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Exact, convergent periodic-orbit expansions of individual energy eigenvalues
of regular quantum graphs

R. Blümel, Y. Dabaghian, and R. V. Jensen
Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155

~Received 16 October 2001; published 8 April 2002!

We present exact, explicit, convergent periodic-orbit expansions for individual energy levels of regular
quantum graphs in the paper. One simple application is the energy levels of a particle in a piecewise constant
potential. Since the classical ray trajectories ~including ray splitting! in such systems are strongly chaotic, this
result provides an explicit quantization of a classically chaotic system.

DOI: 10.1103/PhysRevE.65.046222 PACS number~s!: 05.45.Mt, 03.65.Sq

I. INTRODUCTION

Within the framework of semiclassical periodic-orbit
theory the quantization procedures for integrable and chaotic
systems differ substantially. An integrable system may be
quantized using the Einstein-Brillouin-Keller theory @1#. The
set of integrals

I i5E
C i

pmdqm
5h~n i1m i!, i51, . . . ,N , ~1!

extended along the N fundamental cycles C i of the
N-dimensional phase-space tori yield the ~semiclassical!
quantization conditions for every action variable I i . Here the
n i’s are integer quantum numbers and the m i’s are Maslov
indices. Although not exact in general, the quantization con-
dition ~1! does ~implicitly! produce individual energy levels
En1 , . . . ,nN

that can be labeled, one by one, with the N quan-

tum numbers n1 , . . . ,nN . This procedure differs markedly
from the chaotic case where the focus is not on individual
energy levels but on global characteristics of the spectrum.
For instance, instead of finding individual energy levels as in
Eq. ~1!, periodic-orbit quantization schemes for chaotic sys-
tems, such as, Gutzwiller’s trace formula @1# compute the
density of states

r~k !5(
j51

`

d~k2k j!, ~2!

from which individual energy levels are extracted indirectly
as the singularities of r . In a chaotic system the only avail-
able classical input are the periodic orbits of the system and
the density of states ~2! is computed according to @1#

r~k !'r̄~k !1

1

p
Im(

p
Tp~E ! (

n51

`

Ap
n~E !e inSp(E). ~3!

Here r̄(k) is the average density of states, Sp(E), Tp(E),
and Ap(E) are correspondingly the action, the period, and
the weight factor of the prime periodic orbit labeled by p,
and n is the repetition index. Again, the scheme ~3! is not
usually exact. More seriously, however, in contrast to Eq. ~1!
it fails to produce individual energy levels in the form ‘‘En
5 . . . .’’ The difference between Eq. ~1! and Eq. ~3! cannot
be emphasized enough. While Eq. ~1! allows us to ‘‘pick and

choose’’ a particular energy eigenvalue, in the chaotic case
all of the eigenvalues have to be computed according to Eq.
~3!, and only a subsequent nonanalytic inspection and count-
ing procedure allows us to focus on an individual energy
level. There is, however, a class of quantum chaotic systems,
regular quantum graphs @2#, which are explicitly solvable
analytically @2#, i.e., exact periodic-orbit expansions of the
form ‘‘En5 . . . ’’ exist. The purpose of this paper is to ex-
pand considerably with respect to the work presented in @2#
and to present a thorough discussion of our methods and
their validity.

The organization of this paper is as follows. In Sec. II we
extend the theory of quantum graphs @3–7# to include
dressed graphs, i.e., quantum graphs with arbitrary potentials
on their bonds. In Sec. III we define regular quantum graphs
and present explicit, convergent periodic-orbit expansions of
individual eigenvalues. These expansions are not just formal
identities; the periodic-orbit expansions presented in Sec. III
converge, and converge to the correct eigenvalues. In Sec. IV
we present a worked example of a simple quantum graph
whose spectrum is computed in three different ways: ~i! nu-
merically exactly, ~ii! via the explicit periodic-orbit expan-
sions presented in Sec. III, and ~iii! via numerical integration
using an exact trace formula for the density of states. The
results of the three methods agree. This proves the validity
and convergence of our approach. In Sec. V we summarize
our results and conclude the paper.

II. DRESSED QUANTUM GRAPHS

A quantum graph consists of a quantum particle whose
motion is confined to a one-dimensional network of NB
bonds B i j connecting NV vertices V i . An example of a graph
with six vertices and ten bonds is shown in Fig. 1. The to-
pology of a given graph is fully characterized by its connec-
tivity matrix C i j

C i j5C j i5H 1 if V i and V j are connected

0 if they are not.
~4!

Every bond B i j , which connects the vertices V i and V j ,
supports a solution c i j(x) of the Schrödinger equation

S 2i
d

dx
2A i j D 2

c i j~x !5Ec i j~x !. ~5!

PHYSICAL REVIEW E, VOLUME 65, 046222

1063-651X/2002/65~4!/046222~10!/$20.00 ©2002 The American Physical Society65 046222-1



Here 0<x<L i j is the coordinate along B i j measured from V i
to V j , and L i j5L j i is the length of the bond. A constant,
real, skew symmetric matrix A i j52A j i , which plays the
role of a magnetic field vector potential, is sometimes intro-
duced as a tool for braking the time-reversal symmetry,
which, in turn, is known to affect the statistics of the level
distribution @8,9#.

In this paper we generalize the Schrödinger operator in
Eq. ~5! by adding potentials U i j(x ,E) on the graph bonds.
We call this generalization ‘‘dressing of the graph.’’ While, in
general, the potentials U i j(x ,E) may depend on the bond
coordinate x and the energy E in an arbitrary way, we restrict
ourselves here to the scaling case

U i j~E !5l i jE , l i j5l j i , ~6!

which allows us to introduce physical parallels between
quantum graphs and ray-splitting systems @10–12#. A quan-
tum graph with the potentials ~6! on its bonds can also be
viewed as a generalized step potential, such as, the one
shown in Fig. 2~a!. These potentials were studied earlier in
great detail in connection with Anderson localization @13#.
Potentials of this type can be represented by a linear graph,
such as, the one shown in Fig. 2~b!. Scaled potentials, such
as Eq. ~6! cast the Schrödinger equation into the form

S 2i
d

dx
2A i j D 2

c i j~x !5b i j
2 Ec i j~x !, ~7!

where the parameters b i j
2

512l i j , b i j5b j i are defined on
the corresponding bonds B i j .

Depending on whether the energy E5k2 of the particle is
above or below the scaled potential height U i j(E), the solu-
tion of Eq. ~7! on the bond B i j is either a combination of the
free waves

c i j~x !5a i j

exp@ i~2b i jk1A i j!x#

Ab i jk
1b i j

exp@ i~b i jk1A i j!x#

Ab i jk
,

l i j,1, ~8!

or a combination of the tunneling solutions

c i j~x !5a i jexp@~2b i jk1iA i j!x#1b i jexp@~b i jk

1iA i j!x# , l i j.1, ~9!

where the factors (b i jk)21/2 in the propagating waves ~8!
were introduced to ensure proper flux normalization @14#.
Due to the scaling assumption, there is no transition between
these two cases as a function of E. From now on we shall
assume that the energy E is kept above the maximal scaled
potential height

l i j,1, i , j51, . . . ,NV , C i jÞ0, ~10!

which will allow us to exclude the tunneling solutions ~9!. At
every vertex V i , the bond wave functions satisfy the conti-
nuity conditions

c i j~x !ux505w iC i j , i , j51, . . . ,NV ~11!

and the current conservation conditions

(
j51

NV

C i jS 2i
d

dx
2A i j Dc i j~x !ux5052il iw i ,

i , j51, . . . ,NV . ~12!

Here w i is the value of the wave function at the vertex V i ,
and the l i’s are free parameters of the problem for which the
scaling is introduced as

FIG. 1. A generic nonplanar graph with six vertices and ten
bonds.

FIG. 2. An example of a ~Manhattan! step potential ~a! and its
associated linear graph ~b!. Also shown is a non-Newtonian peri-
odic orbit characterized by six above-barrier reflections.
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l i5l i
0k . ~13!

The conditions ~11! and ~12! are consistent only for a dis-
crete set of wave numbers kn , which defines the spectrum of
the quantum graph problem. Since c i j(x) and c j i(y) repre-
sent the same wave function on the bond connecting the
vertices V i and V j ~the only difference is that x is measured
from vertex V i and y is measured from vertex V j), we have

c j i~L i j2x !5c i j~x !. ~14!

Using Eq. ~8! we obtain

c j i~L i j2x !5a j i

exp@ i~2b i jk1A j i!~L i j2x !#

Ab i jk

1b j i

exp@ i~b i jk1A j i!~L i j2x !#

Ab i jk
5c i j~x !.

~15!

Therefore, the coefficients a i j and b i j are related according
to

a j i5b i jexp@ i~b i jk1A i j!L i j#

b j i5a i jexp@ i~2b i jk1A i j!L i j# . ~16!

The coefficients a i j and a j i , (b i j and b j i! are considered
different. This implies that the bonds of the graph are di-
rected. Equations ~16! can be written in matrix form as

aW 5PD̃~k !bW , ~17!

where aW and bW are the 2NB-dimensional vectors of coeffi-
cients, D̃ is a diagonal matrix in the 2NB32NB space of
directed bonds, and

P5S 0 1NB

1NB
0

D , ~18!

where 1NB
is the NB-dimensional unit matrix. Explicitly we

have

D̃ i j ,pq~k !5d ipd jqexp@ i~b i jk1A i j!L i j# . ~19!

The pairs of indices (i j), (pq), identifying the bonds of the
graph G , play the role of the indices of the matrix D̃(k).
Alternatively the wave function can be written as a linear
combination of plane waves scattering off V i . An incoming
wave with normalized flux on the bond B j8i gives rise to a
partial wave contribution scattering into bond B i j according
to

c j j8

(i)
~x j!5d j j8

exp@ i~2b i jk1A i j!x j#

Ab i jk

1s j , j8

(i) exp@ i~b i jk1A i j!x j#

Ab i jk
. ~20!

Here s j , j8

(i) (k) is the matrix element of the vertex scattering
matrix s (i)(k), which distributes the incoming flux on bond
B j8i into the bond B i j . The wave function c i j(x j) on the
bond B i j is a superposition of the partial waves ~20! with
amplitudes a i j8 corresponding to the incoming flux on the
bond B j8i towards the vertex V i , i.e.,

c i j~x j!5(
j8

a i j8c j j8

(i)
~x j!. ~21!

Using the representation ~8! of c i j in Eq. ~21! and comparing
coefficients yields

b i j5(
j8

s j , j8

(i) a i j8 . ~22!

Substituting Eq. ~20! into the boundary conditions, we obtain
the vertex scattering matrix

s j , j8

(i)
[s j i ,i j8

(i)
5S 2d j j81

2Ab i jb i j8

v i1il i
0 D C j iC i j8 ~23!

with

v i5(
j51

NV

b i jC i j . ~24!

We see that, in the scaling case, the matrix elements s j , j8

(i) of
the vertex scattering matrix s (i) are k-independent constants.
The matrix element s j , j

(i) has the meaning of the reflection
coefficient from the vertex V i along the bond B i j , and the
elements s j , j8

(i) , jÞ j8 are the transmission coefficients for
transitions between different bonds. Equation ~22! can be
written as

bW 5T̃aW , ~25!

where

T̃[T̃ i j ,nm5d inC j iCnms j ,m
(i) . ~26!

Equations ~17! and ~25! together result in

aW 5S~k !aW , ~27!

where S(k) ~the total graph scattering matrix! is given by

S~k !5D~k !T ~28!

and D5PD̃P and T5PT̃ . The consistency of the system of
linear Eqs. ~27! requires the spectral equation

D~k !5det@12S~k !#50 ~29!

to be satisfied. This condition defines the set of allowed mo-
menta $kn%.

The density of the momentum states of the dressed quan-
tum graph is given by
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r~k !5 (
n51

`

d~k2kn!, ~30!

where the kn’s are the solutions of Eq. ~29!. An exact
periodic-orbit expansion for r(k) can be obtained directly
from the spectral Eq. ~29! as follows @3–7#. The logarithmic
derivative of Eq. ~29! is singular at each one of its roots.
Between roots, the phase of the spectral determinant varies
slowly such that

r~k !5 r̄~k !2

1

p
lim
e→0

Im
d

dk
ln det@12S~k1ie !# . ~31!

Using the well-known identity @3–7#

ln det@12S#52Tr(
n51

`
1

n
Sn, ~32!

we obtain

r~k !5 r̄~k !1

1

p
lim
e→0

Im
d

dk (
n51

`
1

n
Tr@S~k1ie !#n. ~33!

Since the matrix indices of Eq. ~28! correspond to the verti-
ces of the graph, the trace of the nth power of the scattering
matrix can be interpreted as a sum over all closed, connected
sequences consisting of n bonds @3–7#. Classically, these pe-
riodic connected sequences of n bonds B i j correspond to the
periodic orbits traced by a point particle moving on the
graph. Geometry and proliferation properties of the periodic
orbits are determined completely by the topology of the
graph.

The behavior of the periodic orbits on graphs exhibits the
typical features of chaotic systems. The meaning of classical
chaoticity on graphs is well defined, as demonstrated in the
following. A classical graph system consists of a graph G and
a point particle moving along its bonds, which scatters elas-
tically at every vertex V i along the direction of any of the
bonds emanating from this particular vertex, with different
probabilities. The probability amplitudes for every scattering
channel can be obtained in the short wavelength limit from
the quantum-mechanical transition amplitudes defined at ev-
ery vertex V i by the corresponding scattering matrix s j , j8

(i) . In
the scaling case, the matrix elements s j , j8

(i) are k-independent
constants and thus do not depend on \ at all. Therefore, the
same matrix elements determine both the quantum and the
classical scattering probabilities.

For every given graph G the global average rate of expo-
nential proliferation of periodic orbits, the topological en-
tropy L , is given by

L5 lim
l→`

ln@N~ l !#

l
, ~34!

where l characterizes the length of the periodic orbits ~for
instance their code lengths! and N(l) is the total number of
periodic orbits of length <l . The number of possible peri-

odic orbits increases exponentially with their lengths ~or,
equivalently, the number of scattering events! with a rate L
that depends only on the topology of the graph. Since the
phase space of the system is bounded, the dynamics of such
a particle is mixing @3#.

Since we are focusing on the case l i j,1, most of the
classical periodic orbits on a graph are above-barrier reflec-
tion orbits as illustrated in Figs. 2 and 3. In the context of ray
splitting these orbits are also known as non-Newtonian orbits
@15–17#. The inclusion of all non-Newtonian orbits in our
periodic-orbit expansions of individual eigenvalues dis-
cussed below is crucial for rendering these expansions exact.

Traversing the bond B i j contributes the amount

S i j5E
B i j

~b i jk1A i j!dx ~35!

to the total action of the trajectory traced by the particle.
These actions appear in the phases of the exact wave func-
tions ~8!. This connection means that the semiclassical ~ei-
konal! form is exact for the quantum graph wave functions.
More importantly, the amplitudes e iS i j determine the matrix
D(k), and hence the scattering matrix S(k). As a conse-
quence, the ‘‘closed bond sequence expansion’’ ~33! can be
written explicitly as a periodic-orbit expansion in terms of
the phases ~35!

r~k !5 r̄~k !1

1

p
Re(

p
Tp~k ! (

n51

`

Ãp
ne in S̃p(k), ~36!

where S̃p is the action of the prime periodic orbit p com-
posed of the partial actions S i j of Eq. ~35! accumulated along
the periodic orbit p, and Tp(k)5dS̃p(k)/dk . The first term in
Eq. ~36! describes the average behavior of the density of
states while the second represents the fluctuations around the

FIG. 3. A scaling step potential ~top!, equivalent to a three-
vertex linear graph ~bottom!, as an example of a regular quantum
graph. A Newtonian (LR) and two non-Newtonian (L,R) periodic
orbits are also shown together with their L2R codes.
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average. The amplitude of every periodic orbit p contains the
constant factor exp(i(ijAijLij). This factor can be absorbed
into the weight factor Ãp . Thus, defining the reduced classi-
cal bond actions

S i j
0

5b i jL i j ~37!

and the total reduced action Sp
0 accumulated along the peri-

odic orbit p

Sp
0
5 (

i j along p
S i j

0 , ~38!

the final periodic-orbit expansion for the density of states for
scaling systems can be written as

r~k !5 r̄~k !1

1

p
Re(

p
Sp

0 (
n51

`

Ap
ne inSp

0k. ~39!

In contrast with Eq. ~3!, the expression ~39! for the density of
states is exact; the action lengths Sp

0 and the weight factors
Ap are k-independent constants.

The staircase function

N~k !5 (
n51

`

Q~k2kn! ~40!

is obtained by direct integration of Eq. ~30!. Using Eq. ~39!,
N(k) can be expanded as

N~k !5N̄~k !2

1

p
lim
e→0

Im ln det@12S~k1ie !#

5N̄~k !1

1

p
Im(

p
(
n51

` Ap
n

n
e inSp

0k. ~41!

Just like Eq. ~39! this expansion is exact. The first term rep-
resents the average behavior of the staircase; the second term
describes the fluctuations around the average.

III. REGULAR QUANTUM GRAPHS AND EXPLICIT
SPECTRAL FORMULA

Since the scattering matrix ~28! is a unitary matrix, its
eigenvalues have the form s l5e iu l(k). Therefore, the spectral
determinant ~29! can be written as

D~k !5)
l51

2NB

@12e iu l(k)#5F 12(
l51

2NB

e iu l(k)
1•••1e i(

l51

2NB

u l(k)G
52e iQ0(k)F cos@Q0~k !#1 (

j51

NC21

~21 ! jcos@Q j~k !#G ,

~42!

where

Q05

1

2 (
l51

2NB

u l~k ! ~43!

is the total phase of the spectral determinant, the Q j’s in Eq.
~42! are linear combinations ~sums and differences! of the
phases u l(k) and NC54NB/2. Evaluated directly, the spectral
determinant is a polynomial of the ~complex! matrix ele-
ments ~19! with coefficients that are determined by the ma-
trix elements ~26!. Factoring out the total phase ~43! of this
polynomial, we obtain the spectral equation in the form

cos~S0
0k2pg0!5F~k !, ~44!

where

F~k !5(
i51

NG

a i cos~V ik2pg i!. ~45!

Here, based on the reduced bond actions defined in Eq. ~37!,
S0

0
5( i jC i jS i j

0 is the total reduced action length of the graph,
the frequencies V i,S0

0 are sums and differences of the re-
duced bond actions S i j

0 and g0 , g i are constants. For a gen-
eral graph G it is difficult to calculate the precise number of
cos terms NG in Eq. ~45!. But an upper limit is given by the
number of possible linear combinations of the NB reduced
bond actions S i j

0 . Since there are

2 jS NB

j D
ways of picking j actions out of NB possible ones and com-
bining them with ‘‘1’’ and ‘‘2’’ signs, we obtain

NG<(
j51

NB

2 jS NB

j D 5211(
j50

NB S NB

j D 2 j1NB2 j
53NB21.

~46!

A graph G is called regular, if the condition

(
i51

NG

ua iu5a,1 ~47!

is fulfilled. In case the condition ~47! is satisfied, the spectral
Eq. ~44! can be immediately solved to yield the following
implicit equation for the eigenvalues:

kn5

p

S0
0 @n1m1g0#

1

1

S0
0H arccos@F~kn!# for n1m even

p2arccos@F~kn!# for n1m odd,

~48!

where m is a fixed integer, chosen such that k1 is the first
positive solution of Eq. ~44!. Equation ~48! implies the exis-
tence of separating points

k̂n5

p

S0
0 ~n1m1g011 ! ~49!
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in the spectrum kn of Eq. ~44!. Because of Eq. ~47! the points
k̂n are never solutions of Eq. ~48!. They act as separators
between kn and kn11. Since the second term in Eq. ~48! is
bounded by p/S0

0, the deviation ukn2 k̂nu never exceeds p/S0
0

for any n. We emphasize, that the separators k̂n do not coin-
cide with the average values k̄n of the roots kn . The explicit
decomposition of the roots kn into an average part k̄n and a
fluctuating part k̃n , kn5 k̄n1 k̃n , can be obtained from the
following equivalent formulation of Eq. ~48!:

kn5

p

S0
0 Fn1m1g01

1

2G1
~21 !n1m

S0
0 H arccos@F~kn!#2

p

2 J .

~50!

This form of kn together with the boundedness of the second
term in Eq. ~50! proves rigorously that N̄(k), r̄(k) are of
the form

N̄~k !5

S0
0

p
k1N̄~0 !, r̄~k !5

dN̄~k !

dk
5

S0
0

p
. ~51!

Since F(k) contains only frequencies smaller than S0
0, every

open interval In5( k̂n21 , k̂n) contains one and only one root,
i.e. kn . Moreover, if Eq. ~47! is fulfilled, the allowed zones
Zn,In , where the roots kn can be found, narrows down to

knPZn[S p

S0
0 ~n1m1g01u !,

p

S0
0 ~n1m1g0112u !D ,

~52!

where u5arccos(a)/S0
0. Correspondingly, there exist forbid-

den regions Rn

Rn[S p

S0
0 ~n1m1g0112u !,

p

S0
0 ~n1m1g0111u !D ,

~53!

where roots of Eq. ~48! can never be found. Note that k̂n
PRn . In the limit a→1 (u→0), the width of the forbidden
region Rn shrinks to zero, and the allowed zone Zn occupies
the whole root interval In .

The existence of the separating points ~49! is the key to
obtaining the explicit form of the periodic-orbit expansion
for individual roots kn . Multiplying both sides of Eq. ~39! by
k and integrating from k̂n21 to k̂n , we obtain

kn5 k̂n2

p

2S0
0 2

1

p
Re(

p
(
n51

`

Ap
n

e inSp
0 k̂n

n H ~12e2invp!

3S i k̂n2

1

nSp
0 D 1

ip

S0
0 e2invpJ , ~54!

where we used Eq. ~51! for the integral over k r̄ and defined
vp5pSp

0/S0
0 . Since all the quantities on the right-hand side

of Eq. ~54! are known, this formula provides an explicit rep-

resentation of the roots kn of the spectral Eq. ~29! in terms of
the geometric characteristics and the classical properties of
the graph.

In Ref. @18# a mathematical proof is presented, which as-
sures us that Eq. ~54! converges. In addition it is proved in
Ref. @18# that Eq. ~54! converges to the exact spectral eigen-
values. Both convergence, and convergence to the correct
results are illustrated with the help of a specific example in
Sec. IV. It is also proved in Ref. @18# that the series ~54! may
only be conditionally convergent. This means that for proper
convergence the ordering of the terms in Eq. ~54! is impor-
tant. Proper convergence of Eq. ~54! is obtained if the terms
in Eq. ~54! are ordered according to the code lengths of the
periodic orbits @18#. In other words, the sum in Eq. ~54! is to
be extended over all periodic orbits with code lengths
smaller than or equal to l, which yields the approximation
kn(l) to kn . Then, on the basis of the results obtained in Ref.
@18#, we have liml→`kn(l)5kn . This means that Eq. ~54! is
exact. It is important to note here that the ordering of terms
in Eq. ~54! is not according to their action lengths, but ac-
cording to the lengths of the code words that code for the
periodic orbits. This is intuitively understandable, since the
code length l is connected to the power n of the S matrix in
Eq. ~33! according to l5n/2.

The expansion ~54! provides an explicit representation of
the roots of the spectral equation ~29! in terms of the geo-
metric characteristics of the graph. In a similar way one can
obtain explicit expansions for any power of the energy levels
kn

m or any function of the eigenvalues f (kn).

IV. EXAMPLES

The coefficients Ap in Eq. ~54! assume a particularly
simple form in the case of linear graphs with l i

0
50, i

51, . . . ,NV . Both the vertices and the bonds of a linear
graph can be naturally labeled by means of a single index
such that B1,2[B1 , B2,3[B2 , . . . ,BNV21,NV

[BNV21

~see Fig. 2!. The scaling coefficients for the momentum of
the particle are correspondingly b1,2[b1 , b2,3
[b2 , . . . , bNV21,NV

[bNV21, the bond lengths are L1,2

[L1 , L2,3[L2 , . . . ,LNV21,NV
[LNV21, the potentials are

U1,2[U1 , U2,3[U2 , . . . ,UNV21,NV
[UNV21 and the re-

duced bond actions are S1,2
0 [S1

0
5b1L1 , S2,3

0 [S2
0

5b2L2 , . . . ,SNV21,NV

0 [SNV21
0

5bNV21LNV21, respectively.

In this case, if a prime periodic orbit p undergoes sp
i reflec-

tions from a vertex V i and 2tp
i transmissions through it, the

weight coefficient in the expansion ~39! is @17#

Ap5)
i

r
i

sp
i

~12r i
2!tp

i
, ~55!

where r i is the reflection coefficient from the vertex V i , and
the product is taken over all the vertices encountered by the
orbit p. If a particle reflects from the vertex V i traveling
along the bond B i , the reflection coefficient is

R. BLÜMEL, Y. DABAGHIAN, AND R. V. JENSEN PHYSICAL REVIEW E 65 046222

046222-6



r i5
b i212b i

b i211b i
, i52, . . . ,NV21, r1521, rNV

521.

~56!

We assumed Dirichlet boundary conditions at the left and
right dead ends of the graph. The reflection coefficient
changes its sign if the reflection happens from the side of the
bond B i11. If, for a given orbit, the total number of reflec-
tions with r i,0 is xp , then

Ap5~21 !xp)
i

ur iu
sp

i
~12r i

2!tp
i
. ~57!

The two-vertex linear graph is trivial and corresponds to a
quantum particle in a square-well box. A quantum particle
moving in a scaling step potential as shown in Fig. 3, gives
rise to the simplest nontrivial graph, the scaling three-vertex
linear graph, shown on the bottom of Fig. 3. In this case
there is only one nontrivial reflection coefficient

r25

b12b2

b11b2
. ~58!

All the periodic orbits of the three-vertex linear graph shown
in Fig. 3 correspond one to one with words formed from a
binary code with two letters L and R @17–19#, where L

stands for a reflection of the orbit off the leftmost vertex
~left-hand potential wall!, and R stands for a reflection off
the rightmost vertex ~right-hand wall!. Thus the L, R code
is unique and complete. For this system the spectral equation
is

sin~S0
0k !2r2 sin~V1k !50, ~59!

where S0
0
5S1

0
1S2

0 is the total reduced action of the graph
and V15S1

0
2S2

0. With a15r2 and g05g15p/2, Eq. ~59! is
of the form ~44!, ~45! and the number of cos terms in f(k)
~in this case one term! complies with the estimate ~46!. Be-
cause of ur2u,1, it is the spectral equation of a regular quan-
tum graph. Using the explicit form ~57! of the coefficients Ap
in the expansion ~54!, we obtain the explicit series expansion
for every root kn of Eq. ~59!. Thus the spectrum of the scal-
ing step potential shown in Fig. 3 may be calculated explic-
itly and analytically with the help of Eq. ~54!. This by itself
is a considerable advance in the theory of simple one-
dimensional quantum systems, which up to now could only
be solved using graphical or numerical techniques
@14,20,21#.

We illustrate the method and the convergence of the series
expansion ~54! with the following concrete, dimensioned ex-
ample of the scaling step potential of Fig. 3. Choosing b
50.3, l150, and l251/2, we computed the solutions
k1 , k10 , and k100 of Eq. ~59! using three different methods:
~i! exact numerical, ~ii! explicit periodic-orbit expansion ~54!
of the individual eigenvalues and ~iii! numerical integration
using the S-matrix representation ~33! of the density of
states. Addressing ~i! we obtained the exact numerical values
of the three selected roots of Eq. ~59!. The result is k1
54.107 149, k10539.305 209, and k1005394.964 713.

Turning to method ~ii! we recomputed these three eigen-
values using Eq. ~54! directly including progressively more
periodic orbits in the expansion ~54!. The result is presented
in Table I that shows the values of k1 , k10 and k100 computed
with Eq. ~54! including periodic orbits coded by binary
words of length l55, 10, 15, and 20, respectively. This cor-
responds to including 23, 261, 4807, and 111 321 periodic
orbits in the expansion ~54!, respectively. We observe that
the accuracy does not improve monotonically, but that there
is a definite overall improvement of accuracy with the code
length. As a matter of fact, as discussed above and shown
mathematically in @18#, the series ~54! converges, and con-
verges to the exact results of kn in the limit of l→` .

Turning to method ~iii! we note that due to the exponen-
tial proliferation of periodic orbits, it becomes progressively
more difficult to compute the codes of longer periodic orbits.
Nevertheless, with the help of a numerical procedure, we are
able to illustrate the convergence behavior of Eq. ~54! for
code lengths much longer than l520. Starting from Eq. ~33!
we compute the S matrix numerically and perform all the
steps leading up to Eq. ~54! numerically. In particular, this
method involves numerical computation of S-matrix powers
and numerical integration over k. Within any given level of
numerical accuracy this method is completely equivalent to
the method of summing the orbits, but allows us to extend
the computations such that we effectively include all periodic
orbits up to code length l5150. This corresponds roughly to
2150

51.431045 periodic orbits, since the periodic orbits on
the three-vertex linear graph are coded by a binary code.
This estimate is substantiated by an analytical estimate of the
number of periodic orbits. For the three-vertex graph the
periodic orbits are binary necklaces over the two symbols L

and R @18#. The number of binary necklaces of length l is
given by @22#

N~ l !5

1

l
(
nul

f~n !2 l /n, ~60!

TABLE I. Successive approximations of the eigenvalues k1 ~first row!, k10 ~second row!, and k100 ~third
row! of a specific scaling step potential ~see text for details! as a function of the code length l ~columns 2–5!.
The exact values of k1 , k10 , and k100 are listed in column 6. Column 7 lists the absolute errors
ukn(l520)2knu for n51, 10, and 100.

Root l55 l510 l515 l520 Exact Error

k1 4.11608 4.11653 4.10721 4.10513 4.10715 0.00202
k10 39.28658 39.29807 39.30730 39.30521 39.30521 0.00000
k100 394.94770 394.95647 394.96622 394.96456 394.96471 0.00016
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where the symbol ‘‘nul ’’ denotes ‘‘n is a divisor of l ,’’ and
f(n) is Euler’s totient function defined as the number of
positive integers smaller than n and relatively prime to n
with f(1)51 as a useful convention. An upper limit for L is
obtained if we use Eq. ~60! in the case where l is a prime
number. In this case ~60! reduces to

N~p !5

1

p
@f~1 !2p

1f~p !21#5

1

p
@2p

12~p21 !# , ~61!

where p is prime. Thus, in the limit of p→` we have
N(p)→2p/p , and therefore,

L5 lim
p→`

ln@N~p !#

p
5ln~2 !. ~62!

Thus, according to this estimate, the total number of periodic
orbits of length 150 is again

N~150!;e150L
52150. ~63!

We also computed numerical estimates of L . Using the exact
formula ~60! for counting periodic orbits in Eq. ~34! and
including periodic orbits with code lengths of up to l
51000, we found L.1.987, consistent with the estimate
~62!. For l5150, relevant for our numerical example, the
asymptotic regime is not yet reached and we find L
'ln(1.943). This value for L can be used for a more refined
estimate of the number of periodic orbits of length l
5150, N(150)'1.943150'231043. Clearly, computing the
codes of that many periodic orbits and summing them up in
Eq. ~54! is beyond the storage capacity and power of any
currently existing computer, but is apparently no obstacle to
the numerical simulation of that many periodic orbits in-
cluded in Eq. ~54!. Figure 4 illustrates the rate of conver-
gence of the eigenvalues k1 , k10 , and k100 obtained with
method ~iii! as a function of code length l%150. Shown is
the relative error e l5ukn(l)2knu/kn for n51, 10, and 100.

The error is seen to decrease on average as a function of the
increasing periodic-orbit length l. From Fig. 4 we obtain ap-
proximately e l5ukn(l)2knu/kn;1/l2 on average.

For a four-vertex linear graph, the spectral equation is

sin~S0
0k !5r3 sin~V1k !2r2r3 sin~V2k !1r2 sin~V3k !,

~64!

where S0
0
5S1

0
1S2

0
1S3

0 , V15S1
0
1S2

0
2S3

0 , V25S1
0
2S2

0

1S3
0 , V35S1

0
2S2

0
2S3

0 and r2 , r3 are the reflection coeffi-
cients at the vertices V2 and V3, respectively. With g i
5p/2, i50,1,2,3, this spectral equation is of the form ~44!,
~45! and the number of cos terms in f(k) ~three in this case!
complies with Eq. ~46!. For

ur3u1ur2r3u1ur2u,1 ~65!

the four-vertex linear graph is regular. In this case the energy
values of the four-vertex linear graph may be calculated ex-
actly using the periodic-orbit expansion ~54!. According to
Fig. 5 the set of r2 , r3 values that fulfill Eq. ~65! occupies a
diamond-shaped area bounded by the functions r356(1
2ur2u)/(11ur2u). This observation proves that regular quan-
tum graphs are an important, finite-measure subset of quan-
tum graphs.

The set of regular quantum graphs is much wider than the
three- and four-vertex quantum graphs discussed in detail
above. Since, as indicated by Eqs. ~59! and ~64!, the ampli-
tudes a i in Eq. ~45! involve products of vertex reflection
coefficients, and since the vertex reflection coefficients of a
linear quantum graph ~via proper choice of the bond poten-
tials! are free parameters of the quantum graph, a finite-
measure set of regular quantum graphs exists for any given
linear graph. It is possible that more complex graph topolo-
gies, such as, rings and stars, may also admit a set of regular
quantum graphs. This topic is currently under investigation.

FIG. 4. The deviation e l5ukn(l)2knu/kn of the exact eigenval-
ues for k1 , k10 , and k100 from the corresponding values obtained
via the series representation, as a function of the lengths l of the
periodic orbits.

FIG. 5. Parameter space (r2 ,r3) of a four-vertex linear quantum
graph. Parameter combinations in the shaded region correspond to
regular quantum graphs. This demonstrates that the subset of regu-
lar quantum graphs within the set of all four-vertex linear quantum
graphs is nonempty and in fact of finite measure.
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V. DISCUSSION, SUMMARY, AND CONCLUSION

In this paper we defined and studied a subset of quantum
graphs: regular quantum graphs. Regular quantum graphs
satisfy the regularity condition ~47!, which implies that the
roots of the spectral equation are confined to regularly
spaced root intervals. One and only one root is found per
root interval. This property allows us to derive rigorous, con-
verging periodic-orbit expansions for individual energy lev-
els of regular quantum graphs.

We often hear the comment that the expansion ~54! for kn
cannot possibly converge, since Eq. ~39! is divergent. This
comment is invalid. There is a fundamental difference be-
tween Eq. ~39! and Eq. ~54!. Equation ~39! is a periodic-orbit
expansion of the kernel of a functional ~a series of Dirac d
‘‘functions’’!, whereas Eq. ~54! is a periodic-orbit expansion
of a simple c number. On the level of Eq. ~39! the concepts
of convergence or divergence are not even defined. Only
after multiplying Eq. ~39! with a test function @23# and inte-
grating over k, are the concepts of divergence and conver-
gence defined. In this sense even Eq. ~39! is convergent. This
is also known as convergence in the distribution sense @23#
and leads to proper convergence in the usual sense of el-
ementary undergraduate-level analysis. Thus, the conver-
gence of Eq. ~54! is no longer a mystery.

Another more serious comment concerns the sense in
which quantum graphs are classically chaotic. Quantum
graphs are based on a one-dimensional network of vertices
and bonds. Therefore, a dynamical Liapunov exponent @1,24#
cannot be defined in the traditional sense of exponentially
diverging initially close trajectories. As explained in @3#,
however, this is no obstacle to associate a classical phase
space with a quantum graph and to show that the classical
dynamics in this phase space is mixing @3#. Moreover, quan-
tum graphs fulfill another property of quantum chaos, the
exponential proliferation of classical periodic orbits as mani-
fested by a positive topological entropy ~see Secs. III and
IV!. Therefore, quantum graphs have been called ‘‘para-
digms of quantum chaos’’ @7#. Inasmuch as the positive to-
pological entropy is concerned, regular quantum graphs
qualify as quantum chaotic systems. Regular quantum graphs
do not show all the characteristics of ‘‘fully developed’’
quantum chaos. For instance, due to of the existence of the
forbidden zones Rn ~see Sec. III! they definitely do not show
a Wignerian nearest neighbor statistics. We do not believe
that this is a problem, since there is no universally accepted
rigorous definition of quantum chaos that requires ‘‘Wign-
erian statistics’’ as one of the necessary conditions. The only
broadly accepted criterion is that ‘‘quantum chaos’’ deals
with quantum systems that are chaotic in their classical limit.
Based on this criterion, together with the mixing property @3#
and the positive topological entropy ~see Sec. IV!, regular

quantum graphs definitely qualify as quantum chaotic sys-
tems, i.e., systems chaotic in the classical limit.

A more delicate point concerns the derivation of Eq. ~54!
by integrating the fluctuating part in Eq. ~39! term by term.
Since the resulting periodic-orbit expansion may only be
conditionally convergent, this is reason for concern. We ad-
dressed this point from a rigorous mathematical point of
view in @18#. We were able to prove rigorously that the in-
terchange of integration and summation in the k integral of
kr(k) is allowed. Thus, term-by-term integration of Eq. ~39!
is justified, validating the final result ~54!.

To our knowledge this is the first time that the energy
levels of a class of classically chaotic systems are expressed
one by one with the help of convergent periodic-orbit expan-
sions. Studying specific examples of regular quantum graphs
we proved that the class of regular quantum graphs is not
empty; it is in fact an important finite-measure subset of
quantum graphs. The explicit formulas of individual quan-
tum energy levels obtained in this paper remind us of the
Einstein-Brillouin-Keller ~EBK! method @1# for the quantiza-
tion of integrable classical systems. But there are important
differences. Regular quantum graphs do not correspond to
classically integrable systems. In fact, due to the importance
of non-Newtonian periodic orbits, the number of classical
periodic orbits proliferates exponentially with the code
length. This proves that even regular quantum graphs, as
defined by the regularity condition ~47!, are classically cha-
otic systems with a positive topological entropy. For one of
our examples, the scaling step potential discussed in Sec. IV,
we computed estimates of the topological entropy analyti-
cally and numerically. In both cases it turned out to be posi-
tive and close to ln(2). This proves that, at least for the cases
studied, the classical limit is chaotic. Another difference to
EBK theory is that the periodic orbits in regular quantum
graphs are not confined to phase-space tori. Finally, in con-
trast with EBK theory—a semiclassical theory that does not
usually return exact results—our formulas are mathemati-
cally exact. In summary, despite the apparent complexity and
exponential proliferation of the periodic orbits of regular
quantum graphs, the organization of the roots of the spectral
equation into regularly spaced intervals makes it possible to
pinpoint every single energy eigenvalue of a regular quantum
graph analytically and exactly by an explicit, convergent
periodic-orbit expansion.
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