (2015)). This 

is done by developing a counterfactual state, formed by a weighted combination of states 

which did not enact gun control to synthesize a “control group Connecticut.” Our hospital 

profiling problem does not share this motivation, and direct application of synthetic control 

methods would require information of our index hospital which is more difficult to obtain 

(sometimes impossible obtain). Nonetheless, we would like to weight reference hospitals to 

synthesize a variety of possible control groups, or counterfactual hospitals, for the index 

hospital.

In this paper, we propose an approach for estimating the covariate-adjusted expected 

probability of a binary outcome in an index hospital for which only marginal covariate 

distributions are observed. Our approach exploits the known joint distributions in each of a 

collection of reference hospitals, using concepts drawn from two traditionally unrelated 

statistical methodologies, iterative proportional fit and synthetic control methods. This paper 

begins with a mathematical description of the hospital profiling problem, then reviews 

iterative proportional fit and the inadequacies it presents in this context, addresses these 

inadequacies by exploring ideas drawn from synthetic control methods, and proposes a novel 

random parametrization of synthetic control weights to overcome remaining limitations. We 

demonstrate our novel methodology by applying to an example dataset of radiation doses 

from computed tomography exams performed at 151 hospitals and evaluate our methods 

with a simulation study. We conclude with an exploration of possible future extensions and 

the challenges of making the methods presented in this paper accessible to its predominantly 

non-statistical audience.

2 Mathematical Description of the Problem

We observe a binary outcome, Y, in both an index hospital and a reference population, 

consisting of a large number of reference hospitals. This outcome is influenced by C 
covariates, called X, whose distributions vary between hospitals. Any fair comparison of 

Pr(Y) between hospitals must account for differences in X.

For simplicity, and consistent with existing work in this area, we assume all covariates are 

categorical, with covariate c ∈ 1,…, C having Lc categories. Any continuous covariates may 

be binned in categorical covariates. Let πj = {πj∣l1,l2,…,lC}lc∈1,…,Lc denote the joint 

probability vector of X in the jth reference hospital, j ∈ 1,…, J. We order the elements of πj 

lexicographically such that element πj∣l1,l2,…,lC = Pr(X1 = l1, X2 = l2, …,XC = lC) in 

reference hospital j. That is, it denotes the probability of belonging to category l1 ∈ 1,…, L1 

of the first covariate, category l2 ∈ 1,…, L2 of the second covariate, and so on.

Let p̃l1,l2,…,lC = Pr(Y∣X1 = l1, X2 = l2, …, XC = lC in the overall reference population, and 

let vector p̃ = {p̃l1,l2,….lC}lc∈1,…,Lc be indexed identically to πj. These probabilities can be 

computed in several ways. The most direct way is using the observed outcome proportions 

in the reference data for each covariate combination, assuming a large enough sample to 

allow precise estimation. In the case of rare outcomes or small sample sizes, p̃ may be 

estimated using multi-level logistic regression (Ash et al. (2011)).
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In the index hospital, let p = Pr(Y) and Ẽ[p] be the expectation of Pr(Y) if Pr(Y∣X) = p̃. The 

value p/Ẽ[p] is called the SIR. Traditional indirect standardization views Ẽ[p] as fixed, while 

p is estimated using the observed proportion of Y in the index; call this observed value p̂. 
There are many existing methodologies for quantifying the uncertainty in p̂, but in our 

hospital profiling problem, we shall see that the p̂ is not the only source of uncertainty in the 

SIR, as Ẽ[p] is also not observed and thus must be estimated with some uncertainty. Herein 

lies a unique challenge which has not been addressed in traditional indirect standardization.

The source of this uncertainty is π0 = {π0∣l1,l2,…,lC}lc∈1,…,Lc, which we use to denote the 

index joint covariate probability vector, indexed identically to πj. When π0 is observed, one 

may simply take p′ × π0 as the value of Ẽ[p]. If this induces an SIR significantly greater than 

1, we may say the outcome occurs more often than expected given the patient population. In 

our motivating problem, however, no individual-level data is collected from the index 

hospital, leaving π0 unobserved. We instead observe only the index covariate marginal 

probabilities. Denote these marginals as vector π0∣+, which lists relative frequencies of each 

category for the first covariate, then relative frequencies of each category for the second 

covariate, and so on. Let A be the matrix of 1s and 0s which transforms π0 to its marginal 

summaries π0∣+, i.e. A × π0 = π0∣+. For example, in the case where there are two covariates, 

each with two categories, we have

A =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

π0 =

π0 ∣ 1, 1
π0 ∣ 1, 2
π0 ∣ 2, 1
π0 ∣ 2, 2

π0 ∣ + =

π0 ∣ 1, +
π0 ∣ 2, +
π0 ∣ + , 1
π0 ∣ + , 2

where pl1, + = ∑l2 = 1
L2 pl1, l2

 and p+, l2
= ∑l1 = 1

L1 pl1, l2
 for any vector p indexed as 

{pl1,l2}l1,∈1,…,L1,l2∈1,…,L2.

The goal of this paper is to synthesize a hospital counterfactual to the index - call its joint 

covariate probability vector π - such that it is reasonable to estimate Ẽ[p] using p′ × π, and 

the SIR (p/Ẽ[p]) using p ∕ [p′ × π]. That is to say, π should have the following properties

1. For consistency with existing knowledge of the index, we must have 

A × π = π0 ∣ +.

2. An uncertainty interval created for p ∕ [p′ × π0] using p ∕ [p′ × π] must have the 

same probability of including p ∕ [p′ × π0] as a confidence interval (of the same 

level) created using p ∕ [p′ × π0].

3 Using Observed Information from the Index

The problem of finding π such that A × π = π0 ∣ + can be addressed using an iterative 

process called the iterative proportional fit algorithm, or raking. The original work (Deming 

and Stephan (1940)) surrounding raking first considered the case with only two covariates. 
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In this context, raking operates by placing all elements of π(0) - the initial estimate - into a 

contingency table, with L1 rows denoting the categories of the first covariate and L2 columns 

denoting the categories of the second. Each row is then multiplied by whatever number is 

required to meet the known marginal totals for the first covariate induced by π0∣+. The same 

is then done for the columns, meeting known marginal totals for the second covariate. The 

process then alternates between adjusting the rows, then columns, until marginal totals for 

both covariates are met simultaneously.

To put this in mathematical terms, let π(t) = {πl1, l2
(t) }

l1 ∈ 1, …, L1, l2 ∈ 1, …, L2
 denote the 

candidate for π on the tth iteration. The initial candidate, π(0), is formed from a sample of the 

population of interest. The first two iterative steps are:

πl1l2
(1) = πl1l2

(0) ⋅
π0 ∣ l1, +

A × π(0)
l1, +

πl1l2
(2) = πl1l2

(1) ⋅
π0 ∣ + , l2

A × π(1)
+, l2

(1)

This forms a cycle which is repeated, with π(0), π(1), π(2) replaced by π(s), π(s + 1), π(s + 2) for 

even-valued s. The algorithm stops when A × π(T) is sufficiently close to π0∣+ for some T. 

The convergence of this algorithm has been proven at varying degrees of generalization by 

multiple authors (Bishop (1967), Ireland and Kullback (1968), Fienberg (1970), 

Ruschendorf (1995)), though it is necessary that π(0) has no elements equal to zero; this is a 

restriction we shall place as well. In any cases where π(0) would be observed to have 

elements equal to zero, we set the zero-values to 10−10 instead, then normalize so that the 

elements of π(0) add up to one.

The primary utility of raking is to find an estimate π(T) that not only satisfies 

A × π(T) = π0 ∣ +, but also minimizes the Kullback-Leibler Divergence from π(0) (Ireland and 

Kullback (1968)). In the process of minimizing this divergence, raked estimates obtain a 

number of other useful properties. Most importantly for this paper, as odd steps deal only 

with restrictions set by the first covariate and even steps only the second, any iteration, 

including the solution, may be written as

πl1l2
(t) = δ1, l1

(t) ⋅ δ2, l2
(t) ⋅ πl1l2

(0)

Where
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δ1, l1
(t) = ∏

u ≤ t, u mod 2 = 0

π0 ∣ l1, +

A × π(u)
l1, +

δ2, l2
(t) = ∏

u ≤ t, u mod 2 = 1

π0 ∣ + , l2
A × π(u)

+, l2

(2)

Later authors (Deville and Särndal (1992), Deville et al. (1993)) extended this algorithm to 

cases with C covariates using different notation, with each cycle having C operations instead 

of the two operations in equation 1, giving the relationship

πl1, …, lC
(t) = δ1, l1

(t) ⋅ δ2, l2
(t) ⋅ … ⋅ δC, lC

(t) ⋅ πl1, …, lC
(0) (3)

The δ(t) values are defined similarly to equation 2, except the product conditions on u 
become u ≤ t, u mod C = 0,1, …, C – 1.

From this, we see that raking preserves the cross-product ratios of π(0) (Mosteller (1968)), a 

measure of association between covariates. By equation 3, without loss of generality, 

observe that for any pairs of categories from the first two covariates a1, a2 ∈ 1, …, L1, b1, b2 

∈ 1, …, L2, and lc ∈ 1, …, Lc ∀ c ∈ 3, 4, …, C. We have, for any t,

πa1, b1, l3, …, lC
(t) ⋅ πa1, b2, l3, …, lC

(t)

πa2, b1, l3, …, lC
(t) ⋅ πa2, b2, l3, …, lC

(t) =
πa1, b1, l3, …, lC

(0) ⋅ πa1, b2, l3, …, lC
(0)

πa2, b1, l3, …, lC
(0) ⋅ πa2, b2, l3, …, lC

(0)

⋅
δ1, a1

(t) ⋅ δ2, b1
(t) ⋅ δ1, a1

(t) ⋅ δ2, b2
(t)

δ1, a2
(t) ⋅ δ2, b1

(t) ⋅ δ1, a2
(t) ⋅ δ2, b2

(t) ⋅
(∏c = 3

C δc, lc
(t) )2

(∏c = 3
C δc, lc

(t) )2

=
πa1, b1, l3, …, lC

(0) ⋅ πa1, b2, l3, …, lC
(0)

πa2, b1, l3, …, lC
(0) ⋅ πa2, b2, l3, …, lC

(0)

(4)

In the case of C = L1 = L2 = 2, the cross-product ratio is also known as the odds ratio.

The question then arises as to whether it is desirable to preserve the cross-product ratios of 

π(0). If it can be assumed that π0 shares the cross-product ratios of π(0), then setting π = π(T)

would make π an exact estimate of π0, satisfying both enumerated requirements set out in 

section 2. In traditional raking, π(0) is estimated by a sample of individual-level data from 

the population in interest. In our motivating problem, the population of interest is the index 

hospital, from which we have no sample of individual-level data.
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We instead have individual-level data from a collection of reference hospitals which have a 

variety of cross-product ratios represented, many of which are quite different from the cross-

product ratio of the overall reference population. Thus, assuming the index comes from the 

same population of hospitals as the reference hospitals, it would be inappropriate to preserve 

the cross-product ratios of a π(0) computed using the overall reference population dataset. In 

fact, to assume that the index hospital shares its cross-product ratios with any fixed π(0)

seems unwarranted and would be untestable, as the index covariate cross-product ratios are 

unobserved. Therefore, an inferential model on the SIR in the context of our motivating 

problem must allow for some uncertainty in the choice of π(0), or in other words, uncertainty 

in the denominator of the SIR.

4 Using Supplementary Data from the Reference

To model uncertainty in the selection of π(0), we look to the individual reference hospitals, 

rather than the full reference dataset, for candidates. Let Θj denote the set of all cross-

product ratios of covariates in the jth reference hospital, and let Θ0 denote the unknown set 

of all cross-product ratios of covariates in the index. The collection Θ1, …, ΘJ provides a 

collection of candidate values for Θ0.

Noting that the combination of known marginal summaries and known cross-product ratios 

induces a unique joint distribution, we see from section 3 that given π0∣+ and the assumption 

of Θ0 = Θj for fixed j ≠ 0, we may directly compute π0 by using πj as the initial estimate in a 

raking procedure. Refer to the joint probability vector produced this way as π j; let Π be a 

matrix where the jth column is π j.

The statement Θ0 = Θj is unlikely to be true for any single j ≠ 0, making it also unlikely that 

any π j = π0. However, it is also true that Θ0 would be more similar to some {Θj}j≠0 than to 

others, so it becomes natural, in the process of synthesizing π similar to π0, to place greater 

importance on some j ≠ 0 than others. That is, have

π = Π × w, w j ≥ 0 ∀ j ∈ 1, …, J and ∑
j = 1

J
w j = 1 (5)

leading to the estimate

p ∕ E[p] = p ∕ [p′ × Π × w] (6)

for the SIR (p/Ẽ[p]). Note that since A × π j = π0 ∣ + ∀ j ≠ 0 we have 

A × Π × w = A × π = π0 ∣ + for all possible values of w.

If the index hospital differs sufficiently from the reference hospitals such that no weighted 

combination of reference hospitals could reflect the index, the formulation in equation 5 
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would preclude π from precisely estimating π0. Thus, the set of reference hospitals must be 

sufficiently representative of any potential hospitals of interest, so that the convex hull of 

{π} j ≠ 0 encompasses most reasonable values the index covariate distributions can take.

Synthetic control methods (Abadie et al. (2010)) address a similar issue of weighting a set of 

auxiliary populations to form a counterfactual for the population of interest. In its standard 

application, set of predictive values required of the counterfactual (that is, the analog of π0) 

can take many forms, including marginals summaries (such as age distribution), population 

characteristics (such as the GDP of a state), and time-sensitive data (such as records of state-

level cigarette sale volume over the course of a decade). In all cases, however, π0 is known, 

and w could, for example, simply be chosen to minimize a target function such as 

π0 − ∑ j = 1
J w j ⋅ π j 2

2
. Under our motivating context, where π0, the joint covariate 

distribution of the index hospital, is unknown. Only π0∣+ is known, and similar marginal 

distributions may not lead to similar cross-product ratios or similar joint distributions.

Given all values of w are possible, we assume w follows a Dirichlet distribution, which is a 

multivariate distribution characterized by the density function

f (w; α1, …, αJ) =
Γ(∏ j = 1

J α j)
∏ j = 1

J Γ(α j)
∏
j = 1

J
w j

α j − 1
(7)

where Γ(·) is the Gamma function, and αj are positive and finite values called concentration 

parameters. To gain full utility of this distribution in our motivating problem, we 

reparametrize the Dirichlet distribution with parameters β0, β1, …, βJ, such that 

β j =
α j

∑ j = 1
J α j

∀ j ≠ 0 and β0 = ∑ j = 1
J α j. The Dirichlet distribution generates vectors of 

positive values which add up to one. On average, the generated value takes the form W̄ = 

{βj}j≠0. As β0 → ∞, a generated w will always take the form W̄. As β0 → 0, generated w 
will tend to be vectors which contain a single value close to 1, with remaining values close 

to 0.

Since a higher βj≠0 induces, on average, a higher realization of Wj, it could be said that βj≠0 

describes our confidence in the statement Θ0 = Θj. Due to lack of any prior information 

about which hospitals are similar, we assume for this paper that all {βj}j≠0 are equal, which 

centers the distribution on the unweighted average of all reference hospitals. For example, 

we see that when all {βj}j≠0 are equal but β0 is very small, the prevailing candidates for w 
will represent cases where the index hospital has some nearly exact mirror among the 

reference hospitals, though we do not know which is the mirror. Despite averaging out to the 

case where the index is the unweighted average of all references, this selection of Dirichlet 

parameters nearly precludes such a possibility. That is, the value of equation 7 decreases for 

w = {βj}j≠0 when β → 0, β1 = … = βJ.
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5 Point Estimation and Inference of the Standardized Incidence Ratio

Traditional methods of computing a confidence interval for the SIR (p/Ẽ[p]) presume Ẽ[p] to 

be a known constant, and calculate confidence intervals for p by assuming n · p̂ ~ Poisson(n · 

p), where n is the sample size of the index hospital (Yule (1934)). A confidence interval for 

the SIR is then estimated by dividing the known Ẽ[p] from a confidence interval for p. Note 

that if Ẽ[p] is incorrectly observed, this practice would result in an interval that fails to 

include the true SIR at the selected confidence level.

In our motivating problem, Ẽ[p] is not observed at all, inducing uncertainty in both the 

numerator and the denominator of the SIR. We’ve set E[p] = p′ × Π × w, and must take into 

account the uncertainty due to w ~ Dirichlet(β0, β1, …, βJ). We propose an innovative 

simulation approach to take into account variability due to the estimation of w.

Given known values for β0, β1, …, βJ, w can be easily simulated. A simulated value of w, 

along with a simulated value of p using n · p̂ ~ Poisson(n · p), form a simulated value for the 

SIR. Multiple candidates for the SIR may be simulated this way. The mean of these values is 

taken as a point estimate for the SIR, and quantiles of these candidates reflecting the desired 

confidence level may be chosen to form a uncertainty interval for the SIR; call the desired 

confidence level γ′ and let the chosen percentiles be (1 – γ′)/2 and 1 – (1 – γ′)/2. However, 

though β1, …, βJ are known (section 4), the value of β0 still remains to be chosen.

Let pj and p̂j be the true and observed probability of the outcome Y in the jth reference 

hospital. Let Ẽ[pj] be the expected value of p̂j given p̃. Given a fixed β0, we estimate the 

coverage rate of a uncertainty interval by having each reference hospital take the role of the 

index one by one. That is, for each j ≠ 0, we rake {πk}k≠j similarly to equation 5 to predict 

Ẽ[pj] via the random variable

E[p j] = p′ × Π− j × w− j (8)

where Π− j is a matrix whose columns are (πk}k≠j, raked to match the marginals of πj, and w

−j follows a Dirichlet distribution with mean W̄
−j = (β1, …, βj−1, βj+1, …, βJ). An 

uncertainty interval can be thus computed, through simulation as described earlier, for the 

SIR of the jth reference hospital (pj/Ẽ[pj]). Call this interval (aj, bj).

Because each (πj}j≠0 is known, the true Ẽ[pj], and thus the distribution of the SIR under 

circumstances of traditional indirect standardization, are also known. The expected coverage 

rate of (aj, bj) can be computed by

γ j = ∫
E[p j]a j

E[p j]b j
f (x)dx (9)
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where f (x) is some candidate posterior distribution for p given n · p̂ ~ Poisson(n · p). There 

are many possible candidates for f (x), the one we chose was motivated by the distribution 

assumption that

np~Gamma(np + 1 ∕ 3, 1) (10)

The justification for this new distribution is the Bayesian prior assumption that np ~ 

Gamma(1/3, 0), which has been shown to be non-informative in estimating the rate 

parameter of a Poisson random variable (Kerman (2011)). This, when motivated by data 

observed from np̂ ~ Poisson(np), produces the posterior equation 10. An “overall” coverage 

rate for the candidate β0 may then be computed as γ = 1
J ∑ j = 1

J γ j.

Here we run into the problem raised in section 4 where πj may fall outside the convex hull 

of Π− j. Observe that, by equation 8, Ê[pj] is bounded by the maximum and minimum of 

{Ẽ[pk]}k≠j. When Ẽ[pj] falls outside these bounds, equation 9 may not be able to produce a 

coverage rate of γ′. The values of {γk}k≠j are usually able to compensate for this and still 

give γ = γ′, and in fact this was nearly always the case in the data example and simulations 

of sections 6 and 7. However, it is still theoretically possible γ = γ′ cannot be achieved for 

any β0. In such cases, we follow the precedence of synthetic control methods (Abadie et al. 

(2010)) and attempt to minimize the target function ∣γ – γ′∣.

To do this, we note that the covariance of w ~ Dirichlet(α1, …, αJ) takes the following form 

(Devroye (1986)):

Var(w j) =
α j(∑s = 1

J αs − α j)

(∑s = 1
J αs)2(∑s = 1

J αs + 1)

Cov(w j, wk) =
−α jαk

(∑s = 1
J αs)2(∑s = 1

J αs + 1)

Under the reparametrization to β0, β1, …, βJ, these equations change to

Var(w j) =
β j(1 − β j)

β0 + 1 Cov(w j, wk) =
−β jβk
β0 + 1

meaning

Var(E[p]) = ∑
j = 1

J
(p′ × π j)

2 β j(1 − β j)
β0 + 1

+ ∑
j = 1

J
∑

k ≠ j
(p′ × π j)(p′ × πk)

−β jβk
β0 + 1

(11)
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Since all elements of w̄, p̃, and Π are by definition bounded by (0,1) and are independent of 

β0, we see that equation 11 tends to 0 strictly as β0 → ∞. This observation can be easily 

expanded to Ê[pj].

As Var(Ê[pj]) has a one-to-one relationship with β0, so must γj. Thus, we note that when all 

β0 > 0 fail to induce γ = γ′, then ∣γ – γ′∣ will be minimized as β0 → 0 or β0 → ∞.

6 Application to Example Data

We evaluated our proposed algorithm by comparing the 95% uncertainty intervals it 

produces with 95% confidence intervals produced in traditional indirect standardization, 

where the full joint covariate distribution of the index hospital is known. The goal is to show 

that intervals produced by our method cover roughly the same values as intervals produced 

with full information on the index hospital, and thus would have similar utility.

This application was performed using a dataset of nearly all (377,928) consecutive adult 

abdomen computed tomography scans from 151 hospitals performed between April 2015 

and August 2016. Sample sizes of scans within hospitals varied between 33 and 17,930, with 

a mean of 2,503 and a standard deviation of 3,452. The hospitals sampled include public, 

private, academic, and non-academic institutions, from a variety of localities in Europe, 

Japan, and throughout the United States, representing very diverse demographics and 

radiological practices.

The outcome of interest is whether a scan had radiation dosage, measured by the dose length 

product in milligray-centimeters (mGy-cm), above a value of 1140 mGy-cm, which was 

predetermined to be high. The expected probability of high-dose scans in a hospital is 25%, 

with wide variability in values across hospitals, ranging from 2.5% to 82%. To evaluate this 

probability in an index hospital relative to others, we control for the patient case-mix 

including gender, age, and abdominal diameter, as well as whether the scan was single or 

multi-phase. Both age and abdominal diameter were categorized into quartiles.

These covariates significantly influence the outcome, producing highly variable elements in 

p̃, which ranged from 0.4% for single-phase scans performed on small, very young, female 

patients, to 82% for multi-phase scans performed on very large, young, female patients. The 

probability vector of high dose exams given all covariates was computed directly (see 

section 2) due to availability of large sample size in the reference hospitals. The distributions 

of the covariates themselves also vary greatly across hospitals, which range from hospitals 

with exceptional obesity rates, to those who mostly treat children (and thus only have young 

people among the adult scans they do perform), to those which have good representation 

across all demographics.

We observed the joint covariate distribution for all hospitals, providing an opportunity to 

evaluate the performance of our algorithm had only marginal distributions been observed. To 

do this, we randomly selected 25% of hospitals (37) to serve the hypothetical role of index 

hospitals unable to obtain or unwilling to provide individual-level scan data. The remaining 

75% (114) were treated as a referential “training set”. The training set was used to estimate 

β0, resulting in a value of β̂0 = 1.84. Using this estimated β0, 95% uncertainty intervals were 
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then formed for the SIRs of the hypothetical index hospitals using equation 6 and w ~ 

Dirichlet (1.84/114, …, 1.84/114). This interval was compared to the 95% SIR confidence 

intervals produced using traditional indirect standardization, which requires all πj be known.

Figure 1 shows the SIR uncertainty intervals generated by our algorithm using only 

covariate marginal distributions in unfilled, black-bordered boxes and the SIR confidence 

intervals produced using traditional indirect standardization using full joint covariate 

distributions in grey-filled, unbordered boxes. On average, our algorithm’s uncertainty 

intervals were only 6.2% wider than traditional confidence intervals, despite using 

significantly less information. However, at the extremes, our algorithm produced intervals up 

to 45% wider than their traditional counterparts. Comparatively wide intervals from our 

algorithm tend to occur in cases where the index hospital has an exceptionally large sample 

size or relatively high observed incidence of high dosage; in such cases, the widths of 

traditional intervals decrease substantially, while the widths using our methods do not.

The intervals estimated with our method also tend to cover the same values as traditional 

intervals. On average, our intervals shared 89.6% of the values they covered with their 

traditional counterparts, while the traditional intervals on average shared 94.3% of the values 

they covered with our counterpart.

7 Simulation Study

We conducted a simulation study to evaluate how well 95% uncertainty intervals estimated 

with our approach predict the true SIR value. We would like to construct uncerntainty 

intervals which contain the true SIR at least 95% of the time. Our method was compared to 

the case where the covariate cross-product ratios of the index hospital are non-random. 

Specifically, the joint covariate distribution of the index was computed by directly raking the 

joint covariate distribution of the overall reference dataset. This methodology, which we will 

call the “fixed denominator method,” is computationally simple compared to the one we’ve 

proposed, but produces uncertainty intervals which fails to include the true SIR 95% of the 

time.

To perform these simulations, we assumed the covariate distributions and high dosage 

incidences (and therefore also the SIR) observed in our example hospitals are true values. 

From this, we simulated a new set of reference hospitals with the same covariate 

distributions and sample sizes as the example hospitals, but sampled their observed 

incidences of high dose exams from 1
n j

 Poisson(njpj).

The simulated hospitals were split into 37 index hospitals and 114 reference hospitals, in the 

same groups as they were in section 6. The algorithm was performed as before, except this 

time we simulated 1,000 unique datasets. For each dataset, we observed whether each 

simulated hospital had its true SIR contained within the uncertainty interval estimated by our 

method and by the fixed denominator method, producing for us a prediction rate for the SIR 

both overall and for each hospital. Our goal was to produce a prediction rate of 95%. The 
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phenomenon mentioned in section 4 of this not being theoretically possible due to πj falling 

outside the convex hull of Π− j was not observed in our simulations.

Figure 2 shows the prediction rates of the true SIR in each of the 37 index hospitals. For our 

proposed method, these prediction rates averaged 95.1%, and ranged from 85.8% to 98.4%, 

with an interquartile range of 1.8% (94.5% to 96.3%). For the fixed denominator method, 

these prediction rates averaged 93.4%, and ranged from 80.3% to 96.0%. Prediction rates 

produced by the fixed denominator method were significantly and consistently inferior to 

those produced by our methods among the 37 index hospitals.

Figure 3 shows the biases of the SIR point estimates from each simulated hospital, using our 

proposed method. On average, the point estimates, with an overall average percent bias of 

0.02% and average percent biases within hospitals ranging from −0.08% to 1.8%. The 

percent biases produced from individual simulated hospital datasets vary greatly at the 

extremes, with the most extreme as large as −267%, but in general they vary modestly, with 

an interquartile range of 9.3% (−4.5% to 4.8%). In terms of point estimates, the fixed 

denominator method had similar performance.

As figures 2 and 3 show, the algorithm performed poorest in terms of lower prediction rates 

and higher percent biases when the true SIR was low. Performance gradually improved as 

the true SIR approached 1, and performed very well for SIRs as high as 5.97 (the largest 

value observed in our example dataset).

8 Conclusion and Expansion

We demonstrated that a combination of raking and Dirichlet parametrization of synthetic 

control weights can be used to conduct indirect standardization for a hospital with only 

marginal covariate distributions available, when supplementary data on joint covariate 

distributions are provided from reference hospitals. An exploration with example data and a 

simulation study showed that our approach is unbiased, on average, and has uncertainty 

interval coverage rates consistent with expectations. On average, our algorithm’s uncertainty 

intervals were only slightly wider than traditional confidence intervals, despite using 

significantly less information.

Future work will include developing methods for selecting measures of similarity between 

the reference hospitals and the index hospital, with respect to associative structure of 

covariates. Such a measure can be quantified in a variety of ways depending on the outcome 

variable. For our motivating problem, hospital characteristics that may correlate to similar 

covariate cross-product ratios between hospitals may include geographic location, whether 

the hospital is public or private, whether the hospital is academic or non-academic, or certain 

numerical summaries of covariate marginal distributions. Sufficiently-informed estimates of 

these measures should improve SIR point estimates, as well as decrease the width of the 

uncertainty intervals.

Our methodology can also be extended to utilize continuous covariates, and there are 

extensions of raking which allow for this development (Deville et al. (1993)). The greatest 
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challenge of this extension would come from context surrounding the motivating medical 

problem, which involves asking a user who’s likely not versed in statistics to provide 

marginal summaries for covariate distributions. The most informative marginal summary for 

a continuous covariate would be a density function, a concept not well-understood among 

our target audience. On the other hand, statistical concepts which are well-understood may 

be insufficiently informative to obtain a good estimate. Balancing these two objectives will 

be a pressing issue going forward, one whose solution may not lie exclusively in the world 

of statistics.

Our next step is to develop a web application where hospitals can enter their marginal 

covariate distributions and percentage of high dose exams to get an estimated SIR and 

uncertainty interval, given their case-mix. The hospitals included in our example will serve 

as the reference population. The web site will provide important feedback to hospitals on the 

quality of their performance in computed tomography radiation safety relative to a large 

number of reference hospitals.

The advantages of the index hospital only needing to provide marginal covariate 

distributions are numerous. Full joint covariate distributions are often infeasible to obtain 

due to difficulties in extracting data from electronic health records. Even when available, full 

joint distributions may be tedious to enter into a web application. As the number of 

(categorical) covariates being considered increases, the number of cells in a contingency 

table detailing the covariate distribution increases exponentially. Even among index hospitals 

who are able to obtain full joint covariate distributions, there may still exist those who wish 

to be profiled, but are apprehensive about providing individual-level data due to human 

subject protections. By asking only for marginal covariate distributions, we offer protection 

to patient confidentiality.

Our approach will be used to develop a web application which will be efficient to use while 

protecting patient confidentiality. The application will be entirely operated by the user, 

without the need to communicate with either a statistician or the institutions providing 

referential data. Our algorithm runs very quickly, taking on average three seconds to provide 

an uncertainty interval for the SIR, when 114 reference hospitals and four covariates (taking 

on 64 possible combinations) are considered, and when any information intrinsic only to the 

reference hospitals (such as the reference joint covariate distributions) are computed ahead 

of time. We hope the availability of such easily-accessible software will encourage more 

hospitals to compare their computed tomography scans to those of other hospitals, and in 

doing so lead to improved quality of service.

Code used to produce the results of this paper has been provided in the accompanying 

“RSCfiles.zip” file; the “README.txt” file within contains descriptions for this code.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Wang et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was supported by multi-site studies evaluating radiation exposure from computed tomography imaging 
and methods to reduce radiation exposure (PI: Rebecca Smith-Bindman, MD: NCI 1R01CA181191, PCORI 
CA-0054498). We thank the study investigators for their willingness to share their data for this work.

References

Abadie A, Diamond A, and Hainmueller J (2010). Synthetic control methods for comparative case 
studies: Estimating the effect of california’s tobacco control program. Journal of the American 
Statistical Association 105, 493–505.

Ash A, Fienberg S, Louis T, Normand S, Stukel T, and Utts J (2011). Statistical issues in assessing 
hospital performance. Technical report, Committee of Presidents of Statistical Societies.

Bishop Y (1967). Multidimensional contingency tables: cell estimates (Ph.D. dissertation). Harvard 
University.

Christiansen C and Morris C (1997). Improving the statistical approach to health care provider 
profiling. Annals of Internal Medicine 127, 764–768. [PubMed: 9382395] 

Deming W and Stephan F (1940). On a least squares adjustment of a sampled frequency table when 
the expected marginal totals are known. The Annals of Mathematical Statistics 11, 427–444.

Deville J and Särndal C (1992). Calibration estimators in survey sampling. Journal of the American 
Statistical Association 87, 376–382.

Deville J, Särndal C, and Sautory O (1993). Generalized raking procedures in survey sampling. Journal 
of the American Statistical Association 88, 1013–1020.

Devroye L (1986). Non-Uniform Random Variate Generation. Springer-Verlag.

Farr W (1859). Letter to the registrar-general on the causes of death in england in 1857. Twentieth 
Annual Report of the Registrar-General of Births, Deaths, and Marriages in England 5, 163–178.

Fienberg S (1970). An iterative procedure for estimation in contingency tables. The Annals of 
Mathematical Statistics 41, 907–917.

Ireland C and Kullback S (1968). Contingency tables with given marginals. Biometrika 55, 179–188. 
[PubMed: 5661043] 

Kerman J (2011). Neutral noninformative and informative conjugate beta and gamma prior 
distributions. Electronic Journal of Statistics 5, 1450–1470.

Mosteller F (1968). Association and estimation in contingency tables. Journal of the American 
Statistical Association 63, 1–28.

Rudolph K, Stuart E, Vernick J, and Webster D (2015). Association between connecticut’s permit-to-
purchase handgun law and homocides. American Journal of Public Health 105, 49–54. [PubMed: 
25393182] 

Ruschendorf L (1995). Convergence of the iterative proportional fitting procedure. The Annals of 
Statistics 23, 1160–1174.

Singh A and Rao J (1995). On the adjustment of gross flow estimates for classification error with 
application to data from the canadian labour force survey. Journal of the American Statistical 
Association 90, 478–488.

Smith-Bindman R, Moghadassi M, Wilson N, Nelson T, Boone J, Cagnon C, Gould R, Hall D, 
Krishnam M, Lamba R, McNitt-Gray M, Seibert A, and Miglioretti D (2015). Radiation doses in 
consecutive ct examinations from five university of california medical centers. Radiology 277, 
134–141. [PubMed: 25988262] 

Stephan F (1942). An iterative method of adjusting sample frequency tables when expected marginal 
totals are known. The Annals of Mathematical Statistics 13, 166–178.

Woodard D, Gelfrand A, Barlow W, and Elmore J (2007). Performance assessment for radiologists 
interpreting screening mammography. Statistics in Medicine 26, 1532–1551. [PubMed: 16847870] 

Yule G (1934). On some points relating to vital statistics, more especially statistics of occupational 
mortality. Journal of the Royal Statistical Society 97, 1–84.

Wang et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Results of the Hospital Profiling example, evaluating the incidence of high-dose exams. The 

y-axis shows Standardized Incidence Ratio (SIR) uncertainty intervals, generated by our 

algorithm for 37 index hospitals using only covariate marginal distributions (unfilled boxes 

with black borders), compared to SIR confidence intervals produced using traditional 

indirect standardization using full joint covariate distributions (grey-filled boxes with no 

borders). The x-axis shows the observed SIR of the index hospital, given individual-level 

data. Two hospitals with relatively high SIRs were removed from the plot to improve 

visualization of the remaining hospitals.
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Figure 2: 
Results of the simulation study. The y-axis shows the observed coverage rate of uncertainty 

intervals estimating the Standardized Incidence Ratio (SIR) of each of 37 index hospitals, 

formed using the 1,000 simulated datasets. The x-axis shows the true SIR of each hospital. 

Results for both our proposed method (circles) and the fixed denominator method (cross) are 

shown.
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Figure 3: 
Results of simulation studies. The y-axis shows the percent bias of the SIRs estimated by our 

algorithm for 37 simulated index hospitals using only covariate marginal distributions. The 

x-axis shows the true SIR values from which the datasets were simulated. Grey dots indicate 

simulated hospitals whose true SIRs were covered by the uncertainty interval estimated 

using our algorithm, black crosses indicated simulated hospitals whose true SIRs were not.

Wang et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Mathematical Description of the Problem
	Using Observed Information from the Index
	Using Supplementary Data from the Reference
	Point Estimation and Inference of the Standardized Incidence Ratio
	Application to Example Data
	Simulation Study
	Conclusion and Expansion
	References
	Figure 1:
	Figure 2:
	Figure 3:



