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TOURETZKY

here is that the Language Acquisition Device may only be able to hypothesize very simple rules. The
rules can interact to produce lengthy denvations, and they are cxtensively chunked during development
to arrive at adult linguistic performance. But chunking is the only source of complex rules; they cannot
be created de novo by the LAD.

Why have rules at all in a connectionist theory? Rules separate policy (what Chomsky calls linguistic
“switch settings”) from mechanism (the fundamental ability to do insertions, deletions, and mutations.) If
a mechanism such as the String Editing Network is universal and genetically determined, then the LAD’s
job is tremendously easier: it can concentrate on learning just the policies of the speaker’s language.

This paper makes no assumption that policies require explicit symbolic representations in speakers’ heads.
Rather, it shows that chunking can occur even when there is no working memory trace available and
new rules cannot be constructed symbolically. The connectionist chunker acquires its rules incremen-
tally, through self-supervised backpropagation and rehearsal of prior knowledge. Further experiments are
planned to analyze the representations the chunker develops.
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A PDP model of sequence learning that exhibits the power law

Yoshiro Miyata
Bell Communications Research

ABSTRACT

This paper examines some characteristics of the leaming process in a model of skill learning
(Miyata, 1987) in which performance of executing sequential actions becomes increasingly
more efficient as a skill is practiced. The model is a hierarchy of sequential PDP networks
which was designed to model a shift from a slow, serial performance of a novice to a fast,
parallel performance of an expert in tasks such as typing. The network develops
representation of a set of sequences as it tries to produce the sequences faster. The model
was found to yield the power law of learning (Newell and Rosenbloom, 1981). In addition, it
exhibited a frequency effect on substitution errors similar to what was found in typing
(Grudin, 1983).

INTRODUCTION

Learning has intrinsic importance Lo the study of skilled performance because the nature of
performance dramatically changes as a skill develops. However, study of skill leaming is difficult
because one has to explain not only what processing structure underlies skilled performance in a
particular task domain, but also what mechanism enables us 1o build such structures as a result of
experience in many different tasks. The approach taken in this work is to look for phenomena that are
observed across a wide range of tasks and to try to develop a model of action leamning that attempts to
account for what seem to be quite general phenomena.

I have previously proposed a model of skill learning in which performance of sequential actions
becomes faster as a skill is practiced (Miyata, 1987). This model successfully accounted for some effects
of prescntation frequency in typing, specifically the effect on speed (Grudin & Larochelle, 1982) and ona
class of execution errors (Sellen, 1986). This paper reports on some additional experiments which
revealed some interesting characteristics of the learning process in the model. In particular, the model is
shown to exhibit the power law of learning. In addition, it exhibited a frequency effect on error patterns
similar to typing errors at the keystroke level as well as at the sequence level as previously shown
(Miyata, 1987). 1 will start by describing an example of the power law to illustrate the kind of skills
being modeled in this work.

The Power Law

Probably the most general phenomenon we know about learning is that practice makes performance
faster. However, more specific regularities seem to exist. For a wide variety of tasks, the leaming curve
(i.e., a plot of the time to perform the task versus the number of trials) produces approximately a straight
line in log-log coordinates (Newell & Rosenbloom, 1981). This has been generally called the power law
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because it indicates that the time is a power function of the number of trials. Figure 1 shows a learning
curve of a beginning typist in a typing class studicd by Gentner (1983) with the median interstroke
interval plotted against the number of weeks of study on a log-log scale.

THE HS MODEL

Consider a person leamning to type: first, a novice who has just started to leam typing. Suppose the
learner has an intention to type the word "type". He would first find the key "t" on the keyboard and then
hit the key. (Note that even a novice typist has the skill to hit a key by moving a finger.) Only after this
is finished will he proceed to find and hit the next key "y". Performance is serial and slow. Compare this
with an expert who no longer has to work letter by letter, but can deal with scveral keystrokes
simultaneously. In fact, skilled typists seem to achieve their spced by overlapping their finger
movements for successive keystrokes (Gentner, Grudin & Conway, 1980). As the typists learn to type
faster, their finger movement pattemns change so as to take into account the context of each character
(Gentner, 1983). Performance becomes parallel and fast.

The model to be presented here, called the HS model (for Hierarchical-Sequential Model), was
designed to account for this kind of change from a novice 1o an expert. The HS model, like many other
hierarchical models (Miller, Galanter & Pribram 1960; MacKay, 1982; Laird, Rosenbloom, & Newell
1986; Anderson, 1982, for example), assumes a hierarchical control structure, where higher level
representation holds more abstract, longer range information, whereas more concrete, short term
information is represented at lower levels. Thus, an intention to perform a sequence is represented at the
top level and is converted to representations at successively lower levels until it is finally converted into
actual physical body movements at the lowest level. For example, the highest level might specify an
intention to type a sequence of letters (word, phrase, or sentence), and the intermediate levels might
represent letter subsequences, or individual letters, that constitute the whole sequence. Consequently,
higher level representation stays relatively stable whereas representations at lower levels changes more
rapidly: an intention to type a word stays unchanged at the top level while the lowest level goes through a
secquence of action components, eg., finger movements. The HS model differs, however, from the
previous hierarchical models in that there is no fixed a priori relations between levels of representation
and the levels in the hierarchy of the model, except at the highest and the lowest levels. The relations
change as the system leams what level of information each level in the model should represent in order to
achieve more efficient performance.

s 1-Finger Doubles
% |-Finger Non—-Doubles
o 2-Finger Digraphs
o 2—Hand Digraphs

3 3388
/

Figure 1. Learning curves for one of the typists studied by

Median ISI (msec)

500 -
Gentner (1983). The median interstroke intervals are plotted ~o
against the number of weeks in a beginning typing class on a wo ™3
log-log scale. The four curves correspond to four different di- i s
graph classes that differ in their motoric requirements, but the il e
specific effects of digraph classes are not important for the : s . 7 s

current discussion.
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In this framework, the lcaming process from a novice to an expert described above can be
characterized as follows: in the novice case, lower, more "motoric"” levels have not developed
representations of long sequences but have representations only of small action components, such as
"hitting a key”. This means that the representation of an intention must be broken down into smaller
components at relatively higher levels in the hierarchy. However, as the system becomes expert,
representations of chunks of these components (such as small letter sequences) are developed at
intermediate levels. Such chunks are broken down into their constituents at lower levels, closer to
physical movements. If we only assume that it takes a constant time to execute a chunk at an
intermediate level, forming chunks of longer subsequences leads to a faster performance because fewer
chunks are required to represent each sequence,

The Network Architecture

A special case of the HS model, in which there are three levels of representation, has been
implemented and tested as a PDP network. Since the model was described fully in Miyata (1987, 1988), I
will only briefly review the model and summarize the findings previously reported. In the next section, |
will describe new findings about the model’s leamning process. Figure 2 shows the architecture of the
network. The highest level, labeled Intention, contains a conceptual representation of the action sequence
to be performed. The lowest level, labeled Action represents individual components to be executed. The
middle level, Plan mediates the mapping between Intention and Action. The operation of the model
involves two mappings, implemented by two subnetworks: The subnetwork Planning-Net maps from an
Intention vector to a sequence of Plan vectors. The subnetwork Execution-Net maps from a Plan vector

INTENTTON

000000

b _
000000 WOQJOQCP eedback units

, Figure 2. The architecture of the HS model with three
f levels of representation. Infention is a conceptual
PLANNING-NET representation of the action sequence to be performed.
Action represents individual action components to be
exccuted. Plan is an intermediate representation that
mediates the mapping between /ntention and Action.
A single Intention vector is mapped to a sequence of

3 Plan vectors by Planning-Net, and each Plan vector is
gedback unts mapped to a sequence of Action vectors by
Execution-Net. The two mappings are implemented
by two Jordan networks. The output of Planning-Net
is directly fed to the plan units of Execution-Net. The
feedback units of the Execution-Net are connected to
EXECUTION-NET the feedback units of the Planning-Net.

hidd

hid

ACTION
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10 a sequence of Action veclors.

Each subnetwork was Jordan’s sequential network (Jordan, 1986) in order to generate a sequence of
output vectors from a single input vector. In addition to a fecdforward three-layer architecture with one
layer of hidden units, a Jordan network has a set of feedback units with recurrent self-connections which
acts as a memory of a temporal context of past output vectors stored as an exponentially decaying trace of
past output vectors: The sequence of vectors X = (¥, X3, - - -, Xr ), where X is the outpult vector at time ¢,

is stored as Y o x;, where a is the decay factor (O<o<1). At cach time step, the next output vector is

determined both by its input vector (which does not change during the sequence), and by the feedback
vector (which changes at each time step).

In the HS model, a set of connections from the feedback units of the Execution-Net to the feedback
units of the Planning-Net allowced the latter to keep track of what the former was doing. Also, note that
Planning-Net operated at a slower rate than Execution-Net: Planning-Net is updated only once in cvery
three steps (in this particular simulation) of updating Execution-Net.

In the simulation reported here, there were 4 possible actions A, B, C and D, cach represented by
one of 4 output units of Execution-Net. Each Intention vector represented a sequence of three actions.

Pre-Training

The back-propagation algorithm (Rumelhart, Hinton, & Williams, 1986) was uscd to train the
network. However, before the system could start lcaming, the elementary skill of a novice, such as the
ability to find and hit a key, must be somehow realized in the system. This prior knowledge was modcled
by pre-training the network so that it could perform in a manner analogous to a novice typist, before the
actual training of the task itself started. As the result of pre-training, the network could perform the task
but only slowly. Figure 3 illustrates the time course of the operation of the network after the pre-training.
It was trained to use 4 Plan veclors, each representing one of the 4 possible actions. In order to generate
the sequence ABC, for example, Planning-Net was pre-trained to generate a sequence of three Plan
vectors, (Planl, Plan2, and Plan3) one representing A, one for B, and one for C. Exccution-Net was
pre-trained to respond to each Plan by tuming on the corresponding outpul unit (shown in the figure by
the upright rectangle in the action sequence) at the first time step and then tumn off all output for the next
two time steps.l

The network was trained to produce the 64 possible scquences of three components, each
component being one of four actions.

Training

In the actual training, a procedure was used that forced the network to gradually speed up its
performance. Suppose the network was to produce the sequence ABC. Each action produced by the
network was compared against a target and the weights modified so as to reduce the error. The target was
always the next component in the sequence to be produced. Initially, the target was the first componcent
A. The target stayed the same until the Action vector matches the largcl.2 Thus, if the network generates a
wrong action, e.g., B, or C, instead of A, the target continues to be A. When the action matches the target,

1 The choice of the representational formats for the /ntention vectors and for the initial Plan vectors are mostly arbitrary. In this
simulation, a local representation, in which each unit represented a particular action at a particular point in time, was uscd to
avoid any unwanted effects of similarity structures embedded in the representation.

2 Which action the network has produced was decided by choosing the most aclive output unit.
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however, the target is changed to the next component in the sequence, in this casc, B. A property of this
procedure is that the faster the scquence is produced, the smaller the overall error becomes. Figure 4
shows the response of the network generating the sequence ABC after 1600 presentations of all 64
patterns. Only one Plan was necessary (o specify the sequence to Execution-Net, from which Execution-
Net generated the whole sequence ABC. All other sequences were also completed with one Plan vector.
Thus, the network developed a representational format that could encode all 64 sequences of three actions
in Plan vector.

Figure 3. The time course of updating the state of the network. Planning-
net maps from an /ntention 1o a sequence of three Plan vectors.
Execution-net maps from each Plan to a sequence of three Qutput veclors.
The figure shows the response of the network after the pre-training phase.
Execution-Net could generate only one action component from a Plan. In
order to generate the sequence ABC, Planning-Net has 10 generate a se-
quence of three Plan vectors representing A, B, and C. After the pre-
training, the network could produce all 64 sequences of three actions but
only slowly. [ttakes seven ume steps to complete each sequence.

performance Arter
Pre-Training THE

ﬁ,_n_ﬂ Jtention

~<—-— Planning-Nel ; ; .
Figure 4. Response of the network after the training phase to the same input as in

Figure 3. Only one Plan vector is needed to specify the sequence ABC. All 64 se-
quences were each represented by a single Plan vector and thus completed in three
steps. The Plan units which, before the training, could represent only one action
component at a lime, have learned to represent the enlire sequence. Before the train-

<—-— Fxeculion-Ne! ing, Execution-Net did only a simple mapping of one Plan 10 one Action, and much
of the work was done by Planning-Net that mapped an /ntention o a sequence of
Plans. The training reversed the situation: the mapping from Intention 1o Plan is
now one-to-one, and the mapping from Plan to Action is one-to-sequence. From
Planning-Net's viewpoint, the task has changed from a serial one to a highly parallel
one.
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ANALYSES AND DISCUSSION

The HS model was designed so as to model a certain characteristic of the change from a novice
performance to an expert performance. When its lcaming process was examined more closely, it revealed
some other interesting characteristics that arc also known for human skill lecaming, some of which were
reported in Miyata (1987). 1 will describe here some recent findings.

The Learning Curve

To obtain the leaming curve, an HS network was tested with three possible actions: the network
had three units each in the Action, and Plan layers and nine units in the /ntention layer. The network was
trained on all the possible sequences of three outputs, each output being one of three possible actions.
There are 27 such sequences. Eight networks, with different initial random weights, were trained, and the
duration (number of time steps) to gencrate each sequence was recorded during the training. Figure 5-(a)
shows the lcaming curves, plotted in log-log coordinates, obtained for the eight networks. Each datum is
obtained by averaging over a period of 10 training trials, cach trial consisting of the 27 sequences. The
straight line in each plot shows the best fit linear regression in the log-log space. The leaming curves
tend to lic along a straight line, and the deviations from the linearity do not seem to show any systematic
pattern, except for the apparently asymptotic leveling at the end of some of the curves. This effcct will be
discussed below. In fact, when these curves were averaged (Figure 5-(b)), it yielded a very good fit to a
straight line. (r2=0.99 by averaging in the original raw data. A very similar result with »2=0.97 when
averaged in the log scale.) This suggests that the deviations from the linearity (in the log-log space) seen
in each learning curve are not systematic across different networks. In human leamning, the learning rate
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(a) Learning curves of 8 networks

Figure 5. The learning curves in log-log coordinate for the eight networks (a), and the average leaming curve (b). The best fit
linear regression line is also shown.
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(the slope of the line) has been found to vary with the task (Newell & Rosenbloom, 1981; MacKay,
1982), with individual subjects, and with different motoric components in typing (Gentner, 1983). For
the 15 data sets analyzed by Newell and Rosenbloom, the valuc of the learning rate varied from 0.06 to
0.81. For the eight networks shown in Figure 5-(a), it ranged from 0.079 to 0.157.

Asymptotic deviation from linearity such as observed in some of the data in Figure 5-(b) were
observed in many of the data sets examined by Newell and Rosenbloom (1981) and by MacKay (1982).
The slope of the learning curve often diminished at the end; the beginning of the curve sometimes slightly
deviated from linearity (usually downward). Gentner (1983) pointed out that the learning rate of the
beginning typist shown in Figure 1 could not continue indefinitely: such typist would be typing at 370
words per minute after 4 year. The improvement must have some asymptotic level eventually.

When the learning rate parameter in the HS network which determines the magnitudes of weight
changes in proportion to the errors was varied, the leaming curve remained approximately linear for a
wide range of parameter values. (The data presented here was obtained with the parameter value of 0.05.)
For a very small learning parameter (below 0.01), however, the leaming curve deviated downward from a
straight line al the beginning,

The shape of the learning curve of the HS model can be understood, at least qualitatively, as
follows. Note that in order to achieve a performance speed of kS, where Sy is the initial speed, the Plan
units have to leamn to represent all N§ sequences of k primitive actions, where N, is the number of the
primitives (assuming an exponential environment where all combinations of the primitives must be
lcarncd, and uniform lcaming across sequences.) If we take as the measure of difficulty of learning the
number of new subsequences to be learned by the Plan units in order to achieve a constant amount of
speed up, we see that lcaming becomes exponentially more difficult as the performance becomes faster.
In order to derive the leaming curve, however, we need a better understanding of the behavior of the
learning algorithm itself to relate this measure Lo the time it takes to learn.

Laird, Rosenbloom, and Newell (1986) showed that their Chunking Theory can account for the
power law in a varicty of tasks. Currently, the HS model deals with only one of three components in the
framework of the Chunking Theory, namely the decoding process in which a representation of a response
scquence is decoded into its constituents. Consequently, in order to apply the HS model to the wide
range of tasks that the power law has been observed, it needs to be combined with models of the other
two components, encoding of stimuli and connection between the encoding and decoding processes (for
example, Miyata, 1988b; sce Miyata 1988a, for a preliminary discussion).

Frequency effect on substitution errors

A strong effect of frequency on errors in typing has been found at the level of individual letters by
Grudin (1983) who examined the confusion matrix (a table showing the frequency with which a letter is
typed in place of another for every combination of letters) compiled by Lessenberry (1936) as well as his
own data. When homologous errors (striking the key occupying the "mirror-image” position on the
keyboard with respect to the correct one) and adjacent errors (striking a key adjacent 1o the correct one)
were analyzed, it was found that higher-frequency letters were more likely to replace lower-frequency
letters. When a Jordan network (a simplest case of the HS model) was trained to produce a set of
sequences such that each component was presented with different frequency, its error patterns also
showed a strong effect of frequency. For all 13 pairs of components with different frequencies, the
probability of replacing the lower-frequency component with the high-frequency one was higher than the
probability of replacing in the opposite direction.
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CONCLUSION

I have described a PDP model of skill leaming that readily accounted for the increase in speed and
the shift from serial to parallel performance. The lecaming was achicved by incrementally modilying the
mappings in the network so that the intemal Plan units represented gradually longer subsequences. It is
encouraging that the model has yiclded, as emergent properties, a number of phenomena that are found in
human skill leaming. It remains to be studied what factors in the modecl and the task affect the leaming
curve, cg., its slope and deviation from linearity, and how. (One possibility is that the learning rate
increases with the number of plan units used to represent the scquences, and decreases with the number of
sequences that must be leamed by the network.) Such study can be compared against subject’s
performance in similar situations.
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