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ABSTRACT OF THE DISSERTATION

Motion due to Dynamic Density Constraints

by

Brent Alan Woodhouse

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Christina Kim, Co-Chair

Professor Marek Biskup, Co-Chair

We consider the continuity equation for a population density subject to (i) a density

upper-bound that depends on space and time and (ii) a velocity that minimizes the kinetic

energy. A solution is constructed via the Wasserstein minimizing movement scheme for

a corresponding time-dependent energy. Motion of the solution is driven by a decreasing

density constraint.

With a few assumptions, we prove this solution moves according to a free boundary prob-

lem of modified Hele-Shaw type that depends on the density constraint. In order to do this,

we utilize a modified porous medium equation as an approximation to the original problem.

Viscosity solution arguments are used to prove that given a decreasing density constraint,

the porous medium equation solutions converge to the Hele-Shaw free boundary problem

solution. By analyzing the Wasserstein gradient flow structure of the time-dependent ener-

gies involved, we next show that the porous medium equation solutions also converge to a

solution of the original problem, thus identifying it with the Hele-Shaw description.

In addition, we consider complications of the analysis without each assumption, perform

numerical simulations supporting the results, and explore some limiting situations of the

dynamics.
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Chapter 1

Introduction

1.1 The Density Constraint Model

Consider a large number of stationary individuals spread out in space, sampled from some

initial probability density ρ0. Suppose the system of individuals moves so as to minimize the

sum of their kinetic energies. With nothing acting on the system, it will remain stationary

in time. However, due to environmental factors, we impose a hard density constraint m(x, t)

on the population, which can be dependent on both space and time. When m is small

enough, this constraint forces the individuals to spread out further in space in a manner

that minimizes their kinetic energy.

It is more convenient from a partial differential equations point of view to take a low

resolution approach to this problem (ignoring individuals) and consider a population density

ρ(x, t) : Rd × [0,∞) → R, starting from a given initial density ρ0 with total mass 1, and

satisfying both the density constraint

ρ(x, t) ≤ m(x, t) (1.1)

and (weakly) the continuity equation

∂tρ+∇ · (ρv) = 0, (1.2)

where v(x, t) is chosen so that for almost every time t, it minimizes the kinetic energy at

time t:

v(·, t) = arg min
u

∫
Rd

[ρu2](x, t) dx

over all velocities u that do not cause immediate violation of the density constraint (1.1).

(See Definition 2.1 for a rigorous description of the solution.) We refer to this system as the

1



(a) t = 0 (b) t = 1 (c) t = 2

Figure 1: Density constraint (dotted line) and solution of the DCM (solid graph) changing over time.

density constraint model (DCM).

See Figure 1 for a simple one-dimensional example, in which ρ0(x) = m(x, 0)χ[3,7] and the

density constraint m = 3 + x − t decreases over time and causes expansion of the support.

For some two-dimensional examples, see Appendix C.

A similar problem has been previously studied by Bertrand Maury, Aude Roudneff-

Chupin, and Filippo Santambrogio ([MRS]) with a uniform density constraint m ≡ 1, in

which case a change of density is not driven by a decreasing density constraint, but by a

prescribed drift Ψ(x) for individuals. In that case the continuity equation (2.4) is replaced

by

∂tρ+∇ · (ρv) = 0

where v is chosen to minimize ∫
Rd

[ρ(v −Ψ)2](x, t).

Allowing a density constraint that varies in both space and time could be combined with a

drift and source term, but we prefer to isolate it and study its effects separately. The goal is to

obtain a better understanding of how the shape of the density constraint affects the dynamics

of our solution. In describing a solution of the DCM theoretically and numerically, we utilize

both viscosity solution theory and optimal transport theory (extending the approach and

results of [AKY]). The strategy is to utilize an appropriate limit of solutions of carefully

chosen porous medium equations. In both viscosity solution theory and optimal transport

theory, the varying density constraint causes additional challenges that push the limits of

2



the approach, requiring additional assumptions and motivating new techniques.

1.2 Main results

Here we organize the main results with their major assumptions. Note the corresponding

statements later in the text often involve a few more technical details than what is given

here.

We will reference the following assumptions on the density constraint m:

(M1) m is continuously differentiable in space and time, and there exist constants M−, M+,

and α such that

0 < M− ≤ m ≤M+, |∂tm| ≤ α.

(M2) m is decreasing over time (∂tm < 0)

(M3) There exists k0 such that for all k ≥ k0, the function (m(·, t))−k is convex in Rd for all

t ≥ 0.

Remark 1.1. (i) Assumption (M2) ensures that the solution of (FB-M) in Theorem 1.2 is

well-defined. See Section 5.2 for further discussion of a free boundary problem descrip-

tion without this assumption.

(ii) Assumption (M3) is the condition necessary for λ-convexity along some generalized

geodesic of the porous medium equation energies, which ensures uniqueness and con-

vergence of the corresponding minimizing movement scheme, as well as a desirable rate

of convergence. We expect Theorem 1.2 holds even without this assumption (and nu-

merical simulations support this), but approximation via the porous medium equation

appears to require it. Note (M3) holds when for all large enough k,

∆(m−k) = km−k−2((k + 1)|∇m|2 −m∆m) ≥ 0.

In particular (M3) fails to hold when, at some point, |∇m| = 0 but ∆m > 0, in which

case m has a strict local minimum. A local maximum is certainly acceptable.

3



We work in P2(Rd), the set of probability measures on Rd endowed with the 2-Wasserstein

distance. In order to come up with a solution of the DCM, we define the following energy

functional on measures.

E∞(ρ, t) = IKt(ρ) :=


0 if ρ ∈ Kt

+∞, if ρ /∈ Kt,

with

Kt = {ρ ∈ P2(Rd) with ρ(x) ≤ m(x, t) for a.e. x}.

Given a time-step τ , let ρ0
τ = ρ0 and for n ≥ 1, iteratively define

ρnτ ∈ arg min
ρ∈P2(Rd)

[
E∞(ρ, τn) + 1

2τ W
2
2 (ρ, ρn−1

τ )
]

= arg min
ρ∈P2(Rd), ρ∈Kτn

W 2
2 (ρ, ρn−1

τ ). (1.3)

Note we must have ρnτ ≤ m(·, τn). This is the analogue of the (traditionally time-independent)

minimizing movement scheme for the time-dependent energy E∞.

The first main result is the following.

Theorem 1.1. Let ρ0 be a probability measure with compact support. Assuming (M1), the

ρnτ are well-defined and narrowly converge to a solution ρ∞ of the DCM, such that for each

point (x, t), either ρ∞(x, t) = m(x, t) or ρ∞(x, t) = ρ0(x, t).

Note at this point we have a theoretical solution, but it would be ideal to describe its

behavior more directly. To this end, we show the following free boundary problem for a

pressure p(x, t) provides a dynamic description of this solution to the DCM when ρ0 = m(·, 0):


−∇ · (m∇p) = −∂tm in {p(·, t) > 0}

V = |∇p| on ∂{p(·, t) > 0}.
(FB-M)

Here V is the outward normal velocity of {p(·, t) > 0}. Due to possible issues of regularity

of ∂{p(·, t) > 0}, (FB-M) must be interpreted in the viscosity solution sense.

Note

−∇ · (m∇p) = −m∆p−∇m · ∇p
4



is uniformly elliptic by (M1). Also, assumption (M2) implies the solution p to

−∇ · (m∇p) = −∂tm

with zero boundary conditions is indeed positive on any domain.

Here is the second major result.

Theorem 1.2. Assume (M1), (M2), and (M3). Let Ω0 be a compact set with locally Lipschitz

boundary such that ρ0 = m(·, 0)χΩ0 is a probability measure. There exists a family of sets

Ωt such that any viscosity solution p of (FB-M) starting with {p(·, 0) > 0} = {ρ0 = m(·, 0)}

shares the same set Ωt = {p(·, t) > 0}. The following is then a solution to the DCM:

ρV (x, t) = m(x, t)χΩt .

In particular, (FB-M) describes the boundary velocity of the support of the solution of

the DCM.

As in [AKY], to prove this theorem, we cannot directly link this free boundary problem

with the DCM. Instead, the following modified porous medium equations provide an approx-

imation to the free boundary problem and link the viscosity solution theory and the optimal

transport theory.

Consider the porous medium equation for density ρk : Rd × [0, T ]→ R,

∂tρ+∇ · (ρ(−∇p)) = 0, (PME-M)

where k > 1 is given, the pressure is related by

p = Pk(ρ) := k

k − 1

(
ρ

m

)k−1
,

and ρ(·, 0) = ρ0,k.

Using viscosity solution arguments as in [K], we can show convergence of the ρk to ρV

from Theorem (1.2). Here (M2) is used because the replacement for (FB-M) when mt < 0

5



in some places but mt > 0 in others involves an obstacle problem for which current types of

viscosity solution arguments are insufficient.

Theorem 1.3. Suppose (M1), (M2), let Ω0 be a compact set with locally Lipschitz boundary

such that ρ0,k = ρ0 = m(·, 0)χΩ0 is a probability measure. With Ωt and ρV as in Thm (1.2),

as k →∞, the ρk converge to ρV locally uniformly in Rd \ ∂Ωt at each time t > 0.

Instead on the optimal transport side, convergence of the minimizing movement scheme

also holds in the 2-Wasserstein metric. In particular we need (M3) below to ensure convexity

of the corresponding energies for ρk along generalized geodesics, so that convergence for the

minimizing movement schemes for (PME-M) to a unique limit holds, and a useful rate of

convergence can be attained, allowing the proof of the following.

Theorem 1.4. Suppose (M1), (M3), let Ω0 be a compact set such that ρ0,k = ρ0 = m(·, 0)χΩ0

is a probability measure. With ρ∞ from Theorem 1.1, the ρk converge to ρ∞ uniformly in

time in 2-Wasserstein distance with convergence rate

sup
t∈[0,T ]

W2(ρk(t), ρ∞(t)) ≤ C(T,M−,M+, α)
k1/24 .

Note Theorem 1.2 is an immediate corollary of Theorems 1.3 and 1.4.

Remark 1.2. In all of the results, the assumption that ρ0 is a probability measure can be

easily relaxed to allow ρ0 to have any positive total mass.

We summarize the functions and limits involved with Figure 2; note the blue text and

dotted lines also indicate the content of Chapters 2 - 4.

Overall, the primary contributions of this work are (i) identifying a new type of sys-

tem with a hard density constraint in which solutions can be described by free boundary

problems of Hele-Shaw type, (ii) pushing the boundaries of gradient flow ideas regarding

time-dependent energies, especially those in which the domain changes over time, and in

the process, (iii) exploring limitations of viscosity solution and optimal transport theory as

applied to the new system.

6



ρnτ, kW2 minimizing movement schemes

Energies Ek E∞

ρnτ, ∞

ρk[solves (PME-M)] [solves DCM]ρ∞

k →∞

close for large k

uniformly in W2

locally uniformly outside ∂Ωt

ρV
=

[solves (FB-M)]

τ → 0 τ → 0

Chapter 2

Chapter 3

Chapter 4

Figure 2: Primary functions and limits

1.3 Related literature

Most models of congestion phenomena use a form of soft congestion, modeling how to directly

adjust velocity based on the density of nearby areas. Instead the density constraint model is

an example of a hard congestion model as discussed in [MRSV], which starts from the core

microscopic idea that two individuals may not occupy the same place at the same time and

considers the macroscopic version thereof. The resulting velocity is a compromise between

the density constraint and the desire to remain stationary.

Similarly [MMS] considers extensions of Moreau sweeping processes (in which particles

are constrained to stay inside moving convex sets) to probability measures constrained by

some moving boundary in space (as well as allowing other effects such as a hard density

constraint ρ ≤ 1). Instead of restricting the range of the density with some combination of

m = 0 and m = 1, the DCM restricts the range of the density with the moving boundary m.

(Note we do not consider m = 0 in this work, but a version of Theorem 1.1 allowing m = 0 on

convex sets is feasible.) Solutions in [MMS] are achieved as limits of a prediction-correction

or “catching-up” method, projecting back into the feasible set at each step. The scheme

(1.3) used for the DCM can be viewed in the same manner.

The convergence as k →∞ of the porous medium equation to a Hele-Shaw type problem

(sometimes called the “stiff pressure limit”) was first considered in [CF], [EHKO], and in

7



[BC] on Rn with m ≡ 1. For the original porous medium equation (∂tρ = ∆ρk) with fixed

boundary, when ρ0 is a characteristic function of a compact set, see [GQ] and [K]. Similar

convergence has been shown when the equation involves a source term ([PQV], [KP], [MPQ])

or a drift ([AKY], [KPW]) or even for aggregation-diffusion equations ([CKY]).

Much of the recent work in this area has been focused on extending these results to

allow some sort of external density while describing the stiff pressure limit. When m ≡ 1

and external density is ρE, the outward normal velocity is adjusted from V = f(p, x) to

V = f(p,x)
1−min(ρE ,1) to allow for external density. See [KP], [MPQ], [KPW]. For the DCM, this

would allow more general initial data ρ0 ≤ m and adjust the boundary velocity in (FB-M)

from V = |∇p| to V = m|∇p|
m−ρ0

, with

ρV = mχΩt + ρ0χRd\Ωt .

When ρ0 touches m, “V =∞” and instantaneous expansion or nucleation of a pressure region

can take place. We expect the extension of Theorem 1.2 to allow external density also holds,

but construction of the necessary barriers for large k has been ultimately unyielding due to

the inhomogeneity in space of the term ∇ · (m(x, t)∇ρ)) and insufficiency of approximation

with radial solutions as was possible in [KP] and [KPW].

For some Hele-Shaw problems similar to (FB-M), regularity is fairly well-understood. See

for instance [CJK] and its references. If the initial boundary is Lipschitz continuous with

small Lipschitz constant, then for small uniform positive time the solution is smooth. We

expect the same holds for (FB-M), though we do not pursue such regularity concerns here.

A few other authors have considered scenarios capturing some effects seen in (FB-M).

The thesis of John DeIonno ([I]) considers a location-dependent source in a Hele-Shaw free

boundary problem with m ≡ 1. If the source is f , then the pressure equation is −∇p = f .

See [GS] for some discussion of generating Hele-Shaw motion by considering liquid between

two plates that are pushed together over time (m decreasing over time but constant in space).

Choosing m = e−ct for instance is roughly equivalent to the case of f = −mt/m = c. In both

of these scenarios one can to some degree describe the resulting support of the pressure using
8



the Baiocchi transform w =
∫ t
0 p(·, s) ds and associated variational inequalities. Both [GS]

and [GV] describe the same set as the variational inequalities using a concept from potential

theory called “Balayage” (sweeping of measures without changing external potentials). The

precise correlation between Balayage and Wasserstein projection is still unclear; a partial

description can be found in the thesis of Aude Roudneff-Chupin ([R]), Section 5.2.

Finally, there are numerous studies of limits of JKO-type minimizing movement schemes

for probability measures producing Wasserstein gradient flows and solutions to various

PDEs. The primary reference here is [AGS]; however, its assumptions do not permit time-

dependence of the energies. Thus when analyzing the minimizing movement schemes for

(PME-M) and Ek with k < ∞, we turn to the more recent work [FV], which reproduces

some of the same theory from [AGS] Chapters 2 - 4 but for time-dependent energies, dis-

cussing convergence and rate of convergence of the minimizing movement schemes given

λ-convexity of the energy along generalized geodesics. Note the energy E∞ does not fit the

framework of [FV] due to time-dependence of the domain, so we provide arguments that

reflect the specific energy under consideration in Chapter 2.

9



Chapter 2

A Solution of the Density Constraint Model

In this chapter, we analyze the minimizing movement scheme for E∞ and prove Theorem 1.1,

which says this minimizing movement scheme converges to a solution of the Density Con-

straint Model. To do so we build off of similar analysis from [MRS] with some new arguments.

First we restate the Density Constraint Model with a rigorous description of the velocity

constraints. We look for a solution to the continuity equation

ρt +∇ · (ρu) = 0

in some large convex set Ω ⊂ Rd starting from ρ0. Specifically, this should be interpreted in

the weak sense, so for all ϕ ∈ C∞c (Ω× [0, T ]),

∫ T

0

∫
Ω

(∂tϕ+∇ϕ · u)ρ dx+
∫

Ω
ϕ(0, x)ρ0 dx = 0. (2.1)

However, we want to enforce ρ ≤ m, thus

−∇ · (mu) = −∇ · (ρu) = ρt ≤ mt on {ρ = m}

When u is smooth, multiplying by a test function in the pressure space

H1
ρ(·,t) = {q ∈ H1(Ω), q ≥ 0 a.e., q(x) = 0 a.e. in {ρ(·, t) < m(·, t)}},

integrating over Ω, and integrating by parts, we obtain

∫
Ω
mu · ∇q ≤

∫
Ωt
mtq.

This calculation motivates the following feasible set (allowing an appropriate class of veloc-

10



ities which are not necessarily smooth):

Cρ,t =
{
v ∈ (L2(Ω))d,

∫
Ω
mv · ∇q ≤

∫
Ω
mt q for all q ∈ H1

ρ(·,t)

}
. (2.2)

Definition 2.1. Consider a population density ρ(x, t) : Ω × [0,∞) → R, starting from a

given initial density ρ0 : Ω → R with total mass 1. We say ρ is a solution of the Density

Constraint Model if the density constraint

ρ(x, t) ≤ m(x, t) (2.3)

is satisfied and the continuity equation

∂tρ+∇ · (ρv) = 0, (2.4)

holds in the weak sense of Eq. (2.1), where v(x, t) is chosen so that for almost every time t,

it minimizes the kinetic energy at time t:

v(·, t) = arg min
u∈Cρ,t

∫
Rd

[ρu2](x, t) dx. (2.5)

Here the minimum is over all velocities u that do not cause immediate violation of the

density constraint ρ ≤ m, in the sense that Cρ,t contains all admissible velocities under

consideration. (Note for each t the feasible set Cρ,t is a closed convex set, and as m > 0, the

inner product (u, v) =
∫
m(·, t)u · v gives rise to a Hilbert space, so the minimizer exists.)

This definition of a solution of the DCM is in the same spirit as the definition of the

Wasserstein metric. To explain this, recall for probability measures ρ0, ρ1, and Π(x, y) the

collection of all transport plans between ρ0 and ρ1,

W2(ρ0, ρ1) = min
{∫

Rd×Rd
|x− y|2dγ(x, y) : γ ∈ Π(ρ0, ρ1)

}
.

11



By the Benamou-Brenier formula, an equivalent formulation is

W2(ρ0, ρ1) = min
v

∫ 1

0

∫
Rd
|vt(x)|2 dµt(x) dt,

where the minimum is over all velocities vt such that (i) the integral above is well-defined

and (ii) vt interpolates between µ0 and µ1 in the sense that

∂tµt +∇(vtµt) = 0 on Rd × [0, 1],

with µi = ρi for i = 0, 1. Note Eq. (2.5) has a similar interpretation for the quantity to be

minimized, though working in Cρ,t is more restrictive.

We construct a solution to the DCM using a Wasserstein minimizing movement scheme

for a specific energy. The feasible measures are

Kt := {ρ a probability measure on Ω with ρ(x) ≤ m(x, t) for a.e. x} .

Define the energy

E∞(ρ, t) = IKt(ρ) :=


0 if ρ ∈ Kt

+∞, if ρ /∈ Kt,

We use the following minimizing movement scheme for E∞. Given a time-step τ , let

ρ0
τ = ρ0 and for n ≥ 1, iteratively define

ρnτ ∈ arg min
ρ∈P2(Rd)

[
IKτn(ρ) + 1

2τ W
2
2 (ρ, ρn−1

τ )
]

= arg min
ρ∈Kτn

W 2
2 (ρ, ρn−1

τ ).

This enforces ρnτ ≤ m(·, τn) with minimal movement in the W2 sense.

For existence, consider a minimizing sequence ρ` ∈ Kτn. The sequence has a uniform

bound on W2(ρ`, ρn−1
τ ), so it is a tight sequence of probability measures. Thus there exists

a subsequence of the ρ` that converges weakly to some probability measure ρ. Because

W2(·, ρn−1
τ ) is lower semicontinuous, ρ achieves the desired minimum. Finally, taking limits

of ρ` ≤ ρn−1
τ implies ρ ≤ ρn−1

τ so that ρ ∈ Kτn.

12



See [DMSV] Section 5 for various properties of this type of Wasserstein projection. We

state two of these properties in our context. The first provides a sense of efficiency for the

Wasserstein projection.

Lemma 2.1 ([DMSV], Lemma 5.1). Let γ be the optimal plan from ρnτ to ρn−1
τ . If (x0, y0) ∈

spt(γ), then ρnτ = m(·, τn) a.e. in BR(y0) ∩ Ω, where R = |y0 − x0|.

Based on the above lemma, the ρnτ are saturated wherever ρ0 is adjusted.

Lemma 2.2 (Immediate from [DMSV], Proposition 5.2). Let Ω0 = {ρ0 = m(·, 0)}, so that

ρ0 = m(·, 0)χΩ0 + ρ0χΩ\Ω0 .

If we define

Snτ = {ρnτ = m(·, τn)},

then the Snτ are measurable, increasing in n, and we have uniqueness, specifically,

ρnτ = m(·, τn)χSnτ + ρ0χΩ\Snτ .

Remark 2.1. A standard approach for gradient flows along the lines of [AGS] is insufficient

here, since E∞ is time-dependent and issues of convexity along generalized geodesics may

arise. The recent article [FV] provides a similar framework for time-dependent energies,

but it cannot handle a domain (Kt in this case) which is potentially changing in time.

Thus we provide some alternative approaches that better fit the specific energy E∞ under

consideration.

Here is the main result of this section, corresponding to Theorem 1.1.

For the following, let tnτ be the unique optimal transport function from τnτ to τn−1
τ , and

define the discrete velocities vnτ = i− tnτ
τ

and energies En
τ = ρnτ v

n
τ . Interpolate the discrete

13



values (ρnτ , vnτ , En
τ )n≥0 by the piecewise constant functions defined by


ρτ (t, ·) = ρnτ

vτ (t, ·) = vnτ if t ∈ ((n− 1)τ, nτ ]

Eτ (t, ·) = En
τ

(2.6)

Theorem 2.3. Assume (M1), which uses parameters α and M−, and fix a final time T > 0.

Let ρ0 be a probability measure supported in BR(0) and take Ω = B3KR(0) with K a constant

dependent on T, α,M−, d as explained in Lemma 2.6. Suppose (ρnτ ) is constructed following

the above miniminizing movement scheme in Ω with energy E∞ and the W2 metric. Then

there exists a family of probability densities (ρ(·, t))t and a family of velocities (u(·, t))t such

that (ρτ (·, t), Eτ (·, t)) narrowly converges to (ρ(·, t), ρ(·, t)u(·, t)) for a.e. t ∈ [0, T ]. Moreover,

(ρ, u) satisfies the continuity equation (in the weak sense of (2.1)):

∂tρ+∇ · (ρu) = 0 on Ω× [0, T ],

ρ(·, 0) = ρ0 on Ω

such that for a.e. t ∈ [0, T ],

u(·, t) minimizes
∫

Ω
m(·, t)|v|2 over all v ∈ Cρ(·,t).

That is, ρ solves the DCM with initial data ρ0.

Proof. We follow the proof of ([MRS], Theorem 2.4), replacing the density bound by m

instead of 1, and modifying the analysis accordingly. Note Lemma 2.7 is substantially more

involved in this general case.

Given two probabilities µ and ν on Ω, we always have

1
2W

2
2 (µ, ν) = max

{∫
Ω
ϕdµ+

∫
Ω
ψ dν, ϕ, ψ ∈ C0(Ω) : ϕ(x) + ψ(y) ≤ 1

2 |x− y|
2
}
,

the maximum being always realized by a pair of c-concave conjugate functions (ϕ, ψ) with

14



ϕ = ψc and ψ = ϕc, where the c-transform of a function χ is defined through

χc(y) = inf
x∈Ω

1
2 |x− y|

2 − χ(x)

(with generalizations to other costs c rather than the square of the distance). We will call

Kantorovitch potential from µ to ν (resp. from ν to µ) any c-concave function ϕ (resp.

ψ) such that (ϕ, ϕc) (resp. (ψc, ψ)) realizes such a maximum. We have uniqueness of the

optimal pair as soon as the support of one of the two measures is the whole domain Ω.

Lemma 2.4. Fix t0, t1 and let ρ ∈ Kt0.

(i) The functional φ(ρ) = W2(ρ, ρ) admits a unique minimizer ρmin over ρ ∈ Kt1,

(ii) There exists a Kantorovitch potential ϕ to ρ, such that:

∫
Ω
ϕρ ≥

∫
Ω
ϕρmin for all ρ ≤ m(·, t1) a.e.

Proof. (i) Existence holds as argued before Lemma 2.1; uniqueness holds as in Lemma 2.2.

(ii) We first assume that ρ > 0 a.e., which implies that the Kantorovich potential ϕ from

ρmin to ρ, satisfying ϕ(x0) = 0 (with x0 any fixed point in Ω), is unique. Let us define

a small perturbation of ρmin: let ρ ≤ m(·, t1) be a probability density, ε > 0, and

ρε := ρmin + ε(ρ− ρmin). As ρmin minimizes φ(ρ), we have:

W2(ρε, ρ) ≥ W2(ρmin, ρ). (2.7)

Let (ϕε, ψε) be Kantorovich potentials associated to ρ and ρε. We have

1
2W

2
2 (ρε, ρ) =

∫
Ω
ϕε(x)ρε(x) dx+

∫
Ω
ψε(y)ρ(y) dy

1
2W

2
2 (ρmin, ρ) ≥

∫
Ω
ϕε(x)ρm(x) dx+

∫
Ω
ψε(y)ρ(y) dy,
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where ψε is a Kantorovitch potential from ρε to ρ. Thus

1
2
(
W 2

2 (ρε, ρ)−W 2
2 (ρmin, ρ)

)
≤
∫

Ω
ϕε(x)(ρε − ρm)(x) dx = ε

∫
Ω
ϕε(x)(ρ− ρmin)(x) dx,

so based on (2.7),

∫
Ω
ϕε(x)(ρ− ρmin)(x) dx ≥ 0 for all admissible ρ.

Sending ε to zero, ϕε converges to the unique Kantorovich potential ϕ from ρmin to ρ.

This gives ∫
Ω
ψc(x)(ρ− ρmin)(x) dx ≥ 0 for all admissible ρ.

We now prove the general case. Let ρδ > 0 a.e., ρδ ≤ m(·, t1) a.e., such that ρδ
converges to ρ when δ tends to 0. Using (i), there exists a unique minimizer ρmin,δ of

φδ(ρ) := IKt1 (ρ) + 1
2τW

2
2 (ρ, ρδ), and it converges to ρmin as δ tends to 0. Moreover, we

have proved that:

∫
Ω
ϕδ(x)(ρ− ρmin,δ)(x) dx ≥ 0 for all admissible ρ,

with ϕδ that converges to a Kantorovich potential ϕ. Taking the limit as δ → 0, we

obtain the desired inequality.

Lemma 2.5. The optimal transport functions take the form of a pressure gradient:

vnτ = −∇pnτ with pnτ ∈ H1
ρnτ
.

Proof. By the previous lemma, there exists a Kantorovich potential ϕ from ρnτ to ρn−1
τ such

that ρnτ is a solution of the minimizing problem:

ρnτ ∈ argminρ∈Kτn
{∫

Ω
ϕ(x)ρ(x) dx

}
,
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which imposes: 
ρnτ = m(·, τn) on [ϕ < `]

ρnτ ≤ m(·, τn) on [ϕ = `]

ρnτ = 0 on [ϕ > `],

where ` ∈ R is chosen such that ρnτ satisfies
∫

Ω ρ
n
τ dx = 1.

We can then define a pressure like function

pnτ (x) :=
(
`− ϕ

τ

)
+

=
(
`− ϕ(x)

τ

)
+
,

which satisfies pnτ ≥ 0, and pnτ = 0 on [ρnτ < m(·, τn)], therefore pnτ ∈ H1
ρnτ

. Since we have

vnτ = i− tnτ
τ

= ∇ϕ
τ
,

we get the desired decomposition for optimal transport functions.

Similar to (2.6), we interpolate the discrete values pnτ to form the piecewise constant

pressure function given by

pτ (t, ·) = pnτ if t ∈ ((n− 1)τ, nτ ].

Then we can write pτ ∈ H1
ρτ , and this works for all times.

Let us now define the densities ρ̃τ (t) that interpolate the discrete values (ρnτ ) along

geodesics:

ρ̃τ (t) =
(
t− (n− 1)τ

τ
(id− tnτ ) + tnτ

)
#
ρnτ . (2.8)

We also define ṽτ (t, ·) as the unique velocity field such that ṽτ (t, ·) ∈ Tanρ̃tP2(Rd) and (ρ̃τ , ṽτ )

satisfy the continuity equation. As before, we define Ẽτ = ρ̃τ ṽτ .

In order to give some a priori bounds on these curves, pressures, and velocities, we show

that the sequence (ρnτ )n satisfies a discrete H1 estimate on its variation. First we need a

uniform bound on the supports of the densities in the minimizing movement scheme.
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Lemma 2.6. For all small enough τ , the ρnτ are uniformly compactly supported inside

BKR(0) for some constant K dependent on T, α,M−, d.

Proof. Recall ρ0 is assumed compactly supported in BR(0).

The primary restriction on ρnτ is due to Lemma 2.2, which specifies that wherever ρnτ has

adjusted the measure from ρ0, it must be saturated, i.e., equal to m(·, τn). Because we

assume M− ≤ m(·, τn) in (M1), the maximum area of the support of ρnτ is the support of

ρ0, BR(0), plus at most area 1/M− where ρnτ is saturated.

What we must rule out, therefore, is an extension from BR(0) with finite area that reaches

for infinity. The primary tool to do so is Lemma 2.1. This extension must proceed in stages,

ρ0 → ρ1
τ , ρ1

τ → ρ2
τ , etc., reaching further at each stage.

To analyze such an extension, suppose r is such that ρn−1
τ is supported in Br(0) and

suppose the maximum radius in the support of ρnτ is r + ε, achieved at x0 ∈ Rd, so |x0| =

r + ε. Let γ be the optimal plan from ρnτ to ρn−1
τ . There must exist y0 ∈ Br(0) such that

(x0, y0) ∈ spt(γ). By Lemma 2.1, ρnτ = m(·, τn) a.e. in B|y0−x0|(y0).

In fact we need a stronger result than this from Lemma 2.1. Define

S = {y ∈ Br(0) : for some x ∈ Bε/2(x0), (x, y) ∈ spt(γ)}.

Let |S| be the measure of S in Rd. From here on we ignore constants related to the measure

of balls in Rd for clarity. Note on average mass from S moving into Bε/2(x0) must move at

least distance |S|1/d + ε
4 . Thus Lemma 2.1 indicates ρnτ is actually supported (and equal to

m(·, τn)) on a set G = spt(ρnτ ) \Br(0) of measure at least

|G| ≥ C
[
(|S|1/d + ε/4)d − (|S|1/d)d

]
≥ Cε|S|

d−1
d . (2.9)

See Figure 3 for one possible illustration.

Now consider how much mass is available from S to fill G so that

ρnτ = m(·, τn) ≥M−
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Figure 3: One possible illustration of the objects in Lemma 2.6.

on this outer set. From (M1), we have |∂tm| ≤ α, thus the mass available is at most ατ |S|.

Comparing with 2.9, it must be that

ατ |S| ≥M−(Cε|S| d−1
d ).

Thus

ε ≤ C|S|1/dτ ≤ Crτ,

with C dependent on α,M−, d.

Iterating a support extension of size Cτr starting from ρ0 supported in BR(0), we conclude

that ρnτ is supported inside a ball of radius

R(1 + Cτ)n ≤ R(1 + Cτ)T/τ ,

which has limit as τ → 0 of ReCT , so the statement of the lemma holds with K := 2eCT ,
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with C dependent on R, M−, and d.

Lemma 2.7. There exists a constant C independent of τ such that for all small enough τ ,

∑
n

W 2
2 (ρnτ , ρn−1

τ )
τ

≤ C.

Proof. Due to the previous lemma, we can assume ρn−1
τ is supported on BKR(0).

We devise a transport map ηn from ρn−1
τ to a candidate for ρnτ that is directed radially

outward from 0. Let z be a unit vector in an arbitrary direction in Rd. We must move mass

m(hz, τ(n− 1)) for h ∈ [0, KR] to some candidate density ρ with ρ(hz) ≤ m(hz, τn) for all

h ≥ 0. The natural candidate is such that the mass at radius r1 > 0 moves to radius r2

(with r2 > r1), which is chosen to satisfy mass conservation:

∫ r1

0
m(hz, τ(n− 1))(hn−1 dh) =

∫ r2

0
m(hz, τn)(hn−1 dh).

Estimating r2, using (M1) in that M− ≤ m and |∂tm| ≤ α,

1
d

(rd2−rd1)M− ≤
∫ r2

r1
m(hz, τk)(hd−1 dh) =

∫ r1

0
[m(hz, τ(n−1))−m(hz, τn)](hd−1 dh) ≤ αr1

dτ,

thus

r2 ≤ r1

(
1 + dα

M−
τ

)1/d

≤
(

1 + α

M1
τ
)
r1,

where the last inequality holds for small enough τ (depending on d). In particular, as

r1 ≤ KR, defining the new constant C̃ = αKR
M1

, the transport map ηn shifts mass at most a

distance C̃τ . Also note by picking τ small enough we ensure r2 ≤ 2KR, so the image of ηn

remains inside Ω, which was chosen in the statement of Theorem 2.3 as B3KR(0).

Now we must estimate the total W 2
2 cost for ηn. Using m ≤M+,

W 2
2 ((ηn)#ρ

n−1
τ , ρn−1

τ ) ≤ (surface area of unit ball in Rn)(2R)n−1
∫ 2R

0
(M+)(C̃τ)2 dh ≤ Cτ 2.
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Thus

W 2
2 (ρnτ , ρn−1

τ ) ≤ Cτ 2,

which gives the desired discrete H1 estimate.

Remark 2.2. If Ω had a more complicated geometry than a large enough ball, then Lemma

2.7 is much more challenging to prove, as directly constructing a candidate transport map

or plan appears to be necessarily dependent on the geometry of Ω. If the transport map or

plan forces a non-negligible amount of mass (specifically more than O(τ)) to move distance

more than O(τ), then we cannot recover Lemma 2.7 and the minimizing movement scheme

will likely not converge, at least in the sense considered here. Similar problems can arise if

the lower bound 0 < M− ≤ m in (M1) is not assumed.

Recall the metric derivative of a time-dependent function f with respect to a metric d is

defined as

|f ′(t)|d := lim
s→t

d(ρ(s), ρ(t))
|s− t|

.

Returning to the interpolated densities along geodesics from (2.8), ρ̃τ (t) is an absolutely

continuous curve in the Wasserstein space and its velocity on the time interval [(n− 1)τ, nτ ]

is given by the ratio W2(ρn−1
τ , ρnτ )/τ . Hence, the L2 norm of its velocity on [0, T ] is given by

∫ T

0
|(ρ̃τ )′|2W2(t) dt =

∑
n

W 2
2 (ρnτ , ρn−1

τ )
τ

. (2.10)

Comparing Eq. (2.10) and Lemma 2.7, for small enough τ , the L2 velocity norm is uniformly

bounded independent of τ . This gives compactness of the curves ρ̃τ , as well as a Hölder

estimate on their variations (since H1 ⊂ C0,1/2).

Lemma 2.8. We have the following a priori estimates:

(i) vτ is τ -uniformly bounded in L2((0, T ), L2
ρτ (Ω)),

(ii) pτ is τ -uniformly bounded in L2((0, T ), H1(Ω)),
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(iii) Eτ and Ẽτ are τ -uniformly bounded measures.

Proof. (i) We have the following equalities:

∫ T

0

∫
Ω
ρτ |vτ |2 =

∑
n

∫ nτ

(n−1)τ

∫
Ω
ρnτ |vnτ |2

=
∑
n

(∫ nτ

(n−1)τ
dt

)(∫
Ω
ρnτ (x) |x− t

n
τ (x)|2
τ 2 dx

)

=
∑
n

τ
W 2

2 (ρn−1
τ , ρnτ )
τ 2 = 1

τ

∑
n

W 2
2 (ρn−1

τ , ρnτ ).

Thus (i) holds by Lemma 2.7.

(ii) Since we have shown ∇pτ = −vτ , we have by (i),

∫ T

0

∫
Ω
ρτ |∇pτ |2 =

∫ T

0

∫
Ω
ρτ |vτ |2 ≤ C.

If we set mτ to be the piecewise function with mτ (x, t) = m(x, τn) for

t ∈ [τ(n− 1), τn], then pτ = 0 on [ρτ < mτ ], and as c1 ≤ m,

∫ T

0

∫
Ω
|∇pτ |2 ≤

1
c1

∫ T

0
mτ |∇pτ |2 = 1

c1

∫ T

0
ρτ |∇pτ |2 ≤ C.

(iii) Using previous estimates and Cauchy-Schwartz,

∫ T

0

∫
Ω
|Ẽτ | =

∫ T

0

∫
Ω
ρ̃v|ṽτ | ≤

∫ T

0

(∫
Ω
ρ̃τ |ṽτ |2

)1/2 (∫
Ω
ρτ

)1/2
≤
∫ T

0

(∫
Ω
ρ̃v|ṽτ |2

)1/2

≤
√
T

(∫ T

0

∫
Ω
ρτ |vτ |2

)1/2

≤ C.

The proof for Eτ is similar.

Lemma 2.9 ([MRS], Lemma 3.5). Assume that µ and ν are absolutely continuous measures,

whose densities are bounded by the same constant C. Then, for all functions f ∈ H1(Ω), we
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have the following inequality:

∫
Ω
f d(µ− ν) ≤

√
C||∇f ||L2(Ω)W2(µ, ν).

Now we proceed with the proof of Theorem 2.3.

Step 1: convergence of (ρ̃τ , Ẽτ ) and (ρτ , Eτ ). We have proved that ρ̃τ and Ẽτ are τ -uniformly

bounded measures, thus there exists (ρ, E) such that (ρ̃τ , Ẽτ ) converges narrowly to (ρ, E).

We will show that (ρτ , Eτ ) converges to the same limit as (ρ̃τ , Ẽτ ).

First we show the convergence of ρτ . The curves ρ̃τ converge uniformly in [0, T ] with

respect to the W2-distance. The curves ρτ and ρ̃τ coincide on every time of the form kn. Note

ρτ is constant on every interval (nτ, nτ ], while ρ̃τ is uniformly Hölder continuous of exponent

1/2, which implies W2(ρ̃τ (t), ρτ (t)) ≤ Cτ 1/2. This proves that ρτ converges uniformly to the

same limit as ρ̃τ .

We now consider a function f ∈ C∞c ([0, T ]×Ω), and prove that
∫ T
0
∫

Ω f(Ẽτ−Eτ ) converges

to 0 as τ converges to 0. We have ρ̃τ (t, ·) = (Tt)#ρ
n
τ , where

Tt = (t− (n− 1)τ)vnτ + tnτ .

Therefore

ρ̃τ (·, t+ h) = (Tt + hvnτ )#ρ
n
τ = ((id+ hvnτ ◦ T−1

t ) ◦ Tt)#ρ
n
τ = (id + hvnτ ◦ T−1

t )#ρτ (t, ·),

which implies that tρ̃τ (·,t+h)
ρ̃τ (·,t) = id + hvnτ ◦ T−1

t . We can then express ṽτ explicitly:

ṽτ (·, t) = lim
h→0

t
ρ̃τ (·,t+h)
ρ̃τ (·,t) − id

h
= lim

h→0

hvnτ ◦ T−1
t

h
= vnτ ◦ T−1

t ,

and obtain

∫
Ω
f(x, t)ρ̃τ (x, t)ṽτ (x, t) dx =

∫
Ω
f(t, Tt(x))ρnτ (x)ṽτ (Tt(x), t) dx

=
∫

Ω
f(Tt(x), t)ρnτ (x)vnτ (x) dx.
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Hence

∫ T

0

∫
Ω
f(Ẽτ − Eτ ) ≤

∑
n

∫ τ(n+1)

τn

∫
Ω
|f(x, t)− f(Tt(x), t)| |vnτ (x)|ρnτ (x) dx dt

≤
∑
n

∫ τ(n+1)

τn

∫
Ω

(Lip f)|x− Tt(x)| |vnτ (x)|ρnτ (x) dx dt

≤
∑
n

∫ τ(n+1)

τn

∫
Ω

(Lip f)|vnτ (x)|2ρnτ (x) dx dt

≤ C(Lip f)τ.

This proves the desired convergence.

Step 2: existence and candidacy of the limit velocity.

Let us prove that E is absolutely continuous with respect to ρ. Let θ be a scalar measure,

and F a vectorial measure: the function

Θ : (θ, F ) 7→



∫ T
0
∫

Ω
|F |2
θ

if F << θ for a.e. t ∈ [0, T ],

+∞ otherwise,

is lower semicontinuous for the weak-? convergence of measures. Since we have shown the

τ -uniform bound ∫ T

0

∫
Ω

|Eτ |2

ρτ
=
∫ T

0

∫
Ω
ρτ |vτ |2 ≤ C,

we have Θ(ρ, E) < +∞. Therefore E is absolutely continuous with respect to ρ, and

there exists u(·, t) ∈ L2(ρ(·, t)) such that E = ρu. Moreover, (ρ, ρu) (weakly) satisfies the

continuity equation as the limit of (ρ̃τ , Ẽτ ).

Next we show u ∈ Cρ(·,t). Let t0 ∈ (0, T ), h > 0, and q ∈ H1
ρ(·,t0). This implies

ρ(·, t0) = m(·, t0)
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wherever q > 0. Using the continuity equation and integration by parts,

∫ t0+h

t0

∫
Ω
∇q(x) · u(x, t)ρ(x, t) dx dt =

∫
Ω

∫ t0+h

t0
∇q(x) · (−∂tρ(x, t)) dt dx

=
∫

Ω
(ρ(x, t0 + h)− ρ(x, t0))q(x) dx.

As ρ(·, t0 + h) ∈ Kt0+h, ρ(·, t0 + h) ≤ m(·, t0 + h). Thus where q > 0,

lim
h→0+

ρ(x, t0 + h)− ρ(x, t0)
h

≤ lim
h→0+

m(x, t0 + h)−m(x, t0)
h

= mt(x, t0)

and

1
h

∫ t0+h

t0

∫
Ω
∇q(x) · ut(x, t)ρ(x, t) dx dt =

∫
Ω

1
h

(ρ(x, t0 + h)− ρ(x, t0))q(x) dx ≤
∫

Ω
mtq(x) dx.

Taking a limit of the left hand side as h→ 0, for a.e. t0,

∫
Ω
∇q(x) · u(x, t0)ρ(x, t0) dx ≤

∫
Ω
mtq(x) dx,

or ∫
Ω
m(x, t0)∇q(x) · u(x, t0) dx ≤

∫
Ω
mtq(x) dx.

In particular, u ∈ Cρ(·,t).

Similarly, integrating from t0 − h to t0, and repeating the above, we find the opposite

inequality, so for any q ∈ H1
ρ(·,t0),

∫
Ω
m(x, t0)∇q(x) · u(x, t0) dx =

∫
Ω
mtq(x) dx. (2.11)

Step 3: the limit velocity satisfies u = PCρ(0). As pτ ∈ L2([0, T ], H1(Ω)), there exists p

such that pτ weakly converges to p in L2([0, T ], H1(Ω)). Clearly p ≥ 0 a.e., so to show

p(·, t) ∈ H1
ρ(·,t) it suffices to show that p(·, t) = 0 on [ρ(·, t) < m(·, t)].
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We consider the average functions

pa,bτ = 1
b− a

∫ b

a
pτ (·, t) dt pa,b = 1

b− a

∫ b

a
p(·, t) dt

Since pτ = 0 on [ρτ < mτ ], we have

0 =
∫ b

a

∫
Ω
pτ (x, t)(mτ (x, t)− ρτ (x, t)) dx dt = 1

b− a

∫ b

a

∫
Ω
pτ (x, t)(mτ (x, t)−mτ (x, a)) dx dt

+ 1
b− a

∫ b

a

∫
Ω
pτ (x, t)(mτ (x, a)− ρτ (x, a)) dx dt

+ 1
b− a

∫ b

a

∫
Ω
pτ (x, t)(ρτ (x, a)− ρτ (x, t)) dx dt.

We will take limits of this expression both as b → a and as τ → 0. As b → a, since m

is continuous in time, the first integral vanishes. Taking a limit of the second integral as

τ → 0, ∫
Ω
pa,bτ (x)(mτ (x, a)− ρτ (x, a)) dx→

∫
Ω
pa,b(x)(m(x, a)− ρ(x, a)) dx,

as pa,bτ weakly converges in H1(Ω), and thus strongly in L2(Ω), to pa,b, and ρτ (·, a) weak-?

converges in L∞(Ω) to ρ(·, a). Then taking a limit as b → a, for every Lebesgue point a of

p(x, ·), pa,b → p(·, a), thus for these a,

∫
Ω
pa,b(x)(m(x, a)− ρ(x, a)) dx dt→

∫
Ω
p(x, a)(m(x, a)− ρ(x, a)) dx.

For the third integral, we use Lemma 2.9:

∫ b

a

∫
Ω
pτ (x, t) (ρτ (x, t)− ρτ (x, a)) dx dt ≤

∫ b

a
||∇pτ (·, t)||L2(Ω)W2(ρτ (·, a), ρτ (·, t)) dt

≤ C
√
b− a

(∫ b

a
||∇pτ (·, t)||2L2(Ω) dt

) 1
2
(∫ b

a
dt

) 1
2

≤ C(b− a)
(∫ b

a
||∇pτ (·, t)||2L2(Ω) dt

) 1
2

.

As
∫ T
0 ||∇pτ (·, t)||2L2(Ω) dt is τ -uniformly bounded, ||∇pτ (·, t)||2L2(Ω) weakly converges to a mea-

26



sure µ. Therefore, except for a zero measure set of points a ∈ [0, T ], we have as b→ a,

lim
τ→0

1
b− a

∫ b

a

∫
Ω
pτ (x, t)(ρτ (x, a)− ρτ (x, t)) dx dt ≤ C

√
µ([a, b])→ 0.

Thus taking both limits of the sum of these three integrals, we recover

∫
Ω
p(x, a)(m(x, a)− ρ(x, a)) dx = 0

for almost every a ∈ [0, T ].

So we have shown p(·, t) ∈ H1
ρ(·,t). Note Eτ = ρτvτ = ρτ (−∇pτ ) converges to E = ρ(−∇p).

As E = ρu, we have shown u = −∇p for p(·, t) ∈ H1
ρ(·,t).

In particular, using q = p in (2.11), and the norm and inner product in the weighted L2

Hilbert space,

||u||2m(·,t0) = −〈u,∇p〉m(·,t0) = −
∫

Ω
m(x, t0)∇p(x) · u(x, t0) dx =

∫
Ω

(−mt(·, t0))p(x) dx.

Given any v ∈ Cρ(·,t0), we use the fact that p ∈ H1
ρ(·,t0) for the upper bound

〈u, u− v〉m(·,t0) = ||u||2m(·,t0) +
∫

Ω
m(·, t0)∇p(·, t0) · v

≤
∫

Ω
(−mt(·, t0))p(·, t0) dx+

∫
Ω
mt(·, t0)p(·, t0) dx

= 0.

This implies the gradient flow velocity u minimizes
∫
m|v|2 over v ∈ Cρ(·,t0), which completes

the proof of Theorem 2.3.

Corollary 2.10. Let ρ∞ denote the limit density in Theorem 2.3. For almost every t,

W2(ρτ (·, t), ρ∞(·, t))→ 0.

Proof. 2-Wasserstein convergence is equivalent to narrow convergence plus convergence of
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the second moments. As both ρτ and ρ∞ were shown to be compactly supported in some

large ball, convergence of the second moments follows.
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Chapter 3

The Viscosity Solution Approach

In this chapter, we define the viscosity solution for the free boundary problem under

consideration, show it satisfies a comparison principle, and prove the modified porous medium

equation solutions converge to this viscosity solution. Following the results of Chapter 4, we

will later conclude that this free boundary problem describes the solution of the DCM from

Chapter 2.

3.1 Viscosity solutions of (FB-M)

Recall the free boundary problem (FB-M),

−∇ · (m∇p) = −mt in {p(·, t) > 0},

V = |∇p| on ∂{p(·, t) > 0}.

Note due to (M1) the equation −∇ · (m∇p) = −mt can also be written as

−∆p−∇(logm) · ∇p+ ∂t(logm) = 0.

As the set {p(·, t) > 0} evolves according to the free boundary problem, its boundary may

become less regular and go through topological singularities, in which case a well-defined

classical solution p may not exist. However, the maximum principle for −∇ · (m∇p) = −mt

still allows enough control over the solution by comparing against smooth test functions on

the interior and on the boundary.

Definition 3.1. For a function f : D → R, define its upper and lower semi-continuous

envelopes

f ∗(x, t) := lim
r→0

sup
(y,s)∈D

|(y,s)−(x,t)|≤r

f(y, s), f∗(x, t) := lim
r→0

inf
(y,s)∈D

|(y,s)−(x,t)|≤r

f(y, s).
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• A nonnegative uppersemicontinuous function u : Q → R is a viscosity subsolution of

(FB-M) with initial data u0 if

(a) u = u0 at t = 0,

(b) for each τ > 0,

{u > 0} ∩ {t ≤ τ} ⊂ {u > 0} ∩ {t < τ}

(c) for every φ ∈ C2,1(Q) that has a local maximum zero of u−φ in {u > 0}∩{t ≤ t0}

at (x0, t0),

(i) if (x0, t0) ∈ {u > 0},

[−∆φ−∇(logm) · ∇φ+ ∂t(logm)] (x0, t0) ≤ 0,

(ii) if (x0, t0) ∈ ∂{u > 0}, u(x0, t0) = 0, and |∇φ(x0, t0)| 6= 0, then

min
(
−∆φ−∇(logm) · ∇φ+ ∂t(logm), φt − |∇φ|2

)
(x0, t0) ≤ 0.

• A nonnegative lowersemicontinuous function v : Q → R is a viscosity supersolution of

(FB-M) with initial data u0 if

(a) v = v0 at t = 0

(b) for every φ ∈ C2,1(Q) that has a local minimum zero of v − φ in Rd × (0, t0] at

(x0, t0),

(i) if (x0, t0) ∈ {v > 0},

[−∆φ−∇(logm) · ∇φ+ ∂t(logm)] (x0, t0) ≥ 0,

(ii) if (x0, t0) ∈ ∂{v > 0}, v(x0, t0) = 0, as well as

|∇φ(x0, t0)| 6= 0, and for some ball B centered at (x0, t0), (3.1)

{φ > 0} ∩ {v > 0} ∩B 6= ∅,
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then

max
(
−∆φ−∇(logm) · ∇φ+ ∂t(logm), φt − |∇φ|2

)
(x0, t0) ≥ 0.

• p is a viscosity solution of (FB-M) with initial data u0 if u∗ is a viscosity supersolution

of (FB-M) with initial data u0 and u∗ is a viscosity subsolution of (FB-M) with initial

data u0.

Remark 3.1. When no initial data is referenced, we use these definitions without condition

(a) for subsolutions or supersolutions.

Similar definitions apply to viscosity solutions on a bounded set E, where we replace all

instances of {v > 0}, for example, with {v > 0} ∩ E.

3.2 Comparison principle for (FB-M)

Definition 3.2. We say two non-negative functions u, v : Rd → R are strictly separated,

denoted by u ≺ v, if {u > 0} ⊂ {v > 0} and u < v in {u > 0}.

Theorem 3.1. Suppose (M1) and (M2). Let u be a viscosity subsolution and v be a viscosity

supersolution of (FB-M) with initial data u0, v0 respectively. If u0 ≺ v0, then the solutions

remain strictly separated,

u(·, t) ≺ v(·, t) for all t ≥ 0.

The proof is similar enough to ([K], Section 2) that we focus on major barriers that have

been modified to reflect the dependence on the density constraint m and outline the rest.

Proof. (i) Regularization

To regularize solutions, we use the open sets

Dr := {(y, s) : (|y − x| − r)2
+ + |s− t|2 < r2}.

Note that when 2r < R, Dr(x, t) ⊂ BR(x, t). For given r, δ > 0, denote the sup-
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convolution and inf-convolution of a subsolution u and a supersolution v with respect

to Dr by

u(x, t) := sup
(y,τ)∈Dr(x,t)

u(y, s), v(x, t) := inf
(y,s)∈Dr−δt(x,t)

v(y, s). (3.2)

Suppose for the sake of contradiction that u crosses v from below. Then there exists

a finite crossing time

T := sup{t : u(·, τ) ≺ v(·, τ), 0 < τ < t}.

Fix r, δ small enough and consider the contact time

t0 := sup{t : u(·, t) ≺ v(·, t)},

with 0 < t0 ≤ T .

(ii) Geometry at time of contact

Consider any point P0 = (x0, t0) ∈ ∂{v > 0}. Then there is a point P2 = (x2, t2) ∈

∂{v > 0} such that at P0 the set {v > 0} has an exterior space-time ellipsoid E0 defined

by

(x− x2)2 + (t− t2)2 ≤ (r − δt)2

and at P2 the set {v > 0} has an interior space-time ball B2 or radius r − δt0 centered

at P0. Let H0 denote the tangent hyperplane of E0 at P0. The inward normal vector to

H0 with respect to E0 at P0 takes the form (ν, σ) for some unit vector ν. We call this

σ the advancing speed of the free boundary of v at P0.

Lemma 3.2. The advancing speed σ of the free boundary of v satisfies σ ≥ δ.

Proof. If σ < δ, then at P2, the interior space-time ball B2 of {v > 0} has negative

advancing velocity. By the lower semicontinuity of v, v(P2) = 0.
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For small τ > 0, we construct a barrier h(x, t) on B2 ∩ [t2 − τ, t2] such that



−∆h−∇(logm) · ∇p+ ∂t(logm) < 0 outside 1
4B2,

0 < h < v inside 1
4B2,

{h > 0} = B2, |∇h| 6= 0 on ∂B2.

Say B2 has radius R. Since m is smooth and mt < 0, there exist constants κ1, κ2 > 0

such that |∇(logm)| ≤ κ1,−∂t(logm) ≥ κ2 in a large compact set. Let cR = κ1 + 4(n−1)
R

and C > 0 to be fixed later. We select the following base function for 0 ≤ r ≤ R:

h1(r) = C(e−cRr − e−cRR),

and define h : Rn × [t2 − τ, t2]→ R by

h(x, t) = h1

 |x− x2|√
R2 − (t− t2)2

 .
Outside 1

4B2, this satisfies

−∆h−∇(logm) · ∇p+ ∂t(logm) = −∂rrh1 −
(
∇(logm) + (n− 1)

r

)
∂rh1 + ∂t(logm)

≤ Ce−cRr
(
−c2

R + cR

(
κ1 + 4(n− 1)

R

))
− κ2

≤ Ce−cRr(−c2
R + c2

R)− κ2 < 0.

As v > 0 in B2 and v is lower semicontinuous, v has a positive lower bound in 1
4B2.

Thus we can pick C > 0 so that 0 < h < v inside 1
4B2. Moreover, h is positive inside

B2, 0 on ∂B2, and negative outside B2, with |∇h| 6= 0 on ∂B2.

Since v has negative advancing velocity, there exists τ > 0 such that B2∩ [t2−τ, t2] ⊂

{v > 0}. Because h < 0 outside B2, v − h > 0 on ∂{v > 0} ∩ {t ≤ t0} except at

P2. Applying the maximum principle for the uniformly elliptic operator − 1
m
∇ · (m∇),
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we conclude v − h > 0 inside B2. Thus v − h has its local minimum zero at P2 in

{v > 0} ∩ {t ≤ t0}. But this contradicts the definition of v as viscosity supersolution,

since at P2,

−∆h+∇(logm) · ∇h− ∂t(logm) < 0 and ht − |∇h|2 ≤ −|∇h|2 < 0.

By property (b) of the subsolution definition, {u(·, t) > 0} does not jump outward

discontinuously in time. By Lemma 3.2, {v(·, t) > 0} does not jump inward discontinu-

ously in time. Thus there exists a point P0 = (x0, t0) where the non-negative maximum

of u− v is attained in {u > 0} ∩ {t ≤ t0}. Using the maximum principle for the elliptic

problem and a barrier argument, it follows that

u(P0) = v(P0) = 0.

The point P0 is the contact point of the free boundaries of u and v at t = t0.

From the geometry of the regularization, at P0, {u > 0} has an interior space-time

ball of radius r1 centered at P1 ∈ ∂{u > 0}. Also at P1, {u > 0} has an exterior

space-time ball B1 of radius r centered at P0.

For simplicity of notation, shift and rotate so that P0 = (0, t0) and P0P1 = d1e1,

where e1 = (1, 0, . . . , 0). Let H be the tangent hyperplane to the interior ball of u at

P0. The internal normal vector to H with respect to {u > 0} at P0 takes the form

(e1, σ) for some σ. Let α ∈ (0, π/2) be such that σ = tanα. Then s is the advancing

speed of {u > 0} and

P1 = (x1, t1) = (r cosα,~0, t0 + r sinα), ~0 ∈ Rn−1.

Similarly, the set {v > 0} has an exterior space-time ball B centered at P2 ∈ ∂{v >

0}, and at P2 the set {v > 0} has an interior space-time ball B2 centered at P0.
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Lemma 3.3. The hyperplane H is neither horizontal nor vertical.

Proof. By Lemma 3.2, H is not vertical.

Suppose for the sake of contradiction that H is horizontal. Let δ > 0. Shifting

the time variable for convenience, there is a subsolution w of (FB-M) in the cylinder

C1 = B1 × [0, δ] with P1 = (0, δ) ∈ ∂{w(·, δ) > 0}, 0 ∈ Rn, which takes value 0 on the

bottom, and less than δ on the lateral boundary.

We build smooth φ(x, t) in C1 such that

(i) −∇ · (m∇φ) > −mt in C1,

(ii) w ≤ φ on the lateral boundary and bottom of C1,

(iii) φt − |∇φ|2 > 0 on ∂{φ > 0}.

Since the radius r of B2 and δ can be made arbitrarily small, we can treat m, mt,

and ∇m as effectively constant in C1. Thus for some c1, c2 > 0 and given vector ~b, (i)

becomes

−c1∆φ−~b · ∇φ > c2,

Consider

φ(x, t) :=
[
g
(
|x|+ c1

2c2
t
)]

+

where g is chosen below. Then letting c3 = |~b|, (i) is satisfied if

−c1

(
g′′ + n− 1

r
g′
)
− c3|g′| > c2. (3.3)

Consider

g(r) = −c2

c1

1
2n(r2 − 1) + δ

(
2− r−2n

)
.

Note |g′| has an extra factor of r compared to the other terms in Inequality (3.3); the

radius of B2 can be taken small enough that the |g′| term is then negligible compared

to the other terms. As g was chosen to satisfy

−
(
g′′ + n− 1

r
g′
)
>
c2

c1
,
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we have satisfied (i).

Note (ii) holds because g(1) > δ and g(r) < 0 for r near 0. Checking (iii), note that

for small δ, 0 < g′ < 2 c2
c1

on ∂{φ > 0} so that

φt − |∇φ|2 = c1

2c2
g′ − (g′)2 = (g′)

(
c1

2c2
− g′

)
> 0 on ∂{φ > 0},

which contradicts the definition of w as a subsolution.

(iii) Control of gradients with barriers

Lemma 3.4. In any nontangential cone K,

lim inf
x→0,x∈K

u(x, t0)
σ(x1)+

≥ 1.

Proof. As in [[K], Lemma 2.6], with the replacement of the following test function:

With B1 the space-time ball (centered at 0 for convenience), P1 = (cosαe1, sinα)

and boundary speed σ = tanα > 0, given ε > 0 we build smooth radial φ such that

(i) −∇ · (m∇φ) > −mt outside 1
4B1,

(ii) φ(x, t) > 0 in 2B1 \B1, φ(x, t) = 0 on ∂B1,

(iii) φt
|∇φ|(P1) = σ, but φr(P1) = σ(1− ε) so that

(φt − |∇φ|2)(P1) > 0.

Note it suffices for the proof in [K] that φ > 0 on 2B1 \ B1 instead of φ > 0 outside of

B1.

As the radius of B1 can be taken arbitrarily small, it suffices to treat the case when

m,mt, and ∇m are constant, as well as so that the ∇m · ∇φ term has negligible

contribution compared to other terms in (i). Thus given c > 0, to satisfy (i), we look

for a radial function to satisfy

−φ′′1 −
n− 1
r

φ′1 > c.
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The following is a radial solution outside 1
4B1 with value zero when |x| = 1:

φ1(x) = c(−3 + 4|x| − |x|2) +


1 + log |x| − |x|−1 if n = 2

2− |x|2−n − |x|1−n if n > 2

The choice of coefficients in the first part ensure φ1,r > 0 at |x| = 1, so that φ1 < 0

just inside B1 and φ1 > 0 in 2B1 \ B1. Extend φ1 to 1
4B1 so that φ > 0 in 2B1 \ B1,

φ(x, t) = 0 on ∂B1, and φ < 0 inside B1.

Finally we extend it to the space-time ball B1 (without the top and bottom) by

φ(x, t) := φ1

(
x√

1− t2

)
,−1 < t < 1.

In particular this choice gives φt
|∇φ|(P1) = σ since P1 = (cosαe1, sinα) and σ = tanα.

Multiplying by an appropriate positive constant depending on σ allows φr(P1) = σ(1−

ε).

Finally, it is possible to derive a contradiction as in [K] page 20 by construction of

an appropriate test function: Given ε > 0, we use smooth radial φ such that

(i) −∇ · (m∇φ) < −mt outside 1
4B2,

(ii) φ(x, t) > 0 in 2B2 \B2, φ(x, t) = 0 on ∂B2,

(iii) − φt
φr
< σ(1− ε) < −φr on ∂B2 ∩ {t2 − τ ≤ t ≤ t2} so that

φt − |∇φ|2 < 0.

Here it suffices to take a positive constant dependent on σ times the negative of the

construction in Lemma 3.4.
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3.3 (PME-M) weak solutions and pressure properties

Recall the porous medium equation for density ρk : Rd × [0, T ]→ R,

∂tρ+∇ · (ρ(−∇p)) = 0, (PME-M)

where k > 1 is given, the pressure is related by

pk = Pk(ρ) := k

k − 1

(
ρ

m

)k−1
,

and ρ(·, 0) = ρ0.

The equation (PME-M) has a corresponding equation for the pressure pk where pk > 0:

pt = (k − 1)p(∇ · (m∇p)−mt) + |∇p|2. (PME-M p)

Definition 3.3. A classical solution of (PME-M p) is a nonnegative function p ∈ C2,1({p > 0})

such that

(i) p solves (PME-M p) in {p > 0},

(ii) p has a free boundary Γ = ∂{p > 0} which is a C2,1 hypersurface, and

(iii) Γ evolves with outer normal velocity V = |∇p|.

In Appendix A, we show (PME-M) has a weak, continuous solution ρk. As the relevant

equations have a maximum principle, when comparing with any φ ∈ C2,1(Rd × (0,∞)), we

have the following properties:

(i) If pk − φ has a local maximum zero in {t ≤ t0} at (x0, t0), then

(φt − (k − 1)φ(∇ · (m∇φ)−mt)− |∇φ|2)(x0, t0) ≤ 0. (3.4)

(ii) If pk − φ has a local minimum zero in {pk > 0} ∩ {t ≤ t0} at (x0, t0), then

(φt − (k − 1)φ(∇ · (m∇φ)−mt)− |∇φ|2)(x0, t0) ≥ 0. (3.5)
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(iii) Any classical solution of (PME-M p) that lies below pk at some time cannot cross pk at

a later time.

See [KL] for further properties when m ≡ 1 and drift is present. Here property (ii) only

clearly holds in {pk > 0} to match up with the notion of weak solutions. The next lemma

shows the resulting behavior at the free boundary is still as we expect.

Lemma 3.5. Fix k ≥ 2 and assume (M1) and (M2). Suppose that φ is a smooth function

and pk−φ has a local minimum zero in {pk > 0} at (x0, t0) ∈ ∂{pk > 0}. If φ satisfies (3.1),

then [
φt − |∇φ|2

]
(x0, t0) ≥ 0.

Similarly, if pk − φ has a local maximum zero in {pk > 0} at (x0, t0) ∈ ∂{u > 0}, then

[
φt − |∇φ|2

]
(x0, t0) ≤ 0.

First we need to construct a specific barrier used in the proof.

Lemma 3.6. Assume (M1) and (M2). Fix values ε > 0, k > 0, γ > 0 and a point x0 ∈ Rd.

For small enough ε, there exists η > 0 depending on ε such that we can construct a classical

subsolution u of (PME-M)k in Eη := Bη(x0)× [−η, η] with P0 := (x0, 0) on its free boundary,

which moves with normal velocity γ, and satisfies

γ ≥ |∇u(P0)| − ε.

Proof. We start from the source-type Barenblatt solutions for the standard porous medium

equation, which in pressure form are given by

S(x, t; τ, C) = (t+ τ)−λdk
(
C − γ x2

(t+ τ)2λ

)
+
, (3.6)

where λ = (kd + 2)−1, γ = λ/2, and C and τ are arbitrary. These are classical moving free
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boundary solutions of the porous medium equation, which in pressure form is

St = (k − 1)S∆S + |∇S|2. (3.7)

Here S is centered at 0, the parameter C controls the size of the support of S, and τ controls

the advancing speed of the free boundary of S. Select C such that S is supported in BR(0)

and select τ such that the boundary velocity of S at P0 is ξ. Here R and ξ will be determined

later.

Let r(t) = µ− νt, with µ, ν parameters to be chosen, and define

u(x, t) = sup
y∈Br(t)(x)

S(y, t) = S

((
1− r(t)

|x|

)
x, t

)
in Eη,

with η chosen less than R/2. Then

ut = St − r′(t)∇S ·
x

|x|
= St + r′(t)|∇S| = St − ν|∇S|.

Since S is a solution of the porous medium equation Eq. (3.7),

ut = St − ν|∇S| = (k − 1)S∆S + |∇S|2 − ν|∇S|. (3.8)

Note η < R/2 implies Eη is bounded away from the origin with 1/|x| ≤ 2/R. Therefore,

∂u

∂xj
= ∂S

∂u
+ µ|∇S|O(1/R)

and ∇u = ∇S+O(µ). Taking another derivative and estimating likewise, ∆u = ∆S+O(µ).

Moreover, in Eη,

S ≤ 2η sup
Eη

|∇u| = O(η)

and |∇u| is maximal at the boundary, where |∇S| ≤ ξ = O(1). Thus Eq. 3.8 can be

rewritten

ut = (k − 1)u(∆u+∇(logm) · ∇u− ∂t(logm)) + |∇u|2 − ν|∇u|+O(µ) +O(η). (3.9)
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Now we select the parameters appropriately. Assume ε < infEη∩{u>0} |∇u|/6 for some

small value of η. Let

ν = ε/3, ξ = γ + ν > 0.

Select η small enough so that in Eη, with O(µ) and O(η) terms from (3.9),

|O(µ) +O(η)| < ε inf
Eη∩{u>0}

|∇u|/3,

and R = |x′| − µ = 1− µ. Finally, refine η so that

sup
Eη∩{u>0}

|∇u| − inf
Eη∩{u>0}

|∇u| < ε inf
Eη∩{u>0}

|∇u|

By choice of ν,

ν|∇u| ≥
ε infEη∩{u>0} |∇u|

3

and by the upper bound on ε, we also have

ν|∇u| ≤
ε supEη∩{u>0} |∇u|

3 ≤
ε infEη∩{u>0} |∇u|

2 .

Combining estimates,

−ε inf
Eη∩{u>0}

|∇u| ≤ −ν|∇u|+O(η) +O(µ) ≤ 0.

Thus Eqn (3.9) implies that in Eη,

(k − 1)u(∆u+∇(logm) · ∇u− ∂t(logm)) + |∇u|2 − ε inf
Eη∩{u>0}

|∇u| ≤ ut

≤ (k − 1)u(∆u+∇(logm) · ∇u− ∂t(logm)) + |∇u|2,

so u is a subsolution of (PME-M)k and the free boundary of u has boundary velocity at P0

satisfying

γ ≥ |∇u(P0)| − ε.
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Proof. (of Lemma 3.5)

First note the second result is trivial, as substituting φ(x0, t0) = 0 in the inequality (i)

yields the desired conclusion.

Now we focus on the first inequality. Let v = pk for convenience, as the same idea applies

for any supersolution of (PME-M p). In order to regularize the boundary, we obtain this

result first for the inf-convolution v defined in Eq. (3.2), then send first δ → 0 and then

r → 0 in its definition to obtain the result for v. Thus we suppose v−φ has a local minimum

in {v > 0} at P0 = (x0, t0) ∈ ∂{v > 0} with φ a smooth function satisfying (3.1).

By adding ε(t− t0)−ε(x−x0)2 to φ if needed, we can assume that v−φ has a strict local

minimum of zero at P0. By (3.1), φ+ is nontrivial in {v > 0} with a smooth free boundary

near P0. Let H be the hyperplane tangent to {φ > 0} at (x0, 0), with (ν, γ) the inward

normal to H with |ν| = 1.

Let β = |∇φ|(x0, 0) > 0. Arguing by contradiction, suppose instead of the desired

inequality that [
φt − |∇φ|2

]
(x0, t0) < 0.

Then for some σ > 0,

γ = φt
|∇φ|

< β − σ. (3.10)

For small η < 1,

v ≥ φ in Bη(x0)× [−η, 0]. (3.11)

By the regularity of the free boundary of φ at P0, the set {x : φ(x, t0) > 0} has a space

interior ball B0 with x0 ∈ ∂B0. Define

γ1 :=


γ + σ/4 if γ ≥ 0

β/2 otherwise
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Applying Lemma 3.6 with parameter γ = γ1, there exists η > 0 and a classical subsolution

u of (PME-M) in Bη(x0) × [−η, η] with initial support inside B0, outward normal velocity

γ1 at (x0, 0) and for some 0 < ε < min(σ/4, β/4),

γ1 ≥ |∇u(x0, 0)| − ε. (3.12)

We claim that u lies under v in Bη(x0)×[−η, 0] for sufficiently small η. Then it is sufficient

to note that u crosses v at (x0, 0), which contradicts the fact that u is a subsolution and v

is a supersolution.

To verify the claim, note by Eq. (3.10) and Inequality (3.12),

|∇u|(x0, 0) <


β − σ

2 if γ ≥ 0,

3β/4 otherwise.
< β = |∇φ|(x0, 0).

By Inequality (3.12), the support of u moves with normal speed larger than the speed of

φ at (x0, 0). So by the regularity of φ and u as well as their ordering at t = 0, for small

enough η,

{u > 0} ⊂ {φ > 0} in Bη(x0)× [−η, 0],

Therefore, u ≤ φ ≤ v in Bη(x0)× [−η, 0] for small enough η, as claimed.

3.4 Convergence of (PME-M) solutions as k →∞

Definition 3.4. The upper and lower half-relaxed limits lim inf∗ and lim sup∗ of a sequence

of locally bounded functions pk(x, t) are defined as

lim sup
k→∞

∗ pk(x, t) := lim
r→0

sup
k≥r−1

|(y,s)−(x,t)|≤r

pk(y, s), lim inf
k→∞ ∗ pk(x, t) := lim

r→0
inf
k≥r−1

|(y,s)−(x,t)|≤r

pk(y, s).
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Let Ω0 be a compact set in Rn with smooth boundary, and take weak solutions pk corre-

sponding to solutions ρk of (PME-M)k with initial data ρ0 = m0χΩ0 . This means the pk are

weak solutions of

1
m

(∇ · (m∇p0)) = −∆p0 −∇(logm) · ∇p0 + ∂t(logm) = 0 in Ω0,

with p(·, 0) = Pk(ρ0). In order to show pk converges to a viscosity solution of (FB-M), we

utilize the half-relaxed limits

q1(x, t) := lim sup∗ pk q2(x, t) := lim inf∗ pk.

Since pk(·, 0) = Pk(ρ0), it follows that q1 = q2 = p0 at t = 0, where p0 solves

∇(m(·, 0)∇p) = mt

on Ω0.

Lemma 3.7. The upper half-relaxed limit q1 is a viscosity subsolution of (FB-M), and the

lower half-relaxed limit q2 is a viscosity supersolution of (FB-M).

Proof. First we argue that q2 is a supersolution. To prove property (b) in the supersolution

definition, let φ be a smooth function satisfying (3.1) such that q2 − φ has a local minimum

zero at (x0, t0) ∈ {q1 > 0}. Adding ε(t−t0)−ε(x−x0)2 to φ if necessary, we may assume that

q2− φ has a strict local minimum zero at (x0, t0)∩Br(x0, t0) for small r > 0. Then for large

enough k, along a subsequence, pk − φ has its minimum at (xk, tk) in {pk > 0} ∩ Br(x0, t0)

with (xk, tk)→ (x0, t0).

If (x0, t0) ∈ {q2 > 0}, then (xk, tk) ∈ {pk > 0} for large k. By property (3.5) of pk,

[ 1
k − 1(φt − |∇φ|2)− φ(∆φ+∇(logm) · ∇φ− ∂t(logm))

]
(xk, tk) ≥ 0,
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and as φ(x0, t0) > 0, we can take a limit as k →∞ to obtain

∆φ+∇(logm) · ∇φ− ∂t(logm) ≤ 0.

If instead (x0, t0) ∈ ∂{q2 > 0}, suppose for the sake of contradiction that

max
(
−∆φ−∇(logm) · ∇φ+ ∂t(logm), φt − |∇φ|2

)
(x0, t0) < 0.

For large enough k,

[φt − (k − 1)φ(∆φ+∇(logm) · ∇φ+ ∂t(logm))] (xk, tk) < 0,

so (xk, tk) ∈ ∂{pk > 0}. But this contradicts Lemma 3.5, hence

max
(
−∆φ−∇(logm) · ∇φ+ ∂t(logm), φt − |∇φ|2

)
(x0, t0) ≥ 0.

Now we argue that q1 is a subsolution. The argument that q1 satisfies property (c) of

the viscosity subsolution definition is parallel to the corresponding argument above for the

supersolution property (b).

Property (b) of the subsolution definition (continuous expansion) follows from the con-

struction of a smooth supersolution which prevents jumps in pressure support at the bound-

ary. Suppose for some constants f, r0 > 0, and (x0, t0) given we know that pk(·, t0) = 0 in

Br0(x0) and pk ≤ f on the parabolic boundary of B2r0(x0)× [t0, t0 +T ]. For all small enough

r0, we construct a supersolution v such that v = 0 in Br0/4(x0)× [t0, t0 + T ]. For each point

(y, t) ∈ ∂{q1(·, t) > 0}, we apply the above to a sequence of x0 approaching y0 from outside

{q1 > 0} so that this result gives the desired continuous expansion property.

This construction is a modification of [AKY], Theorem B.1. For convenience, assume that

(x0, t0) = (0, 0). Let κ1, κ2 > 0 such that in a large ball, |∇(logm)| ≤ κ1 and −∂t(logm) ≤

κ2. The core spatial part of the barrier is a radial function w(x) = w1(|x|) with w1(r0/2) = 0,
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w1(r0) = f , and in B2r0 \Br0/2,

∆w +∇(logm) · ∇w − ∂t(logm) < 0. (3.13)

Let c(r0) = κ1 + 2(n−1)
r0

. One such choice is

w1(r) = −C1e
−c(r0)r − κ2

n
r2 + C2.

For the following C1, C2 we have w1(r0/2) = 0 and w1(r0) = f :

C1 =
f + 3

4
κ2
n
r2

0

e−c(r0)r0/2 − e−c(r0)r0
> 0, C2 = κ2

n
r2

0 +
3
4
κ2
n
r2

0 + f

ec(r0)r0/2 − 1 > 0.

We extend w smoothly from [r0/2, 2r0] to [0, 2r0] so that w = 0 on [0, r0/4].

To verify (3.13), we compute

∆
(
−κ2

n
|x|2

)
+ κ1

∣∣∣∣∇(−κ2

n
|x|2

)∣∣∣∣ ≤ −2κ2 + κ1
κ2

n
(2r)

and

∆
(
−e−c(r0)|x|

)
+ κ1

∣∣∣∇ (−e−c(r0)|x|
)∣∣∣ = e−c(r0)r

(
−(c(r0))2 + c(r0)

(
κ1 −

(n− 1)
r

))

≤ e−c(r0)r
(
−(c(r0))2 + c(r0)

(
κ1 + 2(n− 1)

r0

))
≤ e−c(r0)r(−(c(r0))2 + (c(r0))2)

= 0.

Thus for small enough r0 (depending on κ1, κ2), w satisfies (3.13).

Also,

w′1(r) = C1c(r0)e−c(r0)r − 2κ2

n
r.

This is decreasing as r increases, and

w′1(4r0) ≥
3
4
κ2
n
r2

0

ec(r0)r0/2 − 1

(
2(n− 1)

r0

)
− κ2

n
8r0 > 0,

46



where the second inequality holds for small enough r0 (depending on κ1, κ2). In particular

for r ∈ [r0/2, 4r0], w′1(r) ≥ 0 and w1(r) ≥ w1(r0) = f .

Now introducing the time-dependence, define

v(x, t) = w(R(t)|x|),

where R(t) is to be determined with R(0) = 1, 1 ≤ R(t) ≤ 3
2 . Then the second radial

derivatives of w receive the factor (R(t))2, while the first radial derivatives receive the factor

R(t). Since R(t) ≤ (R(t))2, by possibly decreasing r0, we can ensure as in the construction

of w that

∆v +∇(logm) · ∇v − ∂t(logm) ≤ 0.

The choice of R(t) will ensure vt ≥ 2|∇v|2, which combined with the above, ensures that v

is a supersolution of (PME-M p)k. This holds if

R′(t)
(R(t))2 ≥ 2w

′(R(t)r)
r

,

so it suffices to take R(t) = 1
1−Lt , where

R′(t)
(R(t))2 = L := 8

r0
sup

[r0/2,4r0]
w′(r) ≥ 2 sup

[r0/2,2r0]

w′(R(t)r)
r

,

with the last inequality based on 1 ≤ R(t) ≤ 3
2 . Last of all, pick some final time T to ensure

that for t ∈ [0, T ],

R(t) = 1
1− Lt ≤

3
2 .

By construction of v, pk ≤ v on the parabolic boundary of B2r0(0)× [0, T ]. Thus by the

comparison principle for (PME-M)k,

pk ≤ v in B2r0(0)× [0, T ].

Also by construction of v, we have v = 0 inside Br0/4(0) × [0, T ]. Thus we conclude that
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pk = 0 in Br0/4(0) × [0, T ], as desired. This completes the proof of property (b) from the

subsolution definition.

3.5 Uniform convergence

Here we follow ([AKY], Section 3).

Theorem 3.8. (a) There exists a unique evolution of compact sets {Ωt}t>0 such that any

viscosity solution p of (FB-M) satisfies Ωt = {p(·, t) > 0} for each t > 0.

(b) For each t > 0, the Hausdorff distance dH(Ωt, {pk(·, t) > 0}) goes to zero as k → ∞,

and lim supk→∞ pk(·, t) is uniformly bounded.

Proof. Starting from p0, because ∂Ω0 is assumed to be locally Lipschitz, we can construct a

sequence of initial data q−,`0 , q+,`
0 for pressure such that

(i) q−,`0 ≺ p0 ≺ q+,`
0 for each `,

(ii) q±,`0 converges uniformly to p0 as `→∞,

(iii) {q±,`0 > 0} converges uniformly to {p0 > 0} in Hausdorff distance as `→∞.

Let q±,`k be the corresponding solutions of (PME-M p)k with initial data q±,`0 . As before,

we consider the half-relaxed limits

qpm1 :=
∗

lim sup q±,`k , qpm2 := lim inf
∗

q±,`k .

By Lemma 3.7, q1 is a viscosity subsolution of (FB-M) and q2 is a viscosity supersolution of

(FB-M), with their appropriate initial data.

Define

V (x, t) := (inf{v : v is a viscosity supersolution of (FB-M) with p0 ≺ v(·, 0)})∗
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and

U(x, t) := sup{u : u is a viscosity subsolution of (FB-M) with u(·, 0) ≺ p0}.

By the definitions of U and V , we conclude

qpm,`1 ≤ U, V ≤ qpm,`2 .

Also, by property (i) and the comparison principle for (FB-M) and (PME-M) (given in

Lemma A.2),

q−,`k ≤ q+,`
k and q−,`1 ≤ q+,`

2 . (3.14)

Writing the L1 contraction property for weak solutions ρ1, ρ2 of (PME-M)k in terms of

pressure pi = k
k−1

(
ρi
m

)k−1
,

||m(·, t)(p1/(k−1)
1 − p1/(k−1)

2 )(·, t)||L1(Rd) ≤ ||m(·, 0)(p1/(k−1)
1 − p1/(k−1)

2 )(·, 0)||L1(Rd).

In particular,

||m(·, t)((q−,`k )1/(k−1)− (q+,`
k )1/(k−1))(·, t)||L1(Rn) ≤ ||m(·, 0)((q−,`0 )1/(k−1)− (q+,`

0 )1/(k−1))||L1(Rn).

Now we can consider half-relaxed limits as k → ∞, and use the comparisons (3.14) to

conclude

||m(·, t)χS`(t)||L1(Rn) ≤ lim sup
k→∞

||m(·, t)((q−,`k )1/(k−1) − (q+,`
k )1/(k−1))(·, t)||L1(Rn)

≤ ||m(·, 0)χS`(0)||L1(Rn),

where for t ≥ 0,

S`(t) := {q+,`
2 (t) > 0} \ {q−,`1 (t) > 0}.

Finally, taking limits as `→∞, using (ii) and (iii), as well as the lower bound on m, and
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noting {V (·, t) > 0} is open, we can define

Ωt := {V (·, t) > 0} = {U(·, t) > 0}.

Also by this reasoning, for any viscosity solution p of (FB-M) with initial data p0, the

comparison principle forces U ≤ p ≤ V , and the above inequalities ensure

Ωt = {p(·, t) > 0}.

For part (b), note we have shown q1 is a subsolution of (FB-M) with initial data ρ0,

U ≤ q1 ≤ V , and

Ωt = {q1(·, t) > 0}.

Therefore, dH(Ωt, {pk(·, t) > 0})→ 0 as k →∞.

Rewriting the convergence results in terms of density in the patch case, we have the

following.

Corollary 3.9. Let Ωt be as given in Theorem 3.8, and ρk be solutions of (PME-M) starting

from ρ0 = m(·, 0)
(
k−1
k
p0
)1/(k−1)

. Then for each t > 0,

(i) lim sup ρk(·, t) ≤ m(·, t),

(ii) {ρk(·, t) > 0} converges uniformly to Ωt in Hausdorff distance,

(iii) ρk(·, t) converges locally uniformly to m(·, t) in the interior of Ωt, and to 0 in (Ωt)c.

The same results also hold for ρk with initial data m(·, 0)χΩ0.
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Chapter 4

Wasserstein convergence for modified porous medium equation

4.1 (PME-M) solutions as gradient flows

Recall in Chapter 2 we identified the limit of the W2 minimizing movement scheme for E∞ as

a solution of the DCM. In order to identify this solution with the viscosity solution discussed

in Chapter 3, we utilize solutions ρk to the modified porous medium equation

ρt −∇ ·
(
ρ ∇

[(
ρ

m

)k])
= 0, (PME-M)

then consider a limit as k →∞. This is a reasonable approach since the solutions ρk can be

obtained by using a W2 minimizing movement scheme with an energy that also approaches

E∞.

The relevant energy is Ek : P2(Rd)× [0,∞)→ R defined by

Ek(ρ, t) =
∫
Rd

1
k + 1

(
ρ

m(·, t)

)k+1

.

In particular, notice the time-dependence of this energy. The primary reference for gradient

flows given corresponding λ-convex energies is [AGS], but its framework does not directly

allow for this time-dependence. We naturally worked for a while to develop such theory,

allowing time dependent energies, in order to produce results similar to those below, and later

discovered that this was already completed by Lucas Ferreira and Julio Valencia-Guevara

in [FV]. The assumptions and results from [FV] that are relevant for further analysis below

are listed in Appendix B.

First we must check that the energy E = Ek satisfies the assumptions (E1) through (E5)

in Appendix B. The relevant space here is X = P2(Rd) and the metric d is the 2-Wasserstein

metric. Throughout we reference parameters M−,M+, α from assumption (M1).
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For (E1), consider ρ = M−χBr(0) where r is such that
∫
ρ = 1. Then for any t > 0,

ρ ≤M− ≤ m(·, t) by (M1), so

E(ρ, t) ≤
∫ 1
k + 1χBr(0) dx <∞.

Thus E is proper. Since m ≤M+, the argument of E has superlinear growth at infinity, thus

general results on integral functionals show that E is lower semicontinuous. ([AGS], Remark

9.3.8).

For (E2), let t1, t2 ∈ [0,∞). If E(ρ, t1) <∞, then using M− ≤ m ≤M+,

E(ρ, t2) ≤
(
M+

M−

)k
E(ρ, t1) <∞.

Thus the domain of E(·, t) is independent of t.

For (E3), fix ρ and estimate

|∂tE(ρ, t)| =
∣∣∣∣∂t (∫

Rd

1
k + 1(m(·, t))−kρk+1

)∣∣∣∣
= k

k + 1

∫
Rd
|∂tm(·, t)|(m(·, t))−(k−1)ρk+1

≤ αk

M−
E(ρ, t).

Here we use |mt| ≤ α from (M1). Thus with C := αk
M−

, it follows that E(ρ, t) ≤ eCTE(ρ, 0)

and

|∂tE(ρ, t)| ≤ CE(ρ, t) ≤ CeCTE(ρ, 0),

so we can take β proportional to eCT .

(E4) is clear as ρ ≥ 0 implies E ≥ 0.

Finally, recall (M3): there exists k0 such that the function (m(·, t))−k is convex in Rd

for all t ≥ 0 and all k ≥ k0. This is assumed in order to guarantee (E5), which uses the

shorthand

E(t, τ, ρ; q) := E(q, t) + d2(ρ, q)
2τ
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and says the following:

(E5): There exists λ : [0,∞) → R in L∞loc([0,∞)) such that: given points ρ, q0, q1 ∈ X,

there exists a curve γ : [0, 1]→ X satisfying γ(0) = q0, γ(1) = q1, and

E(t, τ, ρ; γ(s)) ≤ (1− s)E(t, τ, ρ; q0) + sE(t, τ, ρ; q1)− 1 + τλ(t)
2τ s(1− s)d2(q0, q1),

for 0 < τ < 1
λT

and s ∈ [0, 1], where λT = max{0,− inft∈[0,T ] λ(t)}.

We use results from sources which studied λ-convexity along geodesics of functionals of

the form

Φ(η) =
∫
F (x, η(x)) dx.

for smooth F . This λ-convexity is strongly connected to a Wasserstein evolution variational

inequality. For the next lemma the adjoint of F is H(x, ξ) = ξF (x, 1/ξ).

Lemma 4.1 ([FM] Section 3, [DS]). Let F ∈ C2 be given and assume there exists C > 0

such that

ηFηη(x, η) ≤ C and |∇xFη(x, η)| ≤ C for all (x, η).

Assume further that there is some κ ∈ R such that Hκ(x, ξ) = H(x, ξ) − κ
2 |x|

2 is (jointly)

convex. Let Sφ denote the solution operator of the evolution equation

ηt = ∇(η∇Fη).

For arbitrary ρ ∈ P2(Rd), the curve s 7→ SsΦ is absolutely continuous on [0,∞] and satisfies

the evolution variational inequality

1
2
d+

dσ

∣∣∣∣∣
σ=s

W2(SσΦρ, ρ̃)2 + κ

2W2(SsΦρ, ρ̃)2 ≤ Φ(ρ̃)− Φ(SsΦρ)

for all s > 0, with respect to any comparison measure ρ̃ ∈ P2(Rd) for which Φ(ρ̃) <∞. This

in turn is used to prove Φ is λ-convex along geodesics, for any λ ≥ κ.

To apply this lemma to (PME-M), let F = a(x)ηm; then H = a(x)ξ1−m and the most
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relevant entries of the Hessian are

∂xixiHκ(x, ξ) = axixi(x)ξ1−m − κ, ∂xixjHκ(x, ξ) = axixj(x)ξ1−m if i 6= j.

Taking κ = 0, the adjoint H is (jointly) convex specifically when a is convex. For our

purposes, a(x) = (m(x, t))1−k. Thus (M3) is sufficient to guarantee the convexity of H in

Lemma 4.1. Without assumption (M3), [FM] gives a good indication that (E5) does not

hold. Without (E5), the uniqueness and convergence of the minimizing movement scheme

for Ek is not guaranteed, and a good rate of convergence is not attainable.

Finally to check the other conditions of Lemma 4.1,

ηFηη = k
(
ρ

m

)k
,

For each fixed k, this is bounded based on (M1) (as M− ≤ m) and Theorem A.8. Similarly,

|∇xFη| is bounded based on (M1) (as |∇m| is bounded) and Theorem A.8. Thus using (M3)

and Lemma (4.1) we conclude (E5) with λ = 0 for all large enough k.

Having verified (E1) - (E5), we are ready to define the minimizing movement scheme and

provide results related to its convergence. Given τ > 0, take ρ0
τ with Ek(ρ0

τ , 0) < ∞ and

define for n ≥ 1,

ρnτ ∈ arg min
q∈X

E(τn, τ, ρn−1
τ ; q) = arg min

ρ∈P2(Rd)

[ 1
2τ W

2
2 (ρn−1

τ , ρ) + Ek(ρ, τn)
]
. (4.1)

In particular, note how the energy is evaluated at time τn.

By Lemma B.1, the minimizers ρnτ exist and are unique. Note (E5) is used to obtain

uniqueness. Given the ρnτ , define the approximate solutions

ρ
τ
(t) := ρn−1

τ , ρτ (t) := ρnτ , for t ∈ [τ(n− 1), τn).

Here we collect results from Appendix B when applied to Ek.
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Theorem 4.2. (i) Let Ek(ρ0, 0) <∞. Suppose ρ0
τ is chosen to satisfy the conditions

lim
τ→0

W2(ρ0
τ , ρ0) = 0, sup

τ
E(ρ0

τ , 0) <∞,

the approximate solutions ρτ and ρ
τ

converge locally uniformly as τ → 0 to a function

ρ : [0,∞) → P2(Rd) satisfying ρ(0) = ρ0. Moreover, ρ is independent of the choice of

family ρ0
τ .

(ii) Given two initial data u0, v0 ∈ D, if we let u(t), v(t) be limits of the minimizing move-

ment scheme (4.1) with initial data u0 and v0 respectively as given in part (i), then

W2(u(t), v(t)) ≤ W2(u0, v0).

(iii) Define the piecewise constant functions in time

ρτ (x, t) := ρnτ (x) for t ∈ [τn, τ(n+ 1)).

If ρ0
τ = ρ0, there exists a constant C > 0 dependent on m and T such that

W2(ρτ (·, t), ρ(·, t)) ≤ C
√
τ .

Corollary 4.3. Taking limits in k and using Corollary 2.10, properties (ii) and (iii) also

hold for the case k =∞ (the minimizing movement scheme from Chapter 2).

Lemma 4.4. Suppose Ek(ρ0, 0) <∞. The limit of the minimizing movement scheme (4.1)

is a weak solution of (PME-M) with initial data ρ0.

Proof. Consider a time-independent energy of the form

F(ρ) =
∫
Rd
F (x, ρ(x)) dx

with smooth F (x, z) : Rd × [0,∞) → R satisfying (E1) through (E5) with λ = 0. It is well

known (e.g., [AGS] Chapter 11) that the limit ρ of the minimizing movement scheme for F
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is a weak solution of

∂tρ−∇ ·
(
ρ∇

(
δF
δρ

))
= 0, (4.2)

where
δF(ρ)
δρ

= Fz(x, ρ)

is the first variation of F .

Compare the derivative
d

dt
F(ρ(t)) =

∫
Rd

δF(ρ)
δρ

∂tρ

with the gradient flow identity

F(ρ(t))−F(ρ0) = −1
2

∫ t

0
|ρ′|2(s) ds− 1

2

∫ t

0
|∂F|2(ρ(s)) ds.

For a time dependent energy E(ρ, t) =
∫
Rd E(x, ρ, t), these are adjusted as follows (see

Theorem B.3 for the gradient flow identity):

d

dt
E(ρ(t), t) =

∫
Rd

(
∂tE(ρ(t), t) + δE(ρ)

δρ
∂tρ

)

and

E(ρ(t), t)− E(ρ0, 0) =
∫ t

0
∂tE(ρ(s), s) ds− 1

2

∫ t

0
|ρ′|2(s) ds− 1

2

∫ t

0
|∂E(s)|2(ρ(s)) ds.

Both see the addition of precisely the ∂tE term. Thus the equation for ∂tρ maintains the

same structure, and ρ is a weak solution of

∂tρ−∇ ·
(
ρ∇

(
δE(x, ρ, t)

δρ

))
= 0.

For the choice

E(ρ, t) =
∫
Rd

m(x, t)
k + 1

(
ρ

m(x, t)

)k+1

dx,
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the relevant term in the equation is

δE(x, ρ, t)
δρ

=
(

ρ

m(x, t)

)k
,

so ρ is a weak solution of (PME-M).

As assumed in Theorem 4.2 part (i), the initial data for the minimizing movement scheme

tends to ρ0, so ρ has initial data ρ0.

4.2 One-step estimate for Wasserstein convergence

Here we develop some one-step estimates similar to ([AKY], Section 4).

Recall

Ek(ρ, t) :=
∫
Rd

m(·, t)
k + 1

(
ρ

m(·, t)

)k+1

dx

and given the sets

Kt :=
{
ρ ∈ P2(Rd) with ρ(x) ≤ m(x, t) for a.e. x

}
,

let

E∞(ρ, t) =


0 if ρ ∈ Kt

+∞, if ρ /∈ Kt,

Fix ρ0 ∈ P2(Rn) with ρ0 ≤ m(·, 0). For each τ > 0 and each k (including k = ∞),

consider the first step of the minimizing movement scheme:

µτ,k := arg min
ρ∈P2(Rd)

[ 1
2τ W2(ρ, ρ0) + Ek(ρ, τ)

]
. (4.3)

The strategy is first to control the amount of mass in µτ,k above the density constraint

m(·, τ) (which is a hard constraint for k =∞, but only applies in a rough sense for k <∞).

Lemma 4.5. Let 1 < k < ∞. Given ρ0 ∈ P2(Rn) with ρ0 ≤ m(·, 0), define µτ,k as above.

There exists C depending on m but independent of τ and k such that the following estimate
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holds: ∫
Rd

(µτ,k −m(·, τ))+ dx ≤
C√
k + 1

.

(Here f+ denotes the positive part of f .)

Proof. We adjust C freely as necessary in the following.

Note M−χBr(0) for appropriate r with |Br(0)| = 1/M− is a candidate for the minimizer

µτ,k, with

Ek(M−χBr(0), τ) ≤ C

k + 1

so there exists some C > 0 dependent only on m such that Ek(µτ,k, τ) < C. Due to bounds

on m in (M1), this means ∫
Rd

(
µτ,k(x)
m(x, τ)

)k+1

dx ≤ C. (4.4)

As k + 1 > 2,

∫
{µτ,k≥m(·,τ)}

(
µτ,k

m(·, τ)

)k+1

≥
∫
{µτ,k≥m(·,τ)}

(
1

m(·, τ)k+1

)
(m(·, τ) + (µτ,k −m(·, τ)))k+1

≥
∫
{µτ,k≥m(·,τ)}

(
1

m(·, τ)k+1

)(
(k + 1)(k)

2 (m(·, τ)k−1)(µτ,k −m(·, τ))2
)
.

Combining this with inequality (4.4) and bounding m2 in the denominator using m ≤ M+,

it follows that ∫
Rd

(µτ,k −m(·, τ))2
+ ≤

C

k + 1 .

As
∫
Rd µτ,k = 1 and m ≥ M−, we must have |{µτ,k −m(·, τ) ≥ 0}| ≤ 1

M−
, in which case the

Cauchy-Schwarz inequality gives

∫
Rd

(µτ,k −m(·, τ))+ =
∫
Rd

(µτ,k −m(·, τ))χ{µτ,k≥m(·,τ)}

≤
(
|{µτ,k −m(·, τ) ≥ 0}|

∫
Rd

(µτ,k −m(·, τ))2
+

)1/2

≤ C√
k + 1

.
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Now that we know the mass of µτ,k above m(·, τ) is small, we put together a probability

measure µ̃τ,k that is close to µτ,k in Wasserstein distance and does not exceed m(·, τ).

Lemma 4.6. For all large enough k, there exists a probability density µ̃τ,k such that

µ̃τ,k ≤ m(·, τ) and W 2
2 (µτ,k, µ̃τ,k) ≤

C√
k + 1

.

Proof. With C from Lemma 4.5, take a := C√
k+1 . Let k be large enough that a ≤ 1

2M−. We

break µτ,k into

µ1
τ,k(x) = min{µτ,k(x),m(·, τ)− a} and µ2

τ,k(x) := (µτ,k(x)− (m(·, τ)− a))+,

then construct µ̃k,τ by leaving µ1
k,τ alone and redistributing µ2

k,τ .

First we need to estimate the mass of µ2
τ,k. We claim

|{µτ,k > m(·, τ)− a}| ≤ 1
M− − a

≤ 2
M−

. (4.5)

If the first inequality of (4.5) fails,

1 =
∫
µτ,k >

∫
min{µτ,k,m(·, τ)− a} ≥ 1

M− − a
· (m− a) ≥ 1,

which is impossible. The second inequality in (4.5) is due to the choice of a. Thus

∫
µ2
τ,k ≤ (mass of µτ,k above m) + |{µτ,k > m(·, τ)− a}| · a

≤
(

1 + 2
M−

)
a.

Based on this estimate, we pick

g(x) = 1
2
(
1 + 2

M−

)χB(0,R(d)),
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where R(d) ≤ 1 is the dimensional constant such that
∫
g = 1, and define

µ̃τ,k = µ1
τ,k(x) + (g ∗ µ2

τ,k)(x).

Note µ̃τ,k is a non-negative probability measure, since convolution with g merely redis-

tributed some mass of µτ,k. By Young’s inequality,

||g ∗ µ2
τ,k|| ≤ ||µ2

τ,k||L1||g||L∞ ≤
(

1 + 2
M−

)
a · 1

2
(
1 + 2

M−

) ≤ a,

thus

µ̃τ,k ≤ µ1
τ,k + a ≤ m(·, τ)− a+ a = m(·, τ).

Finally, we need to estimate the Wasserstein distance. We heuristically describe a trans-

port plan from µτ,k to µ̃τ,k. This plan keeps the mass of µ1
τ,k at its original location, which

incurs no W 2
2 cost. Also, we redistribute mass in µ2

τ,k at each point x evenly in the disk

B(x,R(d)). The W 2
2 cost of this redistribution is bounded by

(∫
µ2
τ,k

)
(R(d))2 ≤ Ca = C√

k + 1
.

Using these ideas, it is possible to bound the Wasserstein distance between µτ,k and µτ,∞

for large k.

Proposition 4.7. Let ρ ∈ P2(Rd) with ρ0 ≤ m(·, 0). Let µτ,k and µτ,∞ be defined by (4.3).

Then

W 2
2 (µτ,k, µτ,∞) ≤ C

k1/4 ,

where C depends on m but not τ or k.

Proof. We argue by contradiction, in which case, for arbitrarily large A0 > 0 there exist
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k > 1 and τ > 0 such that

W 2
2 (µτ,k, µτ,∞) = Am−1/4, where A > A0. (4.6)

We will construct a new probability measure η ∈ P2(Rd) such that the following inequality

holds if A0 is chosen to be sufficiently large:

[
Ek(η, τ) + 1

2τ W
2
2 (ρ0, η)

]
+
[
E∞(η, τ) + 1

2τ W
2
2 (ρ0, η)

]
< (4.7)

[
Ek(µτ,k, τ) + 1

2τ W
2
2 (ρ0, µτ,k)

]
+
[
E∞(µτ,∞, τ) + 1

2τ W
2
2 (ρ0, µτ,∞)

]
.

Thus η must be a better candidate for at least one of µτ,k or µτ,∞, contradicting one of their

definitions.

Let η be the midpoint on the generalized geodesic between µτ,∞ and µ̃τ,k (from Lemma

4.6) with reference measure ρ0. To control Wasserstein distances, we use the 1-convexity of

W 2
2 along generalized geodesics. At the midpoint, this says

W 2
2 (ρ0, η) ≤ 1

2W
2
2 (ρ0, µ̃τ,k) + 1

2W
2
2 (ρ0, µτ,∞)− 1

4W
2
2 (µ̃τ,k, µτ,∞).

Combining this with W 2
2 (µk,τ , µ̃k,τ ) ≤ Ck−1/2 from Lemma (4.6), W (ρ0, µk,τ ) ≤ C (because

µk,τ is a minimizer), assumption (4.6), and the triangle inequality,

W 2
2 (ρ0, η) ≤ 1

2 (W2(ρ0, µτ,k) +W2(µτ,k, µ̃τ,k))2 + 1
2W

2
2 (ρ0, µτ,k)

−1
4 (W2(µτ,k, µτ,∞)−W2(µτ,k, µ̃τ,k))2

≤ 1
2W

2
2 (ρ0, µτ,k) + 1

2W
2
2 (ρ0, µτ,∞)− 1

4W
2
2 (µτ,k, µτ,∞) + C

k1/2 (1 +W2(µτ,k, µτ,∞))

≤ 1
2W

2
2 (ρ0, µτ,k) + 1

2W
2
2 (ρ0, µτ,∞) + 1

k1/2 (C − C ′A2).

Since µ̃τ,k and µτ,∞ are less than m(·, τ), η ≤ m(·, τ). Thus

Ek(η, τ) + E∞(η, τ) ≤ Ek(µτ,k, τ) + E∞(µτ,∞, τ) + C

k + 1 .
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(Here we estimate Ek(η, τ) ≤ C
k+1 just as is done at the start of Lemma 4.5.)

Adding ( 1
τ

times the) W 2
2 inequality and the energy inequality, for large enough k and A0

(since A > A0), we recover (4.7).

4.3 Wasserstein convergence

Now we use the notation ρnτ,k for the n-th step of the minimizing movement scheme for Ek,

for k ≥ 2 (including k = ∞). The one-step estimate can be strengthened to hold after n

steps for any n ≤ T
τ

:

Lemma 4.8. Fix τ > 0. There exists C > 0 dependent on m and T but not τ or k such

that for all n ≤ T
τ

W2(ρnτ,k, ρnτ,∞) ≤ C
√
τ when k ≥ Cτ−12.

Proof. Define the additional measures

ηnτ := arg min
ρ∈P2(Rd)

{
Ek(ρ) + 1

2τ W
2
2 (ρn−1

τ,∞ , ρ)
}

for n ≥ 2.

By the one-step estimate in Proposition 4.7 starting from ρn−1
τ,∞ , for all n ≥ 2,

W2(ρnτ,∞, ηnτ ) ≤ δ := Ck−1/8.

For n ≥ 0, define dn = W2(ρnτ,k, ρnτ,∞). In [FV] Theorem 4.4 (or see Lemma B.5), we see

that the 2-Wasserstein distance between two discrete solutions is controlled:

W 2
2 (ρnτ,k, ηnτ ) ≤ W 2

2 (ρn−1
τ,k , ρ

n−1
∞ ) + Cτ ≤ d2

n−1 + Cτ.

Using the triangle inequality and the above estimate

dn ≤ W2(ρnτ,k, ηnτ ) +W2(ηnτ , ρkτ,∞) ≤ W2(ρnτ,k, ηnτ ) + δ ≤
√
d2
n−1 + Cτ + δ.
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Initially the one-step estimate gives d1 ≤ δ, then this inequality controls the growth of the

family (dn)n≥1.

Proceeding as in the proof of [AKY] Theorem 4.2 part 4 with an = Cτ shows

dT/h ≤ C
√
h

for δ ≤ k3/2 (so by the definition of δ, k > m−12), with C dependent on m and T .

Theorem 4.9. Assuming (M1) and (M3), for any T > 0,

lim
k→∞

sup
t∈[0,T ]

W2(ρk(t), ρ∞(t)) = 0,

with convergence rate

sup
t∈[0,T ]

W2(ρk(t), ρ∞(t)) ≤ C(T,M−,M+, α)
k1/24 .

Proof. This is immediate from Lemma 4.8, Theorem 4.2 part (iii) and Corollary 4.3, with

the k−1/24 power due to the k ≥ τ−12 requirement and the
√
τ bound.

Together with Corollary 3.9, this completes the proof of Theorem 1.2.
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Chapter 5

Related Topics

This chapter contains some discussion, simulations, and applications of the results from

the previous chapters. In parts the discussion here is not quite as rigorous or fully fleshed

out as previous chapters in order to express the new ideas and major challenges involved.

5.1 Order of compression and long term behavior

Suppose (M1) and (M2) and consider our solution of the DCM starting from some fixed

ρ0 = m(·, 0)χΩ0 , where the minimizing movement scheme takes

ρnτ = arg min
ρ∈P2(Rd):ρ≤m(·,τn)

W2(ρ, ρn−1
τ ).

The value of ΩT and ρ(x, T ) = m(x, T )χΩT often depends on the behavior of m(x, t) at

intermediate times 0 ≤ t ≤ T , not merely the value of m(x, T ). To illustrate how different

choices of intermediate m yield different solutions at time T , consider in R2,

m1(x, t) = ε+ (1− t)+χB1((0,6)) + 1
ε

(ε− t)+χB1((2,3)) + χB1((−2,0)) + χB1((2,0)),

and

m2(x, t) = ε+ (1− t)+χB1((0,6)) + 1
2(2− t)+χB1((2,3)) + χB1((−2,0)) + χB1((2,0)).

These are not smooth, but can be smoothed out to satisfy (M1) while maintaining the

following behavior.

Take ρ0 = (ε+1)χB1((0,6)) and consider m1 first. By time T := 2, all of the mass exceeding

density ε of ρ0 inside B1((0, 6)) will have spread out to the nearest locations where m(·, 1)

permits. Thus some portion depending on ε of B1((−2, 0)) and B1((2, 0)) will be filled, in
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(a) t = 0 (b) t ≥ 1

Figure 4: Solution for m1.

(a) t = 0 (b) t = 1 (c) t ≥ 2

Figure 5: Solution for m2.

a symmetrical fashion with regards to reflection across the y axis, producing ρ(x, T ). See

Figure 4 (in the pictures we do not represent the ε density outside the balls).

Now consider instead using m2. By t = 1, the mass exceeding density ε of ρ0 from

B1((0, 6)) will saturate most of B1((2, 3)), depending on ε, as this ball is significantly closer

than those at (±1, 0). Then by time T = 2, mass from B1((2, 3)) will move on to the next

available location, which is primarily in B1((±2, 0)). But B1((2, 0)) is closer than B1((−2, 0))

to B1((2, 3)), so ρ(x, T ) will consist of a significant amount of mass in B1((2, 0)), none in

B1((−2, 0)), and ρ = ε elsewhere where appropriate. See Figure 5. Clearly this differs from

the symmetry of ρ(x, 2) in the case of m = m1 above. However, m1(x, 0) = m2(x, 0) and

m1(x, t) = m2(x, t) for all t ≥ 2.

For this reason, it is not convenient in general to discuss exact long time behavior of

solutions to the DCM. However, consider taking a uniformly convex potential Φ, so there

exists some λ > 0 such that D2Φ(x) ≥ λI for all x ∈ Rd, and adding a drift Ψ = −∇Φ to
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the system, as was originally used in [MRS]. Then the new energy takes the form

E∞(ρ, t) =
∫
ρΦ +


0 if ρ ≤ m(·, t),

∞ otherwise,

and as argued in Section 2, assuming (M1), we claim the minimizing movement scheme

ρnτ = arg min
ρ∈P2(Rd)

{
E∞(ρ, τn) +W2(ρ, ρn−1

τ )
}

narrowly converges to a solution of the corresponding DCM with drift Φ.

Suppose m(x, t) ↓ m∞(x) as t→∞. Then this solution tends to the global minimizer of

E∞, which is ρS(x) := (m∞χO)(x), with the set

O := {x ∈ Rd : (m∞Φ)(x) ≤ C},

where C is chosen so that |O| = 1.

In fact, this convergence is exponentially fast over time in 2-Wasserstein distance. The

analogue of Corollary 4.3, assuming (M2) and (M3), has

W2(u(·, t), v(·, t)) ≤ e−λtW2(u(·, 0), v(·, 0)).

So in this case,

W2(ρ∞(·, t), ρS(·)) ≤ W2(ρ0, ρS)e−λt.

5.2 Assumption (M2) and obstacle problems

Assume only (M1) and consider looking for a viscosity solution description of the solution

from Chapter 2 to the DCM. Givenmt < 0, (M2) is satisfied and the desired viscosity solution

is (FB-M) or a variant where the outward normal velocity reflects an external density. If

mt(x, t) ≥ 0 for all x, then no compression is occuring, no pressure is necessary and ρ remains

constant in order to minimize
∫
ρv2.
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Figure 6: Sample pressure profile given mt < 0 on the left side and mt > 0 on the right.

The interesting behavior occurs when mt(x, t) ≥ 0 in some places and mt(x, t) ≤ 0 in

others. In this case, it appears that some of the additional mass that must be moved due to

mt(x, t) ≤ 0 (where ρ = m) is moved to dynamically fill in excess space made available where

mt(x, t) > 0. The Darcy’s law type boundary velocity V = |∇p| as in (FB-M) only applies

where the boundary of the saturated set {ρ(·, t) = m(·, t)} is moving outward. Elsewhere,

this boundary may be moving inward, and the rate at which it moves is limited not by |∇p|

at the boundary, since pressure will become degenerate in the sense that ∇p = 0, but by the

amount of additional mass available and the condition that p ≥ 0. This creates an obstacle

problem for the pressure p and the region Ωt := {ρ(·, t) = m(·, t)}.

Thus at least when the dimension d = 1, one can propose the following free boundary

problem description of the solution:


∇ · (m∇p) = mt in {p(·, t) > 0},

min
(

m
m−min(ρE ,m) |∇p| − V, |∇p|

)
= 0 on ∂{p(·, t) > 0},

(5.1)

Here ρE is the external density just outside {p(·, t) > 0}.

See Figure 6 for an example solution profile in one dimension. Note the tail on the right

hand side, ending with |∇p| = 0 that is supported by compression on the left hand side.

Roughly speaking the obstacle problem condition min
(

m
m−min(ρE ,m) |∇p| − V, |∇p|

)
= 0

indicates that either |∇p| > 0, in which case V = m
m−min(ρE) |∇p|, or |∇p| = 0, in which case

V ≤ m
m−min(ρE ,m) |∇p| is not directly specified. For obstacle problems like this, the solution

p smoothly joins with the obstacle at the boundary of the non-coincidence set. Since the
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obstacle is p = 0 outside Ωt, this forces |∇p| = 0 at such points.

All of this works well in d = 1 when mt < 0 on at least one side of all intervals in Ωt. In

this case, one can construct sufficient barriers for (5.1), prove a comparison principle, and

show existence and uniqueness of viscosity solutions (in the sense that all solutions share

{p(·, t) > 0}), even allowing for “V =∞” and nucleation of pressure regions.

However, if mt > 0 on both sides of an interval in Ωt, then the outward normal velocity

at both ends is not directly specified by (5.1). Now suppose ρ0 and m are symmetric such

that pressure takes the form in Figure 7. Suppose also that mt increases slightly over time

in a symmetric fashion in the middle, so that less mass can be supported on the ends as

time passes. The solution of the DCM will shrink the support of the pressure in a symmetric

fashion, maintaining |∇p| = 0 on the boundary.

But nothing in the free boundary problem (5.1) prohibits more of the mass from the

region where mt < 0 being shifted toward the left than the right or vice versa. Thus

viscosity solutions of (5.1) exist for the same choice of m in which the left hand boundary

moves inward at a slower rate than the right hand boundary, or vice versa, and |∇p| = 0

is still maintained on the boundaries. Of all such solutions, the solution of the DCM is the

one which minimizes movement, i.e., minimizes
∫
ρv2. In this example, it is the symmetric

solution. Thus the viscosity solution description (5.1) can describe the outward normal

velocities of the support of the solution ρ∞ of the DCM from Chapter 2 on boundaries where

|∇p| > 0, but does not pinpoint these outward normal velocities in all cases where |∇p| = 0.

In higher dimensions, the issue is more pronounced, as entire connected pieces of ∂Ωt may

lie inside mt < 0 such that |∇p| = 0 all along the piece of the boundary. Which parts of the

boundary where |∇p| = 0 should shift inward at which velocities? As demonstrated above,

solutions of (5.1) appear to exist in which different regions of this boundary move inward

while maintaining |∇p| = 0, indicating non-uniqueness. Either the description (5.1) requires

some additional condition that more precisely identifies the obstacle problem in question, or

it cannot fully describe the solution of the DCM in such cases.

It is also worth noting the following critical technical challenge for d > 1: given a point
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Figure 7: Sample symmetric pressure profile given mt > 0 on both ends and mt < 0 in the middle.

(x0, t0) in the interior of Ωt0 , construct a smooth subsolution u of (5.1) with u(x0, t) > 0 for

some interval t0 ≤ t ≤ t0 + ε. Given (M2), one can create local subsolutions that suffice

without much difficulty. However, without (M2), if mt(x0) > 0, pressure near x0 is entirely

supported by a region where mt < 0, which is no longer a local problem, and can be highly

depend on the geometry of Ωt0 as well as precise estimates for the obstacle problem on Ωt0 .

Note the algorithm described in Section 5.3.2 may provide some assistance here; it converts

this problem into questions related to random walks on subsets of Ωt with smooth boundary.

5.3 Numerical approximations and investigations

5.3.1 Discrete Wasserstein projections

We simulated the minimizing movement scheme for E∞ numerically in one and two dimen-

sions.

In one dimension, this took the following form: fix δ > 0 and break up [a, b] into cells of

length δ with centers xi, 1 ≤ i ≤ n. Each cell has an associated mass ρ(xi) initially assigned

according to ρ0, with plenty of space at the boundary of the grid to avoid mass hitting the

boundary.
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To perform the Wasserstein projection step

ρnτ = arg min
ρ∈P2(Rd):ρ≤m(·,τn)

W 2
2 (ρ, ρn−1

τ ),

we considered all transfers of mass yij from cell i to cell j, with yii = 0, and represented the

minimization problem as a linear programming problem. The quantity to minimize is then

n∑
i,j=1

yij|xi − xj|2,

subject to the inequalities in each cell ρnτ (xi) ≤ m(xi, τn), implemented as

ρn−1
τ (xi)−

n∑
i=1

yij +
n∑
j=1

yji ≤ m(xi, τn).

Similarly, in two dimensions, we used a square grid and implemented the same linear

programming problem. The linear programming problems were then solved by Matlab’s

linprog function, which performs a simplex algorithm on the dual problem. As δ → 0 and

τ → 0, the simulation should approach the solution to the DCM from Chapter 2. We

observed that all solutions became saturated in any modified cells, and only spread mass

directly to adjacent cells, as they should. We then adjusted the algorithm so that only mass

transfers between adjacent cells were considered, in order to improve execution speed.

The main disadvantage here is that the simulation can become rather slow for small

enough δ, especially in 2D. However, it is certainly fast enough to obtain a good idea of the

behavior in 2D, as well as excellent estimates on the outward normal velocities in 1D given

various choices of m and ρ0.

The normal velocity was calculated as follows: starting from time t = 0, focus on the cell

immediately to the left of the left-most saturated cell. Repeat the projection step with small

τ until this cell becomes saturated (ρ = m) and record the time T . Then

V ≈ δ

T
.
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As δ → 0 and τ → 0, this value should approach the theoretical normal velocity V = |∇p|

(or V = m
m−min(ρ0,m) |∇p| with external density ρ0). If velocity is correct for the case without

external density, it will certainly be correct with external density as well, so we only tested

the former.

The results for a few different choices of m and δ, with τ = δ/100, starting from

ρ0 = m(·, 0)χ[2.5,7.5]

with a = 0, b = 10, are recorded in Table 1. The first choice of m was used to calibrate

the system and check roughly how much error is expected. Error is due primarily to slight

overflow onto the next cell (tending to zero as τ → 0), the difference between the discrete

Wasserstein projection and actual continuous Wasserstein projection, and any error intro-

duced by the linprog function. We noticed in particular, if there was a cell directly in the

center of an interval, the linprog function would choose the minimizer that sent all its excess

mass to the left. This is a perfectly accurate minimizer for the discrete scheme, but slightly

affects the normal velocity in a way that tends to zero as δ → 0.

The theoretical V is found by solving ∇ · (m∇p) = mt and calculating V = |∇p| at the

cell just to the left of x = 2.5. Note these results numerically confirm Theorem 1.2 in that

the calculated boundary velocities do come very close to those predicted by (FB-M).

The last choice of m has a local minimum and thus does not satisfy (M3), but the data

still supports (FB-M). Similar results hold for many other choices of m that do not satisfy

(M3). Thus we expect (FB-M) describes the solution for all m satisfying (M1) and (M2),

and the necessity of (M3) for λ-convexity to guarantee the uniqueness and convergence of the

minimizing movement scheme for (PME-M) is primarily a limitation of using the modified

porous medium equation as an approximation which allows identification of the minimizing

movement scheme and the viscosity solution.
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V at left boundary δ = 0.25 δ = 0.05 δ = 0.01 Theoretical Value
m(x, t) = 1− t 2.630 2.439 2.484 2.500

m(x, t) = 1 + x− t 0.672 0.647 0.611 0.610
m(x, t) = 1 + x− 2t 1.344 1.293 1.224 1.220

m(x, t) = 1− 1
10(x− 4)2 − t 2.857 2.623 2.690 2.718

m(x, t) = 1 + 1
10(x− 4)2 − t 2.500 2.326 2.320 2.321

Table 1: Outward normal velocities for various m at t = 0.

5.3.2 Quick stochastic algorithm

Building off the IDLA algorithm suggested for the drift problem in [MRSV], we exhibit a

simple numerical algorithm that can be used to estimate the viscosity solution given (M1).

This density will satisfy

ρ(x, t) = m(x, t)Ωt, where Ωt = {p(·, t) > 0} with p solving (FB-M),

−∇ · (m∇p) = −mt in {p(·, t) > 0}

V = |∇p| on ∂{p(·, t) > 0}.

We expand the primary equation

−m∆p−∇m · p = −mt. (5.2)

Given Ωt for some time t, the probabilistic form of the solution p can be written in terms of

the corresponding stochastic process Xs in Rn ([OK], Section 9.1) defined by the stochastic

differential equation

dXs =
√

2m(Xs) dBs + (∇m) ds, (5.3)

(Bs is a standard Brownian motion) as

p(x, t) = Ex
[∫ τΩt

0
−mt ds

]
.
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Here the stochastic process Xs starts at X0 = x, and τΩt is the exit time of Xs from Ωt.

Suppose ρ(x, t) = m(x, t)χΩt and t increases by ε. Without further correction, ρ = m(x, t)

exceeds the prescribed limit m(x, t + ε) on Ωt. The correction we choose should move the

additional mass (roughly εmt(x, t) at x) outside Ωt, and in doing so expand Ωt by roughly

the effect of the boundary velocity V = |∇u| over time [t, t+ ε].

If we start X0 with a density given by the excess mass −mt, and let Xs solve (5.3), from

the form of (5.2), it is well known that the the first-time hitting distribution of Xs on ∂Ωt

matches m|∇p| (see for instance, [D]). Combining this with the fact that V = m|∇p|
m

in the

relevant free boundary problem above, we are led to the following algorithm:

At time t+ ε when ρ exceeds the prescribed limit, divide Rn into small lattice cells, and

determine the amount of mass in each. Randomly select a cell, suppose in position x, and

start a new stochastic process Xs solving (5.3), starting from x. When this process reaches

a cell that is not full, move as much of the excess mass from x to this new cell as possible.

Repeat this process until all the excess mass is moved outside Ωt, move time forward ε again,

and repeat the procedure as desired.

In actual execution, one step of solving the SDE (5.3) numerically in Rd takes the form

Xs(s+ ds) = Xs(s) + (∇m(Xs, t))(ds) +
(√

2m(Xs, s)
) (√

ds
)

(r1, . . . , rn),

where r1, . . . , rn are independent and randomly generated according to the standard normal

distribution centered at 0 with standard deviation 1.

Note if m is space-dependent, in the drift portion of the SDE (5.3), (∇m) points in the

direction in which m is most rapidly increasing. Thus Xs will move somewhat randomly,

while drifting in the direction m is most quickly increasing with a speed proportional to

|∇m|. Thus overall more excess mass will likely be transferred to regions near ∂Ωt that

have larger value of m, but note the larger value of m will also decrease the outward normal

velocity V at such points because more space must be filled with excess mass.

Due to possible irregularity of ∂Ωt, it is unclear if this algorithm always converges pre-

cisely to the viscosity solution’s support Ωt corresponding to (FB-M). However, it is simple
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to execute, appears to be accurate, and is faster than directly calculating the minimizing

movement scheme as in the previous section.

Moreover, if we do not assume (M2), then this stochastic algorithm still functions well,

with some mass from regions where mt < 0 filling some regions where mt > 0 in a manner

that appears to correspond to the obstacle problem solution, at least when ∂Ωt is smooth.

Perhaps this could be helpful in defining a new form of viscosity solution for the problem

without (M2).

5.4 Mesa problem solution as a result of uniform decreasing density

Let f ≥ 0 be a bounded function with f ∈ L1(Rd) and consider the porous medium equation

with initial data f : 
ρt = ∆(ρk) in Rd × (0,∞),

ρ(x, 0) = f(x) x ∈ Rd.

In [CF], it is shown that under the assumption that f has a star-shaped profile, with solutions

ρk to the above, ρ∞ := lim
k→∞

ρk exists and is given by

ρ∞(x) =


1 if x ∈ A,

f(x) if x /∈ A,
(5.4)

where A is the noncoincidence set of the solution of the variational inequality

−∆w ≥ f − 1

w ≥ 0

(∆w + f − 1)w = 0


almost everywhere in Rd. (5.5)

We refer to this limiting problem, which is a singular perturbation problem about k = ∞,

as the mesa problem.

If f ≤ 1 everywhere, note the solution ρ∞(x) = f(x). The interesting behavior occurs in

regions where f > 1, in which case the excess mass exceeding 1 is moved to nearby locations

according to this variational inequality, creating a mesa.
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Using the framework of the density constraint model, it is possible to reproduce the

solution of the mesa problem, providing a nice characterization of the mesa problem solution.

To this end, consider a uniform density in space that decreases over time, starting from

m(x, 0) = maxRn f and for any fixed final time T , decreasing to m(x, T ) = 1. For instance,

take

m(x, t) =
(

max
Rn

f
)
− t (5.6)

with T chosen so that m(x, T ) ≡ 1. Now we consider starting from ρ0 = f and solving the

DCM up until time T . We will show the result is

m(x, T ) = ρ∞

as given in Eq. 5.4. One can interpret the mesa problem in the framework of the DCM as the

result of a jump discontinuity in time of the density constraint m(x, t). So it is possible to

uniformly interpolate for such a jump discontinuity (at least using m which is homogeneous

in space) and obtain the same result.

We utilize the viscosity solution description in (FB-M) of the DCM solution, generalized

to allow external density ρ0 ≤ m(·, 0). This is

−∇(m∇p) = −mt in {p(·, t) > 0},

V = m|∇p|
m−ρ0

on ∂{p(·, t) > 0}.

Note the general version with external density was not proven in previous chapters, but it

is much easier in this case since m is constant in space, in which case the analysis is similar

to [KP], for instance. As in Chapter 3, we define the family of sets Ωt := {p(·, t) > 0}.

Consider the Baiocchi transform of the viscosity solution pressure, modified to account

for the density constraint:

wV (x, t) :=
∫ t

0
(mp)(x, s) ds.

Now we ask, does wV (·, T ) solve a variational inequality similar to (5.5)? As m > 0, p ≥ 0

and the pressure support is expanding (assuming (M2)), we have {wV > 0} = {p > 0}.
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Moreover, based on the free boundary problem that p solves,

−∆wV (x, t) =
∫ t

0
−∆(mp)(x, s) ds =

∫ t

0
−∇(m∇p)(x, s) ds =

∫ t

0
−mt(x, s)χΩs(x) ds.

For convenience we define the accumulated source

fV :=
∫ t

0
−mt(x, s)χΩs(x) ds

Continuing with an estimate using our choice of m in (5.6),

−∆wV (x, T ) = fV ≥
∫ T

0
−mt(x, s) ds = m(x, T )−m(x, 0) = f(x)− 1,

with equality on
{
x : f(x) = max

Rd
f
}

. Thus we can summarize with wV (·, T ) solving the

variational problem

−∆u ≥ fV

u ≥ 0

(∆u+ fV )u = 0


almost everywhere in Rd. (5.7)

These variational problems (5.5) and (5.7) have a comparison principle when the source

functions are ordered (see [GV]), so

wV (·, T ) ≥ w.

By conservation of mass in each case, |{wV (·, T ) > 0}| = |{w > 0}|. Combining these

observations, we conclude that

{wV (·, T ) > 0} = {w > 0},

as claimed. Therefore it is possible to recover the mesa problem solution by considering the

DCM using a decreasing uniform-in-space density constraint over time.

Finally, we observe one can define a more general mesa problem using (PME-M) instead
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of the regular porous medium equation. The solution of this problem is not yet understood;

the analysis of [CF] fails to generalize directly as the standard semiconvexity estimate for

the porous medium equation is unclear for (PME-M). Perhaps the same sort of variational

inequality description applies with ∆w replaced by (−∇(m∇w)). The analysis above breaks

down when m is not uniform in space and it is not clear how exactly m should be chosen.

5.5 Open problems

We conclude by discussing some related open problems.

• Uniqueness for the DCM.

Note uniqueness among solutions with pressures in L2([0, T ];H1(Ω)) was shown for

the corresponding problem with m ≡ 1 and drift was shown in ([MM], Theorem 2.4).

However, for the DCM there are complications due to m that prevent a characterization

of all admissible velocities as gradients of H1 functions, which is the cornerstone of the

approach. Also the corresponding version of ([MM], Lemma 2.1) for the DCM is not

quite sufficient to proceed with the argument. See also [S], which mentions similar

uniqueness questions which are unresolved.

• Without assuming (M2) and/or (M3), can one prove a descriptive characterization of

the solution of the DCM from Chapter 2 similar to (FB-M)?

Without (M2), see the discussion in Section 5.2 and 5.3.2. Without (M3), we note

that numerically, the minimizing movement scheme appears to correspond to (FB-M)

in 1D, though the method of proof using the modified porous medium equation has

issues with convexity.

• Discontinuities in m.

Temporal discontinuities with m+ ≤ m− as well as some choices of ρ0 produce

a sort of general mesa problem (see [CF] or [EHKO]) when considering the limit of

the porous medium equation. Perhaps the corresponding variational inequality with

operator ∇ · (m∇) instead of ∆ offers a description (analysis of [CF] fails to generalize
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directly as the standard PME semiconvexity estimate is unclear for (PME-M)).

In particular, taking limits of smooth choices of m that approximate these discon-

tinuities is rather interesting. For example, one could smoothly decrease m+ to m−

over time ε in various ways. Based on the observation in Section 5.1, it seems not all

convergent choices of m will cause convergence of density to the mesa problem limit.

Do any such choices preserve the limit?

• Extensions to allow m = 0 on subsets.

Convex sets with m = 0 are handled in [MMS]. This could potentially be combined

with the analysis in Chapter 2 to obtain a solution to the DCM, with some complications

in Lemma 2.7. A viscosity solution description may be possible along the lines of [K2]

Section 3, but it is questionable whether this is equal to a limit of solutions of (FB-M)

as m→ 0, as in the previous discussion.

• Including ρ ≤ m, drift, and source.

Let f,Ψ : Rd× [0, T ]→ R be smooth. The function f is a source/sink effect and Ψ is

a prescribed velocity at each point. The new porous medium-type equation for density

is

ρt +∇ · (ρΨ + ρ(−∇p)) = f, (5.8)

where k > 1 is given, the pressure is related by

p = Pk(ρ) := k

k − 1

(
ρ

m

)k−1
,

and ρ(·, 0) = ρ0,k. The analogue of (M2) is then

−mt + f −∇ · (mΨ) ≥ 0. (5.9)

We expect the limit of the ρk will be a viscosity solution ρV of

−∇ · (m∇p) = −mt +mf −∇ · (mΨ) in {p(·, t) > 0},

V = ν ·Ψ + m
m−max(ρE ,m) |∇p| on ∂{p(·, t) > 0},

(FB-C)
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with appropriately chosen p0, and ρE solving

ρt +∇ · (ρΨ) = f

from initial data ρ0 outside Ω0.

Assuming (M2), we expect the region Ωt := {ρ(·, t) = m(·, t)} travels around follow-

ing Ψ and being compressed by m while expanding a bit further along the way due to

compression as a result of mt, f , and ∇ · (mΨ). Characteristics that enter {ρ = m}

never leave. If x ∈ Ωt1 , but soon after Ω moves on and (x, t2) /∈ Ωt2 , then ρ(x, t2) = 0.

In this case we set ρE = 0. Thus Ωt absorbs any mass along its path, and no mass

leaves Ωt. So one can write

ρ∞ = mχ{p>0} + ρEχ{p=0}.

When f ≡ 0 and there exists a potential Φ with Ψ = −∇Φ, one can construct

a minimizing movement scheme for corresponding energies as in Ek, E∞ but with the

additional drift term
∫
ρΦ. Convergence to the DCM with drift Ψ should follow by

adding arguments for the drift as in [MRS] to Chapter 2. For Wasserstein convergence

of the ρk in this case as in Section 4, assumption (M3) is likely still necessary.

• An Inverse Problem / Control Theory Problem : Given initial data ρ0 supported on

Ω0 and a target density ρ(·, T )χO with Ω0 ⊂ O, how can one choose m(x, t) to most

effectively compress ρ0 to match the target density? One metric for effectiveness is

minimal total kinetic energy over [0, T ]. This could also be rephrased to allow a choice

of drift, in which case the long term behavior discussed in Section 5.1 may offer an

initial approach.
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Appendix A

Classical theory for the modified porous medium equation

Here we follow [BH] and establish existence, uniqueness, and continuity of solutions of the

Dirichlet problem for (PME-M),

ρt = ∇ ·
(
m∇

[(
ρ

m

)k])
.

Let Ω be a bounded domain in Rn with smooth boundary. Consider the nonlinear evolution

problem
ρt = ∇ ·

(
m∇

[(
ρ
m

)k])
in Ω× [0,∞),

ρ = 0 on ∂Ω× [0,∞),

ρ(x, 0) = ρ0(x) in Ω.

(A.1)

where m : Rd × [0,∞)→ R is smooth, satisfies (M1), and ρ0 ∈ L∞(Ω) is non-negative with

ρ0 = 0 on ∂Ω.

Remark A.1. We can effectively consider (PME-M) as a problem on Rn instead of Ω

without the Dirichlet boundary condition when Ω is chosen much larger than {ρ0 > 0}.

For convenience, let φ(ρ) = ρk. In particular φ(0) = 0 and φ′(0) = 0. Similar existence,

uniqueness, and continuity results apply to equations with other increasing nonlinearities

with these properties.

Weak solutions and uniqueness

We first define weak solutions for (A.1). Given T > 0, let QT = Ω × [0, T ]. Here the

relevant function spaces are L2(0, T ;H1(Ω)), the Hilbert space with inner product

(u, v)L2(0,T ;H1(Ω)) =
∫
QT
uv +

∫
QT
∇u · ∇v
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and V2(QT ), the Banach space with norm

|u|2V2(QT ) = ess sup0≤t≤T

∫
Ω

∫
Ω
u2(t) +

∫
QT
|∇u|2.

Definition A.1. We say that a function ρ : [0,∞) → L1(Ω) is a weak solution of (A.1) if,

setting w = (ρ/m)k for convenience, it satisfies:

(i) ρ ∈ C([0, t];L1(Ω)) ∩ L∞(Qt) for all t > 0

(ii) ρ(t; ρ0) ∈ C(Ω) and ρ(t;u0) = 0 on ∂Ω for t > 0

(iii) w ∈ V2(Qt) for all t ∈ (0,∞);

(iv) for all ϕ ∈ C2,1(Q) with ϕ = 0 on ∂Ω× [0,∞) and all t ∈ (0,∞),

∫
Ω
ρ(t)ϕ(t) =

∫
Ω
ρ0ϕ(0) +

∫ t

0

∫
Ω

(ρϕt −m∇w · ∇ϕ+ (∇m · ∇w)ϕ).

Similarly we say ρ is a weak solution of (PME-M) (on Rn) if it satisfies the above without

the pieces due to the Dirichlet boundary condition.

Lemma A.1. (L1 contraction) Given two non-negative weak solutions ρ1, ρ2 of (PME-M),

for all t > 0,

||ρ2(·, t)− ρ1(·, t)||L1(Rn) ≤ ||ρ2(·, 0)− ρ1(·, 0)||L1(Rn).

Proof. Arguing as in ([V], Section 3.2.3), it is enough to approximate and prove the inequality

for smooth positive solutions on a bounded domain with zero boundary data. In this case,

by the divergence theorem and the zero boundary conditions,

d

dt

∫
(ρ2(·, t)− ρ1(·, t)) dx =

∫
∇ ·

m∇
(ρ2(·, t)

m

)k−∇ ·
m∇

(ρ1(·, t)
m

)k = 0.

To deduce the L1 bound, let U be the solution of (PME-M) with initial data

max(ρ1(·, 0), ρ2(·, 0)).
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Then U − ρ1 ≥ (ρ2 − ρ1)+, with equality at t = 0. Thus applying the above to U and ρ1,

∫
(ρ2(·, t)− ρ1(·, t))+ ≤

∫
(U(·, t)− ρ1(·, t)) =

∫
(U(·, 0)− ρ1(·, 0)) =

∫
(ρ2(·, 0)− ρ1(·, 0))+.

Swapping ρ2 and ρ1 bounds the negative part; combining both parts yields the desired

inequality.

The proof above also gives the comparison principle.

Lemma A.2. (Comparison principle) Let ρ1 and ρ2 be two non-negative weak solutions of

(PME-M) with given initial data. If ρ1(·, 0) ≤ ρ2(·, 0) a.e., then ρ1 ≤ ρ2 a.e.

In particular, there is at most one weak solution for given initial data.

Existence and continuity

The classical strategy for existence for (A.1) is take a sequence of uniformly parabolic

problems that approach (A.1) in the limit. Let φ(ρ) = ρk. We consider

ρt = ∇ ·
(
m∇φε

(
ρ
m

))
in QT ,

ρ = 0 on ∂Ω× [0, T ),

ρ(x, 0) = ρ0(x) in Ω,

(A.2)

where φε ∈ C∞(R+), φε(0) = 0, φ′ε(s) ≥ C(ε) > 0 for s ∈ [0, K], and

(φ−1
ε (s))′ ≤ (φ−1(s))′

for s ∈ [0, φ(2K)], where K is the uniform L∞-bound of ρε given in Lemma A.4 below and

φε and φ′ε converge to φ and φ′ on all compact subsets of R+ as ε→ 0, and where

ρ0ε ∈ C∞(Ω) with 0 ≤ ρ0ε ≤ ||ρ0||L∞(Ω),

with ρ0ε = 0 on ∂Ω with ||ρ0ε − ρ0||L2(Ω) → 0 as ε→ 0. (For instance, φε can be chosen as a
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convolution of φ with a partition of unity.)

Lemma A.3. (Comparison principle for approximation) Let ρ1 and ρ2 ∈ C2,1(QT ) be two

solutions of (A.2) with initial functions ρ1(·, 0) ≤ ρ2(·, 0). Then ρ1(·, t) ≤ ρ2(·, t).

Proof. Let z = ρ1 − ρ2. Then z satisfies the linear problem

zt = ∇ · (m∇(aεz)) in QT ,

z = 0 on ∂Ω× [0, T ),

z(x, 0) = ρ01ε(x)− ρ02ε(x) in Ω,

(A.3)

where

aε(x, t) :=
∫ 1

0
φ′ε

(
θ
ρ1ε

m
(x, t) + (1− θ)ρ2ε

m
(x, t)

)
dθ.

The rest of the proof is identical to ([BH], pages 866 - 867).

Lemma A.4. Let uε ∈ C2,1(QT ) solve (A.2). Then

0 ≤ ρε ≤ K in QT ,

with K independent of T and ε.

Proof. The lower bound is obvious. For the upper bound, we construct time-dependent

supersolutions of (A.2) which are uniformly bounded with respect to ε and T . Then the

result follows from Lemma A.3.

To this end, consider an approximate pressure p = φε(ρ/m). Rewriting the density

equation in terms of pressure, it takes the form

m(φ−1
ε )′(p)pt +mφ−1

ε (p)(logm) = m∆p+∇m · ∇p.

Due to global assumptions on m and φε, there exist pressure supersolutions qε, uniformly
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bounded independent of ε and T , which take the form

(R2(t)− C|x|2)+

for quickly growing R(t) and large enough C. Then translating back to density, the desired

supersolutions are

ρ = m(φ−1
ε (qε)).

As (φ−1
ε (s))′ ≤ (φ−1(s))′, ρ is also uniformly bounded with respect to ε and T .

Lemma A.5. ([LSU], Theorem 7.4) The uniformly parabolic problem (A.2) has a unique

classical solution ρε which is in C2+α(QT ) for all α ∈ (0, 1).

Before the existence proof, we need a few a priori estimates.

Lemma A.6. Let 0 ≤ t− τ < t < T . Then there exists C(τ) > 0 such that

∫ t

t−τ

∫
Ω

∣∣∣∣∇φε (ρεm
)∣∣∣∣2 ≤ C(τ).

Proof. Simply multiply the equation for ρε by φε(ρε), integrate by parts over Ω× (t, t+ τ),

and use the assumption that m is bounded below away from zero.

With φ(ρ) = ρk, the assumption that φε → φ, and finally noting Lemma A.4, we clearly

have

||φε(ρε)||L∞(T − τ, T ;H1(Ω)) ≤ C(τ), 0 < τ ≤ T, (A.4)

with C(τ) independent of T .

Finally, we use a strong equicontinuity property for solutions of uniformly parabolic equa-

tions:

Lemma A.7. As in ([DB], Thm 6.2)

(i) For every τ > 0, there exists a continuous nondecreasing function ωτ (·), independent of
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T and ε, with ωτ (0) = 0 such that

|ρε(x1, t1)− ρε(x2, t2)| ≤ ωτ
(
|x1 − x2|+ |t1 − t2|1/2

)

for all (xi, ti) ∈ ΩT × [τ, T ].

(ii) If ρ0 ∈ C(Ω), then {ρε} is equicontinuous on Ω× [0, T ].

Now we can show the main existence result.

Theorem A.8. Suppose ρ0 ∈ L∞(Ω) is non-negative and m ∈ C2(Ω). Then there exists a

weak solution of (A.1) which is continuous in any set Ω× [τ, T ] with τ > 0, and satisfies

0 ≤ ρ ≤ C on QT .

The constant C and the modulus of continuity do not depend on T .

Proof. Based on the a priori estimates, there exists a limit function u ∈ L∞(QT ) ∩ C(Ω ×

(0, T ]) and a subsequence of {ρε} (denoted by {ρε} for simplicity) such that

(i) ρε → ρ uniformly on all sets of the form Ω× [τ, T ] with τ > 0,

(ii) ρε → ρ strongly in L2(QT ) and a.e.,

(iii) φε
(
ρε
m

)
→ φ

(
ρ
m

)
weakly in L2(0, T ;H1(Ω)).

Here (i) follows from Lemma A.7 while (ii) follows from (i) and the bound (A.4). Part (iii)

is due to Lemma A.6, part (ii), and Lebesgue’s dominated convergence theorem.

Now we need to check that ρ satisfies Definition A.1. Note solutions ρε will satisfy the

integral equation

∫
Ω
ρε(t)ϕ(t) =

∫
Ω
ρ0εϕ(0) +

∫ t

0

∫
Ω

(ρεϕt −m∇wε · ∇ϕ+ (∇m · ∇wε)ϕ),

for test functions ϕ and wε := φ(ρε/m). Using properties (i) - (iii) above, we can take a

limit and conclude that ρ satisfies the desired integral equation.
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From (i), it follows that u ∈ C((0, T ];L1(Ω)). Let η > 0. As ρ0ε → ρ0 in L1, there exists

ε > 0 such that ||ρ0ε − ρ0||L1(Ω) ≤ η. By the L1 contraction result, if we define ρ̃ε as the

solution of (A.1) with initial data ρ0ε, then

||ρ̃ε(t)− ρ(t)||L1(Ω) ≤ ||ρ0ε − ρ0||L1(Ω) ≤ η.

Finally, by Lemma A.7, there exists t0 > 0 such that ||ρ̃ε(t)−ρ0ε||L1(Ω) ≤ η for all 0 ≤ t ≤ t0.

Together we estimate

||ρ(t)− ρ0||L1(Ω) ≤ ||ρ(t)− ρ̃ε(t)||L1(Ω) + ||ρ̃ε(t)− ρ0ε||L1(Ω) + ||ρ0ε − ρ0||L1(Ω) ≤ 3η.

Thus ρ ∈ C([0, t];L1(Ω)).

The other properties in Definition (A.1) follow directly from the corresponding results in

(i) - (iii).
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Appendix B

Assumptions & results for time-dependent gradient flows from [FV]

Here we state the definitions and results from [FV] that are relevant to various arguments

in Section 4.

Let E : X × [0,∞) → (−∞,∞] be a time-dependent functional. The gradient flow

corresponding to E with initial data ρ0 is a family ρ(t) ∈ X of functions for t ∈ [0,∞) that

corresponds to 
ρ′(t) = −∇E(ρ(t), t), t > 0

ρ(0) = ρ0.
(B.1)

Let (X, d) be a complete separable metric space. We say E is proper if there exists ρ0 ∈ X

such that E(ρ) <∞. For a proper functional E : X → (−∞,∞], define the local slope |∂E|

of E at ρ by

|∂E|(ρ) = lim sup
q→ρ

(E(ρ)− E(q))+

d(ρ, q) .

(f+ denotes the positive part of f .) The metric derivative of ρ is

|ρ′(t)| := lim
s→t

d(ρ(s), ρ(t))
|s− t|

.

Using these concepts, the metric formulation of a time-dependent gradient flow is given

by the variational inequality

d

dt
(E(ρ(t), t)) ≤ ∂tE(ρ(t), t)− 1

2 |∂E(t)|2(ρ(t))− 1
2 |ρ
′|2(t). (B.2)

In particular, E(ρ(t), t) is no longer necessarily decreasing over time, as it is in the case of

gradient flows of energies that do not depend on time, the difference being due to the ∂tE

term.

87



We will also make use of the shorthand

E(t, τ, ρ; q) := E(q, t) + d2(ρ, q)
2τ .

The Moreau-Yosida approximation of E is

Et,τ (ρ) := inf
q∈X

E(t, τ, ρ; q).

We reference a number of assumptions made on the energy E in [FV]:

(E1) For each t ≥ 0, E(·, t) is proper and lower semicontinuous with respect to the metric

d(·, ·).

(E2) The domain D := {ρ ∈ X : E(ρ, t) <∞}, is time-independent.

(E3) There exist ρ∗ ∈ X and a function β : [0,∞)→ [0,∞) with β ∈ L1
loc([0,∞)) such that,

for each ρ ∈ D, the function t→ E(ρ, t) satisfies

|E(ρ, t)− E(ρ, s)| ≤ (1 + d2(ρ, ρ∗))
(∫ t

s
β(r) dr

)
.

(E4) For each T > 0, there exists a ρ∗ ∈ X and τ ∗(T ) = τ ∗ > 0 such that the function

t 7→ Et,τ∗(ρ∗) is bounded from below in [0, T ].

(E5) There is a function λ : [0,∞)→ R in L∞loc([0,∞)) such that: given points ρ, q0, q1 ∈ X,

there exists a curve γ : [0, 1]→ X satisfying γ(0) = q0, γ(1) = q1, and

E(t, τ, ρ; γ(s)) ≤ (1− s)E(t, τ, ρ; q0) + sE(t, τ, ρ; q1)− 1 + τλ(t)
2τ s(1− s)d2(q0, q1),

for 0 < τ < 1
λT

and s ∈ [0, 1], where λT = max{0,− inft∈[0,T ] λ(t)}.

Definition B.1. Let ρ0 ∈ X and E : X× [0,∞)→ (−∞,∞] be a functional satisfying (E1),

(E2), and (E3). We say that an absolutely continuous curve ρ : [0,∞) → X is a solution

of (B.1) (i.e. a gradient flow of E) if ρ(0) = ρ0, the function t → E(ρ(t), t) is absolutely

88



continuous,

|ρ′|, |∂E(·)|(ρ(·)) ∈ L2
loc([0,∞)),

and the variational inequality (B.2) holds.

The relevant minimizing movement scheme for a partition with fixed step size τ > 0 is

defined by an initial choice of ρ0
τ and for n ≥ 1,

ρnτ ∈ arg min
q∈X

E(τn, τ, ρn−1
τ ; q).

Lemma B.1 ([FV], Lemma 3.1). Suppose (E1), (E4), and (E5) and ρ0
τ ∈ D. Then the

sequence ρnτ exists and is uniquely defined.

In particular (E5) is used to obtain uniqueness.

Given the ρnτ , define the approximate solutions

ρ
τ
(t) := ρn−1

τ , ρτ (t) := ρnτ , for t ∈ (τ(n− 1), τn).

Theorem B.2 ([FV], Theorem 4.4). Assume (E1) through (E5) and let ρ0 ∈ D. Given the

conditions

lim
τ→0

d(ρ0
τ , ρ0) = 0, sup

τ
E(ρ0

τ , 0) <∞,

the approximate solutions ρτ and ρ
τ

converge locally uniformly to a function ρ : [0,∞)→ X

satisfying ρ(0) = ρ0. Moreover, ρ is independent of the choice of family ρ0
τ .

Theorem B.3 ([FV], Theorem 5.4). Assume (E1) through (E5). The limit ρ in the above

theorem is locally absolutely continuous and its metric derivative |ρ′| belongs to L2
loc([0,∞)).

Moreover, if the function t 7→ E(ρ, t) is differentiable for ρ ∈ D, its time-derivative is upper

semicontinuous in the ρ-variable, and the property

tn ↓ t, d(ρn, ρ)→ 0 as n→∞ =⇒ lim inf
n→∞

E(ρn, tn)− E(ρn, t)
tn − t

≥ ∂tE(ρ, t)
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holds, then the function t 7→ E(ρ(t), t) is absolutely continuous and satisfies the identity

E(ρ(t), t)− E(ρ0, 0) =
∫ t

0
∂tE(ρ(s), s) ds− 1

2

∫ t

0
|ρ′|2(s) ds− 1

2

∫ t

0
|∂E(s)|2(ρ(s)) ds.

In particular, ρ is a solution of (B.1) in the sense of Definition B.1.

Lemma B.4 ([FV], Section 5.1). Assume (E1) through (E5) and also that λ(t) is continuous

in time. Then given two initial data u0, v0 ∈ D, if we let u(t), v(t) be solutions to (B.1) as

discussed above with initial data u0 and v0 respectively,

d(u(t), v(t)) ≤ e−
∫ t

0 λ(s) dsd(u0, v0).

We need to continue estimates from [FV] to obtain a specific rate of convergence of the

minimizing movement scheme to the solution.

Lemma B.5. Assume (E1) through (E5) and λ(t) is continuous in time. Define the piecewise

constant functions in time

ρτ (x, t) := ρnτ for t ∈ [τn, τ(n+ 1)].

If ρ0
τ = ρ0 and E(ρ0, 0) < ∞, there exists a constant C > 0 dependent on E, λ, and T such

that for all t ∈ [0, T ],

d(ρτ (·, t), ρ(·, t)) ≤ C
√
τ .

Proof. From the proof of [FV] Theorem 4.4, given two partitions τ and η,

d2(ρτ (t), ρη(t)) ≤ 3dτ ,η(t, t) + 3C(|τ |+ |η|) (B.3)

with

dτ ,η(t, t) ≤
(
d2(ρ0

τ , ρ
0
η) + C(|τ |+ |η|) +

∫ t

0
e2ατ ,η(t)(G+

τ ,η(t) +G+
η,τ (t)) dt

)1/2
+ C(|τ |+ |η|).
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Here

ατ ,η(t) :=
∫ t

0
λ̃τ (s) + λ̃η(s) ds,

where λ̃τ (t) := λ(tnτ ). Moreover, by [FV] Proposition 4.3,

∫ T

0
G+

τ ,η(t) dt ≤ C(|τ |+ |η|).

Tracing all these estimates back to (B.3), it follows that

d2(ρτ (t), ρη(t)) ≤ C(|τ |+ |η|).

Sending |η| → 0 and taking square roots yields the claimed rate of convergence.
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Appendix C

Numerical simulations

Figure 8 shows a few snapshots of the 2D Wasserstein projection calculation with ρ0 = 2 in

[3, 7]× [3, 7] and the pyramid

m(x, t) = 2 + (0.5) max(|x− 5|, |y − 5|)− t.

The right column is an overhead view.

Figure 9 shows a few snapshots of the 2D Wasserstein projection calculation with

ρ0 = 2 + x
2 in [3, 7]× [3, 7] and the plane

m(x, t) = 2 + x

2 − 2t.

The right column is an overhead view.

Figure 10 shows a few snapshots of the 2D Wasserstein projection calculation with

ρ0 = 42 in [3, 7]× [3, 7] and the paraboloid

m(x, t) = 50− (x− 5)2 − (y − 5)2 − 25t.

The right column is an side view. In the second row, the maximum in the center exceeds

the original density slightly as some mass shifts inward to fill the gap.

In general, the discrete Wasserstein projection is not unique, as excess mass could be

moved to any of the closest available cells. This explains the minor asymmetry and irreg-

ularites near the boundary in the simulations. All of these simulations use a spatial step

dx = 0.4 and time step dt = 0.01. These can certainly be made smaller at the cost of

additional time to execute the simulations.

92



(a) t = 0 (b) t = 0

(c) t = 0.5 (d) t = 0.5

(e) t = 1 (f) t = 1

(g) t = 1.5 (h) t = 1.5

Figure 8: Simulation 1
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(a) t = 0 (b) t = 0

(c) t = 0.33 (d) t = 0.33

(e) t = 0.67 (f) t = 0.67

(g) t = 1 (h) t = 1

Figure 9: Simulation 2
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(a) t = 0 (b) t = 0

(c) t = 0.3 (d) t = 0.3

(e) t = 0.6 (f) t = 0.6

(g) t = 0.9 (h) t = 0.9

Figure 10: Simulation 3
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