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ABSTRACT OF THE DISSERTATION 

Identifying Quantitative Biomarkers in the Electroencephalogram for the  

Evaluation of Developmental and Epileptic Encephalopathies 

By 

Derek Kuan-Yu Hu 

Doctor of Philosophy in Biomedical Engineering 

University of California, Irvine, 2023 

Associate Professor Beth A. Lopour, Chair 

 

 Developmental epileptic encephalopathies, such as infantile epileptic spasms syndrome 

(IESS) and Lennox-Gastaut Syndrome (LGS), are severe epilepsy syndromes that begin early 

in life. These syndromes are characterized by drug-resistant seizures, which can cause 

developmental delays and lifelong impairments. A favorable clinical outcome is reliant on a 

prompt diagnosis, but this is complicated by the variability in individual cases and the evolution 

of the epileptic encephalopathy into other refractory epilepsies. The electroencephalogram 

(EEG) is an indispensable tool to help evaluate these syndromes, as it provides a noninvasive 

measure of time-varying neural activity and can contain waveforms that are indicators of 

epilepsy. Furthermore, the application of computational techniques, such as functional 

connectivity and time-frequency analysis, can help identify and quantify the features of these 

waveforms, providing an objective measurement to guide clinical diagnosis and decision 

making.  

 Therefore, we aimed to develop quantitative EEG biomarkers for IESS and LGS for 

three purposes: (1) to improve diagnosis by providing clinicians a normalized baseline for 

healthy development, (2) to evaluate the functional network changes associated with 

pathological EEG waveforms, and (3) to discover EEG biomarkers that cannot be reliably 
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detected using visual review. First, we measured the changes in EEG functional connectivity 

networks during normal development in the first two years of life. We showed that an increase in 

network strength was typical during normal infant development, while the network structure 

remained stable. This work can serve as a baseline for future investigations in IESS, which is 

associated with altered functional connectivity networks. Second, we assessed the functional 

connectivity changes in patients with IESS during interictal epileptiform discharges (IEDs), a 

common epilepsy-associated waveform seen in EEG recordings. We found an increase in 

connectivity strength during IEDs that could be attributed to the underlying pathophysiology of 

the disease, rather than an increase in connectivity due to the broadly distributed waveform. 

Lastly, we developed a novel method for the discovery of EEG biomarkers using unsupervised 

analysis of the time-frequency decomposition. We applied this method to patients with LGS and 

confirmed that it could detect established EEG biomarkers of the disease. It also highlighted 

novel candidate biomarkers that occurred more frequently in patients with LGS than healthy 

controls but were not recognized as salient waveforms during visual review by epileptologists. A 

separate study confirmed the low interrater reliability for classifying EEG waveforms associated 

with LGS, which emphasizes the need for this type of objective, automated algorithm. In all, this 

work advanced computational EEG techniques, such as functional connectivity and time-

frequency analysis, to complement standard visual review. In the long-term, incorporating such 

methods into clinical practice can lead to improvements in diagnosis and patient care which 

were previously not possible.  
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CHAPTER I 

Introduction 

 

1.1. Epilepsy  

1.1.1 Definitions and overview of epilepsy  

 Epilepsy is one of the most common neurological diseases, affecting over 50 million 

people worldwide. The prevalence of active epilepsy cases varies by patient demographics, 

from 5-8 per 1000 cases in high income countries to 10 per 1000 in low-income countries, with 

higher reported rates in rural areas (Moshé et al. 2015). A person is defined as having epilepsy 

by the International League Against Epilepsy (ILAE) if they have any of the following conditions: 

(1) at least two unprovoked or reflex seizures occurring over 24 hours apart; (2) one unprovoked 

or reflex seizure with a high probability of further seizures after experiencing two unprovoked 

seizures within a 10 year window; or (3) a diagnosis of an epilepsy syndrome (Fisher et al. 

2014). Patients with epilepsy typically experience seizures, which are transient occurrences of 

signs and/or symptoms due to abnormal, excessive, or synchronous neuronal activity in the 

brain. During these seizure episodes, the patient’s cognitive ability and physical function are 

impeded (Fisher et al. 2014).  

 The impacts of epilepsy are devastating, resulting in higher rates of psychiatric and 

physical comorbidities, leading to premature deaths (Moshé et al. 2015). Psychiatric 

comorbidities can negatively affect disease prognosis and increase the risk of death. For 

example, a third of people with epilepsy are also diagnosed with anxiety or depressive disorder, 

twice as much as the general population (Rai et al. 2012; Keezer et al. 2016). Physical 

comorbidities such as migraine, heart disease, peptic ulcers, and arthritis are up to eight times 

more common in people with epilepsy compared to the general population (Keezer et al. 2016). 

Perhaps most concerning, the mortality rates of epilepsy are two to five times higher compared 
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to the general population in high-income countries and 37 times in low-income countries (Moshé 

et al. 2015). Specifically, cases of sudden death are 16-24 times greater in patients with 

epilepsy compared to the general population, with sudden unexpected death in epilepsy 

accounting for 38% of all deaths after 40 years in a follow-up study on childhood-onset epilepsy 

(Sillanpää and Shinnar 2010). 

1.1.2 Overview of infantile and pediatric epilepsies 

 While the prevalence of epilepsy is lowest early in life, there are approximately 470,000 

children in the US with epilepsy, with 50,000 new diagnoses every year (Fiest et al. 2017). Of 

these cases, epilepsy syndromes are particularly devastating in children, who are most 

susceptible to seizures in the first year of life.  

 Epilepsy syndromes that begin in childhood are divided into three main groups: (1) self-

limited focal epilepsies; (2) genetic generalized epilepsy syndromes; and (3) developmental and 

or epileptic encephalopathies (Specchio et al. 2022). Self-limited focal epilepsies of childhood 

are often idiopathic and account for approximately 25% of all pediatric epilepsies. The 

symptoms associated with this type of epilepsy syndrome are often considered “benign”, with 

brief and mild seizure symptoms that cease by puberty. Genetic generalized epilepsy 

syndromes of childhood are associated with genetic etiologies that vary between patients. 

Lastly, developmental epileptic encephalopathies are diseases where the epileptic activity 

contributes to severe cognitive and developmental impairments (Scheffer et al. 2017).  

 

1.1.3 Etiology in epileptic encephalopathies 

 Prior to clinical diagnosis, there is a need to consider the etiology of the epilepsy. 

Identifying the etiology of epilepsy can help determine what caused the seizures to begin and 

aid clinicians in providing a corresponding treatment (Berg et al. 2010). According to the ILAE 

classification of the epilepsies, etiologies are currently categorized into six different groups: 

structural, genetic, metabolic, infectious, immune, and unknown (Scheffer et al. 2017). 
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Structural abnormalities are typically one of the first etiologies tested in a patient, which is done 

using neuroimaging, such as magnetic resonance imaging (MRI). These can be caused by 

various conditions such as stroke, trauma, infection, and genetic malformations (Scheffer et al. 

2017). In cases of developmental and epileptic encephalopathies, structural etiologies are the 

most common, as they were identified in over 70% of cases of infantile spasms (Shields 2006), 

most often using computed tomography (CT) and MRI (Specchio et al. 2022). Genetic etiologies 

are also common in young children. For example,30-50% of severe developmental and epileptic 

encephalopathies in infants were attributed to genetic abnormalities (McTague et al. 2016). 

Genetic mutations can be caused by environmental factors such as sleep deprivation, stress, 

and illness, all of which are more likely to occur with epilepsy (Scheffer et al. 2017). Genetic 

defects can also cause metabolic disorders which can disrupt the biochemical balance 

throughout the body such as porphyria, uremia, aminoacidopathies, or pyridoxine-dependent 

seizures (Scheffer et al. 2017). Infections are the most common cause of epilepsy worldwide 

and can be related to cases of neurocysticercosis, tuberculosis, HIV, cerebral malaria, subacute, 

cerebral toxoplasmosis, and congenital infections such as Zika virus (Scheffer et al. 2017). 

Immune etiologies can be connected to inflammation in the autoimmune-mediated central 

nervous system. Lastly, an unknown etiology means that the cause of epilepsy was unable to be 

determined based on available testing.  

 While certain etiologies are associated with a positive developmental outcome (Shields 

2006), there are a large number of widely varying etiologies in cases of epileptic 

encephalopathies, which can complicate the diagnosis. In one case study on 207 infants with 

infantile spasms, an epileptic encephalopathy, 33% of subjects had an unknown etiology, 6% 

were not fully investigated, and 61% had proven etiologies such as hypoxic-ischemic 

encephalopathy, chromosomal malfunctions, brain malformations, stroke, and tuberous 

sclerosis (Osborne et al. 2010). In another study on Lennox-Gastaut Syndrome (LGS), another 

developmental epileptic encephalopathy, underlying pathologies consisted of encephalitis, 
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meningitis, tuberous sclerosis, brain malformations, birth injury, hypoxic-ischemia injury, and 

trauma (Khan and Al Baradie 2012).  

 

1.2 Electroencephalography in pediatric epilepsies 

 In addition to tests to determine the etiology, scalp electroencephalogram (EEG) is a 

non-invasive diagnostic test that remains an essential tool for the evaluation of epilepsy. EEG 

provides clinicians with quantitative measurements of the neuronal activations in different 

regions of the brain with good temporal resolution. In cases of infantile epilepsies, clinicians are 

recommended to record 24 hours of overnight video EEG with a focus on capturing non-REM 

sleep, as there is a reduction of muscle, movement, and blinking artifacts during sleep (Pellock 

et al. 2010). One focus of EEG review is on identifying epileptiform waveforms, which are 

associated with pathological neural activity and have been correlated with disease severity 

(Staley et al. 2011).  

 

1.2.1 Characteristics of normal infant EEG 

 Normal infant EEG is characterized by slow, high amplitude delta activity in the first year 

of life, with the introduction of a posterior dominant rhythm in the theta band at 6 months of age 

and in the alpha frequency band by 3 years of age (Britton et al. 2016). The EEG during sleep 

also contains non-epileptiform transient waveforms, which are distinguishable from background 

activity but are not associated with epilepsy. Some of these waveforms consist of sleep 

spindles, which typically emerge at 2 to 3 months of age, vertex sharp transients, which develop 

between 2 to 5 months of age, and K-complexes, which also develop between 2 to 5 months of 

age (Britton et al. 2016). These physiological waveforms can serve as biomarkers of health. For 

example, the presence and burden of fast sleep spindles have been associated with memory 

and processing speed in healthy individuals (Shinomiya et al. 1999a; Schiller et al. 2022).  
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1.2.2 Characteristics of pediatric epilepsy EEG 

 In comparison to the slow, consistent EEG background seen in healthy infants, the EEG 

in patients with epilepsy contains pathological waveforms that can vary between different 

epilepsy syndromes; we describe some commonly occurring characteristics here. Burst 

suppression is a common EEG waveform seen in epilepsy, which consists of intermittent bursts 

of fast, high amplitude activity that can occur during seizures (in ictal periods) or between 

seizures (interictal periods). Interictal spikes, also called interictal epileptiform discharges 

(IEDs), are another common epileptiform waveform in the EEG, defined by brief paroxysmal 

electrographic discharges that are observed between recurrent seizures. These events are 

commonly seen in EEG review, are associated with the pathogenesis of epilepsy, and serve as 

a potential biomarker of the disease (Staley et al. 2011). Another EEG characteristic is the focal 

and generalized slowing of the background, which provides evidence for diffuse or focal 

cerebral dysfunction and can also represent developmental slowing in children (Sela et al. 2002; 

Britton et al. 2016).  

 One challenge associated with visual EEG review is that normal, physiological EEG 

waveforms are frequently misinterpreted as pathological. This can lead to the overdiagnosis of 

epilepsy and unnecessarily prolonged treatment (Nayak and Anilkumar 2023). For example, 

benign epileptiform transients of sleep are low amplitude, brief, sharply contoured spikes that 

are often misclassified as epileptiform discharges (Sheng et al. 2023), while sleep spindles and 

k-complexes can have similar frequency behavior to paroxysmal fast activity.  

 

1.3 Developmental epileptic encephalopathies 

 Of the pediatric epilepsy syndromes, developmental epileptic encephalopathies are the 

most severe, as they are generally unresponsive to standard therapies and can cause 

devastating neurocognitive effects during development (Khan and Al Baradie 2012; Scheffer et 

al. 2017). The primary goal of treatment for epileptic encephalopathies is the cessation of 
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seizures and the normalization of the EEG, which has been associated with the best cognitive 

and developmental outcomes (Lux et al. 2004; Pellock et al. 2010). One major challenge of 

treatment is the disease progression, as the epilepsy often evolves into different forms of 

epileptic encephalopathies with age. This evolution of the epilepsy can prolong both diagnosis 

and treatment, causing further developmental impairments in patients (Khan and Al Baradie 

2012). Here, we discuss some of the main developmental epileptic encephalopathies seen in 

neonates, infants, and children. 

 

1.3.1 Ohtahara syndrome  

 Ohtahara syndrome is the earliest form of the age-dependent neonatal epileptic 

encephalopathies, with an incidence of 1 in 50,000 to 100,000 births. Symptoms of Ohtahara 

syndrome appear within the first three months of life and are diagnosed based on the seizure 

patterns and EEG activity (Khan and Al Baradie 2012). Seizures are often manifested as tonic 

spasms but can also be tonic/clonic, clonic, myoclonic, atonic, absence, and partial seizures. 

Ohtahara syndrome is characterized in the EEG as burst suppressions occurring during 

wakefulness and sleep (Khan and Al Baradie 2012). This epileptic syndrome is associated with 

a high mortality rate, as half of all diagnosed patients are likely to die during infancy or childhood 

(Murakami et al. 1993; Fusco et al. 2001; Ohtahara and Yamatogi 2003).  

 The challenges in treating this disease are the intractable seizures, poor disease 

prognosis, and mortality rate. Seizure control is a slow and frustrating process, often requiring 

varied types and dosages of anticonvulsants such as vigabatrin, dilantin, zonegran, 

adrenocorticotropic hormone (ACTH), and prednisone. The disease progression is often 

associated with psychomotor delays that can worsen as the epilepsy evolves into other epileptic 

encephalopathies (Khan and Al Baradie 2012).  

 

1.3.2 Infantile epileptic spasms syndrome 
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 Infantile epileptic spasms syndrome (IESS) is a developmental epileptic encephalopathy 

that occurs during infancy from 3 to 12 months of age. The incidence of IESS is 2-5 per 10,000 

newborns, which accounts for 10% of epilepsies that begin prior to the age of 36 months 

(Pavone et al. 2014; Symonds et al. 2021). It has a mortality rate estimated at 31% before the 

age of 36 months (Riikonen 2001). The diagnosis of IESS requires the presence of epileptic 

spasms, which are brief, abrupt, tonic contractions of axial muscles involving the extensor or 

flexor (Pavone et al. 2014; Zuberi et al. 2022). The onset of epileptic spasms can be subtle, with 

outward symptoms consisting of innocuous activities such as yawning, grasping, facial 

grimacing, isolated eye movements, blinking, and transient focal motor activities (Pellock et al. 

2010). For example, some spasms can be as subtle as a small head nod (Hrachovy and Frost 

2003; Pellock et al. 2010). Detecting epileptic spasms is challenging due to the variability in 

frequency, duration, and movement associated with the spasms.  

 IESS is associated with abnormal EEG, and developmental regression, although these 

are not mandatory for diagnosis (Zuberi et al. 2022). In IESS, the EEG consists of fast beta 

activity superimposed on diffuse, high-amplitude slow waves, contrasting the low-amplitude 

slow waves seen in healthy subjects. Hypsarrhythmia occurs in the EEG during interictal 

periods of sleep and is characterized as multi-focal, asynchronous, independent epileptiform 

discharges and sharp waves contained within a disorganized background with large amplitude 

slow waves (Stamps et al. 1959; Pellock et al. 2010; Khan and Al Baradie 2012). While 

hypsarrhythmia is not present in all subjects (Bower and Jeavons 1959; Stamps et al. 1959; 

Romero Milà et al. 2022), it is a unique and defining feature of IESS. Hypsarrhythmia has also 

been shown to be a prognostic parameter in IESS, where a prolonged hypsarrhythmia duration 

is associated with an increased risk of developmental delay (Kivity et al. 2004; Primec et al. 

2006). Other EEG biomarkers of IESS may also be good indicators of seizure control and 

outcome, as continued IEDs predicted the relapse of IESS after ACTH treatment (Hayashi et al. 

2016). IESS subjects with no hypsarrhythmia and no epileptiform EEG activity after treatment 
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were also reported to have a significantly lower seizure relapse rate than those with these 

features (Yamada et al. 2014). Despite the utility of these EEG patterns, the determination of 

hypsarrhythmia has poor interrater reliability (Hussain et al. 2015; Mytinger et al. 2015). This 

highlights the need for a quantifiable, reliable, and unbiased method of interictal EEG analysis 

for IESS.  

 In cases of IESS, minimizing the time from spasm onset to treatment is imperative to 

developmental success (Primec et al. 2006). Of the current initial treatment methods for IESS, 

ACTH and vigabatrin are the two anti-seizure medications with the most favorable outcomes 

(Pellock et al. 2010; Knupp et al. 2016). ACTH has been shown to have better 

neurodevelopmental outcomes than vigabatrin in children with IESS (Kivity et al. 2004; Pellock 

et al. 2010; Go et al. 2012; Knupp et al. 2016). There are mixed findings on the optimal dosage 

and duration of ACTH treatment, where favorable outcomes have been reported for both low 

dosages (Go et al. 2012) and high dosages of (Kivity et al. 2004). The use of corticosteroids, 

such as prednisolone, have also been used in initial therapy and been shown to improve 

developmental outcomes in refractory patients (Lux et al. 2004; Mohamed et al. 2011; Go et al. 

2012; Khan and Al Baradie 2012). Other agents that are efficacious include valproate, 

levetiracetam, topiramate, zonisamide, lamotrigine, and benzodiazepines (Khan and Al Baradie 

2012). In most studies, it was found that patients who were treated quickly after the onset of 

spasms had a greater chance of treatment success, while patients with prolonged time to 

treatment onset often had poor developmental outcomes (Kivity et al. 2004; Primec et al. 2006; 

Riikonen 2010; Yamada et al. 2014). 

 One challenge in treating IESS is the broad range of potential causes of this 

encephalopathy, including cerebral malformations, infection, hemorrhage, hypoxic ischemic 

injury, metabolic disorders, and genetic conditions (Khan and Al Baradie 2012). Delays in 

diagnosis and treatment can often lead to poor developmental outcomes and can result in the 
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evolution to lifelong epilepsies, with 50-70% of IESS cases evolving into other seizure types and 

20-50% of drug resistant IESS cases evolving into LGS (Pavone et al. 2014).  

 

1.3.3 Lennox-Gastaut Syndrome 

 Lennox-Gastaut Syndrome is a severe developmental epileptic encephalopathy that 

develops during childhood, with onset between 18 months to 8 years of age (Arzimanoglou et 

al. 2009; Khan and Al Baradie 2012; Specchio et al. 2022). Cases of LGS represent 1-4% of 

childhood epilepsies, with most cases of LGS having a history of infantile epilepsy syndromes 

and 30% of cases evolving from IESS (Cross et al. 2017). LGS is characterized by (1) multiple 

types of drug-resistant seizures with onset prior to 18 years (one seizure must be tonic); (2) 

cognitive and behavioral impairment; and (3) diffuse slow spike-and-wave and generalized 

paroxysmal fast activity on EEG (Specchio et al. 2022).  

 One major challenge in LGS diagnosis is fulfilling all the clinical and EEG requirements. 

Currently, the diagnosis of LGS requires the occurrence of tonic seizures, other seizure types, 

EEG abnormalities, and cognitive impairment (Specchio et al. 2022). Collectively, these 

indicators each take time to surface, which results in only 0.6% of all LGS cases diagnosed at 

initial seizure onset (Specchio et al. 2022). Tonic seizures consist of an increase in axial and 

limb muscle contraction that lasts from 3 seconds to 2 minutes, while the second seizure type 

may include any other seizure type such as atypical absence, atonic, myoclonic, focal impaired 

awareness, generalized tonic-clonic, or epileptic spasms (Specchio et al. 2022). LGS diagnosis 

also requires the presence of a spike-wave pattern in the EEG, which is a key biomarker of the 

progression of LGS (Khan and Al Baradie 2012). The delayed treatment of LGS causes further 

intellectual and psychological deficits over the course of childhood, with 20-60% already having 

developmental delay at the onset of LGS and 90% of patients having some sort of mental 

impairment that persists into adulthood (Gallop et al. 2009).  
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 LGS diagnosis requires the use of sleep EEG to identify generalized 2-6 Hz spike-waves 

and other abnormalities. Spike-waves are the most prominent feature in LGS interictal sleep 

EEG; they appear as a spike less than 70 milliseconds long or a sharp wave of 70-200 

milliseconds duration, followed by a negative high-voltage slow wave (350-400 ms), with this 

pattern repeating at a frequency less than 2.5 Hz (Specchio et al. 2022). Other EEG 

abnormalities typically take the form of burst suppressions, short bursts of high amplitude 

activity. For example, generalized paroxysmal fast activity (GPFA) in the EEG is characterized 

as bursts of diffuse or bilateral fast activity lasting less than a few seconds and exceeding 10 Hz 

(Specchio et al. 2022). While GPFAs are not mandatory for LGS diagnosis, this type of 

waveform is mostly unique to LGS subjects, indicative of LGS activity, and occurs during 

interictal sleep. One challenge in identifying these EEG waveforms in LGS is the change in EEG 

with age and disease evolution, as diffuse multi-focal slow spike-waves tend to become more 

frontal over time (Rijckevorsel 2008). Another challenge is the inconsistent occurrence and rater 

agreement of these waveforms, as slow spike-waves and GPFA do not regularly occur in EEG 

and also have low interrater reliability and agreement (Jing et al. 2020). Because the features of 

LGS can evolve slowly over time, proactively monitoring EEG abnormalities and assessing 

cognitive performance and behavior are recommended as indicators of disease progression. 

 Due to the intractable seizures and complexity of LGS, the focus of treatment is often on 

improving the patient’s quality of life through seizure control, as opposed to total seizure 

freedom (Cross et al. 2017). Initial treatment options typically include the use of various anti-

seizure medications such as valproic acid and benzodiazepines such as clobazam, 

clonazepam, clorazepate, nitrazepam, vigabatrin, zonisamide, lamotrigine, topiramate and 

rufinamide, which have been proven effective by double-blind placebo-controlled studies (Khan 

and Al Baradie 2012). Treatments vary between patients, as each LGS patient undergoes 

multiple and different seizure types and can respond differently to each combination of 

medications (Rijckevorsel 2008). Alternative approaches, such as the ketogenic diet, may be 
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useful in patients with LGS refractory to medical treatment. Surgical options for LGS include 

corpus callosotomy, vagus nerve stimulation, and focal cortical resection (Rijckevorsel 2008; 

Arzimanoglou et al. 2009; Khan and Al Baradie 2012). 

 

1.4 Computational EEG analysis in epileptic encephalopathies 

 While the identification of abnormal EEG patterns is crucial for the clinical diagnosis of 

epileptic encephalopathies, there are characteristics of the EEG that cannot be assessed by 

visual review of the data. Several computational analysis techniques have been applied to EEG 

data to create quantitative diagnostic biomarkers that can differentiate healthy controls from 

individuals with epileptic encephalopathies. For instance, EEG amplitude and spectral power in 

children with IS are significantly higher in all frequency bands compared to healthy controls in 

both wakefulness and sleep (Smith et al. 2018, 2021b; Romero Milà et al. 2022). Similarly, 

entropy has been used to differentiate infants with IS from healthy controls in the delta and theta 

bands during wakefulness and sleep (Smith et al. 2021b; Romero Milà et al. 2022). 

Computational techniques have also identified potential quantitative biomarkers of treatment 

response, as changes in long-range temporal connections mirrored the patient’s post-treatment 

EEG for hypsarrhythmia (Smith et al. 2017). Here, we discuss additional computational 

techniques for analysis of the EEG in individuals with epileptic encephalopathies.  

 

1.4.1 Functional connectivity  

 Functional connectivity networks (FCNs) are a brain mapping technique based on the 

statistical interdependencies of spatially distinct time-varying neural signals. FCNs can be 

derived from various continuous physiological signals, such as EEG and functional magnetic 

resonance imaging, where they represent the regional interactions on a macroscopic level 

(Matos et al. 2022). Rather than measuring the direct anatomical relationships between these 

brain regions, functional networks are inferred and depend on the choice of the coupling 
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measure. Based on the measure, the network is either binary or weighted with  directed or 

bidirectional connections. FCNs can be summarized by a matrix, where each element 

corresponds to a connection pair between two different brain regions.  

 To summarize the FCN as a quantitative biomarker, graph theory measures are often 

used to reduce the FCN to a few characteristic values. Graph theory measures can quantify 

features, such as the global, regional, and topological characteristics of the network (Rubinov 

and Sporns 2010; Matos et al. 2022). Global measures, such as the connectivity strength, can 

be used to represent all connections in the FCN as a single value. Regional measures, such as 

the degree, correspond to the connectivity characteristics in individual brain regions. Topological 

features, such as the clustering coefficient and path length, evaluate the network structure by 

measuring properties like the number of interconnected groups of connected triplets, or the 

ability to efficiently transfer information between different brain regions. The location of 

significant functional connections can also be assessed. For example, asymmetry measures the 

proportion of connections in the anterior/posterior and left/right hemispheres (Matos et al. 2022). 

Lastly, a given connectivity network can be compared to preexisting network models, such as 

regular, random, and small-world networks, which each function differently and exhibit different 

features based on how the regions are connected (Kramer and Cash 2012).  

 FCNs are extensively used in epilepsy research, as epilepsy is considered a network 

disorder that exhibits pathological changes before and during seizures (Kramer and Cash 

2012). During a seizure, the abnormal electrical activity can spread from a central focus outward 

while recruiting other pathological and normal brain tissue in a cascade of activity. This 

phenomenon can be analyzed using coupling analysis and represented as a functional network 

(Kramer and Cash 2012). We can then compare these changes to healthy FCNs, which have 

been found to have a core functional network organization that is topologically stable over 

multiple hours across different states of consciousness (Chu-Shore et al. 2012). Healthy 
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networks have also been found to have a stereotyped sequence over normal cortical 

development across healthy children (Chu et al. 2014).  

 Collectively, EEG-based FCNs have potential as a clinical biomarker of disease severity,  

which can potentially predict long-term outcome. This is seen in interictal EEG studies, which 

report network alterations due to focal epilepsies compared to healthy controls (van Diessen et 

al. 2016). Functional connectivity has also been used to explain the mechanisms of EEG 

waveforms such as hypsarrhythmia in IESS subjects, where multi-focal independent spikes 

were correlated to blood-oxygen-level-dependent imaging oscillations on the cerebral cortex 

(Siniatchkin et al. 2007). FCNs can also serve as a potential biomarker of treatment response in 

IESS, as pre-treatment subjects had stronger FCNs than healthy controls, but the IESS 

networks more closely resembled those of the control subjects following successful treatment 

(Shrey et al. 2018a).  

 Despite the promising utility of FCNs for clinical purposes, there are several barriers to 

their implementation. It is difficult to differentiate physiological versus pathological changes in 

the network. This is particularly challenging in cases of infantile epileptic encephalopathies, as 

infants are developing and undergoing major structural changes at the same time as exhibiting 

pathological activity. There is no consensus on the typical developmental changes in FCNs from 

the neonatal period to late infancy (Vértes and Bullmore 2015), which can hinder the use of 

FCNs as a biomarker for patients in this age range. Another challenge is the stability and 

consistency of FCNs in evaluating epileptic encephalopathies, particularly during broadly 

distributed waveforms such as IEDs. While prior studies have shown that interictal EEG 

functional networks are stronger in IESS compared to healthy infants (Smith et al. 2021b) and 

the alteration of FCNs may reflect pathological activity (Ponten et al. 2009; Horstmann et al. 

2010; Adebimpe et al. 2015; Coito et al. 2016), it is unknown whether this connectivity change is 

always present or is temporarily altered during the epileptiform discharge. Answering this 
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question could improve the robustness of FCNs as a quantitative biomarker for the evaluation of 

epileptic encephalopathies.  

 

1.4.2 Time-frequency analysis 

 Time-frequency analysis is a technique that decomposes a signal into both the time and 

frequency domains simultaneously. This technique is particularly useful in EEG, where many 

key waveforms and events are characterized based on the neuronal oscillations of the signal. 

Rather than assessing the EEG as a function of amplitude over time, time-frequency analysis 

can be implemented to assess the power of the signal in different frequency bands and provide 

additional information about the frequency variations over time.  

 Many automated algorithms have been developed to analyze EEG waveforms based on 

the time-frequency characteristics. One benefit to using time-frequency analysis over the 

timeseries is the ability to characterize both spectral and temporal dynamics of the signal. For 

example, IEDs are often associated with an oscillation at a specific frequency. Time-frequency 

analysis can characterize what is happening before, during, and after an IED in both time and 

frequency, which gives us additional information on the various features of the signal (Jabran et 

al. 2020).  

 Another benefit of this technique is the ability to create automated detectors for specific 

time-frequency features, which can be used as an alternative or complement to visual EEG 

review. Interictal spike detectors can detect spikes based on various features derived from the 

time-frequency analysis (Gaspard et al. 2014) or based on a template calculated using the 

average of multiple spikes (Karoly et al. 2016). Time-frequency analysis has also been 

implemented to create automated detectors for interictal spikes in refractory epilepsies (Jacobs 

et al. 2011; Jabran et al. 2020), sleep spindles (Ahmed et al. 2009), and GPFAs in patients with 

LGS (Omidvarnia et al. 2021). These detectors can apply detection criteria consistently across 

patients and centers, which can avoid biases from individual reviewers (Jing et al. 2020).  
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 Time-frequency analysis can also help us visualize features of the EEG that cannot be 

seen during standard clinical review. For instance, EEG waveforms called high-frequency 

oscillations (HFOs) are defined as transient electrographic events distinct from the background 

that consist of four or more oscillations at a frequency >80 Hz (Jacobs et al. 2011). While HFOs 

were first described and analyzed in microelectrodes and animal models, HFOs have now been 

detected in scalp EEG and have been correlated with the seizure onset zone and underlying 

mechanisms of epilepsy (Jacobs and Zijlmans 2020). Although HFOs are barely visible when 

the EEG is viewed with standard review settings due to their small amplitude and short duration, 

time-frequency analysis has been used to automatically detect HFOs and characterize the 

features of them (Krikid et al. 2022). 

 One challenge of implementing time-frequency analysis in epileptic encephalopathies is 

the reliance on clinical review for validation, which is often treated as the gold standard despite 

having low interrater agreement (Reus et al. 2022). Because of this, detectors often rely on 

empirical definitions of EEG waveforms, which are derived from clinical descriptions of the data. 

This, in turn, means that there is no strong basis for the further development and improvement 

of automated detectors, as detected events are compared to manual markings as a “ground 

truth”, despite having imprecise definitions and high variance between reviewers.  

 

1.5 Scope of the dissertation 

 In this doctoral dissertation, we develop and validate various computational techniques 

to study EEG and the physiological and pathological waveforms contained therein. This work 

aims to provide a computational approach to complement clinical interpretation of EEG data and 

to discover quantitative biomarkers to aid in the diagnosis of epilepsy and evaluation of the 

disease progression.  

 In Chapter 2, we use FCNs to analyze the evolution of cortical network organization in 

the EEG of 240 healthy infants from zero to two years of age (Hu et al. 2022). In this cohort, we 
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find no differences in network structure, but there is an increase in network strength during the 

first year of normal development. This work serves as an age-matched baseline for future 

investigations in infantile neurological diseases, where we can assess the changes in network 

strength and structure as a potential indicator of patient health.  

 One confounding factor when analyzing FCNs in epilepsy is the irregular occurrence of 

transient waveforms such as IEDs, which can impact the measurement of the network. In 

Chapter 3, we assess the pathological network changes in patients with IESS during IEDs and 

compare them to healthy controls with simulated IED waveforms (Hu et al. 2020a). Here, we 

show that the increase in connectivity strength during IEDs is attributed to the underlying 

pathophysiology of IESS, rather than the presence of the IED waveform, suggesting the 

activation of some pathological network mechanism during the IED. We also show that the 

network structure remains unchanged by the addition of transient IEDs, indicating the 

robustness of FCNs as a quantitative biomarker. 

 Lastly, we develop a novel unsupervised time-frequency image analysis method to 

automatically detect EEG events that are candidate biomarkers for epilepsy. In Chapter 4, we 

use our unsupervised time-frequency analysis to identify 1,350 EEG events in patients with 

LGS, which are subsequently visually classified by three pediatric epileptologists. We show that 

events with rater agreement consist of EEG waveforms commonly seen in LGS, such as IEDs 

and GPFAs. This validates the automated detection method. Interestingly, most events with 

disagreement are not due to misidentification, but rather clinicians disagreeing on the threshold 

for choosing each label. In Chapter 5, we apply clustering to the EEG events, and we 

demonstrate that this time-frequency approach can objectively identify previously known 

biomarkers of LGS, such as GPFAs, while also discovering novel candidate biomarkers that 

were not apparent during visual review.  

 Overall, this work aims to utilize computational analysis of scalp EEG recordings to aid 

clinicians in the initial diagnosis of epilepsy and the early evaluation of medication, one of the 
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most critical times of treatment (Camfield et al. 2011; Piña-Garza et al. 2017; Berg, Anne; Levy 

and Testa 2018). These computational techniques can provide quantifiable metrics to 

complement clinical EEG review and provide new biomarkers of patient health, thus enabling 

more accurate diagnosis and faster treatment evaluation of developmental epileptic 

encephalopathies. 
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CHAPTER II 

Evolution of Cortical Functional Networks in Healthy Infants 

 

2.1 Introduction 

 The development of the infant brain (0-2 years old) is characterized by the evolution of 

neuronal oscillations in various frequency bands, which can be measured non-invasively using 

electroencephalography (EEG). Such cortical rhythms can be mapped as functional connectivity 

networks (FCNs) based on the statistical relationships between these neuronal oscillations 

across spatially distinct regions. Prior studies have reported strong EEG functional connections 

predominantly in the frontal and parieto-occipital regions in newborn infants (Omidvarnia et al. 

2014; Tóth et al. 2017), with a subsequent shift in network topology from a randomized structure 

towards a more efficient and organized network during infancy (Xie et al. 2019) and childhood 

(Boersma et al. 2011). These FCNs also have properties that are specific to certain EEG 

frequency bands. Newborn infants exhibit clustered, fronto-parietal connections in the theta and 

alpha bands (Tóth et al. 2017). From infancy to age 18, healthy subjects show an increase in 

broadband connectivity strength, decrease in high gamma connectivity strength, decreases in 

delta and theta band clustering, and increase in gamma band clustering (Chu et al. 2014). Such 

frequency band-specific FCNs can indicate different neural mechanisms, as delta and theta 

networks integrate long-range neuronal assemblies, while gamma and higher frequencies 

reflect more localized networks (Fries 2005, 2015; Buzsáki and Watson 2012; Bastos and 

Schoffelen 2016).  

 While studies have examined EEG FCNs around the time of birth (Omidvarnia et al. 

2014; Tokariev et al. 2016; Tóth et al. 2017), within a span of several months during infancy (Xie 

et al. 2019), or during early childhood (Boersma et al. 2011; Bathelt et al. 2013), there has yet to 

be a study that focuses exclusively on the evolution of connectivity during the first two years of 
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life. Chu et al. (2014) analyzed EEG connectivity in this age range, but primarily focused on 

developmental changes across a wider age range of 0-18 years. Moreover, no consensus has 

been reached on the typical developmental changes in FCNs. Small-world topological features 

have been reported to disappear around 10 months of age (Xie et al. 2019), despite reports of 

small world networks in older children (Boersma et al. 2011; Bathelt et al. 2013). Graph theory 

(GT) measures in FCNs such as path length have also produced mixed results, with both 

decreases (Miskovic et al. 2015) and increases (Boersma et al. 2011) in alpha band path length 

with age during childhood. Increases in clustering coefficient and path length from childhood to 

adolescence have been reported (Smit et al. 2012), while other studies found no correlations 

between subject age and GT measures in childhood (Bathelt et al. 2013). These differing results 

may be attributed to several factors, including the variance across EEG datasets and the choice 

of functional connectivity technique, e.g. linear versus nonlinear, bivariate versus multivariate, 

and phase-based versus amplitude-based measures (Olejarczyk et al. 2017; Siems and Siegel 

2020). 

 Therefore, the goal of this study was to characterize the changes in functional 

connectivity networks over the course of normal infant development using two complementary 

computational methods. We measured EEG FCNs in a large cohort of healthy infants (n=240), 

ranging from 0-24 months old. For each subject, networks were derived separately for 

wakefulness and sleep in the delta, theta, alpha, beta, and broadband frequency bands. Two 

complementary methods were used to calculate the FCNs: cross-correlation and weighted 

phase lag index. Differences between age groups were quantified using connectivity strength 

and GT measures. By focusing specifically on healthy infants and directly comparing results 

across various connectivity techniques, this work further elucidates the evolution of FCNs during 

normal brain ontogeny and serves as a baseline for the study of early life neurological diseases. 

 

2.2 Methods 
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2.2.1 Subject information and electroencephalography recordings 

 Approval for this retrospective observational study was obtained from the Institutional 

Review Board of the Children’s Hospital of Orange County (CHOC), with the requirement for 

informed consent waived. A total of 240 subjects aged 0–24 months were retrospectively 

identified from the clinical record at CHOC, with visits between 1 January 2012 and 1 January 

2019. Subjects were included if they had 1) no known neurological disorders, 2) routine EEG 

studies that were interpreted as normal by a board certified pediatric epileptologist (DS), 3) no 

use of neuroactive medications, and 4) no premature birth (gestational age >38 weeks). 

Subjects were divided into eight age groups (n = 30 for each group) in 3-month intervals (e.g., 

0–3 months, 3–6 months, etc.) based on the subject’s age at the time of EEG recording. Three 

subjects in the 0–3-months age group were excluded from the analysis due to excessive 

artifactual noise across multiple channels. The demographics of the study population are 

summarized in Table 2.1. 

 

Table 2.1 Demographics for healthy participants  

Group Age in mos. 

M (SD) 

Female  

n (%) 

Subjects  

n 

Wakefulness  

n (%) 

Sleep  

n (%) 

0-3 m. 1.54 (0.94) 12 (40.00) 30 24 (80.00) 22 (73.33)  

3-6 m. 4.67 (0.93) 16 (53.33) 30 29 (96.67) 26 (86.67) 

6-9 m. 7.41 (0.83) 19 (63.33) 30 30 (100.00) 29 (96.67) 

9-12 m. 10.24 (0.74) 19 (63.33) 30 29 (96.67) 24 (80.00) 

12-15 m. 13.57 (0.87) 17 (56.67) 30 29 (96.67) 23 (76.67) 

15-18 m. 16.33 (0.97) 15 (50.00) 30 28 (93.33) 27 (90.00) 

18-21 m. 19.01 (0.73) 17 (56.67) 30 29 (96.67) 22 (73.33) 
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21-24 m. 22.54 (0.92) 16 (53.33) 30 29 (96.67) 24 (80.00) 

 

2.2.2 Electroencephalography acquisition and preprocessing 

 EEG data were recorded with a Nihon Kohden EEG acquisition system, with nineteen 

scalp electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and 

Pz) placed according to the international 10–20 system, at a sampling rate of 200 Hz. One 

subject’s EEG was recorded at 500 Hz and downsampled prior to analysis. All EEG studies 

lasted from 20 to 70 min and contained a mixture of wakefulness and sleep. Manual EEG sleep 

staging was performed for all subjects by registered polysomnographic technologists (CG, AM, 

and NT) in accordance with the American Academy of Sleep Medicine (AASM) guidelines. EEG 

studies for subjects younger than 3 months were scored as wake, active sleep, or quiet sleep 

according to standard criteria. For all subjects older than 3 months, EEG epochs were 

categorized as wake (W), rapid eye movement (REM), non-REM stage 1 (N1), non-REM stage 

2 (N2), and non-REM stage 3 (N3) sleep. However, only wake and N2 sleep data were 

analyzed, as most subjects’ studies contained a sufficient quantity of these stages for the 

connectivity analysis. N2 sleep was also chosen due to its high inter-scorer reliability during 

sleep staging and because of the stability of the FCN during this sleep stage in individual 

subjects over time (Chu-Shore et al. 2012; Rosenberg and Van Hout 2013).  

 Time periods in the EEG containing artifact were identified using an automatic extreme 

value detection algorithm similar to prior studies (Durka et al. 2003; Moretti et al. 2003; Smith et 

al. 2021a). To identify artifacts, the raw data were filtered using a broadband bandpass filter 

(1.5–40 Hz Butterworth filter), re-referenced to the common average, and normalized in each 

channel to have zero mean and unit variance. In each channel, artifacts were identified as 

periods where the absolute value of the voltage exceeded a threshold of 7.5 standard deviations 

above the mean value, with a buffer of 0.9 s added to the beginning and end of each period. 
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Impedance checks and photic stimulation were visually identified in the EEG and were also 

marked as artifact. For all subjects, the mean duration of EEG recordings and time in 

wakefulness and quiet/N2 sleep is provided in Table 2.2, and the percentage of artifactual data 

in the EEG recordings is given in Table 2.3.  

 For the connectivity analysis, the raw data were re-referenced to the common average 

and filters were applied for each connectivity technique as described in Chapter 2.2.3. Time 

periods containing an artifact in at least one channel were then removed from all channels. For 

each sleep stage, clean EEG segments with no detected artifact were then separated into two-s 

epochs for FCN analysis. All electronic data were deidentified and analyzed offline using custom 

MATLAB (Mathworks) scripts. 

 

Table 2.2 Mean EEG, artifact, wake, and sleep duration for each age group. The mean EEG 

duration also consists of N1 and N3 sleep  

Group Mean EEG 

duration, sec  

(std), [range]  

Mean artifact 

duration, sec 

[std, range]  

Mean wakefulness 

duration, sec 

[std, range]  

Mean quiet/N2 sleep 

duration, sec 

[std, range]  

0-3 m. 2530 (814) 

[1740-3900] 

1105 (500) 

[413-2291] 

480 (314) 

[109-1255] 

562 (425) 

[0-1557] 

3-6 m. 2110 (355) 

[1560-3060] 

485 (204) 

[92-969] 

780 (429) 

[202-1757] 

534 (312) 

[0-1183] 

6-9 m. 2136 (384) 

[1320-3060] 

396 (134) 

[227-877] 

689 (389) 

[211-1606] 

739 (303) 

[143-1525] 

9-12 m. 2204 (459) 

[1200-3360] 

502 (207) 

[224-1027] 

877 (448) 

[0-1928] 

597 (355) 

[0-1178] 

12-15 m. 2194 (291) 

[1807-2940] 

501 (168) 

[228-927] 

844 (425) 

[212-1853] 

692 (440) 

[0-1451] 

15-18 m. 2318 (370) 566 (309) 873 (510) 614 (309) 
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[1800-3120] [266-1980] [123-2051] [0-1410] 

18-21 m. 2254 (397) 

[1800-3420] 

532 (234) 

[281-1474] 

948 (531) 

[188-2024] 

522 (355) 

[0-951] 

21-24 m. 2288 (342) 

[1800-3420] 

521 (192) 

[258-1114] 

928 (497) 

[199-2002] 

570 (343) 

[0-1236] 

 

Table 2.3 Mean percentage of artifact, wake, and N2 sleep for each EEG in each age group. 

The mean percentage of artifact across all subjects was 25%.  

Group Artifact % (std)  Wake % (std)  Quiet/N2 sleep %(std)  

0-3 m. 43.5 (12.9) 18.8 (10.1) 22.6 (16.9) 

3-6 m. 22.8 (7.7) 36.6 (19.0) 25.9 (15.9) 

6-9 m. 18.9 (6.2) 30.8 (12.7) 35.1 (14.0) 

9-12 m. 23.0 (8.4) 39.2 (18.3) 27.7 (16.8) 

12-15 m. 22.9 (7.3) 38.3 (18.8) 31.7 (19.9) 

15-18 m. 25.0 (15.9) 36.0 (16.7) 27.3 (13.6) 

18-21 m. 23.4 (7.6) 41.0 (20.8) 24.2 (17.4) 

21-24 m. 22.6 (6.8) 39.8 (20.2) 25.6 (17.2) 

 

2.2.3 Functional connectivity network calculations 

 Two functional connectivity metrics were used in this study: cross-correlation (CC) and 

weighted phase lag index (wPLI). CC is a linear, time domain measure applied to broadband 

data, and wPLI is a phase-based measure applied to individual frequency bands that is 

sensitive to both linear and nonlinear interactions (Vinck et al. 2011; He et al. 2019). For CC, 

broadband EEG data were analyzed after zero-phase shift digital filtering from 0.5 to 55 Hz; 

wPLI was analyzed in the delta (2–4 Hz), theta (4.5–7.5 Hz), alpha (8–12.5 Hz), and beta (13–

30 Hz) frequency bands. For the FCN calculation of each subject, 120 two-s epochs of clean 
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EEG data were randomly selected within each brain state (wakefulness and quiet/N2 sleep), 

and CC and wPLI were calculated independently for each brain state. The number of epochs 

was chosen based on an analysis of the stability of the connectivity technique; if a subject had 

insufficient clean data for a particular brain state, their data were excluded from analysis. The 

number of subjects included in the FCN analysis for wakefulness and quiet/N2 sleep is shown in 

Table 2.1. 

 

2.2.3.1 Cross-correlation 

 Cross-correlation is a linear measure of connectivity based on the maximal cross-

correlation between two EEG channels at nonzero lags (Kramer et al. 2009; Chu-Shore et al. 

2012). This technique has been previously applied to both epileptic and healthy infant EEG data 

(Shrey et al. 2018b; Hu et al. 2020b; Smith et al. 2021a). For each subject and brain state with 

sufficient data, we began the connectivity analysis by subdividing the 120 two-s epochs into 240 

one-s epochs. The choice of epoch length for CC was based on prior work demonstrating the 

stability of this measurement for as few as ~100 epochs of one-s duration (Chu-Shore et al., 

2012; Shrey et al., 2018; Smith et al., 2021). The connectivity for each one-s epoch was 

calculated as the maximal absolute value of the cross-correlation with a maximum lag time of 

±200 ms. Additional steps accounted for the influence of volume conduction and the 

autocorrelation of each signal, and permutation resampling was used for significance testing; 

please see Hu et al. (2020) for details. The CC connectivity for each subject was reported as an 

adjacency matrix where each element represented the percentage of epochs with significant 

connectivity values, with values ranging from zero to one for each pair of channels. 

 

2.2.3.2 Weighted phase lag index 
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 The wPLI is a measure of functional connectivity based on the phase synchronization 

between channel pairs. For channels x and y, the wPLI in a data segment with n time points is 

defined as: 

wPLI𝑥𝑦 =  
𝑛−1 ∑ |𝑖𝑚𝑎𝑔(𝑆𝑥𝑦𝑡)|𝑠𝑔𝑛(𝑖𝑚𝑎𝑔(𝑆𝑥𝑦𝑡))𝑛

𝑡=1

𝑛−1 ∑ |𝑖𝑚𝑎𝑔(𝑆𝑥𝑦𝑡)|𝑛
𝑡=1

             (2.1) 

The wPLI measures the average sign of the imaginary component of the cross spectrum Sxy 

and weights the value by the magnitude of the imaginary component to reduce the effect of 

cross-spectral values near zero and pi. The wPLI was chosen because it is more sensitive to 

phase synchronization than PLI, while reducing the influence of both noise sources and volume 

conduction (Vinck et al. 2011).  

 For each subject, all 120 two-s epochs of clean EEG data were used to calculate the 

wPLI FCN, as this amount of data ensures the stability of the measure (Haartsen et al. 2020). In 

each frequency band, the instantaneous phase was obtained via the Hilbert transform of the 

filtered EEG signal for each channel. A connectivity matrix was then calculated for each epoch 

using Eq. 1 for each channel pair. The significance of each epoch was assessed by generating 

a null distribution of wPLI values for each pair of EEG channels under the assumption of no 

temporal relationship between the signals. This was done by calculating the wPLI of two 

randomly selected epochs for 1,000 iterations. The measured wPLI value for each channel pair 

in an epoch was considered significant if it exceeded the 95th percentile of the null distribution. 

Significant connections were assigned a value of one, while non-significant connections were 

assigned a value of zero. The FCN for each subject was then calculated by averaging the binary 

matrices over all epochs. Therefore, analogous to the CC measure, each element in the 

adjacency matrix represents the percentage of epochs with significant connectivity values. 

 

2.2.4 Graph theory metrics 
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 Graph theory has been successfully used to analyze networks in a broad range of 

human neuroscience studies (Sporns 2018), with applications to data modalities ranging from 

structural and functional brain measurements (Hallquist and Hillary 2018; Bellantuono et al. 

2021) to genetics (Monaco et al. 2019). Here, differences in FCNs between groups were 

quantified using four different GT measures: 1) network strength, 2) normalized global clustering 

coefficient (nGCC), 3) normalized characteristic path length (nCPL), and 4) small-world 

measure (SW). These measures were found to be relevant in prior studies of neonatal 

(Omidvarnia et al. 2014; Tóth et al. 2017), infantile (Fan et al. 2011; Gao et al. 2011; Xie et al. 

2019), and childhood development (Boersma et al. 2011; Bathelt et al. 2013). All metrics were 

calculated using functions from the Brain Connectivity Toolbox (Rubinov and Sporns 2010) and 

custom MATLAB (Mathworks) scripts.  

 The network strength was defined as the mean of the strongest ten percent of 

connections and was calculated for each subject, connectivity technique, and brain state 

(Garrison et al. 2015; Smith et al. 2021a). Topological changes in the network structure were 

quantified using GCC and CPL. A network with a high GCC indicates the presence of strongly 

connected electrode triplets, and a low CPL value indicates that the network can efficiently 

transfer information between nodes (Watts and Strogatz 1998). To reduce the effects of weak 

connections, the weighted connectivity matrices were thresholded at an edge density of 0.25. 

This threshold was chosen by testing edge densities from 0.05 to 0.80 (Figures 2.1-2.5). We 

found that edge densities under 0.1 had high variability and often resulted in unconnected 

graphs, while edge densities over 0.4 could produce fully connected graphs with nGCC and SW 

values near one. An edge density of 0.25 was chosen here, as it exhibited low variability 

between subjects while forming a connected graph. In addition, prior studies found that edge 

densities of 0.1–0.4 were appropriate for GCC, CPL, and SW measures (Mehraram et al. 2020; 

Carpels et al. 2021). The thresholded weighted matrix was then normalized by dividing each 

element by the maximum connectivity value to avoid the influence of network strength on the 
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GT measures (Onnela et al. 2005; Antoniou and Tsompa 2008; Mehraram et al. 2020; Carpels 

et al. 2021). This normalized matrix was used to calculate GCC, and it was also converted into a 

distance matrix to calculate CPL. The GCC and CPL measures were then reported as 

normalized values relative to 100 surrogate networks generated using an Erdős–Rényi random 

graph: 

𝑛𝐺𝐶𝐶 =
𝐺𝐶𝐶

𝐺𝐶𝐶𝑟𝑎𝑛𝑑
                               (2.2) 

  𝑛𝐶𝑃𝐿 =
𝐶𝑃𝐿

𝐶𝑃𝐿𝑟𝑎𝑛𝑑
                               (2.3) 

An nGCC value greater than one suggests that the network is more clustered than a 

randomized network, while an nCPL greater than one suggests that the network is configured to 

transfer information less efficiently than a randomized network. 

 The small-world characteristics of the FCNs were measured as the ratio of the 

normalized GCC and normalized CPL measures (Humphries and Gurney 2008): 

𝑆𝑊 =  
𝑛𝐺𝐶𝐶

𝑛𝐶𝑃𝐿
                                        (2.4) 

Small-world networks are typically characterized by high values of GCC and low values of CPL. 

Compared to a randomized network with low clustering and short path length, a small-world 

FCN should then have an SW > 1. 
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Figure 2.1 Changes in the (A) nGCC, (B) nCPL, and (C) SW as a function of varying edge 
density thresholds using broadband CC connectivity during wakefulness (top) and sleep 
(bottom), where lines A-H refer to each age group. Edge densities under 10% have high 
variability and can form unconnected graphs while edge densities over 40% result in networks 
resembling fully connected graphs, resulting in nGCC and SW values near 1. An edge density of 
25% was chosen in the present study due to the lower variability between subjects while 
forming a connected graph. The overlap in error bars suggest that there is no significant 
difference between age groups, regardless of the edge density.  
 

 
 
Figure 2.2 Changes in the (A) nGCC, (B) nCPL, and (C) SW as a function of varying edge 
density thresholds using delta wPLI connectivity during wakefulness (top) and sleep (bottom), 
where lines A-H refer to each age group. Edge densities under 10% have high variability and 
can form unconnected graphs while edge densities over 40% result in networks resembling fully 
connected graphs, resulting in nGCC and SW values near 1. An edge density of 25% was 
chosen in the present study due to the lower variability between subjects while forming a 
connected graph.  
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Figure 2.3 Changes in the (A) nGCC, (B) nCPL, and (C) SW as a function of varying edge 
density thresholds using theta wPLI connectivity during wakefulness (top) and sleep (bottom), 
where lines A-H refer to each age group. Edge densities under 10% have high variability and 
can form unconnected graphs while edge densities over 40% result in networks resembling fully 
connected graphs, resulting in nGCC and SW values near 1. An edge density of 25% was 
chosen in the present study due to the lower variability between subjects while forming a 
connected graph.  
 

 
 
Figure 2.4 Changes in the (A) nGCC, (B) nCPL, and (C) SW as a function of varying edge 
density thresholds using alpha wPLI connectivity during wakefulness (top) and sleep (bottom), 
where lines A-H refer to each age group. Edge densities under 10% have high variability and 
can form unconnected graphs while edge densities over 40% result in networks resembling fully 
connected graphs, resulting in nGCC and SW values near 1. An edge density of 25% was 
chosen in the present study due to the lower variability between subjects while forming a 
connected graph.  
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Figure 2.5 Changes in the (A) nGCC, (B) nCPL, and (C) SW as a function of varying edge 
density thresholds using beta wPLI connectivity during wakefulness (top) and sleep (bottom), 
where lines A-H refer to each age group. Edge densities under 10% have high variability and 
can form unconnected graphs while edge densities over 40% result in networks resembling fully 
connected graphs, resulting in nGCC and SW values near 1. An edge density of 25% was 
chosen in the present study due to the lower variability between subjects while forming a 
connected graph.  
 

2.2.5 Statistical tests 

 Statistical analyses of the GT measures were conducted using one-way ANOVA tests 

across the eight age groups. Results were calculated independently for each connectivity 

method, frequency band, and sleep stage. The Bonferroni method was used to correct for 

multiple comparisons, accounting for 28 different age-group comparisons. The SW comparisons 

between CC and wPLI were measured in each age group using a one-tailed Wilcoxon signed-

rank test, corrected using the Bonferroni method. 

 

2.3 Results 

2.3.1 CC FCNs increase in strength in early infancy 

 For the CC FCNs, both frontal connections (between electrodes Fp1, Fp2, Fz, F3, F4, 

F7, and F8) and occipital connections (between O1, O2, T5, and T6) were frequently among the 

top 10% strongest connections in the network; this was true across all age groups, during 



31 
 

wakefulness and sleep (Figure 2.6). However, the mean network strength increased after the 

first 3 months of infancy, as significant differences were found between subjects 0–3 months old 

and subjects 3–15 and 18–24-months old in wakefulness (p < 0.01, Figure 2.7A) and between 

0–3 months old and 3–6-months old in sleep (p < 0.05, Figure 2.7B). For subjects older than 3 

months, the only significant difference in network strength was a lower strength in subjects 15–

18 months old relative to subjects 3–6 months old during sleep (p < 0.05, Figure 2.7B). 

 

 
 
Figure 2.6 Average CC FCNs for healthy infants during (A) wakefulness and (B) sleep. The 
strongest 10% of connections in each age group are shown. The color of each connection 
represents the connection strength, defined as the percentage of epochs with significant 
connectivity values. 
 

 
 
Figure 2.7 Mean network strength by age for healthy infants using CC connectivity during (A) 
wakefulness and (B) sleep. Here, mean network strength is defined as the mean of the 10% 
highest connectivity values. Significance levels are *p < 0.05, **p < 0.01, and ***p < 0.001, with 
p-values modified using the Bonferroni method. 
 



32 
 

2.3.2 WPLI FCNs in the alpha band increase in strength with age, particularly in the 

frontocentral region 

 The top 10% strongest wPLI connections for all age groups are shown in Figure 2.8A 

(delta band), Figure 2.8B (theta band), Figure 2.8C (alpha band), and Figure 2.8D (beta band). 

In the delta frequency band, the 0–3-months age group had significantly stronger connectivity 

than all other age groups, during both wakefulness and sleep (p < 0.01, Figure 2.9A). 

Connectivity strength in the theta band also decreased from the 0–3- months group to the 3–6 

months group during wakefulness (p < 0.05), and to the 3–12 and 15–18 months groups during 

sleep (p < 0.05, Figure 2.9B). The only significant increases in connectivity strength in the delta 

and theta frequency bands were found in the theta band during wakefulness, where the FCNs in 

the 18–24 months group were stronger than in the 3–6 months group, and the 21–24 months 

group was stronger that the 6–9 months group (p < 0.05, Figure 2.9B).  

 In the alpha band during wakefulness, the FCN strength exhibited changes similar to 

those seen in the delta band, with significantly lower mean connectivity for subjects 3–24 

months old compared to subjects 0–3 months old (p < 0.05, Figure 2.9C, top). In contrast, 

during sleep, the alpha band connectivity strength exhibited a significant increase during the first 

2 years of life. Specifically, subjects in the 18–21 months age group had significantly stronger 

FCNs than subjects 3–9 months old (p < 0.05, Figure 2.9C bottom), and subjects 21–24 months 

old had significantly stronger FCNs than subjects 3–12 months old (p < 0.01, Figure 2.9C, 

bottom). Qualitatively, this change appeared to be driven by strong frontocentral connections 

(between electrodes Fp1, Fp2, Fz, F3, F4, F7, F8, C3, Cz, and C4), as the strongest 10% of 

connections for subjects 12–24 months old tended to be clustered in this region (Figure 2.8C, 

bottom).  

 The strongest 10% of connections in the beta band during sleep were also clustered in 

the frontocentral regions for subjects 3–24 months old, based on a qualitative visual analysis 

(Figure 2.8D). However, unlike the alpha band, there were no significant differences in 
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connectivity strength between age groups (Figure 2.9D, bottom). During wakefulness, the beta 

band FCNs exhibited stronger connections for subjects 0–3 months old compared to most age 

groups from 12 to 24 months old, similar to the trends in the delta and alpha bands during 

wakefulness (p < 0.05, Figure 2.9D, top). In the beta band, the 3–6 months group also exhibited 

stronger connections than the 21–24 months group (p < 0.05, Figure 2.9D, top). 

 

 
 
Figure 2.8 Average wPLI FCNs for healthy infants in the (A) delta, (B) theta, (C) alpha, and (D) 
beta band during wakefulness (top) and sleep (bottom). The strongest 10% of connections in 
each age group are shown. The color of each connection represents the connection strength, 
defined as the percentage of epochs with significant connectivity values. 
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Figure 2.9 Mean network strength by age using wPLI connectivity in the (A) delta, (B) theta, (C) 
alpha, and (D) beta band during wakefulness (top) and sleep (bottom). Here, mean network 
strength is defined as the mean of the 10% highest connectivity values. Significance levels are 
*p < 0.05, **p < 0.01, and ***p < 0.001, with p-values modified using the Bonferroni method. 
 

2.3.3 CC FCNs exhibit small-world features across all age groups  

 The nGCC across all subjects indicates the presence of nonrandom clusters within the 

network during wakefulness [nGCCwake = 1.75 (0.38), reported as the median (IQR) for all 

results] and sleep [nGCCsleep = 1.70 (0.39)] (Figure 2.10A). The nCPL across all subjects was 

close to one during wakefulness [nCPLwake = 1.05 (0.11)] and sleep [nCPLsleep = 1.06 (0.10)], 

suggesting that the efficiency of information transfer in the CC network was high, similar to a 

random network (Figure 2.10B). CC networks demonstrated a small-world structure across all 

age groups in wakefulness [SWwake = 1.64 (0.49)] and sleep [SWsleep = 1.59 (0.34)] (Figure 

2.10C). There were no significant differences between age groups for nGCC (wakefulness and 

sleep), CPL (sleep), or SW (sleep). The nCPL during wakefulness was significantly larger in 

subjects 6–9 months old compared to 9–12 months old (p < 0.05, Figure 2.10B, top), and SW 

during wakefulness was significantly larger in subjects 9–12 months old compared to subjects 

0–3 months old (p < 0.01, Figure 2.10C, top). 
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Figure 2.10 Graph theory measures by age for healthy infants using CC connectivity for the (A) 
normalized global clustering coefficient, (B) normalized characteristic path length, and (C) small-
world measure during wakefulness (top) and sleep (bottom). For each subfigure, the solid gray 
line represents the median value using randomly rewired networks and the dashed gray lines 
represent the 25th and 75th percentiles. Significance levels are *p < 0.05, **p < 0.01, and ***p < 
0.001, with p-values modified using the Bonferroni method. 
 

2.3.4 WPLI FCNs have less clustering and are less small-world than CC networks 

 WPLI networks generally followed the same trend as CC networks, with nGCC values 

greater than one and nCPL values of approximately one in all frequency bands. The SW 

measures for all frequency bands are shown in Figure 2.11; see Figures 2.12, 2.13 for the 

nGCC and nCPL results, respectively. The wPLI FCNs were small-world, with SW values 

greater than one in the delta [SWdelta, wake = 1.18 (0.32), SWdelta, sleep = 1.12 (0.28)], theta 

[SWtheta, wake = 1.17 (0.27), SWtheta, sleep = 1.12 (0.30)], alpha [SWalpha, wake = 1.15 (0.33), 

SWalpha, sleep = 1.16 (0.33)], and beta [SWbeta, wake = 1.32 (0.46), SWbeta, sleep = 1.24 (0.52)] 

bands. The wPLI FCNs in the delta band had a significantly higher nGCC and SW during sleep 

at 0–3 months compared to 6–9 months and 18–21 months (p < 0.05, Figure 2.11A bottom and 

Figure 2.12A bottom). No significant differences in nGCC, nCPL, or SW were seen between age 

groups in the theta and alpha bands (Figures 2.11B,C and Figures 2.12B,C, 2.13B,C). The wPLI 



36 
 

networks in the beta band were typically less SW with age, with significantly smaller SW at 21–

24 months compared to 0–3 months during wakefulness (p < 0.05) and smaller SW at 15–18 

and 21–24 months compared to 6–9 months (p < 0.05) during sleep (Figure 2.11D). The CC 

networks had significantly higher SW values compared to wPLI networks for all groups aged 3–

24 months in the delta, theta, and alpha bands during wakefulness and sleep (Table 2.4; 

Wilcoxon sign-rank test, Bonferroni corrected). In the beta band, CC networks were more small-

world than wPLI networks across most age groups older than 3 months during wakefulness and 

12 months during sleep (Table 2.4). 

 

 
 
Figure 2.11 Small-world measure by age for healthy infants using wPLI connectivity in the (A) 
delta, (B) theta, (C) alpha, and (D) beta band during wakefulness (top) and sleep (bottom). For 
each subfigure, the solid gray line represents the median value using randomly rewired 
networks and the dashed gray lines represent the 25th and 75th percentiles. Significance levels 
are *p < 0.05, **p < 0.1, and ***p < 0.001, with p-values modified using the Bonferroni method. 
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Figure 2.12. Normalized global clustering coefficient (nGCC) by age for healthy infants using 
wPLI connectivity in the (A) delta, (B) theta, (C) alpha, and (D) beta bands during wakefulness 
(top) and sleep (bottom). The solid line represents the median values using randomly rewired 
networks and the dashed lines represent the 25th and 75th percentiles. Significance levels are * 
p<.05, ** p<.01, *** p<.001, with p-values modified using the Bonferroni method. 

 

 
 
Figure 2.13. Normalized characteristic path length (nCPL) by age for healthy infants using wPLI 
connectivity in the (A) delta, (B) theta, (C) alpha, and (D) beta bands during wakefulness (top) 
and sleep (bottom). The solid line represents the median values using randomly rewired 
networks and the dashed lines represent the 25th and 75th percentiles. Significance levels are * 
p<.05, ** p<.01, *** p<.001, with p-values modified using the Bonferroni method. 
 

Table 2.4. P-values for the statistical comparisons of the small-world measure between CC and 

wPLI FCNs in individual subjects. Significant p-values are bolded and corrected for FDR using 

Bonferroni correction (n=8).  

   SW comparison  

State  Age group CC>Delta CC>Theta CC>Alpha CC>Beta 

Wake 

0-3 m. 0.21 0.027 0.063 0.57 

3-6 m. 4.65e-6 3.10e-6 6.92e-6 4.34e-4 

6-9 m. 1.99e-5 1.35e-6 1.85e-6 0.0034 

9-12 m. 1.24e-5 4.21e-6 1.35e-6 2.12e-4 

12-15 m. 6.92e-6 6.27e-6 7.64e-6 0.0022 

15-18 m. 8.99e-5 1.47e-5 4.26e-6 5.87e-4 
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18-21 m. 2.06e-6 1.24e-5 4.65e-6 3.16e-5 

21-24 m. 9.17e-5 3.47e-5 2.40e-5 1.18e-4 

Sleep 

0-3 m. 0.077 0.012 0.0010 0.21 

3-6 m. 2.42e-5 9.91e-6 6.96e-5 0.025 

6-9 m. 2.06e-6 6.92e-6 1.24e-5 0.17 

9-12 m. 7.66e-5 1.83e-5 7.97e-4 0.050 

12-15 m. 3.17e-5 3.17e-5 3.17e-5 2.48e-4 

15-18 m. 6.49e-6 2.10e-5 1.00e-5 2.10e-5 

18-21 m. 1.38e-4 0.0014 5.21e-4 9.14e-4 

21-24 m. 1.42e-5 1.42e-5 4.27e-5 2.34e-5 

 

2.4 Discussion 

 In this study, we measured age-related changes in functional connectivity in a large 

cohort of healthy infants (n = 240) using CC and wPLI. CC FCNs maintained a consistent small-

world structure (SW > 1), with connections that increased in strength after the first 3 months of 

life. The wPLI FCNs in the delta and theta bands (wakefulness and sleep), alpha band 

(wakefulness), and beta band (wakefulness) exhibited significantly decreased strength after 3 

months of age. However, in the alpha band during sleep, wPLI connectivity significantly 

increased in strength in infants older than 21 months. The wPLI networks also exhibited a small 

world structure, but the locations of the strongest connections differed from the CC networks. 

For both CC and wPLI, the graph theory metrics showed few significant differences between 

age groups, suggesting that these features of the network structure stay relatively consistent 

during infancy. 
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2.4.1 Connectivity changes in CC networks during infant development 

 The CC network structure in the present study was qualitatively similar to that found for 

healthy infant controls in our prior work, with the strongest connections located in the frontal and 

posterior head regions (Shrey et al. 2018b; Smith et al. 2021a). Our prior study also reported 

stronger FCNs during sleep compared to wakefulness in a cohort of infants with a mean age of 

6.3 ± 3.1 months old (Smith et al. 2021a), and we saw similar results here in subjects 0–9 

months old (Figure 2.7). Consistent with our results, Gao et al. (2011) found a significant 

increase in fMRI connectivity strength and global efficiency in the first year of infancy and a 

stable network strength during the second year. An EEG study using the same CC connectivity 

method on healthy subjects 0–18 years old during N2 sleep also reported low network strength 

during infancy that began to significantly increase after 5 years of age (Chu et al. 2014). Our 

results are generally consistent with prior studies suggesting that FCNs based on broadband 

EEG strengthen with age, presumably continuing into adulthood. This increase in connectivity 

strength may also reflect the myelination of white matter tracts during the first year of infancy, 

which correlates with increased fractional anisotropy on MRI diffusion tensor imaging (Hermoye 

et al. 2006). While we found significant changes that occur during the first 2 years of 

development, these changes appear to be subtle relative to those reported later in life. 

 

2.4.2 Connectivity changes in wPLI networks during infant development 

 In the delta and theta frequency bands, the 10% strongest connections in the wPLI 

FCNs appeared highly variable across age groups, likely due to the application of thresholding 

to relatively weak networks (note the overall low strength for delta and theta in Figure 2.9). 

However, wPLI connectivity strength in delta, alpha, and beta frequencies during wakefulness, 

as well as delta and theta frequencies during sleep, were significantly higher in subjects 0–3 

months than other age groups, consistent with prior work describing a decrease in density of 
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FCNs based on EEG coherence during the first 6 months of infancy in the delta, theta, and 

alpha bands (Chu et al. 2014). The increase in wPLI strength in the alpha band during sleep, 

with the 10% strongest connections located primarily in frontocentral regions, is complementary 

to prior wPLI studies of different age groups. For example, stronger alpha and theta band 

frontoparietal connections were seen in full-term infants relative to preterm newborns, 

suggesting developmental changes in these frequency bands (Omidvarnia et al. 2014; Tóth et 

al. 2017). Furthermore, the strongest wPLI functional connections were found in the alpha band 

in children 5–11 years old (Ortiz et al. 2012; Choi et al. 2019). The increase in alpha band 

connectivity during N2 sleep at around 21 months may also be related to the fact that sleep 

spindles are asynchronous in early infancy and become mostly synchronous by age two 

(Gruber and Wise 2016; Louis et al. 2016; Goetz et al. 2021). While adult sleep spindles 

primarily have peak frequencies in the beta band (12–15 Hz), the strong networks we reported 

in both the alpha and beta bands during N2 sleep are consistent with reports of two types of 

spindles in children: slow spindles (peak frequency 11–12.75 Hz) occurring in frontal channels 

(Fz, F3, and F4), and fast spindles (12.5–14.5 Hz) localized to centroparietal channels (Cz and 

Pz) (Shinomiya et al. 1999b). The presence of these two spindle types continues into adulthood, 

with the peak frequency of both spindle types increasing linearly with age (Shinomiya et al. 

1999b; Schabus et al. 2007; Mölle et al. 2011).  

 We found that infant FCNs were small-world across all ages, frequency bands, and 

states of vigilance, concordant with prior reports of small-world EEG networks immediately 

following birth (Omidvarnia et al. 2014; Tóth et al. 2017) and during childhood (Boersma et al. 

2011). The presence of small-world networks has also been reported in studies utilizing DTI  

(Yap et al. 2011), volume-based MRI (Fan et al. 2011), and MEG synchronization likelihood 

(Berchicci et al. 2015), where infant brain networks were small-world at birth and increased in 

clustering and efficiency with age. We saw a few significant changes in nGCC, nCPL, and SW 

across different age groups and frequency bands; however, these differences typically involved 
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only two to three age groups and did not suggest a consistent trend related to development. 

This may be related to the prior suggestion that the most dramatic changes in GT measures 

occur later in life, from childhood to adulthood (Chu et al. 2014; Berchicci et al. 2015). 

 

2.4.3 Differences between CC and wPLI connectivity 

 We chose to quantify and characterize the functional networks of our subjects using two 

complementary computational techniques: cross-correlation and weighted phase lag index. 

Prior work has shown that the differences in networks produced by each method cannot wholly 

be explained by the differences in sensitivity to linear and nonlinear features of the data, 

suggesting that the results may be affected by other unknown elements as well (Siems and 

Siegel 2020). The differences in FCNs using different connectivity techniques may be explained 

by the distinct neural mechanisms underlying cortical phase- and amplitude-coupling, which are 

also frequency specific (Tokariev et al. 2016; Siems and Siegel 2020). Our results indicated 

several differences between CC and wPLI FCNs, notably an increase in CC connectivity  

strength after 3 months of age contrasted with a decrease in wPLI strength in the same time 

frame. Using different connectivity techniques on the same dataset highlighted distinct aspects 

of the infant functional networks.  

 The use of bivariate connectivity methods such as CC and wPLI may result in spurious 

connections in the FCNs due to the presence of volume conduction. In particular, this can occur 

when one source drives activity in multiple channels, resulting in false connectivity between all 

secondary channels (Blinowska and Kaminski 2013). However, the results in the present study 

should be minimally impacted by this for three reasons: 1) Our application of CC for functional 

connectivity includes a step to remove zero-lag connections, which has been shown to 

counteract volume conduction (Chu-Shore et al. 2012). 2) wPLI inherently reduces the impact of 

volume conduction by minimizing connections with phase differences at zero and pi (Vinck et al. 

2011). 3) If we assume that any remaining effects of volume conduction would impact each 
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subject approximately equally, then any differences we noted in FCNs between subject groups 

(calculated with the same connectivity technique) should not be spuriously arising from volume 

conducted sources. Future studies could utilize multivariate connectivity methods to minimize 

any such spurious connections (Blinowska 2011). 

 

2.4.4 Normalization and thresholding in FCNs 

 While our report of a small-world network configuration is consistent with prior literature, 

the result of SW > 1 is heavily influenced by the choice of thresholding technique applied to the 

adjacency matrix. Dividing each FCN by its strongest connection addresses the influence of 

connectivity strength on the nGCC, nCPL, and SW measures, but it may introduce bias to the 

GT measures because it gives equal weight to all FCNs, even those with very weak connections 

(van Wijk et al. 2010). Similarly, using a fixed edge density for GCC, CPL, and SW measures 

can potentially exclude strong edges or include weak edges in the network, causing spurious 

results (van den Heuvel et al. 2017). Here, we chose to preserve the weight of each connection 

to create a pseudo-binary network, as a means of retaining the relative strength in each 

connection and reducing the effect of weaker edges on the GT measures. 

 

2.4.5 Limitations 

 Our results are limited by several factors that should be addressed in future 

investigations. The use of clinical infant EEG limits the number of nodes in the FCN to nineteen 

(corresponding to the number of electrodes), which restricts the topological characterization of 

the FCNs; future studies may wish to introduce higher density EEGs for more detailed 

topological analysis. In addition, GT metrics cannot be used to draw conclusion about the 

specific network structure; for example, dramatically different networks can have similar values 

for clustering or path length. This could be addressed by applying statistical tests to individual 

network connections across age groups. It is also worth noting that the EEGs obtained for the 
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study were recorded from infants referred for diagnostic evaluation of suspected seizures. While 

they were found to be neurologically normal with no abnormal EEG findings, future studies 

should consider prospective collection of data from healthy infants. Moreover, we did not directly 

identify and correct for eye movements in the EEG data, which could influence the connectivity 

results in the frontal brain regions. However, we expect minimal eye movements during N2 

sleep, and the most relevant prior literature did not include this preprocessing step (Chu et al. 

2014; Shrey et al. 2018b; Smith et al. 2021a), so the methods used here facilitate the most 

direct comparison of results. Finally, the use of a cross-sectional population made it impossible 

to assess developmental changes in individual cases; future developmental studies should aim 

to include longitudinally collected EEG data. 

 

2.5 Conclusion 

 Studies of healthy brain networks in the infant brain are critical for understanding both 

normal brain development and disease states, such as epilepsy. This has the potential to lead to 

identification of novel functional connectivity biomarkers to aid clinical diagnosis and treatment, 

improving the care of children with neurological diseases. 
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CHAPTER III 

Effect of Interictal Epileptiform Discharges on EEG-based  

Functional Connectivity Networks 

 

3.1 Introduction 

Functional connectivity is a brain mapping technique based on the statistical 

interdependencies of spatially-distinct time-varying neural signals. Functional connectivity 

networks (FCNs) can provide valuable information about cortical network organization in both 

healthy subjects and those with epilepsy (Van Den Heuvel and Pol 2010; Kramer and Cash 

2012; Van Diessen et al. 2013). Of the wide variety of imaging modalities used for functional 

connectivity, scalp electroencephalogram (EEG) is desirable due to its accessibility, low cost, 

standardized clinical application, noninvasive nature, and high temporal resolution. EEG-based 

FCNs have been used to characterize pathological networks associated with temporal lobe 

epilepsy (Quraan et al. 2013), benign epilepsy with centrotemporal spikes (Clemens et al. 2016; 

Mahmoudzadeh et al. 2016), and generalized pharmacoresistant epilepsies (Horstmann et al. 

2010). When these FCNs are based on cross-correlation or coherence techniques using at least 

100 seconds of EEG data, the networks exhibit stability over time, making them suitable for 

assessing an underlying disease state (Chu-Shore et al. 2012). For example, in infantile spasms 

(IS) subjects, strong, stable FCNs were found to underlie the chaotic EEG waveforms 

associated with hypsarrhythmia (Shrey et al. 2018a).  

In EEG-based FCNs, the inherent non-stationarity of the signal remains a challenge for 

analysis. For example, interictal epileptiform discharges (IEDs) are transient electrographic 

events that occur intermittently between seizures and are frequently recorded by EEG (de Curtis 

et al. 2012). In recent studies, IEDs have been shown to be correlated with a subject’s FCN, 

suggesting that the alteration of the baseline functional network may reflect pathological activity 
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(Ponten et al. 2009; Horstmann et al. 2010; Adebimpe et al. 2015; Coito et al. 2016). While this 

prior work demonstrated that changes in FCNs occur during an IED, it is unknown whether 

these connectivity changes are driven purely by the morphology of the spike-wave complex 

(and its effect on the calculation of connectivity) or by the pathological network activity 

underlying the IED’s generation.  

The goal of this study was to understand the effects of IEDs on FCNs from both 

methodological and physiological perspectives. Methodologically, we tested whether the 

presence of focal, high amplitude spike-wave complexes could cause spurious functional 

connectivity measurements. This was done by adding simulated focal IEDs at varying rates and 

amplitudes to the sleep EEG of control subjects and measuring the associated changes in the 

FCN. Once we understood the methodological effects of the IED waveform, we compared these 

results to the physiological changes in the FCNs derived from the sleep EEG of IS subjects 

exhibiting focal IEDs. IS subjects were chosen for this study due to the high epileptiform 

discharge amplitudes associated with this disease (Frost  Jr et al. 2011). Based on prior EEG-

based FCN studies, we hypothesized that the occurrence of focal IEDs would be associated 

with a local increase in functional connectivity strength (Wilke et al. 2011; Clemens et al. 2016) 

and the activation of a unique IED FCN (Ponten et al. 2009; Horstmann et al. 2010).  

 

3.2 Methods 

3.2.1 Subject information 

 Approval for this study was obtained from the Institutional Review Board of the 

Children’s Hospital of Orange County (CHOC), with the requirement for informed consent 

waived. We retrospectively identified eight infants (7F, 1M, aged 10.3±6.4 months) who were 

diagnosed with new-onset epileptic spasms and underwent scalp EEG recording prior to 

treatment. We also retrospectively identified eight control subjects (5F, 3M, aged 10.5±6.8 

months) who (1) had no known neurological disorders, (2) underwent routine EEG for clinical 
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evaluation, and (3) had EEGs that were interpreted as normal by a board-certified pediatric 

epileptologist (DS). All subjects had EEG recordings performed at CHOC.  

 

 
 
Figure 3.1. Summary of the functional connectivity analysis. Blue arrows indicate the data 
analysis procedure for the control subject EEG, while orange arrows indicate the procedure for 
analysis of EEG data from subjects with epilepsy. 
 

3.2.2 EEG acquisition and preprocessing 

 All EEG data was recorded by the Nihon Kohden EEG acquisition system, with nineteen 

scalp electrodes placed according to the international 10-20 system, at a sampling rate of 200 

Hz. For each subject, one interictal segment of non-REM sleep EEG lasting at least fifteen 

minutes was selected for analysis. Artifacts caused by muscle activity, movement, and poor 

electrode contact were marked by a board-certified epileptologist (DS). All electronic data were 

deidentified and analyzed using custom MATLAB (Mathworks) scripts. All EEG data were 

filtered with a third-order Butterworth filter with zero-phase shift digital filtering from 0.5-55 Hz 

and re-referenced to the common average. The data were then windowed into one-second 

epochs for connectivity analysis. Any epoch containing a marked artifact was discarded for all 

EEG channels after filtering. This data analysis procedure, including the subsequent calculation 
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of functional connectivity, is summarized in Figure 3.1. 

 

3.2.3 EEG data segmentation for IS subjects  

For each IS subject, the EEG data was segmented into three different groups: (1) all 

one-second epochs (ALL), (2) one-second epileptiform epochs (EE) containing an IED, and (3) 

one-second non-epileptiform epochs (NEE) containing no IEDs (Figure 3.2A). Focal IEDs were 

manually marked by a board-certified epileptologist (DS) based on the waveform morphology 

and the local field in adjacent electrodes. For each subject, the EEG channel containing the 

largest number of IEDs was selected for analysis. One epileptiform epoch was created for each 

IED within that channel, defined as the EEG data from all electrodes in a window of [-500, 500] 

milliseconds, centered on the spike. Each epoch was visually inspected to ensure that it 

contained only a single spike. The spike amplitude was defined as the EEG range within a [-50, 

50] millisecond window centered around the spike, while background amplitudes were defined 

as the mean range of four 100-millisecond windows prior to the spike in each EE ([-500, -400], [-

400, -300], [-300, -200], and [-200, -100] milliseconds). Non-epileptiform epochs were visually 

marked as one-second of EEG containing no epileptiform discharges in any channel. 
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Figure 3.2. (A) Sample of EEG data segmentation. Orange segments are 1s epochs containing 
an IED (termed EE), black segments are all 1s epochs (ALL), and blue segments are 1s epochs 
with non-spike activity (NEE). (B) Connectivity matrices for spikes (orange arrow), all data (black 
arrow), and nonspikes (blue arrow), represented as a percentage of significant connections. (C) 
FCNs for EE (orange arrow), ALL (black arrow), and NEE (blue arrow). For clarity, only the 
strongest 10% of all connections are shown.  
 
 
3.2.4 Simulation of IEDs in control subject EEGs 

To assess the effect of IED waveforms on the FCN calculation, we simulated IEDs and 

added them to control sleep EEG recordings. Simulated IEDs were generated within a realistic 

head model using the Brainstorm software (Tadel et al. 2011). The realistic head model was 

based on the magnetic resonance imaging template brain volume in the ICBM 152 atlas (Fonov 

et al. 2011). The atlas was used with boundary element methods (BEM) to generate a three-

layered geometric head model, consisting of the scalp, inner skull, and outer skull with a 

conductivity ratio of 1:0.0125:1, respectively.  

IED simulations were based on the equivalent current dipole method, where it is 

assumed that the spike potential is generated from a primary dipole source (Koles 1998; Grova 

et al. 2006). Here, we chose a single patch of activated cortex located underneath the F3 

electrode, with the corresponding dipole oriented normal to the selected region. The region of 

activated cortex was 7-10 cm2, concordant with the typical surface area of cortex necessary to 

produce epileptiform discharges that are detectable on scalp EEG (Grova et al. 2006; Tao et al. 

2007). We then modelled the time course of the spike-wave complex as a combination of three 

half-period sine waves within a one-second window. The simulated spike was represented by a 

positive half-period sine wave 60 milliseconds long, followed by a slow wave consisting of 

sequential negative and positive half-period sine waves lasting 120 milliseconds and 200 

milliseconds, respectively (Figure 3.3). The amplitude ratio for each half-wave was 5:4:2, which 

was chosen to approximate the average characteristics of IEDs marked in IS subjects. The IED 

field across all nineteen electrodes was computed using forward modelling with the OpenMEEG 
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software, incorporating the generated simulated spike waveform and geometric head 

model.(Kybic et al. 2005; Gramfort et al. 2010). To simulate the sporadic occurrence of IEDs, 

the IED waveform was added to a randomly selected subset of nonoverlapping one-second 

EEG epochs, with the peak of the spike aligned to the center of each epoch.  

 

 
 
Figure 3.3. Morphology of the simulated IED at the focal electrode F3. The amplitude of the IED 
is scaled to match the spike:background ratio of IS subjects 

 
 

3.2.5 Calculation of the functional connectivity network  

For each subject, FCNs were calculated using linear cross-correlation, as previously 

described in (Kramer et al. 2009; Chu-Shore et al. 2012; Shrey et al. 2018a). This technique has 

been shown to provide accurate measurements for both real and simulated electrophysiological 

data (Jiruška et al. 2005) and generate stable FCNs when using at least 100 seconds of data 

(Chu-Shore et al. 2012). Prior to FCN analysis, the data in each one-second epoch was 

normalized in each channel to have zero mean and unit variance. To calculate the coupling 

strength between each electrode pair, we first calculated the maximal absolute value of the 

cross-correlation with a maximum lead/lag time of 200 milliseconds. This maximum lead/lag was 

chosen based on typical times for neurophysiological processes and cross-cortical conduction 
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times (Chu-Shore et al. 2012). Connectivity values were normalized based on the 

autocorrelation of the signal at the chosen lead/lag time. We then applied a Fisher z-score 

transformation, resulting in an adjacency matrix containing the z-score between each electrode 

pair for each one-second epoch. 

The significance of the coupling for each one-second epoch was determined by 

comparing each electrode pair’s z-score value to a null distribution generated using permutation 

resampling. In each iteration of resampling, we computed the maximal absolute value of the 

cross-correlation (with a max lead/lag of 200 milliseconds) between random one-second epochs 

for each channel, after excluding epochs containing artifacts. This was repeated 1000 times to 

create a normal distribution of z-scores for each electrode pair under the null hypothesis that 

there was no temporal relationship between the two channels. The cross-correlation in each 

one-second epoch was considered statistically significant if the computed z-score value was 

higher than the 95th percentile of the null distribution.  

To prevent spurious connections due to volume conduction, any z-score with a maximal 

cross-correlation at a zero-time lag was considered non-significant (Chu-Shore et al. 2012). The 

results for each one-second epoch were stored in a binary adjacency matrix, where a value of 

one represented a significant, non-volume conducted connection. We then averaged the binary 

adjacency matrices to produce a connectivity matrix where each element represented the 

percentage of significant connections between the electrode pairs over the duration of the 

recording (Figure 3.2B). For visualization, we created topographical network maps by applying a 

threshold to the connectivity matrix (Figure 3.2C).  

 For each IS subject, three different FCNs were constructed using the ALL, EE, and NEE 

epochs segmented from the EEG. In control subjects, we generated one FCN from the control 

EEG before adding simulated IEDs (CONTROL) and three FCNs from control EEG with 

simulated IEDs using different subsets of epochs: (1) All epochs after adding simulated IEDs 

(ALL), (2) only epochs containing simulated focal IEDs (EE), and (3) only epochs not containing 



51 
 

simulated IEDs (NEE). The same null distribution was used for calculating the FCNs of the ALL, 

EE, and NEE groups. To measure the variance of our results, we performed 250 iterations of 

FCN generation for each control subject, with each iteration containing simulated IEDs in 

randomly selected epochs. 

 

3.2.6 Statistical tests for network structure   

 To quantify the differences in network structure between two FCN’s, we used two 

different metrics: the relative graph edit distance (rGED) and 2D correlation. The rGED is a 

novel method based on the principles of the graph edit distance that measures the similarity 

between two binary graphs with the same number of vertices and edges (E) (Sanfeliu and Fu 

1983). The rGED is calculated based on the minimum number of insertions (I) and deletions (D) 

required to transform one of the graphs into the other one: 𝑟𝐺𝐸𝐷 =  1 −  
𝐼+𝐷

2𝐸
. An rGED of zero 

indicates that there are no connections in common, while an rGED of one indicates that both 

networks have all connections in common. To calculate the rGED between two FCNs, we 

binarize each connectivity matrix by assigning the strongest ten percent of connections a “1” 

and all other connections a “0”.  

The 2D correlation measures the similarities across the entire FCN rather than focusing 

on the strongest connections, as is done with the rGED. Using 2D correlation also obviates the 

need for thresholding, which can potentially bias the measurement. Both the rGED and 2D 

correlation tests were used to compare the ALL to EE, ALL to NEE, and EE to NEE networks in 

IS and control subjects. The 2D correlation was also used to compare the differences in network 

structure between IS and control FCNs. Specifically, we compared the ALL FCN of each IS 

subject to the ALL FCNs of all other IS subjects (n=28 comparisons), the CONTROL FCN of 

each control subject to the CONTROL FCNs of all other control subjects (n=28), and the ALL 

FCN of each IS subject to the CONTROL FCNs of all control subjects (n=64). Comparisons 
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between these distributions show the uniformity of FCNs within each group, compared to 

comparisons across different groups.  

 

3.2.7 Statistical tests for connectivity strength 

 To quantify the changes in connectivity strength during physiological IEDs in IS subjects, 

we performed statistical tests to compare an individual’s ALL, EE, and NEE FCNs. Based on 

previous studies reporting an increase in functional connectivity during IEDs (Siniatchkin et al. 

2007; Wilke et al. 2011; de Curtis et al. 2012; Clemens et al. 2016), we expected the EE FCNs 

to have the highest connectivity strength, followed by the ALL FCNs, followed by the NEE FCNs. 

We tested these comparisons for each IS subject using three one-tailed Wilcoxon sign-rank 

tests, where each test compared different FCN pairs: 1) EE > ALL, 2) ALL>NEE, and 3) 

EE>NEE. In each test, we compared the paired distributions of all connections to the null 

hypothesis that the median strengths were not statistically different.  

 

3.3. Results 

3.3.1 Amplitude and burden of the simulated IEDs 

We defined the simulated IED waveform’s amplitude and burden based on the spike to 

background amplitude ratio and the frequency of IEDs in IS subjects (see Chapter 2.2.3). 

Across all patients, our analysis included 1,340 visually marked IEDs and 5,360 measurements 

of background amplitude. The mean spike to background amplitude ratio across all eight IS 

subjects was 2.62 to 1, with a standard deviation of 0.38. To match the spike to background 

ratios seen in IS subjects, we scaled the simulated spike amplitude based on the average 

background amplitude across all controls (26.8±6.3 μV). In our simulations, we conservatively 

accounted for variance in the control subjects by using three standard deviations above the 

average of the control background amplitude (45.8 uV), multiplied by the spike:background ratio 

of 2.62, to generate 120 uV discharges. The spike burden for each subject was defined as the 
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number of marked focal IEDs divided by the total EEG recording time (Table 3.1). The highest 

burden across all eight IS subjects was approximately 25%, so we conservatively used this 

maximum spike burden for all simulations, unless otherwise specified.  

 
Table 3.1 Patient demographics and clinical data 
 
Diagnosis Subject Sex Age 

(mo.) 
IED 
location 
(simulated) 

No. of 
epileptiform 
epochs 
(simulated) 

No. of non-
epileptiform 
epochs 
(simulated) 

EEG recording 
duration in sec. 

IS 

1 F 12 O1 144 117 1206 
2 F 5.5 O1 118 166 1274 
3 F 4.5 F4 115 119 1346 
4 F 4.5 O1 219 126 1308 
5 F 7.9 O2 166 254 1273 
6 F 6.3 T5 246 249 1752 
7 M 21.1 O1 100 120 1335 
8 F 20.3 O2 231 196 1887 

Controls 

1 M 19 (F3) (245) (735) 980 
2 F 7 (F3) (215) (646) 861 
3 F 9 (F3) (304) (913) 1217 
4 F 5 (F3) (285) (858) 1143 
5 F 12 (F3) (167) (504) 671 
6 F 7 (F3) (224) (673) 897 
7 F 3 (F3) (232) (697) 929 
8 M 22 (F3) (238) (715) 953 

 
 

3.3.2 Excessive spike amplitudes change FCN structure and increase connectivity 

strength 

To determine the effect of the simulated IED’s amplitude on a subject’s FCN, we added 

simulated IEDs with varying spike:background amplitude ratios to control subject EEG and 

compared the EE and ALL FCNs to the CONTROL FCN. The addition of simulated spikes had a 

small but significant effect on both the network structure and mean connectivity strength in the 

ALL FCN (Figures 3.4A, 3.5A, 3.5B) (Wilcoxon rank sum test, p<0.05 pre-specified threshold 

FDR, corrected for multiple comparisons using the Bonferroni correction; pFDR = 0.00714). In 

contrast, we saw large changes in both the network structure and mean connectivity strength in 

the EE FCN (Figures 3.4B, 3.5C, 3.5D) (Wilcoxon rank sum test, p<0.05 pre-specified threshold 
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FDR, corrected for multiple comparisons using the Bonferroni correction; pFDR = 0.00714). 

Across all control subjects, we found a dramatic decrease in 2D correlation (indicating a change 

in network structure) and an increase in mean connection strength at spike:background ratios 

greater than 7, which is more than 2.5 times greater than the average spike:background ratio for 

IS subjects. 

 

 
 
Figure 3.4. Increasing the amplitude of the IED has a small effect on the strength and structure 
of the ALL network and a large effect on the EE network. Representative example showing the 
effect of adding simulated focal IEDs at F3 with varying amplitudes on the (A) ALL FCN and the 
(B) EE FCN of control subject 6. The strongest 10% of connections are shown.  
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Figure 3.5. Effect of varying spike amplitude on the (A) 2D correlation and (B) mean connection 
strength of the ALL FCN compared to the CONTROL FCN. Effect of varying spike amplitude on 
the (C) 2D correlation and (D) mean connection strength of the EE FCN compared to the 
CONTROL FCN. The mean spike:background ratio for IS subjects was 2.62, and changes in 
network strength and structure occur well above this value. A representative example from 
control subject 6 is shown. Significance tests compared each result to the base CONTROL FCN 
(spike burden = 0%). 
 
 
3.3.3 Increasing the spike burden has little effect on connectivity strength 

 Next, we investigated changes in the FCN as a function of spike burden. We inserted 

varying numbers of IEDs into the control subject EEG; specifically, we added them to 0%, 20%, 

40%, 60%, 80%, and 100% of all one-second epochs and then calculated the FCN (Figure 3.6). 

We found that increasing the number of IEDs slightly decreased the ALL FCN’s correlation to 

the CONTROL network from 0.990 to 0.949 (Figure 3.7A) and increased the mean connectivity 

strength from 0.0555 to 0.0575 (Figure 3.7B) (Wilcoxon rank sum, p<0.05 pre-specified 

threshold FDR, corrected for multiple comparisons using the Bonferroni correction; pFDR = 

0.01). Although these differences in strength and structure were small, they were statistically 
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significant due to the low variance across simulations (Figure 3.7). These results were 

consistent across all control subjects. 

 

 
 
Figure 3.6. Increasing the spike burden does not affect the network strength and structure of the 
ALL network. Representative example of the effect of spike burden on the ALL FCN of control 
subject 6. Simulated focal IEDs are added at electrode F3. The strongest 10% of connections 
are shown.  
 
 

 
 
Figure 3.7. (A) Effect of spike burden on the 2D correlation between the ALL FCN and 
CONTROL FCN. (B) Effect of spike burden on the mean connection strength in the ALL FCN. 
Results for all control subjects were similar; a representative example from control subject 6 is 
shown. Significance tests compared each result to the base CONTROL FCN (spike burden = 
0%). 
 
 
3.3.4 FCN structure for IS subjects is subject-specific  
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 We then quantified the differences in the network structure of individual IS and control 

subjects. This was done by calculating the 2D correlation of the connectivity matrices between 

all pairs of subjects in the following within-group or across-group comparisons: (1) control-

control, (2) IS-control, and (3) IS-IS. Figure 3.8 shows the correlation coefficients and statistical 

comparisons for these three categories (Wilcoxon rank sum, p<0.05 pre-specified threshold 

FDR, corrected for multiple comparisons using the Bonferroni correction; pFDR = 0.0167). 

Control-control correlation coefficients were significantly higher than those for the IS-control (p = 

1.163e-7) and IS-IS comparisons (p = 1.064e-4). We found no significant differences in 

correlation between IS-IS and IS-control (p = 0.6196). These results suggest that the FCNs of 

control subjects are more stereotyped and exhibit less variability than the FCNs of IS subjects. 

Our findings also demonstrate that the FCNs of individual IS subjects are no more similar to 

other IS subjects than they are to control subjects.  

 

 
 
Figure 3.8. Rank-sum tests for 2D correlation coefficients across different subject groups. The 
correlation coefficients in control-control comparisons were significantly higher than in control-IS 
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and IS-IS comparisons, indicating that control subjects have more consistent, stereotyped 
FCNs. 
 
 
3.3.5 FCN structure does not change during interictal spikes 

 In both IS and control subjects, changes in network structure associated with the 

presence of IEDs were assessed using the rGED and 2D correlation, two complementary 

techniques that yielded similar results. We compared all three pairs of FCNs within an individual 

subject: (1) ALL compared to NEE, (2) ALL compared to EE, and (3) EE compared to NEE. To 

gain perspective on the degree of similarity between these networks, we compared these values 

to a null model consisting of network comparisons across different subjects within the same 

cohort. For example, to test the ALL vs. NEE FCNs of Subject 1, we calculated the rGED and 

2D correlation of Subject 1’s ALL to Subject 1’s NEE FCN. These values were then compared to 

a null model consisting of rGED and 2D correlation values of Subject 1’s ALL vs. Subject 2’s 

NEE, Subject 1 ALL vs. Subject 3 NEE etc. plus the analogous correlations between Subject 1’s 

NEE to the ALL from all other subjects. If the intra-subject FCN correlations were higher than the 

inter-subject FCN correlations, this indicated that the presence of IEDs did not significantly alter 

the subject’s FCN. 

For all eight IS subjects, the intra-subject rGED values for the ALL vs. NEE and ALL vs. 

EE network comparison tests were significantly higher than the inter-subject values (Figure 

3.9A) (one sample Wilcoxon signed rank test, p<0.05 pre-specified threshold FDR, corrected for 

multiple comparisons using the Bonferroni correction; pFDR = .00625). In the EE vs. NEE 

network test, seven out of eight epilepsy subjects had significant rGED values. This 

demonstrates that the ALL, EE, and NEE FCNs are subject-specific and that the strongest 

connections are not significantly affected by the presence of IEDs. In control subjects with 

simulated IEDs, we found significantly higher intra-subject rGEDs compared to inter-subject 

rGEDs across the control subjects in all network comparisons across 200 different iterations of 
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simulated IEDs, (Wilcoxon rank sum, n= 8, p<0.05 pre-specified threshold FDR, corrected for 

multiple comparisons using the Bonferroni correction; pFDR = 0.00625) (Figure 3.9B). 

The analogous calculation using 2D correlation yielded similar results (Figure 3.10). 

These results were significant for all three network comparisons across all eight IS subjects 

(one sample Wilcoxon signed rank test, p<0.05 pre-specified threshold FDR, corrected for 

multiple comparisons using the Bonferroni correction; pFDR = .00625) and all eight control 

subjects (Wilcoxon rank sum, n= 8, p<0.05 pre-specified threshold FDR, corrected for multiple 

comparisons using the Bonferroni correction; pFDR = 0.00625). This test complements the 

rGED analysis, as the 2D correlation calculation utilizes all connection pairs and does not 

require thresholding to create a binary network. 

 

 
 
Figure 3.9. Relative graph edit distance (rGED) values for intra-subject network comparisons 
are significantly higher than inter-subject comparisons in (A) IS subjects and (B) control subjects 
with simulated IEDs. Gray bars represent intra-subject comparisons for IS subjects, and box 
plots represent intra-subject values from 200 simulations in controls. The solid lines represent 
the median of the intersubject rGED values and the dashed lines represent the 25th and 75th 
percentiles. All tests are significant except EE:NEE in IS subject 8. 
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Figure 3.10. 2D correlation coefficients for all intra-subject network comparisons are significantly 
higher than inter-subject comparisons in (A) IS subjects and (B) controls. Gray bars represent 
intra-subject comparisons for IS subjects, and box plots represent intra-subject values from 200 
simulations in controls. The solid line represents the median of the inter-subject correlation 
values and the dashed lines represent the 25th and 75th percentiles. 
 
 
3.3.6 Connectivity strength increases during IEDs in epilepsy subjects 

Changes in connectivity strength in the presence and absence of an IED for each 

subject was done using three one-tailed Wilcoxon sign-rank tests. We tested the paired 

distributions of all 171 connectivity strengths for the following FCN comparisons within each 

subject: (1) EE > ALL, (2) ALL > NEE, and (3) EE>NEE. These comparisons were based on the 

simulated data in Figures 3.4, 3.5B, and 3.5D, which suggested that the EE network would have 

the highest connectivity strength, followed by the ALL network and then the NEE network. For all 

three network comparisons, this hypothesis held true for seven out of eight IS subjects (Table 

3.2). In contrast, the sign-rank test yielded no significant differences in connectivity strength for 

any of the three network comparisons for the control subjects. The p-values for control subjects 

were equivalent across simulations with randomly placed IEDs, indicating that the specific 

timing of the IEDs did not affect the results.  
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Table 3.2 P-values for statistical comparisons of connectivity strength between FCNs in 
individual subjects. The p-values from control subjects come from 200 simulations with spikes 
inserted at random times in the EEG record.  
 

  FCN comparison 
Cohort  Subject EE>ALL ALL>NEE EE>NEE 

IS 

1 0 0.221 0 
2 0 0.001 0 
3 0.853 0.037 1 
4 0 0.004 0 
5 0 0.001 0.017 
6 0 0 0.020 
7 0 0.021 0.006 
8 0 0 0 

Controls 

1 0.9590 ±0 0.9317 ±0 0.9951 ±0 
2 0.6156 ±0 0.0255 ±0 0.2771 ±0 
3 0.8938 ±0 0.9696 ±0 0.9782 ±0 
4 0.6366 ±0 0.3542 ±0 0.6889 ±0 
5 0.3525 ±0 0.9989 ±0 0.8491 ±0 
6 0.4402 ±0 0.2009 ±0 0.3651 ±0 
7 0.3827 ±0 0.6515 ±0 0.6954 ±0 
8 0.4520 ±0 0.2043 ±0 0.3104 ±0 

 
 
3.4. Discussion 

In this study, we investigated how the presence of IEDs impacts EEG-based FCNs. IS 

subjects have unique, patient-specific FCNs, while control subjects have more stereotyped 

network structures. In IS subjects, physiological IEDs do not significantly alter FCN structure, 

consistent with simulated IEDs in control subjects, which only alter FCN structure when the 

amplitude or spike burden are outside of normal physiological ranges. On the other hand, 

functional connectivity strength significantly increases during the occurrence of physiological 

IEDs in IS subjects, whereas the addition of simulated IEDs to normal EEG does not increase 

the connectivity strength. We conclude that these changes in connectivity strength in IS subjects 

are not spurious increases caused by the presence of the interictal spike waveform in the EEG. 

Overall, these findings suggest that an individual’s FCN structure remains stable during an IED, 

and that the changes in connectivity strength noted in epileptic subjects are likely due to the 

underlying pathophysiological networks of the disease, rather than simply the presence of the 

IED waveform itself. Furthermore, our analysis suggests that there is no need to mark and 
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remove IEDs prior to calculating an FCN, as the functional connectivity measurements derived 

from EEG epochs containing IEDs do not differ significantly from those of interictal EEG epochs.  

 In control subjects with simulated IEDs, the amplitude of the IED affected FCN structure 

more than the spike burden did. Introducing simulated IEDs with high spike:background 

amplitude ratios caused major alterations to the FCN structure, indicated by a decrease in 2D 

correlation from 1.0 to nearly zero (Figure 3.5C). In comparison, high spike burdens of 100% led 

to a decrease in 2D correlation from 1.0 to 0.8, indicating that the increase in burden caused 

little change in the network structure (Figure 3.8).  

Introducing simulated IEDs with physiological spike amplitudes and burdens derived 

from the EEG of IS subjects did not cause a substantial change in FCN structure. Across all 

focal IEDs detected in IS subjects, the average spike:background ratio was 2.62, while changes 

in the control subjects’ EE network structure emerged at a simulated spike:background ratio 

greater than 7. The consistency of network structure in IS subjects is shown in Figures 3.9 and 

3.10, where the rGED and 2D correlations of intra-subject FCN comparisons are significantly 

higher than inter-subject comparisons. Increasing the spike burden also had minimal effect, 

resulting in a change of less than 5% in both 2D correlation and mean connectivity strength 

(Figure 3.7). Simulated IEDs with excessive amplitudes and burdens were included in our 

analysis to test the potential of the simulated IED to alter the FCNs. IEDs exceeding 300 uV 

have been reported  (Janati et al. 2018), although this did not frequently occur in our dataset. 

In addition to assessing the impact of IED amplitude and burden on FCNs, we 

investigated the effect of simulated IED location on the FCN of control subjects. Varying the 

location of focal IEDs produced similar effects as placing the focal spikes at F3, with minimal 

change noted in the FCN structure at low amplitudes. Increasing the simulated IED amplitudes 

past the physiological range resulted in increased connectivity strength and an altered FCN 

structure with long-range connections involving the IED focus, similar to Figure 3.4B. Overall, 
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this result confirmed that IED location was not a crucial factor in our tests of IED amplitude and 

burden. 

The shape of the IED waveform could also impact our results. Our simulated IED was 

modeled after the typical spike-wave complex associated with many types of epilepsy. However, 

there are many types of IED waveforms to consider, including isolated spikes (without a slow 

wave component), polyspikes with and without slow wave components, and paroxysmal fast 

activity (de Curtis et al. 2012). Here, we chose an IED waveform containing both a spike and a 

slow wave, as this had the greatest potential to affect the connectivity calculation. We also 

chose to include the slow wave in our simulation because the slow wave can drive changes in 

broadband EEG connectivity, and it has also been linked to hypsarrhythmia in IS subjects 

(Hrachovy and Frost 2003; Frost and Hrachovy 2005). 

Prior to subject-specific FCN tests, we compared the FCN differences between the IS 

and control cohorts. Across all groupwise comparisons, we found that the median 2D correlation 

of control-control FCNs was approximately 0.75, while the median 2D correlation of control-IS 

and IS-IS comparisons was approximately 0.5 and 0.6, respectively (Figure 3.8). The 

significantly lower values for the control-IS comparison are in accordance with prior studies 

using EEG-based FCN, with reported differences in the global network characteristics of 

temporal lobe epilepsy and focal epilepsies compared to the healthy brain (Horstmann et al. 

2010; Kramer and Cash 2012; Quraan et al. 2013). The low 2D correlation in IS-IS comparisons 

was likely due to the multifocal nature and the wide range of etiologies in IS, resulting in a 

unique network structure for each subject. Similar results were reported for EEG-based FCNs 

associated with absence seizures, where across patient correlations were lower than within 

patient comparisons (Taylor et al. 2013). We report a median 2D correlation between control 

subject FCNs of 0.75, higher than a previous study reporting cross-correlation values between 

healthy adult controls of approximately 0.5 (Chu-Shore et al. 2012). These differences in 

correlation could reflect a difference between the infant brain, as studied here, and the adult 
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brain. Moreover, the correlation coefficient of 0.75 for control-control comparisons does not 

suggest an identical FCN structure across patients, but rather indicates that control subjects are 

more likely to exhibit stereotyped connectivity patterns than IS subjects. 

Differences in the sleep structure of healthy controls and IS subjects may be a factor in 

the comparison of their FCNs (Figure 3.8). To mitigate the effects of sleep stage on FCNs, non-

REM sleep was analyzed in all subjects. In a related study, we found no significant differences 

in functional connectivity for different non-REM sleep stages in the long-term EEG of both 

controls and IS subjects (unpublished data).  However, disruption of the sleep architecture in IS 

subjects may have contributed to the wider network variance in that group.  

Generally, the occurrence of IEDs in IS subjects was associated with a global increase in 

connection strength without changes in network structure. This change in connectivity could 

reflect activation of a pathological network associated with seizures, or it could be related to the 

disruption of cognition caused by the occurrence of frequent spikes (Ebus et al. 2012; Ung H et 

al. 2017). FCNs of epochs containing interictal spikes had the highest connectivity strength, 

followed by FCNs generated using all epochs, followed by FCNs lacking interictal spikes. These 

relationships are in agreement with previous studies, where the presence of interictal spikes 

resulted in increased connectivity strength in the medial temporal pole, hippocampus, 

amygdala, parahippocampal gyrus, olfactory gyrus, and gyrus rectus regions compared to 

baseline periods without spikes (Wilke et al. 2011; Coito et al. 2015). Of the eight IS subjects, 

seven had ALL, EE, and NEE FCN structures that were more similar to each other than they 

were to other subjects. For IS subject 8, the ALL and EE FCNs consisted of long-range 

connections emanating from the location of the IEDs, with higher connectivity strengths than all 

other epilepsy subjects. This is similar to the EE FCNs of controls with very high amplitude IEDs 

(Figure 3.4B). The rGED of the EE:NEE comparison for IS subject 8 was 0.24, compared to the 

other IS subjects who have rGED values of approximately 0.6 (Figure 3.9A). This low rGED 

value suggests a significant change in network structure during IEDs. Although IS subject 8 did 
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not have a significantly larger spike:background amplitude ratio than the other IS subjects, they 

did have spike-wave discharges with significantly larger slow wave amplitudes than other IS 

subjects, which may explain this discordant finding. This could explain the similarity between 

this IS subject and the control subject simulations at high amplitudes, suggesting that the slow 

wave’s waveform is causing the changes in the measurement of FCN structure.  

There are limitations to the methods presented here. We analyzed standard clinical EEG 

recordings with nineteen scalp electrodes to promote broad applicability to any clinical epilepsy 

center, as opposed to other studies that utilized high-density research EEG recordings (Coito et 

al. 2015, 2016; Mahmoudzadeh et al. 2016). Although our results were consistent with those 

from prior studies, the use of high-density electrode arrays would allow the use of additional 

graph theory metrics, whose accuracy depends on having a network with many nodes. In 

addition, our study is limited by a small sample size of sixteen subjects. Future studies can 

increase the cohort size for healthy controls, IS subjects, and non-IS epilepsy subjects to further 

test the validity and robustness of our findings. Other limitations of our study lie in the 

assumptions inherent to simulating IEDs. We used boundary element methods modelled on a 

template brain volume from the ICBM 152 atlas, which is based on young adults rather than 

infants. The properties of the simulated IED waveform were chosen to match that of a spike-

wave complex, which does not reflect all IED types. Additionally, the model only simulated IEDs 

at a single location, which is simpler than the multifocal nature of IEDs in IS.  

While our methods address the effects of volume conduction, the use of a bivariate 

connectivity measure may introduce spurious connections into the FCNs. These spurious 

connections can be attributed to one source that drives activity in multiple channels, resulting in 

significant connectivity from the source to the secondary channels, as well as false connectivity 

between all secondary channels (Blinowska and Kaminski 2013). The results in the present 

study should be minimally impacted by such spurious connections because most were based on 

comparative measures between FCNs, but the specific effect will vary based on the type of 
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comparison. In within-subject comparisons (Figures 3.4-3.7), where we compared FCNs for a 

single subject as spike parameters were varied, the spurious connections caused by a common 

source should be the same across all comparisons and will therefore have very little impact on 

the results. In within-group comparisons (Figures 3.9 and 3.10; Figure 3.8, boxplots for 

Control:Control and IS:IS), comparisons between FCNs within the control group and 

comparisons between FCNs within the IS group may be affected by differing spurious 

connections in individual subjects. However, our results suggest that this effect will be 

insignificant because the FCNs in each group are biased similarly. This is shown in Figure 3.8, 

where the FCNs of control subjects are highly correlated with one another. In the cross-group 

comparison (Figure 3.8, Control:IS), the presence of spurious connections could have a 

significant impact due to the variance across subjects from different groups. Future studies that 

focus on FCN comparisons can minimize this problem by utilizing multivariate connectivity 

measures. Multivariate measures can also accurately quantify directional relationships between 

brain regions (Blinowska 2011).  

In future work, we plan to validate our findings by increasing the cohort size to include 

more subjects, including adults and older children, with both generalized and focal epilepsies. 

Due to the heterogeneous IEDs contained in IS subjects, we also plan to study different aspects 

of the spike-wave complex such as the effects of slow wave amplitude rather than the spike 

amplitude alone. Lastly, we plan to analyze the impact of different IED waveforms and the 

presence of multi-focal IEDs on functional networks. This work will elucidate the dynamic 

changes in functional connectivity and the robustness of FCNs in the presence of transient 

waveforms occurring over long spans of time.  
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CHAPTER IV 

Interrater Reliability of Interictal EEG Waveforms in  

Lennox-Gastaut Syndrome 

 

4.1 Introduction 

 Lennox-Gastaut Syndrome (LGS) is a severe, childhood-onset epileptic encephalopathy 

that often evolves from earlier epilepsies such as infantile epileptic spasms syndrome (IESS). 

LGS is characterized by: (1) the presence of multiple seizure types, (2) cognitive impairment, 

and (3) the presence of interictal epileptiform activity in the electroencephalogram (EEG), such 

as slow spike-wave (<2.5 Hz) and generalized paroxysmal fast activity (GPFA), a unique 

waveform that is primarily seen in LGS during NREM sleep (Mastrangelo 2017a). In addition to 

their importance for diagnosis, these waveforms can also be biomarkers of treatment response 

in LGS. For example, the decrease in GPFA burden has been associated with similar reductions 

in diary-recorded seizures (Dalic et al. 2022b), and continuous spike and wave pattern during 

slow wave sleep has been associated with neurodevelopmental disabilities (Baumer et al. 

2021). Identifying interictal epileptiform activity can also help classify the type of epilepsy and 

help clinicians manage anticonvulsants (Smith 2005). 

 The prompt diagnosis of LGS is critical for seizure control and maximizing long-term 

neurocognitive outcomes (Camfield et al. 2011; Piña-Garza et al. 2017; Berg, Anne; Levy and 

Testa 2018). However, because the onset of LGS is often insidious, it can be difficult to define a 

single timepoint at which LGS begins. Experts may disagree as to whether EEG abnormalities 

are sufficiently severe to substantiate a diagnosis of LGS, which may delay diagnosis and 

effective treatment. Interpretation of individual EEG waveforms is inherent to this decision and 

low interrater reliability could be a significant contributing factor. The reliability of identifying 

interictal epileptiform discharges has been shown to be limited, as individual experts apply 
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different thresholds in their decisions to mark events (Jing et al. 2020). A consensus has also 

not yet been reached on the defining characteristics of GPFA, as studies using visually marked 

events report different values of GPFA amplitude, duration, and frequency across subjects 

(Mohammadi et al. 2015; Bansal et al. 2019). One group developed an automated detector that 

defined GPFA as a low frequency (0.3-3 Hz) component plus a high frequency (8-20 Hz) 

component; in comparison to manually marked GPFA, the detector was found to return a high 

number of false positive detections (Omidvarnia et al. 2021). This further highlights a lack of 

characterization of the specific waveform features used in the visual analysis of LGS EEG, 

which is a barrier to developing objective biomarkers of LGS. Given these uncertainties, the 

goal of this study was to evaluate the rater accuracy and interrater reliability (IRR) of EEG 

events in both healthy controls and patients with LGS.  

 

4.2 Methods 

4.2.1 Subject information  

 Approval for this retrospective study was obtained from the Institutional Review Boards 

at Children’s Hospital of Orange County (CHOC) and the University of California Los Angeles 

(UCLA), with the requirement for informed consent waived. Twenty subjects diagnosed with 

LGS (7 females, median age 7.4 years, age range 1.0-18.8 years) were retrospectively 

identified using ICD 9 and 10 diagnostic codes from the clinical record at CHOC, with visits and 

EEG studies performed between January 2012 and June 2020. Their electroclinical diagnosis of 

LGS was confirmed by a board-certified pediatric epileptologist Twenty healthy control subjects 

(8 females, median age 8.2 years, age range 1.0-17.7 years) were selected from a cohort of fifty 

subjects collected in a prior study. The twenty healthy subjects were selected such that they 

were approximately age-matched to the LGS group. The cohort of fifty control subjects was 

retrospectively identified from the clinical record at UCLA with visits between February 2014 and 

July 2018 (Smith et al. 2021b). Controls were included if they had (1) no known neurological 
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disorders, (2) routine EEG studies that were interpreted as normal by a board-certified pediatric 

epileptologist, and (3) no use of neuroactive medications. There were no significant differences 

in age between control and LGS subjects (p = 0.672, Student’s t-test); the breakdown by sex 

was approximately the same between both groups.  

 

4.2.2 EEG acquisition and preprocessing 

 All EEG data were recorded using the Nihon Kohden EEG acquisition system, with 

nineteen scalp electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, 

Fz, Cz, Pz) placed according to the international 10-20 system at a sampling rate of 200 Hz. For 

each EEG recording, epochs of non-REM sleep lasting approximately 20-30 minutes containing 

minimal arousals and artifacts were selected by a pediatric epileptologist. Time points containing 

high-amplitude artifacts were identified using an automated detector as in prior studies (Smith et 

al. 2021b; Hu et al. 2022). For each subject, one 10-minute segment of clean, continuous, 

NREM sleep EEG with no automated or clinically detected artifacts was selected for analysis. All 

EEG data were re-referenced to the common average and filtered with a zero-phase shift digital 

filter from 0.5-55 Hz. All electronic data were deidentified and analyzed offline using custom 

MATLAB (Mathworks) scripts. 

 

4.2.3 Identifying EEG events 

 The EEG data were first pre-whitened in the time-domain using first-order backward 

differencing to counteract the expected 1/f decrease in power (Usui and Amidror 1982; Gardner 

et al. 2007a; Roehri et al. 2016). The time-varying power spectrum of the EEG for frequencies 

from 1 to 50 Hz was subsequently obtained using the Stockwell transform (Stockwell et al. 

1996), in increments of 1 Hz.  
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 We then identified regions of high power in the time-varying power spectrum that 

exceeded a threshold of 250
𝜇𝑉2

𝐻𝑧
, which corresponded to a z-score of 1.69 for the EEG power 

and resulted in selection of 4.6% of all time-frequency values. This relatively low value for the 

threshold was chosen to ensure that all events of interest, particularly epileptiform activity, would 

be captured. This fixed threshold was used across all frequency bands and subjects, as the pre-

whitening step served to normalize the power across frequency bands and between LGS and 

control subjects.  

 For each subject, we defined an “event” to be a region of high power in the time-varying 

power spectrum that is continuous in time (Figure 4.1). Specifically, a single event consisted of 

consecutive time points in which the power for at least one frequency exceeded the threshold, 

with a minimum duration of 100 milliseconds. This minimum length was chosen to fully capture 

the duration of an epileptic spike, the shortest abnormal event we expected to see. Note that 

such sharp waveforms often appear smeared (with longer duration) in the time-varying power 

spectrum, particularly at low frequencies. Events were identified in the EEG data from the Fz 

electrode, as the fronto-central location should be minimally impacted by eye movements and 

muscle artifact and maximally sensitive to events such as sleep spindles and GPFAs (Bansal et 

al. 2019).   

 

4.2.4 Time-frequency image features for each event 

 For each event, we calculated six features using the time-varying power spectrum. We 

first defined the time-varying power spectrum as 𝑋𝑡,𝑓,𝑒 where 𝑡 is time, 𝑓 is frequency, and 𝑒 is 

the electrode at which the EEG was measured (Figure 4.1B). We then defined the time-

frequency image (TFI) of a single event to be the set of ordered doublets whose power in an 

electrode 𝑒 exceeded the threshold 𝑇:  

𝑇𝐹𝐼𝑒 = {(𝑡, 𝑓) | 𝑋𝑡,𝑓,𝑒 > 𝑇}          (4.1) 
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Two examples of events and their associated TFIs are shown in Figure 4.1C. Given these 

definitions, the six features were as follows: 

1. Height (Figure 4.2A): The height was defined by the highest frequency minus the lowest 

frequency in the TFI for electrode Fz: 

𝐻𝑒𝑖𝑔ℎ𝑡 =  𝑚𝑎𝑥𝑓({𝑇𝐹𝐼𝐹𝑧}) − 𝑚𝑖𝑛𝑓({𝑇𝐹𝐼𝐹𝑧}) + 1         (4.2) 

The height ranged from 1 to 50 Hz, as the frequencies ranged from 1 Hz to 50 Hz. 

2. Duration (Figure 4.2B): The duration corresponded to the event length in seconds in 

electrode Fz and was defined by: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑚𝑎𝑥𝑡({𝑇𝐹𝐼𝐹𝑧}) − 𝑚𝑖𝑛𝑡({𝑇𝐹𝐼𝐹𝑧})          (4.3) 

3. Spread (Figure 4.2C,D): The spread measured how many other electrodes had events 

that overlapped the Fz TFI in time and frequency. A spread of 1/19 = 0.05 indicated that 

no other scalp electrodes exhibited high EEG power (exceeding the threshold) at the 

same time and frequency as the Fz electrode, and a spread of 1 indicated that all other 

electrodes exhibited high EEG power at the same time-frequency points as the Fz 

electrode. The spread was defined by: 

𝑆𝑝𝑟𝑒𝑎𝑑 =  
∑ |{𝑇𝐹𝐼𝐹𝑧 ∩ 𝑇𝐹𝐼𝑒}|𝑛𝐸𝑙𝑒𝑐

𝑒=1

𝑛𝐸𝑙𝑒𝑐 ∗ |{𝑇𝐹𝐼𝐹𝑧}|
          (4.4) 

Where |{𝑇𝐹𝐼𝐹𝑧 ∩ 𝑇𝐹𝐼𝑒}| is the cardinality of the intersection between TFI sets for Fz and 

electrode 𝑒, 𝑛𝐸𝑙𝑒𝑐 is the total number of EEG electrodes, and |{𝑇𝐹𝐼𝐹𝑧}| is the cardinality 

of the TFI in Fz. 

4. Density (Figure 4.2E): The density was the area of the event in time-frequency space, 

normalized by the event duration and the maximum possible height (here 50 Hz). A 

density of 1/50 = 0.02 indicated that the event had high power at a single frequency at 

each time point, and a density of 1 indicated that all possible frequencies exceeded the 

power threshold at all time points. The density was defined by:  
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𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
|{𝑇𝐹𝐼𝐹𝑧}|

𝑛𝐹𝑟𝑒𝑞 ∗ Duration * fs
          (4.5) 

 Where 𝑛𝐹𝑟𝑒𝑞 is the number of frequencies analyzed and 𝑓𝑠 is the sampling rate. 

5. Mean Power (MP, Figure 4.2F): The mean power was calculated across all time-

frequency points in the Fz electrode event that exceeded the threshold: 

𝑀𝑃 =
∑ 𝑋𝑡,𝑓,𝐹𝑧(𝑡,𝑓)∈𝑇𝐹𝐼𝐹𝑧

|{𝑇𝐹𝐼𝐹𝑧}|
           (4.6) 

 Where (𝑡, 𝑓) consists of all ordered doublets within 𝑇𝐹𝐼𝐹𝑧.  

6. Frequency of Peak Power (FPP, Figure 4.2G): The FPP was the frequency at which the 

event had the maximum power:  

𝐹𝑃𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓(𝑋𝑡,𝑓,𝐹𝑧)          (4.7) 

The FPP ranged from 1 to 50 Hz, based on the frequency range included in the time-

varying power spectrum. 

 

 
 

Figure 4.1 A representative example of event identification. Ten minutes of artifact-free EEG 
were selected from each subject; a sample of ten seconds is shown here. (A) After selection, 
the EEG for each channel was pre-whitened. (B) The time-varying power spectrum was 
calculated for the entire EEG clip. (C) Events were identified as consecutive time points in which 
the EEG power exceeded a threshold. For a single event, the set of points in the time-frequency 
space that exceeded the threshold was defined as the time frequency image (TFI). Here, two 
different TFIs are shown, one in green and one in orange. 
 
 



73 
 

 
 

Figure 4.2 Examples of TFIs and time-varying power spectrum features: (A) height, (B) duration, 
(C) high spread, (D) low spread, (E) density, (F) mean power, and (G) frequency of peak power. 
For all features except spread, an example of a high value is shown at the top of the subfigure, 
and an example of a low value is shown at the bottom. The spread is visually represented using 
electrodes adjacent to Fz, with high and low spread shown in separate subfigures. Yellow 
regions indicate where the Fz TFI overlaps with the TFIs in adjacent electrodes, while light blue 
regions indicate where the Fz TFI does not overlap with the TFIs in adjacent electrodes. 
 
 
4.2.5 Clustering analysis 

 Prior to clustering, each feature was normalized by converting the values to a z-score 

based on the mean and standard deviation of each feature across all control and LGS events. 

Control and LGS events were collectively partitioned into twelve different clusters using K-

means (Lloyd 1982). Each event was treated as a single observation; each observation 

consisted of six variables, which were the z-scores of the features: height, duration, spread, 

density, MP, and FPP. A large number of clusters was used to ensure that all combinations of 

TFI features were represented, thus resulting in a broad distribution of events for visual 

analysis. For organizational purposes, the clusters were named in descending order based the 

sum of the six TFI feature z-scores, such that cluster one had the highest sum of the six TFI 

feature z-scores, and cluster twelve had the lowest sum.  

 

4.2.6 Visual analysis of events 
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 To ensure the selection of a representative distribution of events for visual classification, 

120 events were randomly selected from each cluster (60 from LGS patients and 60 from 

control subjects). If a cluster contained fewer than sixty control or LGS events, the remaining 

events were selected from the other cohort. Cluster one consisted of only 30 events, and all 

events were included for this cluster. In total, 1,350 out of 11,708 events were selected for visual 

analysis. Three board-certified pediatric epileptologists (DA, DS, SH) from two different 

institutions (CHOC and UCLA) each classified 900 of the 1,350 events, so each event was 

independently classified by two different raters. The order of events was randomized. For each 

event, raters were given a fifteen-second clip of EEG, starting two seconds prior to the event 

and ending thirteen seconds after the event began, with a red line indicating when the event 

started and ended (Figure 4.3). Raters were blinded to the subject type, subject number, and 

the time at which the EEG clip was recorded. For each event, raters were asked to determine 

(1) the subject type, which could be either a control or LGS subject, and (2) the event type, 

which could be spike and slow wave (SSW), GPFA, seizure, sleep spindle, vertex sharp, 

muscle, artifact, other event, or no event. Events were viewed and classified using a custom 

GUI that was designed using MATLAB in consultation with the clinical team. 

 

 
 

Figure 4.3 An example of the blinded visual analysis of an EEG event. The event is indicated by 
the horizontal red line. For each event, the rater selected a subject type and an event type. The 
user interface also included the option to change the EEG amplitude and referencing montage. 
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4.2.7 Statistical analysis 

 The IRR reflects the proportion of consistent ratings between clinicians that are not 

accounted for by chance. IRR was calculated for both subject and event classification and was 

assessed using the Cohen’s Kappa (McHugh 2012) and intraclass correlation coefficient (ICC) 

(McGraw and Wong 1996). Cohen’s Kappa ranges from negative one to one, with -1.00-0.00 = 

‘no agreement’; 0.01-0.20 = ‘slight’; 0.21-0.40 = ‘fair’; 0.41-0.60 = ‘moderate’; 0.61-0.80 = 

‘substantial’; and 0.81-1.00 = ‘almost perfect or perfect’ IRR (Hallgren 2012). The ICC was 

calculated using a 2-way mixed-effects model, where an ICC greater than 0.7 is generally 

considered adequate and an ICC greater than 0.9 is considered excellent. The consistency in 

subject labels and event labels between raters was measured using the event agreement rate 

(EAR) (Nariai et al. 2018):  

𝐸𝐴𝑅 =  
|{𝐴 ∩ 𝐵}|

|{𝐴 ∪ 𝐵}|
          (4.8) 

Where A represents the set of events labeled with a specific subject or event type by reviewer A, 

and B represents the set of events of the same subject or event type labeled by reviewer B. 

 For the subject type, we also determined the accuracy of the visual classification relative 

to the ground truth of whether the subject had been diagnosed with LGS or not. The accuracy of 

the subject type labels was calculated as a percentage based on the subject type from which 

each EEG event originated. 

 

4.3. Results 

4.3.1 Automated event detection identified a broad range of events from all subjects  

 A total of 11,708 events were detected using the process described in Section 2.3, with 

6,744 events coming from the twenty control subjects (ncontrols = 365.0 [259.0-443.0] events per 

subject; reported as the median [Q1-Q3] for all results) and 4,964 events coming from the 

twenty LGS subjects (nLGS = 232.5 [156.0-324.5]). The minimum number of events for a single 
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subject was 49 and the maximum number of events was 560. There were no clusters composed 

of events from a single subject; on average, each subject contributed events to 8.5 different 

clusters (Figure 4.5). Each cluster was characterized by a different combination of the six 

features (Figure 4.6). For example, the events in cluster one had a long duration and high 

spread, while events in cluster two had high density and high mean power. Some clusters had 

low values of all features; this was expected, as events were identified using a relatively low 

power threshold to maximize the sensitivity of initial detection. The broad distribution of events 

across subjects and clusters and the unique characterization of each cluster based on the six 

features suggests that our algorithm was successful in identifying a broad range of events that 

were well-represented in both LGS and control subjects. Clustering events using a power 

threshold of 200 (7.7% of the data) and 300 (3.0% of the data) produced qualitatively similar 

clusters (Figure 4.4). 

 

 
 

Figure 4.4. Event detection thresholds of (A) 200, (B) 250, and (C) 300 yielded similar cluster 
centroids with similar ratios of control to LGS events. For each cluster, the mean and standard 
deviation of the z-score for each feature is shown above, while the percentages of control and 
LGS events are shown below. The opacity of the green cells indicates the value of the z-score 
features, with low values appearing white; similarly, the opacity of the blue cells indicates the 
relative number of control and LGS events. Clusters using a threshold of 250 are sorted in 
descending order based on the sum of the z-scores; clusters using a threshold of 200 and 300 
are sorted to best match the clusters with a threshold of 250.  
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Figure 4.5. Heatmap showing the number of events in each cluster for controls and LGS 
subjects, where a warmer color indicates more events in a cluster. LGS subjects more 
frequently had events in clusters 1-5, which generally had higher values of the six features. 
Control subjects had a majority of events in clusters 10-12, which generally had low values of 
the six features. The maximum color limit was set to 50 for visualization; note that some data 
points exceeded this value.    
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Figure 4.6. Radar plots showing the mean (black line) and standard deviation (grey dashed line) 
of the feature values for each of the twelve cluster centroids. Each cluster is characterized by a 
different combination of the six features. 
 
 
4.3.2 Classification of subject type was accurate and consistent between raters 

 The IRR for the determination of subject type (i.e. LGS vs. control) associated with each 

event was favorable, with κ = 0.790 and ICC = 0.790 (95% confidence interval [CI] 0.769 to 

0.809) across the 1350 events selected for visual analysis (Table 4.1). Both control and LGS 

subject labels had similar agreement between raters, with an EAR of 0.806 and 0.813, 

respectively (Table 4.2). The mean accuracies for subject classification were 84.4%, 84.7%, and 

86.0% for the three reviewers, with significantly lower accuracies for events from LGS subjects 

compared to events from control subjects for all three raters (Table 4.3; p<0.05, Mann-Whitney 

U-test). All subject classification metrics were consistent between different raters with no 

significant differences in the subject labels between the three raters (p>0.05, Mann-Whitney U-

test; 3 of 3 comparisons). 

 
Table 4.1. Interrater reliability for classification of subject type and event type for EEG events. 
The three visual reviewers are listed as raters A, B, and C.  
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Label Type Rater Count Agreement Kappa  ICC 95% CI 
  
Subject 

A-B 450 0.907 0.813 0.814 0.780-0.843 

A-C 450 0.916 0.831 0.831 0.798-0.859 
B-C 450 0.862 0.725 0.725 0.678-0.767 

All 1350 0.895 0.790 0.790 0.769-0.809 
 
Event 

A-B 450 0.671 0.560 0.627 0.567-0.681 

A-C 450 0.682 0.572 0.685 0.633-0.731 
B-C 450 0.671 0.538 0.697 0.646-0.741 

All 1350 0.675 0.558 0.669 0.638-0.698 
 
 
Table 4.2. Event agreement rate for subject type and event type. The three visual reviewers are 
indicated by A, B, and C. The number in parentheses represents the number of events given 
that subject or event label by either reviewer. 
 

Category Event Agreement Rate (n) 

A-B A-C B-C All 
Subject        
type 

Control 0.831 (248) 0.834 (229) 0.757 (255) 0.806 (732) 

LGS 0.828 (244) 0.853 (259) 0.759 (257) 0.813 (760) 
Event type SSW 0.720 (168) 0.727 (154) 0.682 (154) 0.710 (476) 

GPFA 0.400 (25) 0.378 (45) 0.151 (53) 0.285 (123) 
Seizure 0.000 (1) 0.000 (3) 0.000 (0) 0.000 (4) 

Spindle 0.500 (82) 0.480 (100) 0.492 (59) 0.490 (241) 
Vertex 0.100 (40) 0.053 (19) 0.194 (31) 0.122 (90) 

Muscle 0.360 (25) 0.000 (15) 0.000 (18) 0.155 (58) 
Artifact 0.111 (9) 0.167 (12) 0.000 (11) 0.094 (32) 

Nothing 0.561 (205) 0.577 (215) 0.631 (241) 0.592 (661) 

Other 0.023 (43) 0.100 (30) 0.065 (31) 0.058 (104) 
 
 
Table 4.3. Accuracy for subject type for visual reviewers A, B, and C. 
 
Rater Number of Events Rater Accuracy 

Control  LGS  All Control LGS All 
A 337 563 900 0.956 0.778 0.844 

B 338 562 900 0.979 0.767 0.847 
C 337 563 900 0.926 0.821 0.860 

 
 
4.3.3 Interrater reliability for event type was inadequate, with very low agreement rates 

for some types of waveforms 

 The IRR for event type had κ values ranging from 0.538 to 0.572, with a mean value of 

0.558 (Table 4.1). The ICC between raters was also below adequate, with an ICC of 0.669 (CI 

0.638 to 0.698). Across the 1,350 visually classified events, the event types with the highest 

number of consistent ratings between reviewers were those labelled as SSWs (n = 338, EAR = 
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0.710), nothing (n = 391, EAR = 0.592), and sleep spindles (n=118, EAR = 0.490), although the 

EAR values for nothing and sleep spindles did not indicate high levels of agreement. The high 

number of events labeled “nothing” further confirms the highly sensitive nature of the automated 

algorithm for identification of events. The EAR values for other waveforms, such as GPFAs 

(n=35 with matching labels, EAR = 0.285) and vertex waves (n=11, EAR = 0.122), were low, 

indicating significant disagreement in identifying LGS waveforms and sleep architecture, 

respectively (Table 4.2).  

 The mismatches in event labelling mostly occurred when one rater labelled the event as 

nothing (Figure 4.7). Of the 439 events with a disagreement in event labels between the two 

reviewers, 270 events (61.5%) were labeled as nothing by one reviewer. This happened most 

frequently for non-epileptiform events; for example, mismatched labels of spindle/nothing 

occurred 83 times, and labels of vertex/nothing occurred 54 times, accounting for a total of 

31.2% of all events with mismatched labels. Of the event types typically associated with 

epilepsy, SSWs had the highest EAR, but 37.0% of all SSWs with mismatched labels occurred 

when one rater marked nothing. For GPFAs, the mismatches occurred when the second rater 

chose SSW (38.6%), muscle artifact (21.6%), nothing (18.0%), and sleep spindles (12.5%).  

 

 
 

Figure 4.7. Confusion matrix for event classification. Most disagreements were due to one rater 
labelling the event as nothing while the second rater labeled the event as something else. 

 
 
4.4. Discussion 
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 The present study evaluated the rater accuracy and IRR of EEG events in both healthy 

controls and patients with LGS. Events were selected for analysis in an automated, objective 

manner using the EEG time-varying power spectrum. The visual classification of 1,350 events 

by three pediatric epileptologists demonstrated favorable interrater agreement in identifying 

control vs. LGS EEG, using a 15-second clip of deidentified EEG. The IRR and EAR for event 

type were low, particularly in crucial EEG waveforms such as GPFA and spindles. Mismatched 

labels for events most frequently occurred when one of the raters labelled the event as nothing, 

suggesting that reviewers had different tolerances for variation in individual events relative to a 

stereotypical appearance. These results highlight EEG features that can be robustly identified, 

as well as those with high levels of disagreement between experts. This can guide future work 

on objectively defining such waveforms and evaluating their utility as biomarkers of diagnosis 

and treatment response, which will ultimately improve the long-term outcomes of patients with 

LGS. 

 Our results are in line with prior IRR studies on EEG event classification. For example, 

raters had κ =0.43 in marking epileptiform events vs. benign paroxysmal activity (Halford et al. 

2013). Another study had clinical experts score 13,262 candidate interictal epileptiform 

discharges in epilepsy and control subjects that were clustered into groups with similar 

morphologies (Jing et al. 2020). This study reported an IRR of κ =0.487 for the interictal 

epileptiform activity score, and the authors suggested that the requirement to make binary 

decisions, rather than assigning probabilities, contributed to the level of disagreement. These 

findings are consistent with our result that most mismatched labels occurred when one rater 

classified an event as a meaningful EEG waveform while another rater other classified the event 

as nothing.  

 

4.4.1 Automated event detection in subjects 
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 The automated process for EEG analysis identified time-frequency events with high 

power in all subjects. Of the 794 events with rater agreement, epileptiform waveforms such as 

SSWs and GPFAs came from fifteen LGS (two control) and eight LGS (zero control) subjects, 

respectively. In contrast, normal sleep EEG waveforms such as spindles and vertex waves were 

only seen in three LGS (eighteen controls) and zero LGS (nine controls), respectively. This is 

consistent with a prior LGS sleep study, which reported that sleep spindles were absent in most 

LGS subjects (Markand 1977). Sleep spindles and vertex waves may also be difficult to 

recognize in LGS subjects due to the presence of frequent epileptiform discharges during 

NREM sleep (Markand 1977; Horita et al. 1987; Wheless and Constantinou 1997). 

 

4.4.2 Rater accuracy for subject identification 

 The accuracy for classifying subject type was generally good across all three raters, with 

an average accuracy of 85% across all events. The rater accuracy was similar between controls 

and LGS subjects in clusters one through six, where raters had a mean classification accuracy 

of 96.5% for control events and an accuracy of 91.3% for LGS events. The rater accuracy was 

significantly greater in controls compared to LGS subjects in clusters seven through twelve, 

where raters had a mean classification accuracy of 95.3% for control events and an accuracy of 

64.3% for LGS events. This was expected, as control subject EEG should only contain normal 

physiological events, which are unlikely to be mistaken for epileptiform activity. In contrast, LGS 

subjects have both epileptiform events and normal physiological events, of which the latter are 

likely to result in mismarking of an event as coming from a control subject. Because LGS events 

more frequently occurred in clusters 1 through 6, rater accuracy for events from LGS subjects 

decreased as the cluster number increased, with cluster 12 having the lowest accuracy by far 

(Table 4.4).  
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Table 4.4. Rater accuracies for subject labels in each cluster and subject group. Clusters are 
sorted in descending order based on the sum of the z-scores for the six TFI features. Rater 
accuracy for LGS subjects decreases as the cluster number increases.  
 

 

Cluster 

Rater A  Rater B  Rater C 

All Control LGS All Control LGS All Control LGS 

C1 1.00 N/A 1.00 1.00 N/A 1.00 1.00 N/A 1.00 

C2 0.94 0.88 0.94 0.94 1.00 0.93 0.98 1.00 0.97 

C3 0.99 1.00 0.99 0.98 1.00 0.97 0.96 1.00 0.96 

C4 0.91 1.00 0.87 0.88 0.96 0.83 0.93 0.96 0.91 

C5 0.89 0.86 0.91 0.93 0.95 0.90 0.95 0.95 0.95 

C6 0.86 0.98 0.75 0.85 0.98 0.73 0.89 0.95 0.83 

C7 0.69 0.94 0.52 0.73 1.00 0.56 0.71 0.94 0.54 

C8 0.91 0.92 0.90 0.90 0.97 0.83 0.89 0.90 0.88 

C9 0.86 0.95 0.78 0.89 0.98 0.80 0.88 0.92 0.83 

C10 0.74 1.00 0.53 0.71 0.95 0.51 0.80 0.89 0.71 

C11 0.89 1.00 0.78 0.88 1.00 0.76 0.81 0.83 0.80 

C12 0.58 0.97 0.25 0.61 1.00 0.26 0.64 1.00 0.34 

 

 
4.4.3 Interrater reliability in event classification  

 The combined, blinded rating of both LGS and control subject events in the same study 

provides an important benchmark for IRR of EEG waveforms. If all events had come from LGS 

subjects, the raters would have been biased toward choosing labels associated with 

pathological events; therefore, using an approximately equal mix of physiological and 

pathological events let us accurately measure how frequently an event might be interpreted as 

benign or even “nothing.” However, this broad mix of events coupled with the use of nine 

different labels for visual analysis likely contributed to the low values of IRR and EAR for event 

classification. To verify that this was not the case, we recalculated the metrics using three 

broader categories consisting of: (1) pathological (SSW, GPFA, seizure), (2) physiological 

(spindle, vertex), and (3) others (muscle, artifact, none, other). The use of fewer labels did not 

substantially improve IRR (κ =0.558 to κ =0.628) or the EAR (pathological = 0.724, physiological 

= 0.447, others = 0.623) (Figure 4.8). The similarities in rater agreement when using broad 
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categories suggests that the disagreement between clinicians is not due to subtle differences 

between event types.  

 

 
 
Figure 4.8. Confusion matrix for events grouped as pathological (GPFA, SSW, seizures), 
physiological (spindles and vertex), and other (muscle, artifact, nothing, and other). The 
interrater reliability of events using broad terms remains inadequate.   
 
 
4.4.4 Limitations 

 There are several limitations to our study related to the event detection and subject data. 

First, the event detection was accomplished using the Fz channel, which captures the 

frontocentral activity typical of spindles and GPFA or generalized activity such as slow spike and 

wave but is insensitive to localized events occurring elsewhere on the head. Second, the EEG 

epochs were not selected from a specific stage of sleep, and thus they were not entirely 

representative of a subject’s brain activity over longer periods of time, as paroxysmal events 

such as GPFAs and SSWs may appear infrequently or not at all within the 10-minute time 

windows. However, both limitations would only affect the number of different types of events in 

the data set and not the raters’ ability to classify them. 

 Rater accuracies may have also been affected by the difficulty of classifying individual 

events compared to conventional EEG visual analysis. The graphical user interface was 

designed to mimic standard clinical viewing software, but event labelling was done using fifteen 

seconds of isolated EEG, without having the full EEG study for context. We compensated for 
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this by allowing raters to use the entire clip as context, but this may have influenced some labels 

by introducing other salient EEG features within the clip. For example, an event with short 

duration (~100 ms) may not initially look significant, but if an epileptiform discharge occurs later 

in the 15-second clip, the rater may be more likely to choose a label associated with a 

pathological event. While the use of a deidentified short clip of EEG instead of the entire study 

can reduce bias, future studies may want to evaluate clinically marked events in tandem with 

automated event detections to compare the differences between these two methods. More 

generally, to the extent that IRR was imperfect for subject type, agreement is likely to be higher 

in paradigms in which raters assign subject type based on review of full-length clinical EEG, 

rather than 15-second samples. Conversely, we have shown that raters tend to have high levels 

of agreement when classifying an EEG sample as having been derived from a patient with LGS 

or a normal control. In paradigms with diverse patient composition (e.g. a cohort including 

normal controls, patients with LGS, and patients with other forms of epilepsy), the identification 

of patients with LGS may be much more challenging and IRR is likely to be far lower. 

 

4.4.5 Conclusions and future work 

 The present study measured the IRR using events with high EEG power that occurred 

during NREM sleep in LGS subjects and healthy controls. Our automated, objective algorithm 

for analysis of the EEG time-frequency decomposition was able to identify known waveforms 

that were both pathological and physiological. Subject classification had favorable IRR and rater 

accuracy, suggesting that fifteen seconds of EEG containing at least one event with high power 

is often sufficient for a reviewer to identify abnormal visual features. The IRR for event 

classification was lower, with inadequate ICC, in part due to variation in raters’ thresholds for 

labeling specific EEG waveforms.   

 Future studies can utilize multiple channels in the time-frequency analysis, rather than 

focusing on only channel Fz, and select EEG epochs longer than 10 minutes to increase the 
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likelihood of capturing waveforms such as GPFA and SSW in each subject. This work could also 

be expanded to larger patient populations and different types of epilepsy. This could aid in 

providing precise, quantitative definitions of pathological EEG events. In turn, this may lessen 

the ambiguity inherent to visual EEG analysis and thus improve IRR. In the long term, this could 

facilitate the use of these quantitatively defined waveforms as objective biomarkers, ultimately 

improving the diagnosis and treatment of patients with LGS.   
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CHAPTER V 

Discovering EEG Biomarkers of Lennox-Gastaut Syndrome through 

Unsupervised Time-Frequency Image Analysis 

 

5.1 Introduction 

 The initial diagnosis of epilepsy hinges on identifying early biomarkers of the disease in 

the electroencephalogram (EEG). These transient electrophysiological abnormalities are 

typically discovered during the visual review of EEG, where they are manifested as 

unique/unusual waveforms. The initial descriptions of EEG biomarkers are based on repeated 

visual observations and are later studied to demonstrate the potential clinical utility of the 

waveform (Lai et al. 2023). For example, sleep spindles are a physiological EEG waveform that 

were first identified as waxing-and-waning 10-16 Hz oscillations lasting 0.5-2s during sleep 

(Andrillon et al. 2011). Future studies later associated sleep spindles with memory 

consolidation, markers of intelligence, and having altered properties in patients with epilepsy 

(Latka et al. 2005; Fernandez and Lüthi 2020). Novel biomarkers of epilepsy such as high 

frequency oscillations (HFOs) were first reported as oscillatory phenomenon in rat hippocampus 

(Buzsáki et al. 1992) and were verified in humans through the visual review of intercranial EEG, 

with studies associating their presence with epileptogenesis (Bragin et al. 1999). The visual 

review and validation of these waveforms can continue for many years; this is the case for 

HFOs, where there is still no precise definition of the waveform. The difficulty in identifying these 

waveforms can lead to time-consuming EEG review with low interrater reliability (Jing et al. 

2020). 

 To improve the visual review process, automated algorithms are developed to detect 

EEG waveforms that are known biomarkers of epilepsy. This type of computational analysis can 

objectively identify events for large datasets quickly while applying detection criteria consistently 
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across patients and centers. Some of these algorithms analyze the time-domain version of the 

EEG signal and aim to match the visual appearance of the event as closely as possible. For 

example, IED detectors can compare various features of the timeseries such as the Teager 

energy and slope of the signal (Gaspard et al. 2014). Detectors can also compare the EEG to 

templates of averaged IEDs (Karoly et al. 2016) or use amplitude thresholds based on features 

such as the root-mean-square (Charupanit et al. 2020) or peak amplitude to detect HFOs 

(Charupanit and Lopour 2017). Time-frequency analysis offers a complementary approach, as it 

can isolate activity in individual frequency bands and offers the opportunity to reject common 

artifacts or other causes of false positive detections (Jiang et al. 2019). This method has been 

successfully applied in the automated detection of HFOs in epilepsy (Burnos et al. 2014; Donos 

et al. 2020; Migliorelli et al. 2020; Krikid et al. 2022) and the characterization and identification of 

interictal spikes in refractory epilepsies (Jacobs et al. 2011; Jabran et al. 2020).  

 However, this process of developing detection algorithms has some critical limitations. 

The detection criteria often rely on empirical definitions derived from descriptions of the visual 

appearance of the waveform, rather than having a theoretical basis. In this case, detected 

events may be compared to manual marking of events as the “ground truth”, even though they 

rely on imprecise definitions and have been shown to vary between reviewers. The 

development of IED detectors have followed this path. For example, the Persyst (Persyst 

Development Corporation, USA) IED detector has the highest reported sensitivity and has utility 

as a screening tool for epilepsy (Reus et al. 2022), but performed slightly worse than human 

review, had low interrater agreement with clinical markings, and still must be checked and 

verified by experts (Reus et al. 2022). Furthermore, the performance of detection algorithms is 

limited by the gold standard, which is commonly defined in studies to be expert review.  

 These challenges with biomarker discovery and validation are exemplified by a type of 

epilepsy called Lennox Gastaut Syndrome (LGS). LGS is a severe childhood-onset epilepsy 

associated with seizures that cause cognitive impairments that worsen over time (Kim et al. 
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2015). Prompt diagnosis and administration of treatment is paramount for seizure control and 

long-term neurocognitive outcome (Mastrangelo 2017b). However, this can be delayed due to 

the progressive and complex nature of the disease. The disease onset of LGS is difficult to 

define as the seizures and EEG characteristics evolve slowly over time. Patients may also 

exhibit most, but not all, of the criteria required for diagnosis, or all the criteria, but not all at the 

same time. Thus, there is a critical need for biomarkers associated with this disease.  

 One promising candidate biomarker is generalized paroxysmal fast activity (GPFA), a 

unique waveform that is primarily seen in LGS during NREM sleep (Mastrangelo 2017b). 

Despite the visual descriptions of GPFA (Kane et al. 2017; Mastrangelo 2017b) and its presence 

being associated with intractable epilepsies (Cerulli Irelli et al. 2022) and an increase in seizure 

counts in seizure diaries (Dalic et al. 2022a), the interrater reliability for GPFA remains low (Hu 

2023). While automated algorithms can potentially improve the reliability, there is currently no 

basis for this. An automatic GPFA detector identified events with similar time-frequency 

properties to manually marked GPFAs in LGS subjects, but required individualized patient 

settings and only had a 40-80% rater agreement with manual markings (Omidvarnia et al. 

2021). 

 Therefore, we developed an automatic, unsupervised approach to the analysis of time-

frequency EEG that does not rely on visual review of the data or preestablished clinical 

definitions. This is a data-driven approach that aims to identify relevant EEG events that are 

primarily associated with either LGS subjects or controls, while applying minimal restrictions to 

event morphology. This process not only identified known biomarkers of LGS, such as slow 

spike-wave and GPFA, but also led to the discovery of EEG waveforms that are novel candidate 

biomarkers of LGS.  

 

5.2. Methods 

5.2.1 Subject information 
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 Approval for this retrospective observational study was obtained from the Institutional 

Review Board of the Children’s Hospital of Orange County (CHOC) and the University of 

California, Los Angeles (UCLA), with the requirement for informed consent waived. Twenty 

subjects diagnosed with LGS (7 females, median age 7.4 years, IQR 8.9 years) were 

retrospectively identified from the clinical record at CHOC, with visits between January 2012 

and June 2020. A group of fifty controls was identified in a separate study, where patients were 

retrospectively identified from the clinical record at UCLA, with visits between February 2014 

and July 2018 (Smith et al. 2021b). Controls were included if they had (1) no known 

neurological disorders, (2) routine EEG studies that were interpreted as normal by a board-

certified pediatric epileptologist, and (3) no use of neuroactive medications. A subset of twenty 

controls (8 females, median age 8.2 years, IQR 8.8 years) was selected from the cohort of 50 to 

be approximately age-matched to the LGS cohort. There was no significant difference in age 

between control and LGS subjects (p = 0.672, Student’s t-test); the breakdown by sex was 

approximately the same between both groups.  

 

5.2.2 EEG acquisition and preprocessing 

 Control and LGS EEG data were both recorded using a Nihon Kohden EEG acquisition 

system, with nineteen scalp electrodes placed according to the international 10-20 system (Fp1, 

Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz). All EEG data were 

recorded at a sampling frequency of 200 Hz or downsampled to 200 Hz. EEG data for LGS 

subjects were collected overnight and manually clipped by a registered polysomnographic 

technologist to contain NREM sleep with no arousals or movement artifacts. Control EEG data 

were collected overnight and clipped by an EEG reviewer to contain sleep EEG based on the 

presence of sleep architecture, posterior dominant rhythm, and slow roving eye movements 

(Smith et al. 2021c). After clipping the EEG, segments of broadband data containing high-

amplitude artifacts were identified in each subject using an automated detector as in prior 
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studies (Smith et al. 2021b; Hu et al. 2022). For each subject, one ten-minute segment of clean, 

continuous, NREM sleep EEG with no automated or clinically detected artifacts was selected for 

data analysis. All EEG data were re-referenced to the common average and filtered with a zero-

phase shift digital filter from 0.5-55 Hz. All electronic data were deidentified and analyzed offline 

using custom MATLAB (Mathworks) scripts. 

 

5.2.3 Time-frequency decomposition 

 For each subject, we used the following procedure to obtain the EEG time-frequency 

decomposition prior to identifying events of interest. The EEG data were first pre-whitened in the 

time-domain using first-order backward differencing to remove the 
1

𝑓∝
 trend in the power 

spectrum of the EEG (Usui and Amidror 1983; Gardner et al. 2007b; Roehri et al. 2016). The 

discrete whitened signal 𝑥̃[𝑛] was obtained by taking the difference between subsequent 

elements of the EEG 𝑥[𝑛]: 

𝑥̃[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1]          (5.1) 

 The time-frequency decomposition of the EEG was calculated using the Stockwell 

transform (S-transform). The S-transform is an alternative to the short-time Fourier transform 

and continuous wavelet transform that has frequency-dependent resolutions that can facilitate 

the detection of high frequency bursts (Stockwell 1996; Krikid et al. 2022). The S-transform 

wavelet changes for each frequency band and is defined by the following equation:  

𝑤(𝑡, 𝑓) =  
|𝑓|

√2𝜋
𝑒

−𝑡2𝑓2

2 𝑒−𝑖2𝜋𝑓𝑡           (5.2) 

The S-transform was calculated for each channel in each EEG segment for frequencies from 1 

to 50 Hz, with a step size of 1 Hz (Figure 5.1).  

 

5.2.4 Identifying events of interest 
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 To identify events of interest for analysis, we first define the time-frequency 

decomposition as 𝑋𝑡,𝑓,𝑒 where 𝑋 is the power, 𝑡 is time, 𝑓 is frequency, and 𝑒 is the electrode at 

which the EEG was measured. For each EEG channel, we identify the set of all ordered 

doublets 𝑇𝐹 whose power exceeds the threshold 𝑃 in the time-frequency decomposition: 

𝑇𝐹𝑒 =  {(𝑡, 𝑓) | 𝑋𝑡,𝑓,𝑒 > 𝑃}          (5.3) 

 A threshold of 𝑃 = 250
𝜇𝑉2

𝐻𝑧
was used for all subjects, resulting in the selection of 4.6% of 

all time-frequency values across all subjects, corresponding to a z-score of 1.69. This threshold 

was fixed across all frequency bands, as the data were pre-whitened, and was used for all LGS 

and control subjects. This relatively low threshold was chosen to prioritize high sensitivity in the 

detection of events.  

 For each subject, we divided the set 𝑇𝐹𝐹𝑧 into 𝑖 discrete events of interest (EOI), with 

each one denoted as 𝐸𝑂𝐼𝑖,𝐹𝑧  (Figure 5.1D). EOIs were selected using EEG from the Fz 

electrode for two reasons: (1) the fronto-central location should be minimally impacted by eye 

movements and muscle artifact, and (2) Fz is maximally sensitive to known EEG waveforms 

such as sleep spindles and GPFAs(Bansal et al. 2019). Each EOI fulfilled the following 

conditions: 

1. 𝐸𝑂𝐼𝑖,𝐹𝑧 is a compact set of ordered doublets (t,f) where the time points in the event are 

consecutive. 

2.  (𝑚𝑎𝑥𝑡({𝐸𝑂𝐼𝑖,𝐹𝑧}) − 𝑚𝑖𝑛𝑡({𝐸𝑂𝐼𝑖,𝐹𝑧}) ) ≥  τ  

 Where τ is the minimum duration of an EOI. We chose τ = 100 milliseconds to fully 

capture the duration of an epileptic spike, the shortest event we expected to see. Note that such 

sharp waveforms are typically 40-60 milliseconds and often appear smeared (with longer 

duration) in the time-frequency decomposition, particularly at low frequencies.  

  

5.2.5 Event features 
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 For each 𝐸𝑂𝐼𝑖,𝐹𝑧, we calculated eleven features based on its temporal, spectral, and 

spatial properties (Figure 5.2): 

7. Height (Figure 5.2A): For each EOI, the height is defined by the highest frequency minus 

the lowest frequency: 

𝐻𝑒𝑖𝑔ℎ𝑡𝑖 =  𝑚𝑎𝑥𝑓({𝐸𝑂𝐼𝑖,𝐹𝑧}) − 𝑚𝑖𝑛𝑓({𝐸𝑂𝐼𝑖,𝐹𝑧}) + 1         (5.4) 

The height ranges from 1 to 50 Hz, as the frequencies range from 1 Hz to 50 Hz. 

8. Length (Figure 5.2B): The length corresponds to the duration of the event in seconds 

and is defined by: 

𝐿𝑒𝑛𝑔𝑡ℎ𝑖 =  𝑚𝑎𝑥𝑡({𝐸𝑂𝐼𝑖,𝐹𝑧}) − 𝑚𝑖𝑛𝑡({𝐸𝑂𝐼𝑖,𝐹𝑧})          (5.5) 

9. Spread (Figure 5.2C): The spread is a measure of how many other electrodes have 

events that overlap the Fz EOI in time and frequency:  

𝑆𝑝𝑟𝑒𝑎𝑑𝑖 =  
∑ |{𝐸𝑂𝐼𝑖,𝐹𝑧 ∩ 𝐸𝑂𝐼𝑖,𝑒}|𝑛𝐸𝑙𝑒𝑐

𝑒=1

𝑛𝐸𝑙𝑒𝑐 ∗ |{𝐸𝑂𝐼𝑖,𝐹𝑧}|
          (5.6) 

Where |{𝐸𝑂𝐼𝑖,𝐹𝑧 ∩ 𝐸𝑂𝐼𝑖,𝑒}| is the cardinality of the intersection between an EOI in Fz and 

an EOI in electrode e, 𝑛𝐸𝑙𝑒𝑐 is the total number of EEG electrodes, and |{𝐸𝑂𝐼𝑖,𝐹𝑧}| is the 

cardinality of the EOI in Fz. The spread ranges from 1/19 to 1, where a spread of 1/19 

indicates that no other electrodes exhibit high EEG power (exceeding the threshold P) at 

the same time and frequency as the Fz electrode; a spread of 1 indicates that all other 

electrodes exhibit high EEG power at the same time-frequency points as the Fz 

electrode. 

10. Density (Figure 5.2D): The density is the area of the event in time-frequency space, 

normalized by the event length and the maximum possible height:  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 =  
|{𝐸𝑂𝐼𝑖,𝐹𝑧}|

𝑛𝐹𝑟𝑒𝑞 ∗ Length𝑖 ∗ fs
          (5.7) 

 Where 𝑛𝐹𝑟𝑒𝑞 is the number of frequencies analyzed (50 for this study) and 𝑓𝑠 is the 

sampling rate. A density of 1/50 indicates that the event has high power at a single frequency at 
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each time point, and a density of 1 indicates that all possible frequencies and time points 

exceed the power threshold. 

11. Frequency of Peak Power (FPP, Figure 5.2E): The FPP is the frequency at which the 

EOI had maximum power. Here, the FPP ranges from 1 to 50 Hz, based on the 

frequency range included in the time-frequency spectrogram. The FPP is defined by: 

𝐹𝑃𝑃𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓(𝐸𝑂𝐼𝑖,𝐹𝑧)          (5.8) 

12. Band Power (BP, Figure 5.2F): The BP is the mean band power across all time points in 

the EOI within a frequency band. The BP is defined by: 

𝐵𝑃𝑖,𝐵𝑎𝑛𝑑 =
∑ ∑ 𝑋𝑡,𝑓,𝐹𝑧

𝑎𝑟𝑔𝑚𝑎𝑥𝑡({𝐸𝑂𝐼𝑖,𝐹𝑧})

𝑡=𝑎𝑟𝑔𝑚𝑖𝑛𝑡(𝐸𝑂𝐼𝑖,𝐹𝑧})

𝐹2
𝑓= 𝐹1

(𝐹2 − 𝐹1 + 1) ∗ Length𝑖

           (5.9) 

 Where 𝐹1  and 𝐹2 correspond to the minimum and maximum frequencies within the 

 chosen frequency band, respectively. The BP was calculated for the following six 

 frequency bands: Delta (2-4 Hz), Theta (4-7 Hz), Alpha (8-12 Hz), Sigma (12-15 Hz), 

 Beta (15-30 Hz), and Gamma (30-50 Hz). 
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Figure 5.1. An example of EOI identification, using an eight second EEG sample in the Fz 
channel. (A) The analysis begins with the broadband EEG signal. (B) The EEG for each channel 
was first prewhitened. (C) The time-frequency decomposition was calculated using the S-
transform for the entire EEG clip. (D) Events of interest (EOIs) were defined as consecutive time 
points in which the EEG power exceeded a threshold for a minimum duration. Three different 
EOIs are shown in this EEG clip, one in yellow, one in red, and one in green.  
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Figure 5.2. Examples of EOIs with high (left subfigure) and low (right subfigure) feature values 
for (A) height, (B) length, (C) spread, and (D) density. The figures on the right consist of EOIs 
with high (E) frequency of peak power and high (F) mean band power in each characteristic 
frequency band. In (C), the spread is visually represented using electrodes adjacent to Fz, 
where yellow regions indicate overlap of the EOI in electrode Fz with the TF for adjacent 
electrodes and cyan indicates regions where the TF for adjacent electrodes does not overlap 
with the EOI for Fz.  
 

5.2.6 Clustering analysis 

 Prior to clustering, each feature was normalized by converting the values to a z-score 

based on the mean and standard deviation of each feature across all control and LGS events. 

EOIs from control and LGS subjects were collectively partitioned into twelve different clusters 

using k-means based on their event features (Lloyd 1982). Each EOI was treated as a single 

observation, where each observation consisted of the eleven z-scores of the event features. For 

visualization of the results, clusters were sorted in descending order based on the sum of the 

eleven feature z-scores, such that cluster 1 has the highest and cluster 12 has the lowest sum. 
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5.2.7 Feature categorization 

 One limitation of clustering is that the clusters may change when the method is applied 

to a different dataset or new subjects are added, thus reducing the repeatability of the results. 

Therefore, as a complement to clustering, we implemented a second method that categorized 

each event based on whether its features had high or low values. The median values for height, 

length, spread, and density were calculated across all events, and each feature was categorized 

as weak (lower than the median) or strong (higher than the median). In addition, we identified 

the frequency band for the event that had the highest BP. Then, to denote the category for each 

event using these features, we used a five-character string starting with the frequency of highest 

BP (δ, θ, α, σ, β, γ), followed by characters indicating weak/strong height (h/H), length (l/L), 

spread (s/S), and density (d/D). In total, there were 96 different feature categories. For example, 

an event with the highest power in the alpha band with a height and spread above the median 

was in the category “αHlSd.” 

 

5.2.8 Visual classification and event labelling 

 To provide an interpretation of the type of EEG events in each cluster, we paired the 

computational analysis with visual classification of the events. Of the 11,708 EEG events, we 

selected 1,350 for visual analysis by three board-certified pediatric epileptologists from two 

different institutions (CHOC and UCLA). Details of the selection and visual analysis process can 

be found in Hu et al. 2023; we briefly summarize them here. The selection procedure aimed to 

include a representative distribution of the broad range of events, prioritizing selection of an 

approximately equal number of LGS and control events. Each rater classified 900 events, which 

were selected across all twelve clusters; each event was independently marked by two different 

raters. For each event, raters were shown a fifteen-second clip of EEG, with a red line indicating 

when the event started and ended. Raters were blinded to the subject type, subject number, and 

the time at which the EEG clip was recorded. Raters were asked to classify each event as one 
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of the following: (1) IED, (2) interictal epileptiform discharge train (IEDT), (3) GPFA, (4) seizure, 

(5) sleep spindle, (6) vertex sharp, (7) muscle, (8) artifact, (9) other event, or (10) no event. 

Events were viewed and marked using a custom GUI that was designed using MATLAB based 

on clinician feedback. 

 To validate the events labelled as sleep spindles in our analysis, we also ran an 

automated sleep spindle detector (Mensen et al. 2018) on the same dataset across all subjects. 

Potential sleep spindles were detected if there was a power value exceeding four times the 

median absolute deviation of the EEG in the 10-16 Hz range. A secondary threshold was also 

applied so that the start and end times of the spindle also had to exceed two times the median 

absolute deviation. Lastly, sleep spindles were valid if the event lasted between 300ms to 3s. 

For each subject’s EEG, the spindle detector recorded the total number of sleep spindles and 

their corresponding length, global spread, and peak frequency.  

 

5.3. Results 

5.3.1 EEG events in LGS subjects have higher power, height, spread, frequency of peak 

power, and density compared to controls 

 A total of 11,708 events were detected automatically across all forty subjects, with 6,744 

events coming from the twenty control subjects (ncontrols = 365.0 [259.0-443.0] events; reported 

as the median [Q1-Q3] for all results) and 4,964 events coming from the twenty LGS subjects 

(nLGS = 232.5 [156.0-324.5]). The minimum number of events reported in a single subject was 

49 and the maximum number of events was 560.  

 The height, spread, FPP, density, sigma BP, beta BP, and gamma BP of LGS events 

were significantly greater than control events (Figure 5.3; p<0.05, Mann-Whitney U-Test, 

Bonferroni corrected for n=11). The differences between the LGS and control event features 

were typically caused by the heavier right-sided tails in the distributions for LGS events. 

Identifying events with different thresholds ranging from 𝑃 = 200 (7.7% of the data) to 𝑃 = 300 
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(3.0% of the data) yielded qualitatively similar results with similar histogram distributions (Figure 

5.4).  

 

 
 

Figure 5.3. Normalized histograms of the eleven features: (A) height, (B) length, (C) spread, (D) 
density, (E) frequency of peak power, (F) delta BP, (G) theta BP, (H) alpha BP, (I) sigma BP, (J) 
beta BP, and (K) gamma BP for control (blue) and LGS (red) events. LGS events more 
frequently had high values of height, frequency of peak power, spread, density, sigma BP, beta 
BP, and gamma BP compared to controls. Significance levels are *p<0.05, **p<0.01, and 
***p<0.001, with p-values modified using the Bonferroni method.  
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Figure 5.4. Normalized histograms of the eleven features using (A) P = 200 and (B) P = 300. 
Using different thresholds for event detection yielded similar histogram distributions for all 
features for both control and LGS events. 
 

5.3.2 Clustering isolates events unique to LGS subjects  

 When k-means clustering was applied to the combined group of LGS and control events, 

there were no clusters composed of events from a single subject. On average, each subject 

contributed events to 8.2 different clusters (Figure 5.5A). Each cluster’s centroid was 

characterized by a different combination of the eleven features (Figure 5.6). For example, the 

events in Cluster 1 typically lasted one to two seconds with high values for height, electrode 

spread, density, and high alpha/sigma band power. Events in Cluster 2 lasted an average of 

eighteen seconds and had high height, electrode spread, and high delta/theta band power. The 

cluster centroids remained quantitatively similar after clustering with different thresholds of 𝑃 =

200 and 𝑃 = 300  (Figure 5.7).  

 Several clusters contained events primarily from subjects with LGS. Specifically, clusters 

1, 2, 3, 4, 5, and 9 had significantly more LGS events than control events, consisting of 100%, 

100%, 90.7%, 80.0%, 91.8%, and 77.9% LGS events, respectively (Figure 5.5B; p<0.05, 

permutation test, Bonferroni corrected for n=12). These clusters tended to have high values of 

band power and other features. In contrast, clusters 10, 11, and 12 consisted of 24.7%, 33.1%, 

and 27.9% LGS events, respectively, and they had low values of the eleven features. 
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Representative control and LGS events with features most similar to each cluster centroid are 

shown in Figure 5.9. Re-clustering the events with 6, 9, 15, and 18 clusters resulted in clusters 

with similar mean centroids that had significantly more LGS than control events (Figure 5.8). 
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Figure 5.5. Six clusters were comprised of events primarily originating from LGS subjects. (A) 
Heatmap of the number of events in each cluster for all control (top) and LGS (bottom) subjects.  
(B) The percentage of control and LGS events in each cluster. Clusters 1, 2, 3, 4, 5, and 9 had a 
significantly greater number of events from LGS subjects compared to controls and are bolded. 
 
 

 
 
Figure 5.6. Mean cluster centroid values for each feature. The opacity of the cells indicates the 
value of the feature compared to all other clusters, with low values appearing white. Clusters 
with a significantly greater number of LGS events to controls are bolded.  
 
 

 
 

Figure 5.7. Varying the threshold for event detection produces clusters with similar feature 
centroids. Event detection thresholds of (A) P=200, (B) P=250, and (C) P=300 yielded similar 
feature centroids with similar ratios of control to LGS events. Features with greater values are 
indicated by a stronger color. The opacity of the green cells indicates the value of the feature 
compared to all other clusters, with low values appearing white; similarly, the opacity of the 
purple cells corresponds to frequency BP, and the opacity of the blue cells indicates the relative 
number of control and LGS events. Clusters using a threshold of 250 are sorted in descending 
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order based on the sum of the z-scores; clusters using a threshold of 200 and 300 are sorted to 
best match the clusters with a threshold of 250.   
 
 

 
 

Figure 5.8. The same LGS-associated clusters are produced for varying numbers of clusters. 
The 11,708 detected events were clustered into (A) 6, (B) 9, (C) 12, (D) 15, and (E) 18 distinct 
clusters. Clusters with significantly more LGS events compared to control events are indicated 
with a star. Consistent cluster centroids, with significantly more LGS events compared to control 
events, result from a wide range of cluster numbers.  

 
 

5.3.3 Automated time-frequency analysis identified known and novel candidate 

biomarkers of LGS 

Clusters 1, 2, 3, 4, 5, and 9 contained significantly more events from LGS subjects than 

control subjects, and thus these events represent potential biomarkers for LGS. Based on the 

event features and visual analysis of each cluster, several clusters represent known waveforms 

associated with LGS, such as GPFA and trains of IEDs, while others are novel candidate 

biomarkers not previously reported in the literature. 
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5.3.3.1 Events in cluster 1 were exclusively from LGS subjects and were identified as 

GPFAs 

 Cluster 1 consisted of 14 events originating from two LGS subjects. These events lasted 

approximately 1.5 seconds and had notably high height of 45.7 Hz, electrode spread of 52%, 

and density of 49.6%. The events also had high alpha, sigma, beta, and gamma BP, which were 

9,2, 8.6, 9.1, and 3.2 standard deviations greater than the mean event, respectively. Thirteen of 

the fourteen events were classified by clinicians, of which 100% of events were labelled as 

GPFA by at least one rater and 61.5% were labelled as GPFA by both raters (Figure 5.9A).  

 

5.3.3.2 Events in clusters 2 and 3 were identified as IEDTs  

 Events in cluster 2 were exclusively from LGS subjects, consisting of 53 events from four 

LGS subjects (Figure 5.9B). Similarly, events in cluster 3 originated primarily from LGS subjects, 

with 341 events from fourteen LGS subjects and 35 control events from nine healthy controls 

(Figure 5.9C). Clusters 2 and 3 were characterized by high height, length, and spread, with the 

17.7-second length of cluster 2 being particularly notable (Figure 5.6). The events in cluster 2 

and cluster 3 also had high delta and theta BP, with FPPs of 10.4 Hz and 9.3 Hz, respectively. 

 In cluster 2, all 48 classified events were labelled as an IEDT by at least one rater; 

91.7% of these events were labelled as IEDTs by both raters (Figure 5.9B). LGS events in 

cluster 3 had similar findings, where 96.2% of events were labelled as IEDT by at least one 

rater, of which 102 of 128 of these IEDT events had rater agreement (Figure 5.9C). In contrast 

to LGS events, the control events in cluster 3 only had 40% rater agreement, which consisted of 

4 sleep spindles, 1 muscle movement, and 3 events labelled as nothing (Figure 5.9C, right).  

 

5.3.3.3 Cluster 4 revealed alterations to sleep spindles in LGS subjects compared to 

controls 
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 80.0% of events (437 out of 546) in cluster 4 were LGS events and came from 17 LGS 

subjects. The notable features of cluster 4 were the height of 40.3 Hz, electrode spread of 

49.1%, and FPP of 18.1 Hz (Figure 5.6). Control events were mostly labelled as sleep spindles; 

96.2% of events were labelled as sleep spindles by at least one rater, of which 42 of these 50 

spindles had rater agreement (Figure 5.9D). In contrast, only 4.8% of LGS events were labelled 

as sleep spindles by at least one rater, of which only a single event had rater agreement. 

Overall, 41.0% of LGS events in cluster 4 had rater agreement and labels were predominantly 

split between various EEG waveforms such as GPFA (n=20), IEDT (n=15), and IED (n=6) 

(Figure 5.9D).  

 The drastically reduced detection of sleep spindles in LGS subjects warranted further 

investigation. In cluster 4, there was only one event in LGS subjects that the raters agreed was 

a sleep spindle, compared to 42 in controls; across all clusters, there were only five LGS sleep 

spindles compared to 113 healthy spindles (based on labels with rater agreement). Across all 

labelled events, LGS sleep spindles had a shorter length, lower height, lower electrode spread, 

and a lower FPP compared to spindles in healthy controls. An automated sleep spindle detector 

(Mensen et al. 2018) found that sleep spindles were detected more frequently in healthy 

controls (n = 96.5 [64.5-123.0]) than LGS subjects (n=25.5 [18.5-44.0]) (Figure 5.10). Moreover, 

the mean LGS spindle was significantly lower in length, global spread, and peak frequency 

compared to that of healthy controls (p<0.05, Mann-Whitney U-Test , Bonferroni corrected 

(n=4)) (Figure 5.10). These results mirror those obtained from the time-frequency analysis; both 

methods suggest sleep spindle occurrence and characteristics as candidate biomarkers of LGS. 
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Figure 5.9. Breakdown of reviewer classifications in clusters with significantly more LGS events 
than control events: (A) Cluster 1, (B) Cluster 2, (C) Cluster 3, (D) Cluster 4, (E) Cluster 5, and 
(F) Cluster 9. For each cluster, the left column shows a representative example of EEG with 
features most similar to the cluster centroid for controls (blue) and LGS subjects (red). The bar 
graph in the middle column shows the occurrence of each label for control and LGS events 
marked by a single rater or two raters, with the latter indicating rater agreement on the event 
label. The right column shows the confusion matrices for labels applied to control and LGS 
events in each cluster.  
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Figure 5.10. Mean features of automatically detected sleep spindles across all control and LGS 
subjects. Sleep spindles in healthy controls had a significantly greater (A) spindle count, (B) 
spindle length, (C) spindle spread, and (D) peak frequency compared to spindles in LGS 
subjects. Significance levels are *p<0.05, **p<0.01, and ***p<0.001, with p-values modified 
using the Bonferroni method. 
 
 
5.3.3.4 Beta and gamma frequency events in Clusters 5 and 9 are novel candidate 

biomarkers of LGS 

 In total, 91.8% of events in cluster 5 (257 out of 280) were LGS events, originating from 

13 subjects; similarly, 77.9% of events in cluster 9 (610 out of 783) were LGS events, originating 

from 17 subjects. EEG events in clusters 5 and 9 generally had short length, high FPP, and high 

BP in the beta and gamma bands (Figure 5.6). Between clusters 5 and 9, 81.0% and 77.9% of 

the viewed events were either labelled as “nothing” or were given mismatched labels by the two 

raters, respectively  (Figure 5.9E, 5.9F). This contrasts the results seen in other clusters with a 

significantly high ratio of LGS to control events, where LGS events were typically IED, IEDT, or 

GPFA. 

 The event labels in cluster 5 were widely varied, with 16.5% of LGS events having rater 

agreement, consisting of 5 IED, 4 GPFA, 5 muscle, 9 nothing, and 1 other. Control events in 

cluster 5 had 59.1% rater agreement, consisting of 2 muscle, 2 artifact, and 9 events labelled as 

nothing (Figure 5.9E). In cluster 9, 56.7% of LGS events had rater agreement, of which 38 of 



108 
 

the 43 events with agreement were labelled as nothing. Only nine control events had rater 

agreement in cluster 9, consisting of five sleep spindles, one vertex sharp, and 3 events labelled 

as nothing. Taken together, the fact that these events occur more frequently in LGS subjects 

than controls, combined with a lack of recognition by clinicians as a known EEG waveform, 

suggests that these events may be novel candidate biomarkers of LGS. 

 

5.3.4 Analysis of EEG events using feature categorization 

 As a complement to the clustering analysis, we also placed each event into one of 96 

categories by identifying the frequency band with the greatest BP and classifying each event 

feature as either “low” or “high” relative to the median feature value across all events. The 

median feature values were a height of 7 Hz, length of 360 milliseconds, spread of 26.3%, and 

density of 6.4%. A total of 83 of the 96 categories had at least one event, with a mean of 40 

events per category ([5.5-162.0] events).  

 

5.3.4.1 Consistent with the clustering analysis, events with high beta and gamma band 

power are potential biomarkers of LGS 

 Twenty-two categories had significantly more events from LGS subjects than controls 

(Table 5.1A; p<0.05, permutation test, Bonferroni corrected (n=96). Of these categories, only 

one had peak band power in the delta band (δHWSD), two in the theta band (θHwSD, θHWsD), 

two in the alpha band (αHwSd, αHwSD), and two in the sigma band (σHwsD, σHwSD). They 

were all characterized by events with high height and density; most also had high spread, and 

all except delta included events with low length.  In contrast, there were nine categories with 

peak BP in the beta band and six categories with peak BP in the gamma band. The beta band 

categories included a broad representation of events, including high and low values of all 

features. The gamma band categories all had high density, but included events with high and 

low height, length, and spread. 
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 This generally suggested that events with peak BP in the beta and gamma bands were 

indicative of LGS, and the data supported this hypothesis. 84.1% of all events with peak BP in 

the beta band originated from LGS subjects; this percentage was 78.2% for the gamma band. 

However, it is interesting to note that, of the sixteen feature categories in the beta band, eight of 

the categories had no events or only a single event. Seven of the remaining eight categories 

had significantly more LGS events compared to controls, except for “βhlsd”, which had 32 total 

events and consisted of 65.6% LGS events. The gamma band had similar results, where eleven 

feature categories had no events or a single event; the other five feature categories contained 

significantly more LGS events compared to controls (Table 5.1A). 

 This analysis served as a validation of the clustering results from Section 3.6, as several 

of the beta and gamma band categories in Table 5.1A overlap with the characteristics of the 

events in Clusters 5 and 9. A total of 74.3% of events in Cluster 5 had high BP in the gamma 

band; 100%, 30%, 77%, and 100% of events had heights, lengths, spreads, and densities 

greater than the median, respectively. Therefore, a majority of Cluster 5 events would be in the 

γHlSD and γHLSD in categories, which consisted of 337 events with 84.3% LGS events (Table 

5.1A, bolded). Similarly, 72.2% of events in Cluster 9 had the highest BP in the beta band, with 

78%, 8%, 42%, and 90% of events with heights, lengths, spreads, and densities greater than 

the median, respectively. These events would be categorized as βHlSD and βHlsD, which 

consisted of 466 events with 83.3% LGS events (Table 5.1A, italicized). Therefore, both 

approaches identified the same subset of high frequency EEG waveforms as potential novel 

biomarkers of LGS.  

 

5.3.4.2 Feature categorization identified EEG events strongly associated with the control 

group 

 In addition to feature categories with significantly more LGS events, there were 23 

different feature categories with significantly more control events than LGS events. 14 of these 
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categories and 52.0% of these events had peak BP in the alpha or sigma band (Table 5.1B). 

Categories associated with control subjects were typically characterized by feature values lower 

than the median, as 82.8%, 60.7%, 70.3%, and 78.0% of events in the control feature 

categories had height, length, spread, and density lower than the median, respectively. In 

contrast to categories associated with LGS, only three feature categories in the beta and 

gamma band had significantly more control events compared to controls, and each one 

contained a single event. 

 

Table 5.1. (A) Feature categories with significantly more LGS events compared to control 
events. Bolded feature categories were representative of events in Cluster 5 and italicized 
feature categories were representative of events in Cluster 9. (B) Feature categories with 
significantly more control events compared to LGS events.  
 

A) LGS Feature Categories  B) Control Feature Categories 

# Events  # LGS  
Event (%) 

Feature  
category 

 # Events  # LGS  
Event (%) 

Feature  
category 

394 292 (74.1%) δHLSD 181 48 (26.5%) δhLSd 

57 38 (66.7%) θHlSD 839 248 (29.6%) θhlsd 

711 463 (65.1%) θHLSD 371 86 (23.2%) θhlSd 

20 17 (85.0%) αHlSd 420 71 (16.9%) θhLSd 

109 80 (73.4%) αHlSD 256 82 (32.0%) θHLsD 

148 83 (56.1%) σHlsD 144 33 (22.9%) θHLSd 

214 168 (78.5%) σHlSD 862 217 (25.2%) αhlsd 

77 61 (79.2%) βhlsD 144 34 (23.6%) αhlsD 

7 7 (100%) βhlSd 255 79 (31.0%) αhlSd 

39 35 (89.7%) βhlSD 107 10 (9.4%) αhLsD 

245 194 (79.2%) βHlsD 74 13 (17.6%) αhLSd 

1 1 (100%) βHlSd 82 7 (8.5%) αhLSD 

221 194 (87.8%) βHlSD 62 14 (22.6%) αHLsd 

1 1 (100%) βHLsd 254 53 (20.9%) αHLsD 

17 17 (100%) βHLsD 327 94 (28.8%) σhlsd 
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68 65 (95.6%) βHLSD 30 5 (16.7%) σhLsd 

6 6 (100%) γhlsD 27 1 (3.7%) σhLsD 

1 1 (100%) γhlSD 35 2 (5.7%) σhLSd 

259 180 (69.5%) γHlsD 65 5 (7.7%) σhLSD 

281 231 (82.2%) γHlSD 78 16 (20.5%) σHLsD 

13 12 (92.3%) γHLsD 1 0 (0%) βhLsD 

56 53 (94.6%) γHLSD 1 0 (0%) γHlsd 

   1 0 (0%) γHlSd 

 

5.4. Discussion 

 The present study developed a novel application of time-frequency analysis for the 

discovery of EEG biomarkers in LGS as a test case. Clusters with significantly more LGS to 

control events were revealed to exclusively contain pathological events such as IEDTs and 

GPFAs based on the clinical review, serving as an internal validation for this method. Other 

clusters that contained events predominantly from LGS subjects, but were labelled “nothing” by 

clinicians, may also have potential as a new biomarker representative of LGS EEG. Our work 

aims to provide a novel method of EEG review that can discover both preexisting and new 

biomarkers by using time-frequency characteristics to impartially identify events of interests. 

This method can be applied outside of LGS cases and help in the diagnosis of any neurological 

disease relying on the visual review of EEG. 

 

5.4.1 Time-frequency image features 

 Prior implementations of time-frequency analysis have used various features for EEG 

event detection. Similar works have implemented time-frequency image analysis on high 

frequency oscillations, where studies used image features in a support vector machine classifier 

(Krikid et al. 2022), detected events using different features such as area, entropy, and 

time/frequency widths (Migliorelli et al. 2020), and also identified events within and outside the 
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epileptogenic zone (Burnos et al. 2014). Time-frequency analysis has also been used to detect 

interictal epileptiform discharges in children with focal epilepsies, with increases in power 

spectrum depending on the region (Jabran et al. 2020), as well as high-frequency changes in 

intercranial interictal spikes (Jacobs et al. 2011). Our work improves on these prior studies in 

several ways. First, our method utilizes the joint analysis of patients and controls, while prior 

studies only analyze patients. This analysis can have clinical relevance as the methods can be 

applied on subjects that may or may not have a neurological disease. Prior studies also 

implement fixed event lengths for analysis, whereas our method can detect events of variable 

length and utilize this as a feature. Our work was also able to identify various EEG waveforms 

without relying on empirical definitions, preset parameters, or previously marked EEG data. 

Lastly, this work can identify the characteristics of events that were representative of LGS 

activity that clinicians often overlook in visual review.  

 

5.4.2  Time-frequency characteristics of GPFAs 

 Across all clusters, there were 35 events labelled as GPFAs by both raters, and these 

events came from eight out of the twenty LGS subjects. Previously, generalized paroxysmal fast 

rhythms in genetic generalized epilepsy patients were reported in 66% of patients using a 24h 

EEG recording (Seneviratne et al. 2017). Another study using a 24-h EEG recordings reported a 

median time of 6.5 hours to see the first generalized polyspike activity (Conrad et al. 2022). 

Therefore, the relative rarity of GFPAs in our dataset was not unexpected, especially given that 

we analyzed only 10 minutes of sleep EEG and not all detected events were visually labelled.  

 Events labelled as GPFA were found in six different clusters, with most events coming 

from clusters 1 and 4. All GPFAs with rater agreement came from a single LGS subject in 

cluster 1, and six different subjects in cluster 4. GPFAs in cluster 1 had a lower FPP of 12.3 Hz 

compared to the FPP of 18.7 Hz in cluster 4, and, correspondingly, the alpha and sigma band 

power of events in cluster 1 were larger than those in cluster 4. This variability in GPFAs is in 
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line with prior findings, as one study reported GPFAs in video scalp EEG as having a mean 

amplitude of 293 uV, length of 1.6s, and frequency of 11.1 Hz (Mohammadi et al. 2015), while 

another study reported mean amplitudes of 88.3 uV, length of 1-4s, and frequencies of 11-20 Hz 

(Bansal et al. 2019). Another study using automated detection defined GPFAs as a high 

frequency burst which typically ranged from 8.8-12.6 Hz, but went as low as 3 Hz in some 

subjects and up to 16-18 Hz in others (Omidvarnia et al. 2021). There are also EEG waveforms 

such as generalized polyspike trains, that have similar features to GPFA and last less than a 

second, that are also biomarkers of drug resistance (Cerulli Irelli et al. 2022; Conrad et al. 

2022). Future studies may wish to use objective computational methods on EEG spectrograms 

between and within subjects to help determine the definition of a GPFA.  

 

5.4.3 Physiological and pathological sleep spindles 

 A total of 118 events were labelled as sleep spindles by both raters; 113 of these 

spindles came from 18 controls, while five of these came from three LGS subjects. The results 

using the automated sleep spindle detector demonstrated a similar decrease in spindles in LGS 

subjects (mean of 93.1 spindles per control subject and 34.3 spindles per LGS subject). Several 

things may have contributed to this difference. A reduction in spindles has been previously 

associated with epilepsy, as the rate of global spindles during N2 sleep was lower in focal 

epilepsy patients compared to controls (Schiller et al. 2022). LGS subjects also have 

significantly less stage 2 sleep compared to age-matched controls (Eisensehr et al. 2001), 

which may have biased the number of spindles that occurred during the 10-minute clip of NREM 

sleep we analyzed. Sleep spindles in LGS may also occur simultaneously with pathological 

waveforms, which can have a masking effect. Moreover, these types of combined events were 

probably classified as epileptiform activity, rather than spindles, by the raters.  

 The results using visual marking and automated detection of sleep spindles both 

suggested that  spindles in control and LGS subjects had different features. The differences in 
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height, spread, and FPP may be explained by the presence of both fast and slow spindles in the 

data (Shinomiya et al. 1999a). The FPP of 14.7 Hz for spindles in controls matches the reported 

frequency of fast spindles (13-15 Hz) (Shinomiya et al. 1999a; Nader and Smith 2015). Control 

spindles also had a higher electrode spread than LGS spindles. Computational, this would make 

sense since the spread is calculated relative to the Fz electrode and fast spindles occur in the 

centroparietal region. Sleep spindles in this frequency range have been attributed to memory 

and processing speed in healthy individuals (Nader and Smith 2015; Schiller et al. 2022). In 

contrast, LGS spindles had a FPP of 11.4 Hz and a lower spread, which could represent slow 

spindles (11-13 Hz) that are typically localized to the frontal region.  

 

5.4.4 Future biomarkers in LGS identification 

 In addition to finding known EEG waveforms such as GPFAs, IEDs, and sleep spindles 

in the data, our methods also found potential candidate EEG biomarkers of LGS. Events in 

clusters 5 and 9 consisted of short EEG segments with high spread, low amplitude, and high 

relative beta and gamma power. The number of LGS events were significantly greater 

compared to controls, yet they were unable to be identified as a specific EEG waveform. A total 

of 100 out of 191 events were labelled as “nothing” by at least one rater. 

 The feature categorization analysis also found similar results, where events with high 

relative beta and gamma BP were more likely to be LGS events. The events in clusters 5 and 9 

share characteristics with paroxysmal EEG events that were shown to be a biomarker of 

epileptogenesis in children, which had peak frequencies in the beta and gamma bands and 

lasted 200 ms or more (Wu et al. 2008). However, we analyzed all events greater than 100 ms, 

and our results suggested that duration was not a critical feature in distinguishing LGS subjects 

from controls. The reported events in clusters 5 and 9 were also not muscle artifact, as gamma 

rhythms during ictal activity have a different morphology compared to muscle (Kobayashi et al. 

2009). Overall, we found that feature categorization had complementary results to k-means 
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clustering while also providing parameters that will not change depending on the cohort. Future 

studies using time-frequency features can also benefit from feature categorization by comparing 

the detected event features to our reported median values, which would allow other works to 

classify their own EEG events in a similar way. 

 

5.4.5 Limitations and future direction 

 There are several limitations to our study. We detected EEG events only in the Fz 

channel; our time-frequency method could be adapted to detect events across all channels, 

although special care would need to be taken to avoid double-counting events that span two or 

more channels. Additionally, the ten minutes of EEG analyzed for each subject may not have 

been a representative sample, as prior studies have used recordings up to 24 hours long 

(Seneviratne et al. 2017; Conrad et al. 2022). The EEG visual analysis provided in the study 

was also unconventional compared to typical EEG review. While the GUI used for event 

labelling was designed to mimic standard clinical viewing software, clinicians were only provided 

the event of interest and an isolated fifteen second clip of EEG surrounding the event. The 

clinicians were also asked to mark events as short as 100 ms, which may influence some labels 

since the event is too short to evaluate on its own and the surrounding EEG can influence their 

decision. Future studies may want to evaluate clinically reviewed EEG in tandem with 

automated events of interest to compare the two.  

 We used k-means clustering to differentiate EEG events based on time-frequency 

features, which provided a broad separation of events with different features but was less 

effective at differentiating EEG waveforms with overlapping properties, such as sleep spindles 

and GPFA. Other clustering methods may be able to address this limitation. For example, 

hierarchical clustering can organize a set of events into subsets that can be arranged at 

different ordered levels, while k-means requires a pre-determined amount of discrete clusters to 

separate the events (Köhn and Hubert 2015). Hierarchical clustering can potentially differentiate 
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a subset of events with multiple EEG waveforms that have similar features, such as GPFA and 

sleep spindles. While k-means found clusters that contained exclusively GPFAs and IEDTs, 

future work on differentiating EEG waveforms with similar features may want to use alternate 

machine learning methods. 

 

5.4.6 Conclusion 

 Altogether, this study provides a computational approach to EEG biomarker discovery 

based on the time-frequency features of the signal. By analyzing scalp EEG data obtained from 

either a healthy or LGS subject, we can automatically detect a set of events without clinical 

review and compare these events to the event feature within our cohort to identify clinically 

relevant waveforms. Furthermore, we propose to apply these methods in other neurological 

diseases, where this work can help evaluate the disease by differentiating healthy and diseased 

EEG based event categorization, identifying known EEG waveforms, and discovering new EEG 

biomarkers within the disease.  
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