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Research

In Bangladesh, exposure to arsenic through 
drinking water is an unprecedented health cri
sis. The vast majority of Bangladeshis obtain 
their drinking water through handpumped 
tube wells, onethird of which have been 
found in recent testing to be contaminated 
with concentrations > 10 µg/L, the maxi
mum safe standard set by the World Health 
Organization (British Geological Survey 
2001). Exposure to arsenic from drinking 
water has been associated with skin, liver, 
kidney, and bladder cancers, as well as cardio
vascular, gastro intestinal, develop mental, 
hematologic, and neurologic effects [Chen 
et al. 2006b; Hafeman et al. 2005; Heck et al. 
2008a; International Agency for Research 
on Cancer (IARC) 2004b]. The result of the 
ongoing arsenic exposure is expected to dou
ble the cancer rates in Bangladesh (Chen and 
Ahsan 2004). 

Inorganic arsenic ingested in drinking 
water is rapidly and almost totally (80–90%) 
absorbed by humans and animals (National 
Research Council 2001). Arsenic is metabo lized 
primarily in the liver through alternating steps 
of reduction and methylation, beginning with 
the reduction of arsenate to arsenite. which is 
then converted to the intermediate products 
monomethyl arsonous acid and dimethyl arsinic 

acid. Once ingested, the human body read
ily excretes most of the arsenic, primarily in 
urine. The biochemical pathways involved in 
arsenic methylation are dependent on avail
ability of Sadenosylmethionine (SAM). The 
methyl group from SAM may be derived from 
dietary components such as methionine, cho
line, folate, and other nutrients. In animal bio
assays, dietary methionine deficiency decreased 
urinary arsenic excretion and increased tissue 
retention of arsenic (Maiti and Chatterjee 
2000; Vahter and Marafante 1987).

Because of the influence of diet on 
methyla tion, arsenic toxicity may be greater 
among those with poorer diets. Descriptive 
epidemiologic studies of popu la tions with 
cutaneous or other health effects of arsenic 
have reported associations with diets low in 
animal products and vegetables and high 
in starches, with low protein consumption 
(Hsueh et al. 1995; Yang and Blackwell 1961; 
Zaldivar et al. 1978). Deleterious effects are 
also seen with arsenic among animals fed 
lowprotein and methio nine diets (Hoffman 
et al. 1992; Lammon and Hood 2004; Maiti 
and Chatterjee 2001; Vahter and Marafante 
1987). However, epidemiologic studies of 
humans have found mixed results (Chen 
et al. 1988; Chung et al. 2006; Heck et al. 

2007; HopenhaynRich et al. 1996a; Mitra 
et al. 2004; Smith et al. 2000; Steinmaus 
et al. 2005). Given that malnutrition is com
mon in Bangladesh, with onethird to one
half of Bangladeshis below optimal body 
weights, additional studies of diet and arsenic 
exposure are needed (Ahsan et al. 2006a). 
The purpose of this study was to examine 
the effect of dietary protein, methionine, and 
cysteine on urinary excretion of total arsenic. 
We hypothesized that these dietary factors 
would improve excretion of arsenic, resulting 
in increased levels of arsenic in the urine.

Materials and Methods
Health effects of arsenic longitudinal study. 
The Health Effects of Arsenic Longitudinal 
Study (HEALS) was established in 2000 in 
the Araihazar area of Bangladesh to prospec
tively examine the relationship between arsenic 
intake and the incidence of cancers, reproduc
tive health, and children’s cognitive develop
ment (Ahsan et al. 2006a). In the study area 
within Araihazar, a defined region of 25 km2, 
5,966 tube wells were tested for the presence 
of arsenic; the wells showed a range of arse
nic exposures from 0.1 to 860 µg/L (Ahsan 
et al. 2006b). A precohort survey enumerated 
65,000 individual users of these wells. Using 
this roster, a total of 12,050 eligible individu
als were approached for recruitment into the 
cohort study, and 97.5% agreed to partici
pate, yielding a cohort of 11,746 adult men 
and women. As many rural Bangladeshis are 
not able to read, verbal consent was obtained 
prior to participation. All subjects were 
between 18 and 76 years of age. Study eligibil
ity required that subjects were married and 
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Background: In Bangladesh, millions of people are exposed to arsenic in drinking water; arsenic is 
associated with increased risk of cancer. Once ingested, arsenic is metabolized via methylation and 
excreted in urine. Knowledge about nutritional factors affecting individual variation in methyla tion 
is limited. 

oBjectives: The purpose of this study was to examine associations between intakes of protein, 
methionine, and cysteine total urinary arsenic in a large population-based sample.

Methods: The study subjects were 10,402 disease-free residents of Araihazar, Bangladesh, who 
participated in the Health Effects of Arsenic Longitudinal Study (HEALS). Food intakes were 
assessed using a validated food frequency questionnaire developed for the study population. 
Nutrient composition was determined by using the U.S. Department of Agriculture National 
Nutrient Database for Standard Reference. Generalized estimating equations were used to examine 
association between total urinary arsenic across quintiles of nutrient intakes while controlling for 
arsenic exposure from drinking water and other predictors of urinary arsenic.

results: Greater intakes of protein, methionine, and cysteine were associated with 10–15% 
greater total urinary arsenic excretion, after controlling for total energy intake, body weight, sex, 
age, tobacco use, and intake of some other nutrients.

conclusions: Given previously reported risks between lower rates of arsenic excretion and 
increased rates of cancer, these findings support the role of nutrition in preventing arsenic-related 
disease. 
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had lived in their bari (cluster of homes) for 
at least 5 years, to ensure stability of residence. 
Standardized interviews were conducted in 
Bengali by trained interviewers, and subjects 
underwent screening by a trained physician 
to examine overall and arsenicspecific health 
conditions. The study was approved by the 
human subjects protection board of Columbia 
University and by the Ethical Committee of 
the Bangladesh Medical Research Council.

For the present study, subjects were 
excluded if they were missing information 
on dietary intakes. Because the presence of 
arsenicrelated skin lesions may alter urinary 
arsenic excretion (Del Razo et al. 1997), 
subjects with preexisting skin lesions were 
additionally excluded, as were subjects with 
incomplete skin lesion assessment.

Information was collected on demographic 
and socio economic variables, tube well use, 
and lifestyle characteristics. Socioeconomic 
variables included occupation, education, and 
television and land ownership, which have 
been used in other studies in Bangladesh 
to indicate wealth (Argos et al. 2007). 
Occupations were stratified into higher energy 
expenditure (daily laborer, farmer, factory 
worker) and lower energy expenditure (busi
ness, unemployed, homemaker, or other). 

Dietary assessment. The study team con
ducted focus groups to ascertain the range of 
foods common among diets in this region. 
Based on the results of these pilot studies, a 
39item food frequency questionnaire (FFQ) 
was designed that included foods with intakes 
of at least once per month. The FFQ asked 
how often, on average, subjects had consumed 
a particular food item during the previous 
12 months, specifying the number of months 
of the year, the number of days in a week, 
the number of times a day, and the serving 
size. Nutrient composition of foods was taken 
from the U.S. Department of Agriculture 
(USDA) database for standard reference 
(USDA 2004). Of all subjects completing 
the questionnaire, 97% were not missing data 
on any food item. There were no significant 
differences between subjects who missed at 
least one food item and those who did not 
with regard to age, sex, socio economic status 
(SES), or body size (data not shown). Dietary 
protein was measured as grams of protein 
per kilogram body weight per day, whereas 
methionine and cysteine were meas ured as 
milligrams per kilogram body weight per day; 
quintiles were created of these dietary expo
sures for use in regression analyses.

The validity of protein intake in the FFQ 
was previously examined in a subgroup of 
189 subjects who completed food diaries for 
2 weeks (Chen et al. 2004); we conducted 
additional analyses to examine the validity of 
amino acid intakes. Pearson correlation coef
ficients, corrected from withinperson error, 

were 0.53 for protein, 0.48 for methionine, 
and 0.98 for cysteine. As in other countries 
with few resources available for food storage 
or distribution, this region of Bangladesh has 
significant dietary variability across seasons, 
and it is likely that this seasonal variability 
may have contributed to poor correlation for 
some food items. 

Arsenic measurement. Total arsenic con
centrations of well water and urinary arsenic 
were measured. Total arsenic concentration 
was determined by graphite furnace atomic
absorption spectrometry (GFAA) with 
a Hitachi Z8200 system (Hitachi, Tokyo, 
Japan), which had a detection limit of 5 µg/L 
(Van Geen et al. 2003). Water samples found 
to have an arsenic concentration < 5 µg/L were 
subsequently reanalyzed by inductively coupled 
plasmamass spectrometry, which has a detec
tion limit of 0.1 µg/L. For participants who 
reported drinking water from more than one 
well, information was collected on the pro
portion of drinking water from each well. We 
derived timeweighted arsenic concentration 
(TWA) as a function of drinking water dura
tion from each well and well arsenic concentra
tion: TWA in micrograms per liter = Σ CiTi/
ΣTi, where Ci and Ti denote the well arsenic 
concentration and drinking duration from each 
well, respectively (Ahsan et al. 2006b).

A spot urine sample was collected 
from each cohort member at the time of 
the physician examination. Total urinary 
arsenic was measured by GFAA, using a 
PerkinElmer Analyst 600 graphite furnace 
system (PerkinElmer, Wellesley, MA), as 
previously described (Nixon et al. 1991). 
The measurement of chemicals in urine is 
frequently adjusted for urinary creatinine to 
account for variance in hydration. Hydration 
was controlled by expressing urinary arsenic 
per gram of creatinine, which was analyzed 
using a colorimetric Sigma Diagnostics Kit 
(Sigma Diagnostics, St. Louis, MO). Because 
of the strong relationship of creati nine to 
meat consumption (Jacobsen et al. 1979), 
we conducted additional sensitivity analyses 
without adjustment for creatinine to exam
ine the stability of study findings; individuals 
whose creatinine concentrations were < 30 or 
> 300 mg/dL were excluded (30% of subjects) 
(Barr et al. 2005). 

In studies of nutrition and arsenic, care 
must be taken when adjusting urinary arsenic 
measures for creatinine concentration. Urinary 
creatinine varies by season, age, body size, and 
sex and is related to protein intake, muscle 
mass, and nutritional status (Barr et al. 2005; 
Gamble and Liu 2005). Creatinine concen
trations in Bangladesh are likely to be lower 
than those seen in western settings because of 
higher rates of malnutrition, suggesting that 
creatinineadjusted urinary measures will be 
higher than those seen in other populations 

(Nermell et al. 2008). Urinary measures of 
creatinine and arsenic have been correlated 
in some studies, suggesting that control for 
creatinine will result in an underestimation 
of true urinary arsenic concentrations. For 
these reasons, we provided urinary arsenic 
concentrations both adjusted and unadjusted 
for creatinine. 

Statistical analyses. Our dependent variable 
was total urinary arsenic. Measures of mean 
values of arsenic exposure, including well water 
arsenic concentration, timeweighted arse
nic exposure, urinary arsenic, and hydration
adjusted urinary arsenic, were compared across 
subjects by demographic, socioeconomic, and 
nutrition variables. 

Analyses examined the association between 
dietary exposures with urinary arsenic while 
controlling for confounding variables. 
Variables considered as confounding factors in 
the model had been previously associated with 
arsenic metabolism and arsenicrelated health 
effects, including arsenic exposure (well water 
arsenic concentration and timeweighted 
arsenic), sex, age, tobacco use, and the socio
economic measures of education level, land 
ownership, and television ownership (Ahsan 
et al. 2006b; Argos et al. 2007; Chen et al. 
2006a; Heck et al. 2007). 

Pyroxidine (vitamin B6) and riboflavin 
(vitamin B2) have been identified as necessary 
for protein metabolism, whereas folate and 
serine are necessary for amino acid metabo
lism; these variables were included in analy
ses as mediators (Bailey and Gregory 1999; 
BroRasmussen and Horwitt 1967; Huang 
et al. 1998; Porrini et al. 1989; Shoveller et al. 
2005). Other nutrients hypothesized to ame
liorate arsenicosis, including folate, calcium, 
iron, and Vitamin C, were considered poten
tial confounders in analyses (Mitra et al. 2004). 
Intakes of these nutrients were also assessed 
using the USDA food composition table 
(USDA 2004) and the abovementioned FFQ 
(Chen et al. 2004).

Confounding was assessed in regression 
analysis. If variables did not change the beta 
value of the main effects by 10%, they were 
not included in the final model.

Because subjects included married cou
ples sharing the same well, we used general
ized estimating equation (GEE) analysis to 
account for the correlation between subjects’ 
arsenic exposure and other variables. 

Results
Of the 11,746 subjects in the cohort, 352 
(3.0%) subjects who were lacking informa
tion on dietary intakes were excluded from 
the current analysis. In the manner suggested 
by Willett (1990), we excluded 224 (1.9%) 
additional subjects whose total caloric intake 
was > 3,500 kcal/day (women) or > 4,000 kcal/
day (men), or < 500 kcal/day (women) or 
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< 800 kcal/day (men). An additional 679 sub
jects with prevalent skin lesions were excluded, 
as well as 89 subjects with incomplete skin 
lesion assessment. The final sample size was 
10,402 subjects. 

Demographic and socioeconomic charac
teristics are shown in Table 1. The excluded 
group of individuals with prevalent skin 
lesions was disproportionately older and 
male; thus, well water arsenic concentrations 
in the remaining study sample were higher 
among women and among factors associated 
with female sex, such as employment in a 
lower energy expenditure occupation, lower 
body mass index (BMI), non smoking, and 
not using betel leaf. In addition, those at a 
lower SES were exposed to higher average 
levels of well water arsenic. Urinary arsenic, 
after controlling for creatinine, was associated 
with nearly all demographic variables. Higher 

urinary arsenic was associated with female 
sex, younger age, lower BMI, and lower edu
cation, and it was higher among subjects 
who did not smoke or use betel leaf. Higher 
urinary arsenic values were seen with higher 
dietary consumption of protein, methionine, 
and cysteine (Table 2).

In GEE analyses, subjects at the highest 
quintiles of protein, methionine, and cysteine 
intake had greater urinary arsenic, after con
trolling for sex, age, tobacco use, folate and 
riboflavin consumption, urinary creatinine, 
and exposure to arsenic (Table 3). These find
ings were stable when measuring arsenic expo
sure both as well water arsenic concentration 
and as timeweighted arsenic exposure. When 
urinary creatinine was not included as a cova
riate in models, a similar effect could be seen. 
Values for television and land owner ship, betel 
leaf use, occupation, vitamins C and B6, and 

calcium did not change the main effects beta 
values by 10% and so were not retained in the 
regression analysis as confounding factors. 

Conclusions
In this study we found that greater intakes of 
protein and amino acids resulted in increased 
urinary excretion of arsenic. Those whose pro
tein consumption exceeded 1.87 g/kg/day 
had higher urinary arsenic, even after con
trolling for arsenic intake through drinking 
water. Those with methionine and cysteine 
consumption in the highest quintile also expe
rienced this positive effect. To our knowledge, 
the effect of protein and/or amino acids on 
total urinary arsenic has not previously been 
reported in humans. In a study in rabbits 
injected with 0.4 mg arsenite/kg body weight, 
those fed diets low in protein, methionine, or 
choline had a 20% reduction in total urinary 

Table 1. Population characteristics and mean ± SD values of water arsenic, time-weighted well water arsenic, urinary arsenic (U-As), and U-As per gram creatinine, 
by sociodemographic variables. 

      Time-weighted  U-As (µg)/
  Protein Methionine Cystine Well water As well water As U-As g creatinine
 No. (%) (g/kg bw/day) (mg/kg bw/day) (mg/kg bw/day) concentration (µg/L) (duration × µg/L) (µg/L) (µg/L)

Sex
 Female 6,264 (60.2) 1.54 ± 0.44 34.4 ± 10.5 18.3 ± 5.2 98.4 ± 111.1 97.4 ± 107.3 132.3 ± 152.2 297.6 ± 289.4
 Male 4,138 (39.8) 1.57 ± 0.43 35.0 ± 10.3 19.1 ± 5.2 93.6 ± 106.0 91.8 ± 101.7 131.7 ± 137.8 229.8 ± 249.0
 p-Value  0.0008 0.003 < 0.0001 0.03 0.009 < 0.0001 < 0.0001
Age (years)
 18–30 2,756 (26.5) 1.59 ± 0.42 35.8 ± 10.2 19.0 ± 5.0 98.6 ± 111.1 97.0 ± 107.6 142.0 ± 163.3 301.1 ± 304.7
 30–39 3,736 (35.9) 1.55 ± 0.43 34.7 ± 10.3 18.6 ± 5.2 95.1 ± 107.9 95.0 ± 104.3 129.1 ± 141.7 265.3 ± 276.3
 40–49 2,587 (24.9) 1.53 ± 0.44 33.9 ± 10.6 18.4 ± 5.4 96.9 ± 109.7 94.5 ± 104.0 127.3 ± 141.0 261.4 ± 264.6
 ≥ 50 1,323 (12.7) 1.52 ± 0.45 33.6 ± 10.7 18.4 ± 5.5 95.3 ± 107.4 93.1 ± 104.7 128.8 ± 133.2 239.3 ± 223.7
 p-Value  < 0.0001 < 0.0001 < 0.0001 0.6 0.7 0.0008 < 0.0001
BMI
 < 18.5 3,957 (39.0) 1.68 ± 0.47 37.4 ± 11.4 20.1 ± 5.7 99.7 ± 111.1 98.2 ± 106.7 139.9 ± 156.2 301.3 ± 291.2
 18.5–20.5 2,718 (26.8) 1.56 ± 0.40 34.9 ± 9.6 18.7 ± 4.8 96.9 ± 108.9 95.3 ± 103.8 131.0 ± 141.7 262.7 ± 247.4
 20.5–22.5 1,653 (16.3) 1.46 ± 0.37 32.8 ± 9.0 17.6 ± 4.5 99.9 ± 114.5 98.0 ± 109.7 126.7 ± 143.2 266.7 ± 261.6
 22.5–25 1,085 (10.7) 1.38 ± 0.34 31.2 ± 8.4 16.7 ± 4.1 87.3 ± 100.4 86.7 ± 100.0 120.7 ± 129.4 234.1 ± 330.4
 ≥ 25.0  723 (7.1) 1.25 ± 0.33 28.2 ± 8.1 15.4 ± 4.2 83.3 ± 101.5 84.3 ± 101.6 125.3 ± 144.1 197.4 ± 206.2
 p-Value  < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.001 0.0003 < 0.0001
Education (years)
 No formal 4,608 (44.3) 1.54 ± 0.44 34.3 ± 10.6 18.4 ± 5.2 95.6 ± 106.8 93.9 ± 102.2 135.9 ± 146.9 288.4 ± 266.4
 1–5 3,068 (29.5) 1.57 ± 0.43 34.9 ± 10.3 18.8 ± 5.2 99.8 ± 113.4 97.1 ± 107.8 137.3 ± 153.5 276.7 ± 262.0
 6–10 2,306 (22.2) 1.56 ± 0.43 35.1 ± 10.4 18.8 ± 5.2 96.0 ± 109.7 96.7 ± 108.8 122.1 ± 147.4 243.4 ± 320.4
 ≥ 10 415 (4.0) 1.53 ± 0.42 34.6 ± 10.3 18.9 ± 5.2 85.1 ± 97.8 86.8 ± 97.2 107.5 ± 118.3 183.7 ± 165.4
 p-Value  0.02 0.02 0.0009 0.05 0.2 < 0.0001 < 0.0001
Occupation
 Higher energy  7,784 (74.8) 1.56 ± 0.44 34.8 ± 10.4 18.5 ± 5.2 88.7 ± 101.2 87.4 ± 98.5 124.5 ± 130.3 214.9 ± 252.1
 Lower energy  2,617 (25.2) 1.53 ± 0.43 34.2 ± 10.4 18.9 ± 5.4 99.1 ± 112.1 97.7 ± 107.1 134.6 ± 153.2 289.5 ± 281.7
 p-Value  0.005 0.01 0.008 < 0.0001 0.003 0.003 < 0.0001
Land ownership
 No 5,201 (50.0) 1.54 ± 0.44 34.2 ± 10.6 18.5 ± 5.3 99.6 ± 111.8 97.4 ± 107.5 135.0 ± 154.0 278.1 ± 264.9
 Yes 5,198 (50.0) 1.56 ± 0.43 35.1 ± 10.2 18.8 ± 5.2 93.4 ± 106.3 93.0 ± 102.7 129.2 ± 138.9 263.0 ± 286.3
 p-Value  0.002 < 0.0001 0.001 0.004 0.03 0.05 0.007
TV ownership
 No 6,766 (65.0) 1.55 ± 0.43 34.5 ± 10.4 18.6 ± 5.2 100.7 ± 112.9 98.8 ± 108.0 137.3 ± 150.6 287.9 ± 271.6
 Yes 3,636 (35.0) 1.55 ± 0.44 34.5 ± 10.5 18.7 ± 5.3 88.8 ± 101.3 88.4 ± 99.2 122.9 ± 138.6 239.1 ± 280.9
 p-Value  0.8 0.1 0.1 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Smoking
 No 7,616 (73.2) 1.54 ± 0.43 34.4 ± 10.4 18.3 ± 5.1 98.7 ± 111.2 97.6 ± 107.4 133.2 ± 150.7 282.6 ± 294.2
 Yes 2,785 (26.8) 1.59 ± 0.43 35.4 ± 10.4 19.4 ± 5.3 90.5 ± 103.0 88.3 ± 98.3 128.8 ± 134.9 237.6 ± 215.5
 p-Value  < 0.0001 < 0.0001 < 0.0001 0.0004 < 0.0001 0.2 < 0.0001
Betel leaf use
 No 6,785 (65.2) 1.56 ± 0.42 34.8 ± 10.2 18.7 ± 5.1 98.2 ± 110.4 96.8 ± 107.1 134.9 ± 149.9 275.0 ± 290.0
 Yes 3,616 (34.8) 1.54 ± 0.45 34.3 ± 10.9 18.5 ± 5.5 93.4 ± 106.7 92.0 ± 101.3 126.8 ± 140.1 262.5 ± 247.3
 p-Value  0.02 0.03 0.1 0.02 0.03 0.007 0.02

Abbreviations: bw, body weight; U-As, urinary arsenic. p-Values were computed with analysis of variance.
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arsenic (Vahter and Marafante 1987). In that 
study, rabbits on the low methionine diet had 
the greatest reduction in methylating capacity. 
In the current study, greater methionine and 
cysteine consumption were associated with 
comparable increases in total urinary arsenic.

Our results support other research that 
has found that dietary factors alter urinary 
arsenic excretion. Nutrient intake is associated 
with changes in urinary arsenic metabolites, 
with greater intake of cysteine associated with 
increased excretion of dimethyl arsinic acid 
(Heck et al. 2007). There is inter individual 
variation in arsenic excretion, which may 
be modified by host factors such as age and 

physi cal activity level (Vahter et al. 2006). 
Folate deficiency has been associated with 
impaired arsenic methylation in participants 
of our HEALS study, and folic acid supple
mentation has improved methylation (Gamble 
et al. 2006). Age influences arsenic metabo lism, 
with urinary arsenic concentrations peaking at 
younger ages and poorer methylation among 
older people (Hsueh et al. 1998; Kurttio et al. 
1998). Lifestyle differences such as smoking 
and alcohol use also affect arsenic speciation 
and total urinary arsenic (HopenhaynRich 
et al. 1996b; Kurttio et al. 1998). 

The higher urinary arsenic found in 
this study among those with higher protein 

and amino acid consumption is likely to be 
explained by the roles of these nutrients in 
arsenic methylation. Experimental research in 
animals has found that low protein and amino 
acid diets increase risks of arsenicrelated 
health effects, and some studies in humans 
have found worsened arsenicassociated 
health effects among those consuming lower 
amounts of meat, eggs, and vegetables (Chen 
et al. 1988; Hoffman et al. 1992; Lammon 
and Hood 2004; Maiti and Chatterjee 2001; 
Mitra et al. 2004; Vahter and Marafante 
1987; Yang and Blackwell 1961). However, 
some studies of protein, amino acids, and 
arsenicrelated skin lesions found little or no 
effect. Variation in results across studies is 
likely due to lack of information on individ
ual exposure to both nutrients and arsenic 
(HopenhaynRich et al. 1996a; Smith et al. 
2000); the use of pregnant women as study 
subjects, who appear to have differing arsenic 
metabolism than nonpregnant adults (Li et al. 
2008); and the use of patients with preva lent 
skin lesions as study subjects (Chung et al. 
2006), as they have altered metabolism and 
excretion of arsenic.

The population of this study was exposed 
to a wide range of arsenic concentrations in 
well water. Subjects experienced differential 
exposure to well water concentrations of arse
nic by SES. Previous research found access 
to and use of a sanitary water supply (tube 
wells) in Bangladesh to be strongly related to 
SES measures such as income and education 
(Taha et al. 2000; Vahter et al. 2006; Yusuf 
and Zakir Hussain 1990). Greater arsenic 
concentrations in wells used by those at lower 
income may occur because of differing well 

Table 2. Mean values of water arsenic, time-weighted arsenic, urinary arsenic (U-As), and U-As per gram 
creatinine by quintiles of protein, methionine, and cysteine. 

  Time-weighted well  U-As (µg)/
 Well water As water As  g creatinine
 concentration (µg/L) (duration × µg/L) U-As (µg/L) (µg/L)
 Mean ± SD p-Trend Mean ± SD p-Trend Mean ± SD p-Trend Mean ± SD p-Trend

Protein (g/kg/day) 0.9 0.8 0.009 0.003
 < 1.20 98.7 ± 112.1 97.4 ± 108.9 130.0 ± 134.6 260.2 ± 257.9
 1.20–1.41 93.4 ± 106.6 91.7 ± 103.0 127.5 ± 140.8 264.1 ± 261.4
 1.41–1.61 95.2 ± 108.8 94.3 ± 106.1 128.8 ± 150.2 267.9 ± 272.7
 1.61–1.87 97.8 ± 108.1 95.9 ± 102.7 134.0 ± 143.9 277.3 ± 316.0
 > 1.87 96.6 ± 110.9 96.0 ± 105.8 140.4 ± 162.0 283.1 ± 267.8
Methionine (mg/kg/day) 0.05 0.08 0.06 0.02
 < 26.5 100.0 ± 113.0 99.0 ± 110.1 130.7 ± 137.4 260.1 ± 254.3
 26.5–31.2 97.8 ± 112.6 94.9 ± 106.8 128.3 ± 136.6 270.0 ± 271.4
 31.2–35.7 94.6 ± 107.5 93.9 ± 105.6 128.8 ± 152.0 261.7 ± 246.0
 35.7–41.9 96.1 ± 106.8 95.0 ± 103.2 136.6 ± 153.5 282.0 ± 328.7
 > 41.9 93.3 ± 106.3 92.4 ± 100.6 136.3 ± 152.9 278.8 ± 271.9
Cysteine (mg/kg/day) 0.7 0.6 0.006 0.03
 < 14.4 97.4 ± 112.0 95.9 ± 108.6 129.0 ± 134.5 265.4 ± 262.4
 14.4–16.9 95.0 ± 107.9 93.9 ± 104.9 129.6 ± 141.0 266.0 ± 255.1
 16.9–19.3 94.2 ± 107.9 92.6 ± 104.4 127.2 ± 148.4 264.5 ± 276.0
 19.3–22.4 97.1 ± 106.3 96.2 ± 102.5 133.8 ± 146.1 276.6 ± 315.5
 > 22.4 98.1 ± 112.2 96.6 ± 106.3 141.2 ± 161.7 280.9 ± 266.6

Table 3. Association between dietary exposures and urinary arsenic values (estimates from GEE) by multivariate analysis.

 Models with As exposure measured as index well water concentration  Models with As exposure measured as TWA
 Creatinine adjusted (n = 10,402) Unadjusteda (n = 6,758) Creatinine adjusted (n = 10,402) Unadjusteda (n = 6,758)
 Least squares    Least squares    Least squares    Least squares 
 adjusted   adjusted    adjusted    adjusted
 mean b p -Value mean b p -Value mean  b p -Value mean b p -Value

Quintiles of protein consumptionb (g/kg/day)
 < 1.20 117.5   Referent 148.2  Referent 115.6  Referent 156.6  Referent
 1.20–1.41 130.1 12.7 < 0.0001 163.4 7.1 0.1 127.7 12.1 0.0001 162.3 5.7 0.2
 1.41–1.61 132.4 14.9 < 0.0001 166.9 4.7 0.4 130.7 15.1 < 0.0001 160.9 4.3 0.4
 1.61–1.87 137.3 19.8 < 0.0001 170.8 7.9 0.1 136.1 20.5 < 0.0001 164.7 8.1 0.1
 > 1.87 145.2 27.7 < 0.0001 179.2 13.8 0.03 144.5 28.9 < 0.0001 171.9 15.3 0.02
Quintiles of methionine consumptionc (mg/kg/day)   
 < 26.5 116.1  Referent 154.9  Referent 114.9  Referent 154.3  Referent
 26.5–31.2 125.9 9.9 0.001 159.9 5.0 0.3 124.7 9.7 0.002 158.1 3.8 0.4
 31.2–35.7 131.0 15.0 < 0.0001 163.7 8.8 0.09 129.0 14.1 0.0001 161.9 7.6 0.2
 35.7–41.9 141.1 25.0 < 0.0001 171.2 16.3 0.004 139.4 24.5 < 0.0001 168.7 14.4 0.01
 > 41.9 148.1 32.0 < 0.0001 175.8 20.9 0.002 146.7 31.9 < 0.0001 173.7 19.5 0.003
Quintiles of cysteine consumptiond (mg/kg/day)   
 < 14.4 116.8  Referent 159.0  Referent 115.1  Referent 157.1  Referent
 14.4–16.9 126.9 10.1 0.0009 162.2 3.1 0.5 124.8 9.7  0.002 159.5 2.4 0.6
 16.9–19.3 131.8 15.0 < 0.0001 162.8 3.8 0.4 130.1 15.1 < 0.0001 160.4 3.4 0.5
 19.3–22.4 138.6 21.8 < 0.0001 167.9 8.8 0.1 137.1 22.0 < 0.0001 166.0 8.9 0.1
 > 22.4 148.0 31.2 < 0.0001 173.1 14.1 0.03 147.6 32.5 < 0.0001 173.4 16.3 0.01
a Subjects included had urinary creatinine concentrations between 30 and 300 mg/dL. bControlling for arsenic exposure, sex, age, tobacco use, total energy (kcal), education level, land 
ownership, television ownership, and folate and riboflavin consumption. cControlling for arsenic exposure, sex, age, tobacco use, total energy (kcal), education level, land ownership, 
television ownership, and folate and serine consumption. dControlling for arsenic exposure, sex, age, tobacco use, total energy (kcal), education level, land ownership, television owner-
ship, and iron, folate and serine consumption.
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depths among study participants; wealthier 
subjects are more likely to have deeper wells, 
which tend to cost more and have lower arse
nic concentrations. Arsenicosis is more preva
lent among poorer Bangladeshis, which has 
previously been attributed to differences in 
nutrition and access to treatment (Hadi and 
Parveen 2004; Sikder et al. 2005).

The most common dietary sources in 
Bangladesh for protein, methionine, and 
cysteine come from rice and fish (Ahmad 
et al. 1986; Roos et al. 2003). In Bangladesh, 
as in other countries in Asia and elsewhere, 
intake of protein and amino acids depends on 
demographic characteristics such as age, sex, 
and SES (Heck et al. 2008b). Studies of food 
intake have shown that Bangladeshi men con
sume greater amounts of meats, eggs, pulses, 
milk, vegetables, and fruits than Bangladeshi 
women (Sudo et al. 2004). However, there are 
reports of both male and female Bangladeshis 
suffering from chronic energy deficiency 
(Abdullah et al. 1995; Choudhury et al. 2000; 
Mitra 1997). Age is also related to protein 
intake, with adults typically consuming less 
protein as they age (Smit et al. 1999). If pro
tein sources are scarce, protein may be given to 
honored family members or those undertak
ing the greatest physical labor. Energy intake 
is also strongly associated with SES measures 
such as income or education (Ahmad et al. 
1986). These underlying differences must be 
taken into account when assessing disease risk. 

There was considerable undernutrition 
among subjects in this study, as evidenced 
by the low BMI scores. Although low BMI 
independently predicts arsenicrelated health 
effects, it is unlikely to explain the findings 
here, as protein, methionine, and cysteine 
consumption were expressed in units per body 
weight (Guha Mazumder et al. 1998; Milton 
et al. 2004). The frequent cooccurrence of 
dietary protein with other important nutri
ents such as iron, calcium, iodine, and vita
mins A, B1, niacin, B12, and folate suggests 
that those subjects at the highest quintile of 
protein consumption may have had better 
diets overall, contributing to better overall 
health. Nonetheless, our analysis controlled 
for folate, iron, serine, and riboflavin, and we 
found little effect from calcium, iron, vitamin 
C, and vitamin B6, and as such, these factors 
are unlikely to have explained the results. 

Trace amounts of arsenic are found in 
tobacco. Studies of cigarettes manufactured 
in the United States estimate arsenic con
centrations per cigarette at 10.7 ng (range, 
1.6–24.9 ng), which are attributed to pesticide 
residues (IARC 2004a). Little is known about 
arsenic concentrations of tobacco grown in 
Bangladesh, although levels may vary depend
ing on pesticide use and whether arsenic
contaminated water is used in crop irrigation. 
An individual’s exposure may also depend on 

whether the tobacco is smoked or chewed. 
Bangladeshis may be similarly exposed to trace 
amounts of arsenic from food intake because 
of contaminated water used in crop irrigation 
or in cooking. Nonetheless, it is expected that 
the majority of arsenic intake among HEALS 
subjects comes from drinkingwater exposure, 
with amounts from other sources expected 
to be negligible (Ahsan et al. 2006a). In this 
study, similar patterns of urinary excretion 
were seen between smokers and nonsmokers 
(data not shown).

Accurate assessment of dietary intake is 
vital in nutritional studies. All FFQs have 
strengths and limitations and are subject to 
error. The validation study of the FFQ used 
in this study found some nutrient estimates to 
be over estimated compared with 7day food 
diaries. Despite the fact that many nutrients 
had reasonable correlations between FFQ and 
food diary, we cannot exclude the possibility 
that subjects overestimated their consumption, 
especially for foods with greater social desir
ability such as tea and fruit (Chen et al. 2004). 

In the present study, we did not evaluate 
the influence of arsenic metabolism capacity 
on urinary arsenic excretion. Arsenic metabo
lism capacity may be in the causal pathway 
of nutritional status urinary excretion ability. 
Future studies on this topic are needed. In 
separate analyses, we examined the nutritional 
influence on arsenic metabolism capacity indi
cated using urinary arsenic metabolite profile 
(Heck et al. 2007).

In this study we found significant differ
ences in total urinary arsenic among those con
suming varying amounts of dietary protein, 
methionine, and cysteine, even after control
ling for arsenic exposure. Given the potential 
protective effect of these nutrients, the extent of 
undernutrition in Bangladesh is of even greater 
concern. Programs designed to alleviate the 
suffering of arsenicosis patients in Bangladesh 
may consider dietary supplementation.
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