
UC San Diego
UC San Diego Previously Published Works

Title
Humans have idiosyncratic and task-specific scanpaths for judging faces

Permalink
https://escholarship.org/uc/item/0qp3m24b

Authors
Kanan, Christopher
Bseiso, Dina NF
Ray, Nicholas A
et al.

Publication Date
2015-03-01

DOI
10.1016/j.visres.2015.01.013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0qp3m24b
https://escholarship.org/uc/item/0qp3m24b#author
https://escholarship.org
http://www.cdlib.org/


Vision Research 108 (2015) 67–76
Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier .com/locate /v isres
Humans have idiosyncratic and task-specific scanpaths for judging faces
http://dx.doi.org/10.1016/j.visres.2015.01.013
0042-6989/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ckanan@caltech.edu (C. Kanan), dbseiso@ucsd.edu (D.N.F.

Bseiso), niray@ucsd.edu (N.A. Ray), jhsiao@hku.hk (J.H. Hsiao), gary@ucsd.edu (G.W.
Cottrell).
Christopher Kanan a,⇑, Dina N.F. Bseiso b, Nicholas A. Ray b, Janet H. Hsiao c, Garrison W. Cottrell b

a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
b Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
c Department of Psychology, University of Hong Kong, Hong Kong

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 May 2014
Received in revised form 3 October 2014
Available online 30 January 2015

Keywords:
Eye movements
Machine learning
Scanpath routines
Face perception
Since Yarbus’s seminal work, vision scientists have argued that our eye movement patterns differ
depending upon our task. This has recently motivated the creation of multi-fixation pattern analysis algo-
rithms that try to infer a person’s task (or mental state) from their eye movements alone. Here, we intro-
duce new algorithms for multi-fixation pattern analysis, and we use them to argue that people have
scanpath routines for judging faces. We tested our methods on the eye movements of subjects as they
made six distinct judgments about faces. We found that our algorithms could detect whether a partici-
pant is trying to distinguish angriness, happiness, trustworthiness, tiredness, attractiveness, or age.
However, our algorithms were more accurate at inferring a subject’s task when only trained on data from
that subject than when trained on data gathered from other subjects, and we were able to infer the iden-
tity of our subjects using the same algorithms. These results suggest that (1) individuals have scanpath
routines for judging faces, and that (2) these are diagnostic of that subject, but that (3) at least for the
tasks we used, subjects do not converge on the same ‘‘ideal’’ scanpath pattern. Whether universal scan-
path patterns exist for a task, we suggest, depends on the task’s constraints and the level of expertise of
the subject.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-fixation pattern analysis (MFPA) is a new eye movement
analysis technique that harnesses machine learning to make infer-
ences about subjects from their eye movements (Benson et al.,
2012; Greene, Liu, & Wolfe, 2012; Tseng et al., 2013; Kanan et al.,
2014; Borji & Itti, 2014). MFPA algorithms take a person’s scanpath,
a sequence of fixations, as their input and use the scanpath to infer
traits such as the task the person was given. If an algorithm can
make this inference above chance when trained on a person’s scan-
paths for specific tasks, then this suggests that the person might
have scanpath routines for accomplishing one or more of the tasks.
Prior work with MFPA has focused on validating the technique for
inferring the task given to a subject when viewing scenes (Greene,
Liu, & Wolfe, 2012; Kanan et al., 2014; Borji & Itti, 2014) and for
inferring whether the subject has a particular disease (Benson
et al., 2012; Tseng et al., 2013). In this paper, we use MFPA to
determine if people have scanpath routines for making different
inferences about faces.
Humans make about three saccadic eye movements per second.
Saccades are needed because the human retina has variable spatial
resolution. It only acquires high resolution information in its cen-
tral (foveal) region, with the resolution in the retinal periphery
being far lower. The information in the periphery, along with infor-
mation about the task being performed, can help direct saccades to
diagnostic features for the task at hand. It makes sense, then, for
humans to deploy scanpath routines for specific tasks so that diag-
nostic information can be acquired using as few fixations as possi-
ble. Formally, we define a scanpath routine as a task-specific
sequence of fixations that exhibits a particular repeated spatial
or spatio-temporal pattern. In order to rule out certain trivial cases,
we also require that scanpath routines be acquired implicitly
through learning, rather than elicited via direct instruction.

We hypothesized that scanpath routines for making common
inferences about faces are likely to exist because some regions of
the face are more diagnostic than others for some tasks. For exam-
ple, the mouth is more diagnostic when judging whether a face is
expressive or not and the eyes are crucial features for judging
gender and identity (Gosselin & Schyns, 2001; Schyns, Bonnar,
& Gosselin, 2002). Similarly, in face recognition it has been shown
that the left eye is the most diagnostic feature initially, followed by
both eyes (Vinette, Gosselin, & Schyns, 2004). This finding is
corroborated by results showing that people tend to fixate slightly
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to the left of the nose initially during face recognition (Hsiao &
Cottrell, 2008). Taken together, these findings indicate that differ-
ent face regions have varied diagnostic utility. However, the scan-
paths people use to make inferences from faces may not be
universal, because people have different experiences and slightly
different visual systems. Peterson and Eckstein (2012) showed that
the fixation points used by people to determine age, gender, and
emotional state of a face differ across these three tasks. In subse-
quent work, they also showed that human eye movements during
face identification were idiosyncratic (Peterson & Eckstein, 2013).
Mehoudar et al. (2014) similarly found that scanpaths during face
viewing are idiosyncratic, and that individuals continued to use the
same idiosyncratic patterns when viewing faces 18 months later.
Finally, several papers have shown that people’s scanpaths have
different properties when viewing novel faces compared to view-
ing familiar ones (Althoff & Cohen, 1999; Joyce, 2000).

The idea of scanpath routines is closely related to ‘‘scanpath
theory’’ (Noton & Stark, 1971; Spitz, Stark, & Noton, 1971). Scan-
path theory argues that eye movements are generated in a top-
down manner to facilitate correct recognition of an image by com-
paring it to previous experience. Learning a recognition task is
taken to mean storing both the visual features and the motor
sequence used to acquire the features. Recognition involves reca-
pitulating the same scanpath when encountering the same stimu-
lus. The strong form of scanpath theory predicts that individuals
should deploy an identical pattern of eye movements during recog-
nition, which is not consistent with human behavior (Henderson,
2003). If humans did behave according to the strong theory, then
it is likely that this behavior would have limited utility since
humans rarely encounter exactly the same visual stimulus twice.
A more general version of scanpath theory would predict that
eye movements should be similar (statistically regular) between
viewings of images from the same stimulus class, and this theory
would allow scanpath routines to evolve over time to enable
improved processing of the stimulus class, e.g., doing the task accu-
rately using fewer fixations. This version of scanpath theory is con-
sistent with our notion of scanpath routines.

To demonstrate the existence of scanpath routines for specific
tasks, it is necessary to show that scanpaths are altered by the task,
but this is not sufficient because it allows certain trivial cases. For
example, Tatler et al. (2010) showed participants a photo of Alfred
Yarbus wearing a coat and asked subjects various questions. When
the subjects engaged in free viewing, the majority of their fixations
were located on Yarbus’s face, whereas when they were instructed
to remember his clothing their fixations were more evenly distrib-
uted between his face and clothes. In their study, the instructions
essentially required the subjects to view different parts of the
image (the clothes). Obviously, one can easily create a situation
where verbal instructions result in discriminable scanpaths. Trivi-
ally, one can ask the subject to look at the upper left hand corner of
the image on one trial and the lower right on another. These exam-
ples are not scanpath routines because they are not acquired
implicitly, i.e., the instruction tells the subject where to look.

For an observer to deploy a scanpath routine for a task, we
believe two constraints must be met. First, the task needs to be
one that an observer has experience with. Second, the task should
be one in which the same task-diagnostic regions in each image
will need to be fixated to perform the task accurately and using
as few fixations as possible. In our study, these conditions are sat-
isfied by using aligned facial images, such that the information is
always in relatively the same locations in each image, and asking
questions about them that subjects are likely to have experience
with. From birth, humans acquire an enormous amount of experi-
ence in making judgments about others from their faces, suggest-
ing that they will have established scanpath routines for efficiently
answering these questions about faces. We ask our subjects to
judge the age, fatigue, angriness, happiness, trustworthiness, and
attractiveness of the people in the images. Because informative
facial features are always located in the same relative position, it
is possible to develop a scanpath routine so that task-relevant
information can be obtained. To adequately test for scanpath rou-
tines, we ask subjects the same six questions about every image, so
that we are able to determine that the eye movements are not dri-
ven purely by the stimulus.

We attempt to find evidence for scanpath routines when mak-
ing judgments about faces by using three different MFPA algo-
rithms. The first method uses only summary statistics, i.e., the
mean number of fixations in a trial and mean fixation duration,
to make its inference. This approach ignores the spatio-temporal
dynamics of the fixations, but it serves as a useful baseline. The
second algorithm models the spatial distribution of fixations,
including their duration at each location, but it ignores the tempo-
ral order information. The last algorithm is able to preserve infor-
mation about the order of fixations as well as use spatial
information. If any of the methods is above chance then we have
strong evidence for scanpath routines for judging faces. By compar-
ing the spatial and spatio-temporal methods, we can gain insight
into the nature of these scanpath routines. For instance, if the spa-
tio-temporal algorithm is significantly more accurate than the spa-
tial algorithm then we can infer that there are diagnostic temporal
regularities in the scanpaths.

We look for evidence of scanpath routines using a within-sub-
jects and between-subjects analysis. If our algorithms are less
accurate in a between-subjects analysis compared to within-sub-
jects, then this suggests that people have idiosyncratic scanpath
routines and that we can use our algorithms to infer the identity
of the subjects.
2. Methods and materials

2.1. Participants

The data used in our experiments is from 12 male and 12 female
Caucasian UCSD students (mean age 19 years 8 months; age range
18–22), who received course credit for their participation. One
additional female was recruited, but the data was excluded
because she did not respond before the timeout in 98% of the trials.
For the other participants, this occurred in 3% of trials on average
(Min: 0%, Max: 11%). This data was not excluded in our analysis.
All participants were right-handed based on the Edinburgh hand-
edness inventory (Oldfield, 1971), and all had normal or cor-
rected-to-normal vision. Participants gave informed consent after
the study had been explained to them, the study was approved
by UC San Diego’s Institutional Review Board, and the work was
carried out in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki).
2.2. Stimuli

The stimuli in our experiment consisted of 48, 561 � 701 pixel
color face images, half female and half male. There were three
images of each face model in this dataset, expressing either happy,
angry, or neutral facial expressions. During a brief familiarization
session to acquaint the participants with the experimental para-
digm (described further in Section 2.4), five additional images of
face models not used in the remainder of the study were employed.
All face images were front-view, Caucasian, and none had facial
hair or glasses. The images came from four age groups: child,
young adult, adult, and elderly. Because no single dataset at the
time of the study contained both images of children and elderly
individuals, we combined images from two face datasets. Images



Fig. 2. Our experiment was comprised of six blocks. In each trial, participants were
instructed with the block’s task and then one of the faces appeared to the right or
left of the fixation cross. Each face was observed only once in each block.
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of children came from the Radboud Faces Database (Langner et al.,
2010). All of the other images came from the FACES dataset (Ebner,
Riediger, & Lindenberger, 2010), which contains images of young
adults, adults, and elderly individuals.

Images were aligned without altering configural information by
rotating, scaling, and translating them so that the triangle defined
by the two eyes and the philtrum was as close as possible in euclid-
ean distance to a reference triangle. This alignment was done using
a nonreflective similarity transformation in MATLAB with the
‘imtransform’ function. To localize the face parts, we used a face
part detection algorithm (Everingham, Sivic, & Zisserman, 2006).
We then imposed a uniformly gray background. Participants
viewed the stimuli on a 21 inch Sony CPD-G520 cathode ray tube
monitor, with a refresh rate of 100 Hz, c ¼ 2:2, and a resolution
of 1200 � 1024. The width of each face model’s head, measured
from the extreme outer edges of each pinna, on the screen was
about 13 cm, and participant’s viewing distance was 50 cm, so each
head spanned about 15� of visual angle. Example face model stim-
uli are shown in Fig. 1.
2.3. Apparatus

An SR Research EyeLink II eye tracker was used to record partic-
ipant eye movements. Binocular vision was used, but only the data
from the eye with less calibration error was used in our analysis.
The tracking mode was set to pupil only, with a sampling rate of
500 Hz. We used the EyeLink II’s default algorithm to identify
fixations.

An eight button Cedrus button box (four buttons per hand) was
used to record participant responses. The right hand was used to
record participant ratings of the stimuli, with each of the four but-
tons numbered sequentially. The left thumb was used to press the
‘‘GO’’ button, which was pressed by participants to proceed after
viewing the instructions. This approach was used because the
Cedrus button box has superior timing compared to the keyboard,
it made it easier for participants to recall which key to press, and it
reduced the likelihood that participants would look at their fingers
during the experiment. All programming was done in MATLAB
using Psychtoolbox-3 (Brainard, 1997) with the Eyelink toolbox
extension (Cornelissen, Peters, & Palmer, 2002).
2.4. Design

A schematic of our experiment is given in Fig. 2. The experi-
menter explained to the participant that they would see a face,
and would need to rate it using a button box ‘‘as quickly and
confidently as possible, because the image will timeout after a
few seconds.’’ The experimenter then familiarized the observer
with the buttons of the input box and prompted the observer to
Fig. 1. Example aligned face images used in our study. Each face model exhibits
three emotional expressions: happy, neutral, and angry. There are four age groups:
child, young adult, adult, and elderly.
begin the task by pressing a separate ‘‘GO’’ button. Participants
were seated 50 cm away from the display monitor. After the initial
eye tracker calibration, participants were familiarized with the
experimental paradigm. Participants were asked to ‘‘Rank how cle-
ver this person is, on a scale from 1 (not clever) to 4 (very clever).’’
We restricted the ranking to only four choices because the button
box only had four buttons for the right hand. Subsequently, a fixa-
tion cross appeared in the center of the screen. The experimenter
then initiated the trial when the participant was gazing at the
cross, causing the fixation cross to disappear and the image to
appear randomly either on the right or left side of the screen.
The distance on the screen from the initial fixation point to the
nasion was 11.35 cm; hence, a 13� saccade was needed to fixate
the center of the face. Once the participant had ranked the image
according to the task, or 3 s had elapsed, the on-screen prompt
returned, followed by gaze correction, and then the next image
would appear. The block continued in this manner until all five
images had been viewed by the observer and the block was com-
pleted. This familiarization block used five images that were dis-
tinct from the 48 images used in each block of the main
experiment. The data collected from this familiarization block
was excluded from analysis.

After familiarization, participants viewed the 48 images in 6
blocks, so each image was seen 6 times. Each block had a different
prompt, and a Latin square design was used to determine the order
of the blocks for each participant. The Latin square design was used
to compensate for any potential memory confound due to partici-
pants seeing the faces multiple times in our between-subjects
analysis. The order of the images was randomized within each
block. The six block prompts were (1) rank how old this person
is on a scale from 1 [child] to 4 [elderly]; (2) rank how fatigued this
person is on a scale from 1 [alert] to 4 [tired]; (3) rank how happy
this person is, on a scale from 1 [not happy] to 4 [very happy]; (4)
rank how angry this person is, on a scale from 1 [not angry] to 4
[very angry]; (5) rank how trustworthy this person is, on a scale
from 1 [not trustworthy] to 4 [very trustworthy]; and (6) rank
how attractive this person is, on a scale from 1 [not attractive] to
4 [very attractive]. The rest of the experiment was identical to
the earlier described familiarization block.

The ‘‘age’’ task is the only one with a ‘‘ground truth’’ answer,
based on the four categories of facial images that were used (child,
young adult, adult, elderly). This task allowed us to check that the
subjects were engaged in their tasks since we know the correct
response. The other tasks are ones that humans often engage in
as social animals. Previous work has shown that judgments of
emotion (Ekman, 1973; Izard, 1971), fatigue (Sundelin et al.,
2013), trustworthiness and attractiveness (Willis & Todorov,
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2006) are reliably assessed by observers. There are also subtle dif-
ferences in observer’s eye movements during face perception when
judging age and fatigue (Nguyen, Isaacowitz, & Rubin, 2009), sug-
gesting that scanpath routines could be used in these tasks.

2.5. Algorithms

Most classifiers in machine learning require all input feature
vectors to have a fixed-dimensionality. However, the number of
fixations acquired in each trial is variable-length. The main chal-
lenge in MFPA is turning a trial’s fixation features into a single
fixed-dimensionality vector that captures diagnostic information.
We implemented three primary algorithms for turning a trial’s
scanpath features into a fixed-dimensionality feature vector. An
overview of them is given in Fig. 3. We also used four additional
combinations formed from those algorithms. The first method is
based on using summary statistics from each trial, and it serves
as a baseline. The second uses the spatial characteristics of the fix-
ations, and the third uses the spatio-temporal characteristics of the
scanpath. The latter two methods are both based on Fisher vectors.
The same classification algorithm is then applied to each of these
feature representations.

During each trial we acquire a sequence of fixation features. For
a fixation t these consist of the ðxt ; ytÞ screen coordinates of the
location fixated and the duration dt of the fixation. The data is pre-
processed by removing the first fixation, which is generally at the
location of the fixation cross, followed by centering the fixations
onto the stimulus’ screen location. Trials in which only a single fix-
ation was recorded were discarded, which occurred in less than
0.5% of all trials. This data served as input to each of the MFPA
methods. In a trial with T fixations, we represent its information
using the matrix

Xtrial ¼ x1 x2 � � � xT½ � ¼
x1 x2 xT

y1 y2 � � � yT

d1 d2 dT

2
64

3
75;

where each column represents the screen gaze coordinates and fix-
ation duration. We will refer to this representation in our descrip-
tion of the three primary methods we use to turn Xtrial into a
fixed-dimensional representation that can be used with an off-
the-shelf classifier.

The summary statistics method turns a trial’s fixations into a 2-
dimensional feature vector containing the number of fixations in
the trial and the mean fixation duration:

USS Xtrialð Þ ¼ T 1
T

PT
t¼1dt

h iT
:

Fig. 3. An overview of the three three algorithms that we use to turn variable-
length scanpaths into fixed-length vectors that can be used for classification. The
summary statistics method only captures simple temporal statistics about the
scanpath. The Fisher vector method using a GMM captures spatial statistics about
where the participant is looking and for how long. The Fisher vector method using a
CD-HMM goes further by also capturing more complex spatio-temporal informa-
tion, such as the transitions from one fixation region to the next. For the Fisher
vector methods, PCA is used for dimensionality reduction. The same classification
algorithm, a support vector machine using an RBF kernel, is used for all three
feature representations.
Each dimension of this representation is then normalized by divid-
ing by the standard deviation of the training data. This approach is
similar to the method used by Greene, Liu, and Wolfe (2012) and
later by Kanan et al. (2014).

The summary statistics algorithm only captures the simplest
temporal statistics, and it ignores all spatial properties and more
complex temporal characteristics. The next two methods for turn-
ing a trial’s time-series features into a fixed-dimensionality vector
can retain the spatial or spatio-temporal aspects, and they are both
based on the idea of Fisher vectors (Jaakkola & Haussler, 1998;
Perronnin, Sanchez, & Mensink, 2010). To use Fisher vectors, a
parametric generative model pðXjHÞ is trained, where X is the
training data and H are the parameters of the model that have
been estimated using maximum likelihood estimation. A trial’s
time-series features Xtrial are turned into a Fisher vector UFV by
examining how they would alter the maximum likelihood param-
eter estimate:

UFV Xtrialð Þ ¼ rH log p XtrialjHð Þ:

The dimensionality of this representation depends only on the
number of parameters in H, and it is invariant with respect to the
length of the time-series. The idea behind Fisher vectors is that
the gradients for two trials from the same category will be similar.

Before using them as input to a classifier, the Fisher vector fea-
tures are normalized in a two-step process that has been shown to
be crucial for achieving state-of-the-art performance with them
(Perronnin, Sanchez, & Mensink, 2010). The first step is to take a
sign-preserving square root of the features, i.e., f zð Þ ¼ sign zð Þ

ffiffiffiffiffi
zj j

p
is applied element-wise to the features. The second step is to make
the features unit length by dividing by their Euclidean norm.

We use two different generative models with Fisher vectors. We
briefly summarize how to compute them here, but see Perronnin,
Sanchez, and Mensink (2010) and van der Maaten (2011) for fur-
ther details. The first method is a Gaussian mixture model
(GMM), which will represent the spatial characteristics of a scan-
path without preserving any of its temporal properties. This Fisher
vector representation has been very successful at object
(Perronnin, Sanchez, & Mensink, 2010) and face (Simoyan et al.,
2013) recognition problems in computer vision; we are the first
to apply it to eye movement data. To compute these Fisher vectors,
we used the implementation in the MATLAB VLFeat toolbox
(Vedaldi & Fulkerson, 2008), which uses Gaussians with diagonal
covariance. The parameters used to construct Fisher vectors were
the means and covariances of the Gaussians. The mixture weight
Fisher vectors are typically not discriminative and were not sup-
ported by the toolbox. Formally, a GMM composed of K Gaussians
is given by the equation,

p xð Þ ¼
XK

k¼1

wkN xjlk;Rk

� �

where wk are the mixture weights and N xjlk;Rk

� �
are the Gaussian

densities in the mixture, which each have their own mean lk and
diagonal covariance Rk. The parameters of the GMM are fit to the
training data. Example GMMs are shown in Fig. 4. As is standard
with Fisher vectors, only one GMM is learned, regardless of the
number of categories that need to be discriminated. The gradients
of the means and covariances are used to generate the GMM Fisher
vectors that summarize the information in a trial. For simplicity and
to be consistent with other recent papers, e.g., Simoyan et al. (2013),
we drop the vector differentials and just give the equations for com-
puting the Fisher vector features. For each mixture component k,
these are given for the means by

uk ¼
1

T
ffiffiffiffiffiffi
wk
p

XT

t¼1

qtkR
�1
k xt � lk

� �



Fig. 4. Example GMMs trained on the fixations of three participants shown on an
average face. The top row shows the location of each model’s Gaussians, with the
Gaussian’s duration parameter represented by the size of the circle. The bottom row
shows the covariances of the Gaussians’ spatial parameters.

Fig. 5. Example CD-HMMs trained on the fixations of three participants shown on
an average face. For visualization purposes, we limited the CD-HMMs to at most
three states. The top row shows the location of each model’s Gaussians, with the
Gaussian’s duration parameter represented by the size of the circle and the
transition matrix is shown by arrows (ignoring self-transitions and the strength of
the transitions). The bottom row shows the covariances of the Gaussians’ spatial
parameters.
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and for the covariances by

vk ¼
1

T
ffiffiffiffiffiffiffiffiffi
2wk
p

XT

t¼1

qtk R�1
k xt � lk

� �� �
� R�1

k xt � lk

� �� �
� 1

h i
;

where T is the number of fixation features in the trial, � represents
the element-wise matrix product (i.e., Hadamard product), 1 is a
vector of ones, and

qtk ¼
exp � 1

2 xt � lk

� �TR�1
k xt � lk

� �h i
PK

j¼1 exp � 1
2 xt � lj

� �T
R�1

j xt � lj

� �� � ;

is the assignment strength the GMM gives the fixation features xt to
each mixture component. The unnormalized GMM Fisher vector for
a trial is then created by concatenating the uk and vk vectors:

UGMM Xtrialð Þ ¼ u1;v1; . . . ;uK ;vK½ �T :

This representation is then normalized using the two-step proce-
dure described earlier.

The second generative model we use to compute Fisher vectors
is a continuous density hidden Markov model (CD-HMM), i.e., an
HMM with Gaussian emissions. This method will model both the
spatial and temporal properties of a trial’s scanpath features. A
CD-HMM has one Gaussian per hidden state. Fisher vectors with
HMMs and CD-HMMs have been used in bioinformatics for protein
classification (Jaakkola, Diekhans, & Haussler, 2000), in computer
vision for activity recognition (Sun & Nevatia, 2013), and in speaker
identification (Wan & Renals, 2002). For the CD-HMM Fisher vector
model, we used the MATLAB CD-HMM implementation provided
by van der Maaten (2011), and we set it to use diagonal covariance
matrices. For the CD-HMM model, the parameters used to con-
struct Fisher vectors were the means and covariances of the Gaus-
sians and the state transition matrix. Formally, a CD-HMM models
the joint distribution of a trial’s fixation features X over sequences
of hidden states s ¼ s1; s2; . . . ; sTf g and is given by

p X; sð Þ ¼ p s1ð Þ
YT�1

t¼1

p stþ1jstð Þ
YT

t¼1

N xt jlst
;Rst

� �
;

where p s1ð Þ is the initial hidden state distribution, p stþ1jstð Þ are the

state transition probabilities, and N xt jlst
;Rst

� �
are the Gaussian
emission densities associated with each hidden state. In CD-HMM
Fisher vectors, only one CD-HMM is learned, regardless of the num-
ber of categories that need to be discriminated. This is because trials
belonging to the same category will presumably change the model
in similar ways. CD-HMMs trained on the fixations of three partic-
ipants are shown in Fig. 5. For a CD-HMM with K states, a trial’s
Fisher vectors for the means of the Gaussians are given by

uk ¼
1
T

XT

t¼1

ctkR
�1
k xt � lk

� �
;

the Fisher vectors for the covariances by

vk ¼
1

2T

XT

t¼1

ctk R�1
k xt � lk

� �� �
� R�1

k xt � lk

� �� �
� R�1

k 1
h i

;

and the elements of the Fisher vector for the state transition matrix
by

hkj ¼
mkj

akj
;

where ctk is the CD-HMM posterior probability over the states given
the observations, mkj is the CD-HMM posterior probability over the
transition edges, and akj is the element of the state transition matrix
representing the probability of transitioning from state k to state j.
All of these are then concatenated to form the CD-HMM Fisher vec-
tor representation:

UHMM Xtrialð Þ ¼ u1;v1; . . . uK ;vK ;h½ �T ;

where h is all of the hkj elements concatenated into a vector. Subse-
quently, we apply the two-step normalization process described
earlier to the CD-HMM Fisher vector.

In addition to these three primary feature types (summary sta-
tistics, CD-HMM Fisher vectors, and GMM Fisher vectors), we used
all four combinations of them by concatenating them together:
summary statistics with GMM Fisher vectors, summary statistics
with CD-HMM Fisher vectors, GMM Fisher vectors with CD-HMM
feature vectors, and summary statistics with GMM Fisher vectors
and CD-HMM feature vectors. By comparing these models we
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can measure the amount of improvement gained by incorporating
spatial or temporal properties. If the CD-HMM is superior to the
other models or increases their accuracy when combined with
them, then this suggests the temporal order of the fixations pro-
vides some diagnostic information.

Across all of these representations of a trial’s features, the same
radial-basis function support vector machine (SVM) classification
algorithm was used. We used the LIBSVM toolbox (Chang & Lin,
2011). For all methods except the summary statistics algorithm,
we first reduced the dimensionality of the feature vectors using
whitened principal component analysis (PCA). While the number
of the Gaussians and states influences the dimensionality of the
Fisher vector representations, PCA plays a complimentary role that
has an independent influence on classification accuracy. The width
of the radial-basis functions, SVM cost parameter, number of prin-
cipal components, number of clusters (for the GMM model), and
number of hidden states (for the CD-HMM model) were tuned with
4-fold cross validation using the training data, with the width and
cost parameters chosen from 2�8;2�7; . . . ;28, number of principal
components chosen from 20;21; . . . ;28 (or fewer, depending on
the dimensionality of the Fisher vector representation), and num-
ber of clusters or hidden states chosen from 1;2; . . . ;10.

Our data is slightly unbalanced due to trials with only one fix-
ation being excluded, as described earlier. Because of this, we use
a random classifier that makes random predictions from a uniform
distribution to calculate chance performance in each experiment. If
no trials were dropped, then in our task prediction experiments
chance would be 16.67% and in our participant identity prediction
experiment chance would be 4.17%. In all experiments, the random
classifier is very close to these levels.

3. Results

Because we know the age category for all of the stimuli, we can
use the age ranking task to assess how engaged our subjects were
during the experiment. We found that participants accurately pre-
dicted the age category, with a mean absolute error of 0.19 (95%
CI = 0.14–0.24) in their prediction of the age group. Since age was
ranked from 1 to 4, the maximum possible mean absolute error
is 3, and if participants were randomly guessing it would be 1.25
on average. In trials where subjects incorrectly predicted the age,
they were off by no more than one age category in 99.1% of trials
(e.g., misclassifying a young adult as an adult). These statistics sug-
gest our participants were genuinely trying to do the task. The rel-
ative frequency of the ratings for each task is shown in Fig. 6.
Participant agreement on the task ratings, mean number of fixa-
tions per trial, and mean reaction time per trial are shown in
Table 1. Since the number of fixations varies among the tasks
Fig. 6. The relative frequency of the four ratings picked by all participants across
the six tasks. Age was closest to a uniform distribution, which is expected since
participants classified age with high accuracy and each age category contained the
same number of face models. Attractive is the farthest from uniform, with
participants generally rating our face models as unattractive.
(e.g., age vs. trustworthy), this suggests that the summary statistics
algorithm will be sufficient to perform above chance in a between-
subjects analysis. Table 2 shows the frequency of fixations to each
face region across participants. The statistics across tasks differ lit-
tle, suggesting that a between-subjects approach using spatial sta-
tistics will perform poorly.

Fig. 7 shows the density of participant fixation locations across
the six tasks. To generate the density plots, we used a Gaussian
kernel density estimation method in which the bandwidth is auto-
matically estimated (Botev, 2006). When the fixations from all par-
ticipants are combined, we get the usual ‘‘T’’ shaped pattern of
fixations around the eyes and mouth for all of the tasks. However,
there are strong qualitative individual differences among partici-
pants, consistent with the findings of others (Peterson & Eckstein,
2013; Mehoudar et al., 2014), suggesting that we will be able to
infer participant identity. For each participant, the differences in
fixation density across tasks are subtle. This suggests that inferring
the task will be difficult for the algorithms if restricted to only the
gaze coordinates.

3.1. Within-subject task prediction

Our first task prediction experiments are within-subject. If we
can judge the task a subject is performing based on their scanpaths,
this would suggest that they have a scanpath routine for the task.
For each subject we use leave-one-out cross validation, i.e., we
train all of the methods on 287 trials, test on the remaining
hold-out trial, and repeat this process 288 times. We also gener-
ated labels at random (denoted Random Classifier) to calculate
chance, since the number of trials are slightly unbalanced due to
dropped trials. As shown in Table 3, all of the algorithms performed
above chance, with the summary statistics algorithm performing
worst and the combination of all three methods performing best.
This result indicates that it is possible to discern a participant’s face
judgment task at above chance levels solely from their scanpath.

What role does temporal information play in scanpath rou-
tines? Since the summary statistics model is above chance, this
means that simple temporal regularities exist and are diagnostic.
Does incorporating the order of fixations provide any benefit over
a spatial model combined with simple temporal statistics? While
there was no significant difference between the CD-HMM method
compared to the GMM method with summary statistics,
tð6877Þ ¼ 1:62; p ¼ 0:10, we did find that the combination of all
three methods was significantly more accurate than the other
models (see Table 3). Moreover, adding the CD-HMM method to
any other method improved accuracy. Taken together, these
results indicate that complex temporal statistics, including the
order of fixations, are incorporated into scanpath routines to a lim-
ited extent since they are of diagnostic value.

We have argued that, because accuracy is above chance, scan-
path routines for judging faces exist. Do we have scanpath routines
for all of the tasks in our study or just a subset of them? We can
Table 1
Participant agreement computing using the intraclass correlation coefficient, the
mean number of fixations, and the mean reaction times for each task across all
participants. A 95% confidence interval is given for the number of fixations and
reaction times. The tasks in which participant agreement was higher generally
required fewer fixations than for those tasks where it was lower.

Agreement Number of fixations Reaction times (s)

Age 0:85 3:05� 0:10 1:20� 0:03
Happy 0:75 3:59� 0:11 1:44� 0:04
Angry 0:65 3:67� 0:11 1:46� 0:03
Tired 0:38 4:29� 0:11 1:71� 0:03
Trustworthy 0:31 4:23� 0:12 1:76� 0:04
Attractive 0:30 4:03� 0:12 1:56� 0:03



Table 2
The frequency of fixations to each face region across participants for each of the six
tasks.

Left eye (%) Right eye (%) Nose (%) Mouth (%)

Overall 27.3 26.1 30.4 16.2
Happy 26.4 24.6 29.9 19.1
Angry 24.2 25.9 30.9 19.0
Tired 28.3 27.0 29.0 15.7
Attractive 28.2 25.4 31.6 14.8
Trustworthy 29.2 26.4 29.7 14.7
Age 26.4 27.3 32.0 14.3

Fig. 7. The distribution of fixations across the six tasks for all participants (first
column) and for three particular participants (remaining columns). Qualitatively,
there are strong individual differences among participants, e.g., participant C
primarily looks at the left eye and mouth whereas participant A primarily looks at
both eyes and rarely the mouth.

Table 3
Mean predictive accuracy and 95% confidence intervals from within-subject exper-
iments for all methods. SS denotes summary statistics method, GMM denotes the
GMM Fisher vector model, and CD-HMM denotes the CD-HMM Fisher vector method.

Method Mean (%) 95% CI

Random classifier 16.67 15.79–17.56
SS 26.00 24.96–27.05
GMM 31.23 30.14–32.34
CD-HMM 32.41 31.30–33.53
SS + GMM 33.48 32.37–34.61
SS + CD-HMM 33.91 32.79–35.04
GMM + CD-HMM 33.99 32.87–35.13
SS + GMM + CD-HMM 36.30 35.17–37.45
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gain some insight by analyzing the confusion matrices for the
MFPA methods, which are shown in Fig. 8. All of the methods were
above chance for all of the tasks, except for angry with the sum-
mary statistics method (16% correct). For the combination of all
three MFPA methods, the age task had the highest accuracy (41%
correct) and angry had the lowest (31% correct). Tasks that are con-
fused with greater frequency by the algorithms indicate that the
scanpath statistics for the these tasks are more similar than other
tasks. For the combination of all three MFPA methods, this
occurred most between happy and angry as well as attractive
and trustworthy. The happy/angry confusion could indicate that
people have a general scanpath routine for classifying emotional
facial expressions, potentially involving more frequently looking
at the mouth than for other tasks (see Table 2). Several studies
have shown that human judgments of appearance and trustwor-
thiness are correlated (Budesheim & DePaola, 1994; Zaidel, Bava,
& Reis, 2003; Kleisner et al., 2013), and this may be the reason
why the scanpaths for attractiveness and trustworthiness are more
frequently confused by the algorithms.

The confusion matrices shown in Fig. 8 are averaged across all
participants, but how similar are the confusion matrices computed
for each of the 24 participants? To measure this per algorithm, we
treated the task confusion matrix computed for each participant as
a vector and then calculated the intraclass correlation coefficient.
The intraclass correlation coefficient was moderate (0.76) for the
summary statistics method, but was high (0.94–0.96) for all of
the other algorithms. This indicates that when the algorithms are
trained on different subjects, they still make the same kinds of
confusions.

3.2. Between-subject task prediction

If subjects have scanpath routines for judging faces, do they
have the same scanpath routines across subjects? To the extent
that this is the case, we should be able to tell what a subject is
doing from another subject’s scanpath data. To test this hypothesis,
we trained the algorithms on all of the data from 23 of the 24 par-
ticipants, and tested on the remaining hold-out participant. This
was repeated 24 times, with each participant serving as a hold-
out. This approach uses 23 times more training data than our
within-subjects experiments, so if people have universal scanpath
routines for these tasks we would expect performance to be at
least as good as our within-subjects results. As shown in Table 4,
all of the algorithms performed above chance; however, the results
are worse than the within-subjects results. The best method in the
between-subjects analysis is 39% worse, in relative terms, than the
best method in the within-subjects analysis. Also, unlike the
within-subjects analysis, no method is better than using the sum-
mary statistics method. Moreover, when the summary statistics
method is combined with either the GMM or CD-HMM methods,
accuracy is reduced, suggesting they are adding noise to the classi-
fier’s input. These results indicate that scanpath routines for judg-
ing faces are idiosyncratic because spatial and complex spatio-
temporal information provides no benefit over simple summary
statistics. The GMM Fisher vector model performs worst, suggest-
ing that the spatial distribution of fixations differs among partici-
pants. The CD-HMM model performs significantly better than the
GMM method, and this is likely because the CD-HMM method is
implicitly capturing some of the low-level summary statistics.

3.3. Participant identity prediction

Since our within-subjects results are significantly higher than
our between-subjects results, this indicates that people have idio-
syncratic scanpaths. To verify this, we trained classifiers to infer
participant identity, i.e., the algorithms were trained on labeled
scanpaths from each of the 24 subjects and given an unlabeled
scanpath they would predict which subject generated it. For this
experiment, we trained the classifiers using 240 randomly selected
trials per participant (40 per task), and we tested on the remaining
trials. Our results are calculated over 50 random cross-validation



Fig. 8. Task inference confusion matrices from the within-subjects analysis for all methods. Each column indicates the predicted category and each row represents the actual
class. SS denotes summary statistics method, GMM denotes the GMM Fisher vector model, and CD-HMM denotes the CD-HMM Fisher vector method.

Table 4
Mean predictive accuracy and 95% confidence intervals from the between-subject
experiments for all methods. SS denotes summary statistics method, GMM denotes
the GMM Fisher vector model, and CD-HMM denotes the CD-HMM Fisher vector
method.

Method Mean (%) 95% CI

Random classifier 16.68 15.80–17.58
SS 22.16 21.18–23.16
GMM 18.19 17.28–19.12
CD-HMM 20.38 19.44–21.36
SS + GMM 19.85 18.91–20.81
SS + CD-HMM 20.94 19.98–21.92
GMM + CD-HMM 20.66 19.71–21.64
SS + GMM + CD-HMM 21.39 20.42–22.38

Table 5
Mean predictive accuracy and 95% confidence intervals from participant prediction
experiments for all methods. SS denotes summary statistics method, GMM denotes
the GMM Fisher vector model, and CD-HMM denotes the CD-HMM Fisher vector
method.

Method Mean (%) 95% CI

Random classifier 4.18 4.02–4.35
SS 14.40 14.11–14.69
GMM 52.78 52.37–53.20
CD-HMM 58.64 58.23–59.05
SS + GMM 53.76 53.35–54.18
SS + CD-HMM 58.16 57.75–58.57
GMM + CD-HMM 60.96 60.55–61.36
SS + GMM + CD-HMM 61.79 61.39–62.19
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runs. As shown in Table 5, all algorithms performed above chance,
with the summary statistics algorithm performing worst and the
combination of all three methods performing best. While the CD-
HMM and GMM Fisher vector methods were comparable in our
within-subjects analysis, the CD-HMM method achieved signifi-
cantly higher accuracy at participant identification. This indicates
that the temporal regularities in a subject’s scanpaths are indica-
tive of their identity.

4. Discussion

The experiments we conducted were designed to determine if it
was possible to infer which face inference task a subject was trying
to accomplish, solely from their eye movements. All of the tasks we
gave the subjects were detectable from their scanpaths at a level
well above chance. We conclude from these results that individual
humans have scanpath routines for faces to answer particular
questions. However, we cannot conclude that subjects were using
the same scanpath routines for three reasons: (1) performance was
much worse in trying to detect a subject’s task based upon all of
the other subjects’ data, despite using a larger amount of training
data, (2) unlike our within-subject results, no algorithm outper-
formed the summary statistics method in our between-subject
analysis, which means that capturing more complex spatio-tempo-
ral properties was not helpful, and (3) we were able to accurately
predict participant identity, which should work poorly if partici-
pants are using the same scanpath routines. This finding is consis-
tent with other reports that human scanpaths are idiosyncratic
(Noton & Stark, 1971; Foulsham et al., 2012). While we believe it
is possible to develop superior algorithms for MFPA, we do not
think that doing so will change our conclusion that people have
scanpath routines for judging faces since this conclusion is based
on the algorithms performing above chance.

We used the Cartesian coordinates of our subject’s fixations as
one of the features given to the classifiers. One of the reasons
why this was effective is that we implicitly used an object-cen-
tered coordinate system because we aligned the face stimuli, so
the gaze coordinates contain information about what facial parts
are being fixated. We suspect that performance would be much
poorer if the images were unconstrained. One way to get around
this is to use an explicitly object-centered coordinate system with
labeled areas of interest as features, e.g., for faces this might consist
of a vector for each fixation that indicates if the eyes, nose, or
mouth is being fixated. An alternative is to use features that do
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not depend on the locations themselves and only encode relative
motor activity, e.g., the direction and distance of each fixation from
the previous fixation location. These representations could be used
with both Fisher vector methods with relatively little effort.

Our definition of scanpath routines includes that they were
acquired via implicit learning in the service of a task. We did not
investigate how they are learned, but it is possible to create artifi-
cial tasks in the lab in which subjects learn efficient scanpaths
without verbal instruction. For example, Rehder and Hoffman
(2005) trained subjects to categorize stimuli consisting of three
characters in a triangular array, where each character always
appeared in the same location. Each character had two possible
values, giving eight possible exemplars. Subjects were trained
using feedback to categorize the eight exemplars into two
equally-sized categories corresponding to one of the six category
types of Shepard, Hovland, and Jenkins (1961). Simple categories
depended upon the value of one of the characters, while complex
categories could require observing all three characters to classify.
Over time, subjects developed efficient, stereotyped eye move-
ments for the particular category type. Another example is the
Desrochers et al.’s (2010) study. During each trial of their study,
subjects (monkeys) were seated in front of an array of dots, with
one randomly chosen dot providing a reward to the monkey when
it was fixated. After several learning sessions, each monkey
acquired a stereotyped scanpath that visited all of the dots only
once during each trial. This is more efficient than revisiting dots,
but not all paths are equally efficient at minimizing the amount
of time required. For both monkeys, this initial scanpath routine
gradually became more efficient, but only one of the monkeys
developed the optimal scanpath routine. Both Rehder and
Hoffman (2005) and Desrochers et al. (2010) have been success-
fully modeled using reinforcement learning algorithms
(Desrochers et al., 2010; Nelson & Cottrell, 2007). Similar mecha-
nisms are thought to be implemented in the basal ganglia, which
enables scanpath routines to be learned in humans and other ani-
mals (Hayhoe & Ballard, 2005; Hikosaka, Takikawa, & Kawagoe,
2000). The acquisition of efficient scanpath routines in more natu-
ral tasks, which lack artificial constraints, has yet to be studied.

Beyond inferring the task given to a person and their identity,
our algorithms could be used to infer other traits. For example,
these algorithms could potentially be used to diagnose Parkinson’s
disease or autism spectrum disorders, as long as a diagnostic stim-
uli could be identified to present to the subject. If this inference
could be reliably made, MFPA would offer a low-cost diagnostic
technique (especially since some eye trackers can now be pur-
chased for less than $100). This approach has already shown suc-
cess in predicting schizophrenia, attention deficit hyperactivity
disorder, fetal alcohol spectrum disorder, and Parkinson’s disease
using algorithms similar to the summary statistics method
(Benson et al., 2012; Tseng et al., 2013). Fisher vector methods that
incorporate the spatio-temporal characteristics of scanpaths
directly could lead to further improvements in disease diagnosis
from eye movements.

5. Conclusions

In summary, we provide here the first direct evidence of scan-
path routines for judging faces in humans. Consistent with other
studies (Borji & Itti, ; Kanan et al., 2014), we found that a subject’s
task can be inferred solely from their eye movements. Our algo-
rithms were most successful when judging observer’s tasks from
their own history of eye movement patterns, from which we con-
clude that, at least for these tasks, observers have idiosyncratic
scanpath routines. It should be of considerable interest to further
investigate whether experts in particular tasks converge on the
same, optimal scanpath routines for their areas of expertise.
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