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Abstract 
Background: The distribution of the chromatin-associated proteins plays a key role in 
directing nuclear function. Previously, we developed an image-based method to quantify the 
nuclear distributions of proteins and showed that these distributions depended on the 
phenotype of human mammary epithelial cells. Here we describe a method that creates a 
hierarchical tree of the given cell phenotypes and calculates the statistical significance 
between them, based on the clustering analysis of nuclear protein distributions. 
 
Results: Nuclear distributions of nuclear mitotic apparatus protein were previously obtained 
for non-neoplastic S1 and malignant T4-2 human mammary epithelial cells cultured for up to 
12 days. Cell phenotype was defined as S1 or T4-2 and the number of days in cultured. A 
probabilistic ensemble approach was used to define a set of consensus clusters from the 
results of multiple traditional cluster analysis techniques applied to the nuclear distribution 
data. Cluster histograms were constructed to show how cells in any one phenotype were 
distributed across the consensus clusters. Grouping various phenotypes allowed us to build 
phenotype trees and calculate the statistical difference between each group. The results 
showed that non-neoplastic S1 cells could be distinguished from malignant T4-2 cells with 
94.19% accuracy; that proliferating S1 cells could be distinguished from differentiated S1 
cells with 92.86% accuracy; and showed no significant difference between the various 
phenotypes of T4-2 cells corresponding to increasing tumor sizes. 
 
Conclusion: This work presents a cluster analysis method that can identify significant cell 
phenotypes, based on the nuclear distribution of specific proteins, with high accuracy. 



Background 
 
Background 
 
Histological classification of biopsied breast tissue plays a key role in mammary cancer 
detection and in determining patient treatment. Current methods rely on gross signatures of 
cellular and tissue organization including tubular formation, nuclear pleomorphism and 
mitotic activity. To aid the early detection and diagnosis of mammary tumors, quantitative 
techniques are highly needed that could not only help automate the classification process but 
also provide subcellular information that could be used to reveal new subclasses of tumor 
within each pathological grade. 
 
Increasing evidence has shown that chromatin-associated proteins are important in directing 
nuclear functions involved in the control of cell proliferation and differentiation [1~3]. Using 
tissue models, formed by culturing human mammary epithelial cells (HMECs) from the 
HMT-3522 cancer progression series in MatrigelTM (3D culture), earlier studies showed that 
the distribution of Nuclear Mitotic Apparatus (NuMA) protein was remarkably different in 
non-neoplastic cells that were proliferating compared to those that had completed acinar 
morphogenesis by forming polarized glandular tissue structures [4]. For instance, during the 
10-day in vitro morphogenesis process, NuMA staining was reported as diffusely distributed 
within the nuclei of proliferating cells, and had aggregated into foci of increasing size as cells 
arrested proliferation and completed acinar morphogenesis [4].  
 
Based on these finding, Knowles et al then developed an image-based technique, called local 
bright features (LBF) analysis [5]. The technique uses fluorescence images of total DNA and 
specifically stained nuclear proteins and calculates the radial distribution of the density of 
bright immunostained features as a function of the distance from the perimeter of the nucleus 
to its center. The LBF analysis was used to quantify the distribution of fluorescently stained 
NuMA from confocal images of non-neoplastic (S1) and malignant (T4-2) HMT-3522 
HMECs, cultured in 3D for up to 12 days [5]. By averaging the LBF distributions over 
populations of cells with the same phenotype, the study showed that the LBF analysis 
reproducibly captured changes in NuMA distribution along the morphogenic process in non-
neoplastic S1 cells. It also revealed that the NuMA distribution in malignant T4-2 cells was 
diffuse and independent of the number of days the cells were in culture [5].  
 
Here we report a cluster analysis approach, based on the distribution of nuclear proteins, that 
robustly calculates the statistical significance between cell phenotypes, as defined by the 
behavior of the cells in 3D culture. The method first groups LBF distributions into clusters 
using multiple traditional clustering methods. The results are then combined by a 
probabilistic ensemble approach into a set of consensus clusters that can be used to reliably 
define all possible LBF distributions that exist within a data set. This then allows cluster 
histograms to be computed which show how the LBF distributions in individual cells from a 
group are distributed over the consensus clusters. These cluster histograms represent a new 
way of linking the phenotype of groups of phenotypically similar cells, defined by their 



behavior in 3D culture, with their LBF distributions, quantified microscopically. Further, by 
grouping the LBF cluster histograms in multiple ways, the method is then able to build a 
phenotype tree and to calculate the statistical significance between each grouping. Each level 
of the tree corresponds to a different phenotype division of the cells and provides a way to 
predict which of the cell phenotypes, or grouping of cell phenotypes are significantly 
different from each other. These methods were then applied to the LBF distributions of 
NuMA in S1 and T4-2 cells, previously reported in Knowles et al [5]. The resulting cluster 
histograms clearly showed that the distribution of NuMA changes during the morphogenic 
process as non-neoplastic S1 cells growth arrest and differentiate. The resulting phenotype 
tree showed that non-neoplastic S1 cells could be distinguished from malignant T4-2 cells 
with 94.19% accuracy; that proliferating S1 cells could be distinguished from differentiated 
S1 cells with 92.86% accuracy; and clearly indicated that NuMA distribution was unchanged 
in the various phenotypes of malignant T4-2 cells. 
 
 

 
Results 

 
Dataset 
 
As described in [5], non-neoplastic HMT-3522 S1 cells were cultured in 3D in the presence 
of MatrigelTM for up to 12 days to induce acinar morphogenesis. Malignant HMT-3522 T4-2 
cells were cultured under similar conditions for a maximum of 11 days to avoid the 
overgrowth of tumor nodules. DNA was stained with DAPI to visualize the limits of the 
nuclear volume and NuMA proteins were labeled with Texas red. Three-dimensional images 
were acquired using a Zeiss 410 confocal laser-scanning microscope with planapochromatic 
63x, 1.4 numerical aperture lens. The resulting voxel dimensions of the 3D images were 
0.08x0.08 µm in the plane of the slide and 0.5 µm along the optical direction.  
 
We used three image datasets to test our phenotype clustering approach. The first dataset 
contains 2673 non-neoplastic S1 cells taken from 77 confocal images. Images 1-25, 26-45, 
46-61, and 62-77 are S1 cells cultured for 12 days, 10 days, 5 days, and 3 days respectively. 
The second dataset contains 3535 malignant T4-2 cells taken from 44 images. Images 1-14, 
15-26, 27-36, and 37-44 are T4-2 cells cultured in 5 days, 10 days, 11 days, and 4 days 
respectively. The third dataset contains both malignant T4-2 and non-neoplastic S1 cells 
taken from the direct combination of all the 121 images.  
 
Clustering LBF distributions using traditional approaches 
 
Using traditional approaches of fuzzy C-means clustering, Gaussian mixture model clustering 
(with a spherical kernel), K-means, hierarchical clustering (with a complete link scheme), and 
spectral clustering [6-14], we divided the dataset into a number of clusters according to the 
similarities of their LBF distributions. Figure 1 shows the results for each of these traditional 



approaches when the dataset of 2673 non-neoplastic S1 cells is divided into 8 clusters. The 
final result, as we show below, is not dependent on the number of clusters. Each cluster is 
represented by the centroid (curve) and standard deviation (small vertical bar) of the LBF 
distributions in the cluster. Clearly, the different methods cluster the data in different ways. 
Table 1 shows the consistencies between these clustering results evaluated by pair-wise F-
measure (see Methods). The results show that quantitatively the consistencies between the 
clusters produces from each approach are unsatisfactory. For instance, the F-measures 
between the hierarchical clustering and the Gaussian mixture model, fuzzy C-menas, K-
means, and spectral clustering are 0.5205, 0.5270, 0.4543, and 0.5365 respectively (the fourth 
row in Table 1). The F-measures between the spectral clustering and the Gaussian mixture 
model, fuzzy C-menas, hierarchical clustering, and K-means are 0.6282, 0.6177, 0.5365, and 
0.6253 respectively (the sixth row in Table 1).  

 
 

Figure 1. Clustering 2673 non-neoplastic S1 cells into 8 clusters according to the similarities of their LBF 
distributions. Rows from the top to the bottom are the results of Gaussian mixture model clustering with 
spherical kernel (GM), fuzzy C-means clustering (Fuzzy), Hierarchical clustering with complete link (Hier), K-
means, and spectral clustering respectively (Spectral). Each cluster is represented by the centroid (curve) and the 
standard deviation (small vertical bar) of the LBFs in the cluster. The horizontal axis of each of the 5×8 panels is 
the normalized distance from the nucleus perimeter, the range being [0,1]. The vertical axis is the normalized 
bright feature density, the range being [0,2]. Also see Methods for the description of the LBF analysis. 
 
Table 1. Pair-wise F-measures for the clustering results generated by the five traditional clustering approaches, 
as shown in Figure 1.  
 

 GM_S Fuzzy Hier Kmeans Spectral 
GM 1.0000 0.8837 0.5205 0.6296 0.6286 

Fuzzy 0.8837 1.0000 0.5270 0.6932 0.6177 
Hier 0.5205 0.5270 1.0000 0.4543 0.5365 

Kmeans 0.6296 0.6932 0.4543 1.0000 0.6253 
Spectral 0.6286 0.6177 0.5365 0.6253 1.0000 

 
 



Finding consensus LBF clusters using probabilistic ensemble clustering 
 
As shown in Table 1, different clustering methods may generate different results for the same 
dataset and the agreement between them can be low. This is because each clustering method 
assumes certain data distributions and cluster characteristics. For instance, the Gaussian 
mixture model assumes clusters satisfy the Gaussian distribution. K-means works well for 
clusters of convex shapes. Thus, some algorithms might perform well for specific datasets 
and not for others. In general, no single clustering method can successfully handle different 
types of cluster structure. In addition, even different initializations and parameter settings of 
the same method, for instance, K-means and Gaussian mixture model, may generate different 
clustering results. As a result, selecting an optimal clustering method is non-trivial or even 
impossible in many cases. A reasonable way to get a reliable partition of a dataset is to derive 
a consensus from multiple clustering results, the assumption being that the judgment made by 
a committee is more robust and unbiased than those made by individuals. This idea, called 
ensemble clustering, has been investigated in some literatures and several major benefits have 
been identified [15~21]. First, ensemble-clustering can improve the robustness of clustering. 
The clusters generated tend to be less sensitive to noise, outliers, initialization, or sampling 
variations compared to individual clustering methods. Second, ensemble clustering does not 
need a priori information about the number of clusters, but can effectively determine the 
most probable number of clusters. Third, ensemble clustering can detect outliers. This ability 
is closely associated with the ability of determining the number of clusters.  
 
Several different ensemble-clustering methods have become available. In [15], a voting 
algorithm based on hierarchical clustering of the co-association matrix (which represents how 
often each pair of data appears in the same cluster) is used to derive the consensus clusters. In 
[16], Strehl and Ghosh developed an evidence accumulation and a hypergraph representation 
ensemble clustering method. In [17], Topchy et al proposed a mutual-information-based 
method. In [20], Fischer and Buhmann developed a bootstrap algorithm by first relabeling the 
data in each clustering result to find the correspondence and then using a voting scheme to 
find consensus. 
 
In this work, we used a probabilistic ensemble approach based on Bayesian latent variable 
induction [21~23] (see Methods). Assuming that the clustering results generated by 
individual methods, i.e., Gaussian mixture model, fuzzy C-means, K-Means, hierarchical 
clustering, and spectral clustering, are independent of each other, the Bayesian latent variable 
induction method is able to obtain the statistically optimal combination of individual 
clustering results as shown by Chickering and Heckerman in [21]. A similar probabilistic 
ensemble approach has also been adopted by Topchy in [18] where accurate consensus was 
obtained from unreliable individual clustering results.  
 
Using the probabilistic ensemble clustering approach (see Methods for detail), we derived the 
statistically optimal consensus from different data partition results generated by the five 
traditional clustering methods mentioned above. Figure 2 shows the result of combining the 
clusters generated by the five traditional approaches as shown in Figure 1 using the 



probabilistic ensemble approach. The number of clusters, 16, is automatically determined as a 
result of finding the consensus. 
 
Table 2 further shows the comparison of our method with traditional methods in terms of the 
number of clusters predefined in individual clustering methods (the second row) and those 
automatically determined by the probabilistic ensemble clustering approach (the third row) 
for the dataset containing both S1 and T4-2 cells. Clearly, the number of clusters 
automatically determined by the probabilistic ensemble approach does not vary significantly 
with the number of clusters predefined for individual clustering methods. When the number 
of clusters predefined changes from 8 to 26, the number of clusters identified by the 
probabilistic ensemble clustering approach is much more stable, ranging from 19 to 25. 
 

 
 
Figure 2. Consensus clusters of the five clustering results in Figure 1, generated by probabilistic ensemble 
clustering approach. The number clusters, i.e., 16, is automatically determined by the algorithm. Like Figure 1, 
each curve represents the centriod of the cluster. The vertical bar represents the standard variation on the 
corresponding bin. The horizontal axis of each panel is the normalized distance from nucleus perimeter, the 
range being [0,1], and the vertical axis is the normalized bright feature density with the range being [0,2]. 
 
Table 2. Number of clusters (the second row) predefined in the individual clustering methods (i.e., Gaussian 
mixture model, fuzzy C-means, hierarchical clustering, K-means and spectral clustering) and those 
automatically determined by the probabilistic ensemble clustering method for both S1 and T4-2 cells (the third 
row). 
 

Methods Number of Clusters 
Traditional methods 4 6 8 10 12 14 16 18 20 22 24 26 
Probabilstic ensemble-clustering 19 18 18 16 19 20 19 20 22   22 23 25 

 
Computing cluster histograms  
 
With clusters reliably determined, we then calculated the number of LBF distributions falling 
into each cluster for each of the 8 populations of cells, i.e., non-neoplastic S1 cells cultured in 
3 days, 5 days, 10 days, and 12 days, as well as malignant T4-2 cells cultured in 4 days, 5 
days, 10 days, and 11 days. By doing so, we obtained a cluster histogram for each of the 8 
populations of cells. Figure 3a shows the 20 clusters automatically determined by combining 
the clustering results of Gaussian mixture model, fuzzy C-means, hierarchical clustering, K-
means, and spectral clustering using the probabilistic ensemble clustering for the dataset 
containing 2673 non-neoplastic S1 cells and 3535 malignant T4-2 cells. The number of the 
clusters predefined for these baseline methods is 14 (as shown in Table 2). In fact, the cluster 
histograms and the phenotype trees built in later step are insensitive to the number of clusters 



predefined for traditional clustering methods as will be shown in the Methods section. The 20 
clusters in Figure 3a are ordered from the left to the right and the top to the bottom according 
to their peak locations. The first 8 clusters are approximately flat. In the 9th to the 20th clusters 
the peak location shifts from the left to the right. Figure 3b shows the cluster histograms for 
the 8 populations of cells. For S1 cells, the cluster histograms (the top row in Figure 3b) are 
remarkably different between the early stage (e.g. S1 Day 3) and the completion of acinar 
morphogenesis (e.g., S1 Day 12). The peak of the histogram gradually shifts from the left to 
the right as the number of days in culture increases, indicating a gradual modification during 
the 12-day in vitro morphogenesis process. This is consistent with the fact that NuMA 
staining is diffusely distributed within the nuclei of proliferating cells, but aggregates into 
foci of increasing size as cells arrest proliferation and complete acinar morphogenesis. 
Therefore, the cluster histograms statistically reflect the phenotype of non-neoplastic S1 cells.  
Moreover, the peak of the histogram profile does not change significantly for malignant T4-2 
cells cultured for different numbers of days (bottom row in Figure 3b). This is also consistent 
with the fact that NuMA staining is diffusely distributed within T4-2 nuclei despite the 
number of days in culture. Interestingly, the cluster histograms of malignant T4-2 cells differ 
significantly from those of non-neoplastic S1 cells. The consistency of cluster histograms and 
cell types indicates that it is meaningful to develop a method to predict cell phenotypes and 
their sub-categories based on cluster histograms.  
 

 
(a) 



 
(b) 

 
Figure 3. LBF distribution clusters and cluster histograms for 6208 S1 and T4-2 cells cultured for different  
numbers of days. (a) Twenty LBF distribution clusters automatically determined by probabilistic ensemble 
clustering of the results generated by Gaussian mixture model, fuzzy C-means, hierarchical clustering, K-means, 
and spectral clustering. The number of the clusters predefined for these baseline methods is 14. The clusters are 
ordered from the left to the right and the top to the bottom according to their peak locations. (b) From the left to 
right and the top to the bottom: cluster histograms of non-neoplastic S1 cells cultured in 3 days, 5 days, 10 days, 
and 12 days, and of malignant T4-2 cells cultured in 4 days, 5 days, 10 days, and 11 days. 
 
Constructing phenotype tree 
 
Using the approach introduced in the Methods section, we have constructed phenotype trees 
to show how the phenotypes, defined by the behavior of the cells in 3D culture, can be 
hierarchically grouped and the statistical significance of each grouping calculated. Figure 4a 
shows the phenotype tree built for non-neoplastic S1 cells derived from Figure 8d in the 
Methods section. The horizontal axis of Figure 8d indicates the 7 possible ways to group 
defined phenotypes. The first three bins correspond to dividing the S1 cells cultured in 3 
days, 5 days, 10 days and 12 days into 2 groups, the next three bins correspond to dividing 
the cells into 3 groups, and the 7th bin correspond to dividing the cells into 4 groups, as 
shown in the 7 rows in Figure 8a. For 2-group cases (i.e., the 1st, 2nd, and 3rd bin on Figure 8d 
and the first three rows in Figure 8a), the maximum confidence value (see below) occurs at 
bin 2 (indicated by the left-most dashed ellipse in Figure 8d; corresponding to the second row 
of Figure 8a). This means that images of S1 cells cultured for 12 days and 10 days (i.e., 
images 1-45) belong to one group, and those cultured in 5 days and 3 days belong to another 
(i.e., images 46-77). Dots with different colors on the same bin in Figure 8d correspond to 
different number of clusters predefined in generating clusters of LBF distributions using the 
five traditional methods. We take the median value as the overall confidence of the 
corresponding phenotype grouping. In this way, we computed the confidence of dividing the 
S1 cells into 2 phenotype groups, one being S1 day 12 and day 10, the other being S1 day 3 
and day 5, as 0.9286 (Figure 4a). Therefore, we can say with high confidence that S1 cells of 
early development and later stage have significantly different phenotypes. This constitutes the 
first level of the tree. If we want to group predefined cell phenotypes into a larger number, 
say 3, of groups, the maximum value of confidence occurs at bin 6 as shown in Figure 8d 
(corresponding to the six row of Figure 8a). This means images of day 3 and day 5 should be 
further divided into 2 subgroups. The confidence for making such a decision is 0.8511, which 



is lower than the confidence of dividing S1 cells into 2 groups. This constitutes the second 
layer of the tree. By repeating this process, we determined the confidence for dividing the 
cells into 4 phenotypes, i.e., S1 day3, S1 day5, S1 day10, and S1 day12, as 0.6822 (Figure 
4a). This is the third level of the tree.  
 

 
 

 
 

 
 
Figure 4. Phenotype trees constructed for (a) non-neoplastic S1 cells, (b) malignant T4-2 cells, and (c) both S1 
and T4-2 cells cultured for a different number of days. The certainty of hierarchically grouping the cells of the 
predefined phenotypes (indicated by the leaf nodes in the highest level of the tree) into statistically more 
significant groups of the phenotypes is indicated by the confidence values at each level of the tree.  
 



Using the same approach, we constructed the phenotype trees for malignant T4-2 cells and 
for the combination of S1 and T4-2 cells, as shown in Figure 4b and Figure 4c respectively. 
Figure 4b shows that we can distinguish T4-2 cells cultured in day 4, day 5, day 10 from 
those cultured in day 11 in relatively high confidence (0.8591; the first level of Figure 4b). 
However, if we want to distinguish T4-2 cells cultured for different numbers of days, the 
confidence drops to 0.5748. Figure 4c shows that we can distinguish S1 and T4-2 cells with 
very high confidence (0.9419; see the first level of Figure 4c). However, the confidence drops 
as level increases. The certainty in distinguishing all the 8 phenotypes drops to 0.5508 at the 
highest level of the tree.  In general, the phenotype trees provide us a way to evaluate how the 
phenotypes, defined by the behavior of the cells in 3D culture, can be hierarchically grouped 
and the statistical significance between each grouping calculated.   
 
Discussion and Conclusions 
We have developed a cluster analysis approach that can robustly link any given set of 
multivariate features measured on a per cell basis to the phenotype of the cells as defined by 
their macroscopic biology. The technique uses a probabilistic ensemble approach to group the 
measured multivariate features into a set of consensus clusters. This method provides a novel 
way of linking the phenotypes of groups of cells to cluster histograms that describe the 
distribution of the measured features across the consensus clusters. Then, by forming various 
groupings of the cluster histograms, the technique permits the formation of a phenotype tree 
and calculations of the statistical significance between each of the groups. If two groups of 
cells are found to be significantly different, one can conclude that the features measured in 
the cells can distinguish the groups that are indeed different. If the two groups are not 
significantly different, one can only conclude that the measured feature does not change 
between these groups. It does not imply that that the groups are necessarily identical. 
 
The phenotype tree is a hierarchical representation of the possible grouping of the defined 
cell phenotypes. As such, a node in the tree at level l can be spitted into at most two nodes at 
level l+1. However, the method used in building the tree does not prevent inconsistent group 
divisions between level l and l+1. Thus a node at level l+1 can be a combination of two 
partial nodes at level l. For instance, assume the two phenotypes at level 1 are S1 cells 
cultured for 12 days and 10 days, and S1 cells cultured for 5 days and 3 days, as shown in 
Figure 5a. Because we only select the grouping that has the highest confidence value at each 
level, without considering the consistency between successive levels when building up the 
tree, it is possible to generate the three phenotypes at level 2 in this way depending the 
confidence value: the first being S1 cells cultured for 12 days, the second being S1 cells 
cultured for 10 days and 5 days, and the third being S1 cells cultured for 3 days. Thus, the 
second phenotype group at level 2 is a combination of the two groups at level 1 (see Figure 
5b). As a result, the hierarchical structure cannot be represented as a tree. To solve the 
problem, we can add a consistency constrain to make the phenotype groups, between 
different tree levels, coherent. Alternatively, we can use directed acyclic graphs (DAG) to 
represent the hierarchical structure of cell phenotype without adding any consistency 
constrain.   
 



                   
 
Figure 5. Illustration of the inconsistent phenotype grouping between successive levels. (a) Phenotype groupings 
at level 1 and level 2 are consistent. (b) Phenotype groupings at level 1 and 2 are inconsistent as the node Day 
5,10 at level 2 is formed by breaking each of the node Day 3,5 and node Day 10, 12 into two parts and 
combining one part of node Day 3,5 with one part of Day 10,12. As long as the breaking operation is involved, 
the consistency between groups at successive levels is violated and the hierarchical structure cannot be 
represented as a tree.  
 
We have shown how the cluster analysis technique can be applied to the radial LBF 
distributions of a chromatin-associated protein, NuMA [24], measured on a per cell basis 
from non-neoplastic S1 and malignant T4-2 HMECs, cultured in a 3D environment for up to 
12 days. The results showed, that for this measured feature, the method can distinguish the 
non-neoplastic S1 cells and malignant T4-2 cells with 94.19% accuracy, and proliferating S1 
cells from S1 cells differentiated into acinar structures with 92.86% accuracy. The phenotype 
tree also shows that the method only distinguishes the four phenotypes of S1 cells with 
68.22% accuracy. However, when the two phenotypes S1-day 10 and S1-day 12 are 
considered as one group, the ability to distinguish that group from S1-day 5 and S1-day 3 
jumps to 85.11%. This result demonstrates the power of the phenotype tree, which in this 
case shows that the distribution of NuMA changes moderately between the phenotypes S1-
day3 and S1-day 5, markedly between the phenotypes S1-day 5 and S1-day 10 but then does 
not changed significantly in S1 cells at 10 days compared to 12 days in culture. These results 
correlate with the behavior of cultured S1 cells and clearly show that the reorganization of 
NuMA that occurs during the morphogenic process of these cells is almost complete at 10 
days of culture. In other words, S1-day 10 and S1-day 12 are not significantly different 
phenotypes, based on NuMA distribution. These results are echoed by the cluster histograms 
for the S1 cells. Clearly marked differences are seen between cluster histograms of the 
phenotypes S1-day 5 and S1-day 10 and not between the phenotypes S1-day 10 and S1-day 
12. Further, the method only distinguishes the four phenotypes of T4-2 cells with 57.48% 
accuracy. This result also correlates with the behavior of these malignant cells that continue 
to proliferate throughout the 12 day culture period. This result simply demonstrates that based 
on NuMA distribution, the phenotypes T4-2-day 4, T4-2-day 5, T4-2-day 10 and T4-2-day 11 
are not significantly different. It does not rule out the possibility that introducing other 
measured features could reveal differences between such phenotypes. 
 
Collectively our data demonstrate the quantitative ability of clustering-based analysis to link 
microscopically measurable features with the behavior of the cells. The methods described 
demonstrate that it is possible to distinguish populations of cells based on the nuclear 
organization of a chromatin-associated protein, NuMA. This work paves the way for our 
longer term goal of producing a method capable of turning high resolution fluorescence 



images of human mammary epithelial tissue into tissue-maps that report the probable non-
neoplastic, premalignant and malignant phenotype at cellular resolution.  
 
Methods 
 
Our phenotype clustering approach contains four steps (Figure 6). Firstly, we used a 
previously developed image analysis method [5] to analyze each fluorescence image acquired 
by the Zeiss 410 3D confocal microscope, and obtained LBF distributions for all nuclei 
within many images. Secondly, we grouped thousands of nuclei into clusters based on the 
similarities between their LBF distributions. For this purpose, we tested K-means clustering, 
fuzzy C-means clustering, Gaussian mixture model, spectral clustering, and hierarchical 
clustering methods [6-14] and found that the consistency between the different clustering 
results, evaluated by an F-measure, were relatively low. Because it is difficult to choose the 
best approach, we developed a probabilistic ensemble approach based on Bayesian latent 
variable induction to combine the different clustering results into a set of consensus clusters 
of LBF distributions. We then analyzed how nuclei were distributed across the consensus 
clusters, and obtained a cluster histogram for cells of each defined phenotype. Finally, we 
constructed hierarchical phenotype trees to show how the predefined phenotypes could be 
hierarchically grouped and the statistical significance of each grouping calculated. The trees 
were structured so that nodes at lower levels correspond to phenotype groups with larger 
statistical difference.  
 

 
 

Figure 6. Diagram of the phenotype clustering algorithm 
 

Extracting LBF distributions from nuclei 
 



In an earlier study, an image analysis method was developed to extract the local bright 
staining features of NuMA protein and quantify their radial distribution in each individual 
nucleus [5]. The technique first used a model-based method to automatically segment 
individual nuclei in the DAPI-stained channel of the confocal images. It then divided the 
brightness at each point within a nucleus by the local average brightness in a region 
surrounding that point in the NuMA-stained channel, thus isolating the local brightness 
features (LBF) of each nucleus. Then, the radial distribution of these bright features was 
computed using a distance transform. The transform calculates the shortest distance of each 
point within a nucleus to the nuclear boundary and in doing so, divides each nucleus into a set 
of concentric terraces of equal thickness. In each terrace, the density of local bright features 
was calculated as the number of bright pixels divided by the total number of pixels. To 
account for variations in the number of terraces per nucleus due to variations in nucleus size 
and shape, the density per terrace was normalized so that the average density of bright 
features was 1 for each nucleus, and the distances from nuclear perimeter were also 
normalized to the range of [0, 1.0]. Through the above process, a radial distribution of LBF 
was derived for each nucleus, represented by the normalized density of bright features as a 
function of the normalized distance from the perimeter of the nucleus to its center.  

 
 

Figure 7. LBF analysis of the distribution of NuMA from 3D images. (a) Fluorescence micrograph of Texas red-
immunolabeled NuMA from a single optical section, in differentiated non-neoplastic S1 cells. (b) The 
corresponding processed image section showing a composite view of the detected LBFs (light gray) of NuMA, 
extracted by the LBF analysis overlaid on the nuclear segmentation mask (dark gray).  (c) Concentric terraces 
resulting from the application of the distance transform on the segmentation mask, which allows the radial 
distribution of NuMA to be calculated. (d) A set of LBF distribution profiles of NuMA calculated from 
differentiated non-neoplastic S1 cells. The relative density of NuMA bright features (ordinate) is plotted as a 
function of the relative distance from the perimeter (0.0) to the center (1.0) of the nuclei (abscissa). 
 
 



Clustering LBF distributions using traditional approaches 
 
Our phenotype clustering algorithm is based on the radial distribution of LBFs. To group the 
LBF distribution of thousands of nuclei into clusters of similar patterns, we first tested 
traditional clustering approaches, including the most widely used K-means, fuzzy C-means 
clustering, Gaussian mixture model (with a spherical kernel), hierarchical clustering (with the 
complete link scheme), and the spectral clustering methods [6-14].  
 
Since different clustering methods generate different clusters, we computed the pair-wise F-
measure score to evaluate the consistencies between different clustering results. The F-
measure is defined as follows. For any two data partition U and V, denote the ith cluster in 
partition U as ui, and the jth cluster in partition V as vj. The proportion of data in ui that is 
also in vj is R = |ui∩vj|/|ui|, and the portion of data in uj that is also in vi is P= |ui∩ vj |/|vj|. 
Define F(i,j)= 2PR/(P+R). The score to measure the consistency of the partition V with 
partition U is F0 = [Σ|ui|maxjF(i,j)]/ [Σ|ui|],  where |ui| is the number of data point in ui. To 
make it symmetrical, the final F-measure is defined as F = (F0+F0’)/2, where F0’ denotes the 
transpose of F0. 
 
Probabilistic ensemble clustering  
 
The probabilistic ensemble clustering approach we used to derive the consensus clusters from 
multiple clustering results is based on general Bayesian latent variable induction [21~23]. Let 
us suppose we have M different clustering approaches, generating M data partition Ci (i = 0, 
…, M) of the same dataset D containing N data points. Our purpose is to infer the optimal 
consensus data partition L from the multiple partitions Ci. We notice that one simple yet 
reasonable assumption is that we can treat all the M clustering results C1, …, CM as 
independent samples drawn from the same underlying distribution L. In another words, we 
can assume that the distributions of C1, …, CM are conditionally independent of each other 
given the latent variable L. This assumption allows us consider the following Bayesian latent 
variable induction model.  
 
Let us suppose the ith clustering approach divides the dataset into ri clusters, then each Ci has 
ri states (categorical labels), i.e., 1, …, ri. Initially the consensus L may divide the dataset into 
k clusters (the final value k* is automatically determined; see below), then L has k states, i.e., 
1, …, k. Since each LBF distribution vector in the dataset is assigned a cluster label by Ci, it 
takes a specific state value on Ci.. Denote s = (C1=c1, C2=c2, …., CM=cM), where ci (i ∈[0, M]) 
takes one state in 1,…, ri.  

 
Upon initialization of the latent variable L, we randomly assign each of the N data points one 
of the k states. Given a data s which is assigned state label ci by the ith clustering method Ci, 
we derive its probability of taking state label l (where l ∈[1, k]) in consensus L, i.e., P(L=l|s). 
Based on the conditional independence assumption, we have 
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where j denotes the jth data in the dataset D, P(Ci=ci|L=l) (i∈[0, M]) can be easily obtained 
by counting and normalizing the occurrence frequency of data that are assigned the state label 
ci by the clustering method Ci, given the data is assigned the state label l in L. Once P(L=l|s) 
is available, we use it to resample and update the state label of each data in L. The above 
process repeats until all the data do not change states. This will lead to the estimation of an 
optimal consensus function L for a specified number of clusters, k.  

 
We observe that when the data samples (LBFs) are independent of each other, the likelihood 
of the latent variable L which has k states can be estimated as 
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[note the typo in the above equation is corrected] It is apparent that we can maximize the 
likelihood in Eq. (2) to find the best k over a specified range. In practice, we can often avoid 
iteration in Eq. (2) by directly assigning a big k. After convergence in solving Eq. (1), there 
are k* (k ≥ k*) states in L that have non-zero number of data points. This k* value is the 
statistically optimal k value automatically determined.  
 
Computing cluster histograms for cells of different phenotypes  
 
Once we obtained reliable clusters of LBF distributions of individual nuclei, we analyzed 
how the cells belonging to different phenotypes, defined by the behavior of the cells, (i.e., S1 
and T4-2 cells cultured in different days) were distributed across the various LBF clusters. 
For this purpose, we counted the number of nuclei whose LBF distribution fell into each 
cluster for each phenotype, i.e., S1 cells cultured for 3, 5, 10, and 12 days, and T4-2 cells 
cultured for 4, 5, 11, and 12 days. By doing so, we obtained the cluster histogram of each 
phenotype, represented by the percentile of nuclei as a function of clusters. The cluster 
histograms do not only directly link to predefined phenotypes (as shown in Figure 3) but also 
provided more detail information compared to cell malignancy and days in culture. 
 
Constructing the phenotype tree 
 
Taking the non-neoplastic S1 cells cultured for different days as an example, our method in 
constructing the tree is as follows. For all the N images of S1 cells, we assume images of the 
same day are of the same phenotype and morphogenesis progresses montotonically, as 
defined by biologists. This allowed us to group the images sequentially, leading to ∑ −

= −
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1 1
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possible ways of grouping the different phenotypes, where C denotes the combination 
operation and P is the number of defined cell phenotypes. For instance, if P=4, then the total 



number of possible ways of grouping phenotypes is 7 (i.e., ∑=

3

1 3i
iC ). Among these 7 cases, 3  

cases (i.e., 1
3C ) correspond to grouping the four macroscopically defined phenotypes into 2 

groups, 3 cases (i.e., 2
3C ) correspond to grouping them into 3 groups , and 1 case (i.e., 3

3C )  
corresponds to grouping them into 4 groups. These 7 cases are shown in Figure 8a. Different 
colors in each row represent different groups.  
 
Our next step is to determine the likelihood of these potential groupings. Assume we want to 
divide the predefined phenotypes into p groups (where p=2,3,4 in the above example). We 
then grouped the cluster histogram of the 77 S1 cell images into the same number of clusters. 
To improve reliability we again used multiple clustering algorithms, including K-means, 
fuzzy C-means clustering, hierarchical clustering, Gaussian Mixture model, and spectral 
clustering, as used in generating the LBF clusters (see Figure 8b). We then paired each 
clustering result with the phenotype grouping under consideration, and calculated the degree 
of agreement between them using the F-measure. We then selected the maximum F-score as 
the confidence of the corresponding cell phenotype grouping (see Figure 8c). By repeated the 
process for each potential phenotype grouping, we finally obtained the value of the 
confidence as the function of the different cases of phenotype grouping 
 

 
 

Figure8. An illustration of phenotype tree construction process. (a) Images 1-25, 26-45, 46-61, and 62-77 
correspond to non-neoplastic S1 cells cultured for 12 days, 10 days, 5 days, and 3 days respectively.  There are 7 
possible ways of grouping the phenotypes. Each row corresponds to one possible way. Different colors 
represent different phenotype groups. The first 3 rows correspond to grouping the 4  predefined phenotypes into 
2 groups. The next 3 rows correspond to grouping the phenotypes into 3 groups, and the last row correspond to 



4 groups. (b) Taking the 4 phenotype group case (last row in (a)) as an example, we used traditional clustering 
methods to divide the cluster histogram of the image (one cluster histogram per image) into the same number of 
clusters (i.e., 4 in this example). Each row corresponds to the clustering result of one method. (c) The F-
measures computed by pairing the phenotype group in the last row of (a) with each clustering result in (b). The 
maximum F-score, which in this case is achieved by the Gaussian Mixture Model approach (GM), is selected as 
the confidence of the corresponding cell phenotype grouping. (d) Confidence values as functions of different 
cases of phenotype groupings. We tested the confidence values under different number of clusters predefined for 
clustering LBF distributions using the five traditional methods (i.e., the second step of our algorithm, see Figure 
6) as shown by dots of different colors. The numbers of clusters we tested were 4 to 26 with step size of 2. The 
consistent distribution of the dots indicates that our phenotype tree construction method is insensitive to the 
number of clusters we selected for clustering LBF distributions. 
 
To further test the sensitivity of this method to the number of clusters predefined when 
generating the clusters of LBF distributions using the five traditional clustering approaches, 
we repeated the process for different numbers of clusters predefined for the traditional 
methods and obtained a set of confidence values for each phenotype grouping case as 
indicated by the colored dots in each bin of Figure 8d. The result exhibits a central tendency, 
indicating that the method is insensitive to the number of clusters predefined in clustering the 
LBF distributions. We then took the median of the confidence values obtained under different 
number of clusters on each bin as the overall confidence value of the corresponding 
phenotype grouping.  
 
Given p, the number of groups that the predefined phenotype should be grouped into, we 
selected from all the phenotype grouping cases that have the same number of groups the one 
that has the maximum confidence value, as the most likely phenotype grouping case under 
the given p. For instance, if we want to group the predefined phenotypes into 2 groups, i.e., 
p=2, there are three phenotype grouping cases, corresponding to the first three bins in Figure 
8d and the first three rows in Figure 8a. The second case has the maximum confidence value 
and is thus taken as the right way of grouping the predefined phenotypes into 2 groups. Using 
this approach, we determined the most likely phenotype grouping for p=3 and p= 4, which 
correspond to the 6th and 7th bin in Figure 8d and the 6th and 7th row in Figure 8a respectively. 
These three phenotype groupings constitute the first to the third level of the phenotype tree as 
shown in Figure 4a. 
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