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Novel computational method for 
predicting polytherapy switching 
strategies to overcome tumor 
heterogeneity and evolution
Vanessa D. Jonsson1,*, Collin M. Blakely2,3,*, Luping Lin2,3, Saurabh Asthana2,3, Nikolai Matni1, 
Victor Olivas2,3, Evangelos Pazarentzos2,3, Matthew A. Gubens2,3, Boris C. Bastian3,4, 
Barry S. Taylor5,6,7, John C. Doyle8,9,10 & Trever G. Bivona2,3,11

The success of targeted cancer therapy is limited by drug resistance that can result from tumor genetic 
heterogeneity. The current approach to address resistance typically involves initiating a new treatment 
after clinical/radiographic disease progression, ultimately resulting in futility in most patients. Towards 
a potential alternative solution, we developed a novel computational framework that uses human 
cancer profiling data to systematically identify dynamic, pre-emptive, and sometimes non-intuitive 
treatment strategies that can better control tumors in real-time. By studying lung adenocarcinoma 
clinical specimens and preclinical models, our computational analyses revealed that the best anti-cancer 
strategies addressed existing resistant subpopulations as they emerged dynamically during treatment. 
In some cases, the best computed treatment strategy used unconventional therapy switching while 
the bulk tumor was responding, a prediction we confirmed in vitro. The new framework presented here 
could guide the principled implementation of dynamic molecular monitoring and treatment strategies 
to improve cancer control.

Targeted cancer therapies are effective for the treatment of certain oncogene-driven solid tumors, including 
non-small cell lung cancers (NSCLCs) with activating genetic alterations in EGFR (epidermal growth factor 
receptor), ALK (anaplastic lymphoma kinase), BRAF, and ROS1 kinases1–3. However, inevitably resistance to 
current targeted therapies emerges, typically within months of initiating treatment and remains an obstacle to 
long-term patient survival1–4. The presence and evolution of tumor genetic heterogeneity potentially underlies 
resistance and also limits the response to successive therapeutic regimens that are used clinically in an attempt 
to overcome resistance in the tumor after it has emerged4–7. Indeed, while a targeted therapy may be effective in 
suppressing one genomic subclone within the tumor, other clones may be less sensitive to the effects of the drug. 
Thus, through selective pressures, resistant populations can emerge and promote tumor progression. Moreover, 
the current paradigm of solid tumor treatment is largely based on designing fixed (static) treatment regimens that 
are deployed sequentially as either initial therapy or after the clear emergence of drug-resistant disease, detected 
by clinical and radiographic measures of tumor progression. In contrast, designing dynamic treatment strategies 
that switch between targeted agents (or combinations thereof) in real time in order to suppress the outgrowth of 
rare or emergent drug-resistant subclones may be a more effective strategy to continually suppress tumor growth 
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and extend the duration of clinical response. Thus, there is a need to identify principled approaches for the predic-
tive design of effective combination (poly)therapy strategies to pre-empt the growth of multiple tumor subclones 
actively during treatment.

Mathematical modeling, analysis and computational simulations of tumor growth, heterogeneity and inhibi-
tion by various therapeutic modalities has long been employed as a method to provide insight into evolutionary 
outcomes and effective treatment strategies. Such modeling may include the use of stochastic8–10 or deterministic 
differential equation implementations11,12 to propose static or sequential treatment strategies that delay resistance 
in various cancer models. Recent studies by Zhao et al.13,14 incorporate the use of mathematical optimization, a 
fundamental subject in engineering design to predict static combination therapies that effectively address heter-
ogeneity in a lymphoma model. Complementary engineering techniques from optimal control theory provide an 
additional theoretical framework to design dynamic drug scheduling regimens in the context of dynamical sys-
tems models of cancer heterogeneity and evolution. The application of optimal control theory to treatment design 
has a history dating back to the 1970s15,16 with more recent examples including that of scheduling angiogenic and 
chemotherapeutic agents17 or immuno- and chemotherapy combinations18. While mathematical modeling and 
engineering methods have been used extensively to inform treatment strategy design, a significant drawback to 
prior work in the field is that the underlying computational framework(s) have not conjointly accomplished the 
following important aims: (1) allowing for the systematic principled design of dynamic treatment strategies using 
experimentally identified models of tumor dynamic behaviors; and (2) developing quantitative methods that 
allow for the exploration of the robustness of predicted treatment strategies with respect to multiple common 
challenges in real-world patients, such as tumor heterogeneity and fluctuations in drug concentrations.

Here, we present a novel approach that combines a mathematical model of the evolution of tumor cell popu-
lations with parameters identified from our experimental data and an engineering framework for the systematic 
design of polytherapy scheduling directed at the following unresolved issues in the field: (1) how tumor genetic 
composition and drug dose constraints affect the long term efficacy of combination strategies, (2) how optimal 
scheduling of combination small molecule inhibitors can help to overcome heterogeneity, genomic evolution and 
drug dose fluctuations, and (3) how serial tumor biopsy or blood-based tumor profiling scheduling in patients 
can be timed appropriately. To tackle these questions, we developed an integrated experimental and compu-
tational framework that solves for candidate combination treatment strategies and their scheduling given an 
initial polyclonal tumor and allows the exploration of treatment design trade offs such as dosage constraints and 
robustness to small fluctuations in drug concentrations. This methodology is rooted in optimal control theory 
and incorporates an experimentally derived mathematical model of evolutionary dynamics of cancer growth, 
mutation and small molecule inhibitor pharmacodynamics to solve for optimal drug scheduling strategies that 
address tumor heterogeneity and constrain drug-resistant tumor evolution. Our key new insights include (1) 
heterogeneous tumor cell populations are better controlled with switching strategies; indeed, static two-drug 
strategies are unable to effectively control all tumor subpopulations in our study; (2) constant combination drug 
strategies are less robust to perturbations in drug concentrations for heterogeneous tumor cell populations, and 
hence more likely to lead to tumor progression; (3) countering the outgrowth of subclonal tumor populations by 
switching polytherapies even during a bulk tumor response can offer better tumor cell population control, offer-
ing a non-intuitive clinical strategy that pro-actively addresses molecular progression before evidence of clinical 
or radiographic progression appears.

Results
The presence and evolution of intratumoral genetic heterogeneity in a patient with EGFR-
mutant lung adenocarcinoma. To explore the utility of our approach, we focused on EGFR-mutant lung 
adenocarcinoma. Many mechanisms of resistance to EGFR-targeted therapies in lung adenocarcinoma are well 
characterized19. Furthermore, tumor heterogeneity and multiple resistance mechanisms arising in a single patient 
can occur2,19. Thus, overcoming polygenic resistance is of paramount importance in this disease and will likely 
require a non-standard approach. To illustrate this point, we investigated the molecular basis of targeted therapy 
resistance in a 41-year old male never-smoker with advanced EGFR-mutant (L858R) lung adenocarcinoma. This 
patient responded to first-line treatment with erlotinib but progressed on this therapy within only four months 
after initial treatment, instead of the typical 9–12 month progression free survival observed in EGFR-mutant 
lung adenocarcinoma patients. We reasoned that genomic analysis of this patient’s outlier clinical phenotype 
could reveal the molecular pathogenesis of suboptimal erlotinib response. Using a custom-capture assay20,21, we 
deeply sequenced the coding exons and selected introns of 389 cancer-relevant genes in both the pre-treatment 
and the erlotinib-resistant tumor specimen and matched normal blood to identify somatic alterations that could 
mediate resistance (Materials and Methods). Exome sequencing of the pre-treatment specimen confirmed the 
presence of the EGFRL858R mutant allele that was identified through prior clinical PCR-based sequencing of 
this EGFRL858R specimen (data not shown), and additionally revealed mutant allele-specific focal amplifica-
tion of the EGFR coding locus that resulted in a high allelic frequency (95% variant frequency) (Fig. 1B,C). We 
discovered a rare concurrent subclone in the treatment-naïve tumor with a BRAFV600E mutation (6% variant 
frequency; Fig. 1B). This observation is consistent with a recent report of a BRAFV600E mutation in an erlotin-
ib-resistant lung adenocarcinoma specimen22 and recent data indicating that EGFR-mutant lung adenocarcinoma 
cells can often develop EGFR TKI resistance through RAF-MEK-ERK pathway activation23. The frequency of the 
subclonal BRAFV600E mutation increased approximately 10-fold upon acquired erlotinib resistance, from 6% to 
60% in the primary and recurrent tumor, respectively (Fig. 1C). This increase in the BRAFV600E allelic fraction 
was likely due to the expansion of the BRAFV600E subclone, given that we found no evidence that this increased 
frequency occurred as a result of focal BRAF amplification in the resistant tumor (Fig. 1C and Fig. S1). Beyond 
the outgrowth of mutant BRAF, we identified two additional genetic alterations in the resistant tumor that could 
contribute to EGFR TKI resistance: focal amplification of 7q31.2 encoding MET in the resistant tumor cells 
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(Fig. 1B and Fig. S1), a low frequency EGFRT790M mutation (14% variant frequency) (Fig. 1B,C). All candidate 
somatic mutations and focal copy number amplifications conferring resistance to erlotinib therapy (in EGFR, 
BRAF, and MET) were confirmed by independent, validated DNA sequencing and FISH assays (data not shown 
and Fig. S1). By using mutant specific antibodies recognizing EGFRL858R and BRAFV600E, we found co-occur-
rence of these mutant proteins in individual tumor cells (Fig. S1). FISH analysis also suggested that concurrent 
genetic alteration of EGFR and MET occurred in individual tumor cells (Fig. S1). Thus, erlotinib therapy acted 
as a selective pressure for the evolution of multiple concurrent clonal and subclonal genetic alterations that could 
cooperate to drive rapid drug-resistant disease progression in EGFR-mutant lung adenocarcinoma.

Analysis of clonal concurrence and resistance. While BRAFV600E, MET activation, and EGFRT790M 
can individually promote EGFR TKI resistance22,24,25, the therapeutic impact of the concurrence of these alter-
ations we uncovered has not been characterized. Therefore, we studied the effects of BRAFV600E, MET activa-
tion, and EGFRT790M, alone or in combination, on growth and therapeutic response in human EGFR-mutant 
lung adenocarcinoma cellular models. First, we found that expression of V600E but not wild-type (WT) BRAF 

Figure 1. Concurrent genetic alterations drive rapid resistance to EGFR TKI treatment in EGFR-mutant 
lung adenocarcinoma. (A) Computed tomography indicates the clinical course and timeline of disease in the 
patient with rapid progression on EGFR TKI therapy and shows the EGFR-mutant lung adenocarcinoma (red 
arrows) analyzed both prior to erlotinib treatment and upon resistance at 4 months. (B) Key somatic mutations 
identified by exon-capture and deep sequencing of the pre- and post-treatment tumor in (A) demonstrating 
concurrent alterations in EGFR and BRAF and the frequency of each mutation in pre- and post- treatment 
tumor samples. P-values indicated as determined by a two-tailed Fischer’s exact test. (C) DNA copy number 
alterations inferred from exon-capture and sequencing data indicate the focal amplification of the EGFRL858R-
mutant allele was lost upon acquired resistance while the patient’s resistant tumor gained a focal amplification of 
MET, with no change in BRAF (relative positions indicated, chromosome 7).
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promoted resistance to erlotinib in 11–18 cells that endogenously express EGFRL858R (Fig. S2). This erlo-
tinib resistance in BRAFV600E-expressing EGFR-mutant 11–18 cells was overcome by concurrent treatment 
with erlotinib and selective inhibitors of either BRAF or MEK (vemurafenib26 and trametinib27 respectively 
(Figs S2 and S3). We next used the 11–18 system to test the effects of MET activation by hepatocyte growth factor 
(HGF), which phenocopies the effects of MET amplification in EGFR TKI resistance25,28 on therapeutic sensitivity. 
We found that MET activation not only promoted erlotinib resistance in parental 11–18 cells but also enhanced 
the effects of BRAFV600E expression on erlotinib resistance in these cells (Fig. S3). This resistance induced by 
MET activation in 11–18 parental and BRAFV600E-expressing cells was accompanied by increased phosphoryl-
ation of MEK, ERK, and AKT (Fig. S4). Treatment with the MEK inhibitor trametinib, but not the BRAF inhib-
itor vemurafenib or the MET inhibitor crizotinib, overcame erlotinib resistance and inhibited phospho-ERK in 
MET-activated BRAFV600E-expressing 11–18 cells (Fig. S4), providing a rationale for polytherapy against EGFR 
and MEK in EGFR-mutant tumors with activating co-alterations in MET and BRAF.

Given that we found a rare EGFRT790M subclone in the polyclonal resistant tumor, we next explored whether 
BRAFV600E expression could promote resistance to EGFR TKI treatment in H1975 human lung adenocarci-
noma cells that endogenously express EGFRT790M and EGFRL858R. We observed that BRAFV600E modestly 
decreased sensitivity to afatinib, an approved irreversible EGFR kinase inhibitor effective against EGFRT790M29, 
and that this effect of BRAFV600E on afatinib sensitivity was blunted by vemurafenib (Fig. S5). Together, our data 
indicate that erlotinib therapy induced the evolution of multiple concurrent events that re-shaped the polyclonal 
tumor genetic landscape during the onset of resistance; resistance could be overcome by polytherapy against both 
EGFR and MAPK signaling in preclinical models.

Polytherapy Provides Temporary Response in Heterogeneous or MET Activated Tumors. While 
we conducted a finite set of experiments to test various rational drug combinations that could address the het-
erogeneous basis of resistance in this patient’s disease, this approach is not easily scaled; further, it is not readily 
feasible to explore all possible drug combinations and drug doses over a continuous range or anticipate the effects 
of the myriad of possible tumor subcompositions on tumor control under treatment using cell-based assays 
alone. Therefore, we sought to provide a more general and scalable framework for understanding the impact 
of each genetically-informed targeted therapy strategy on the temporal evolution of the multiple concurrent 
EGFR-mutant tumor cell subclones present in this patient, as a potentially more generalizable platform. We devel-
oped an ordinary differential equation (ODE) model of tumor growth, mutation and selection by small molecule 
inhibitors with parameters identified from experimental data (Fig. S11A,B and Equation S1) and interrogated it 
to uncover the limitations of the targeted treatments in the context of tumor heterogeneity and evolution. We first 
confirmed that our model was able to capture the essential tumor population dynamics by showing a qualitative 
equivalence between the patient’s clinical course and our model simulation of similar tumor subpopulations con-
sisting of 94% EGFRL858R, 6% BRAF V600E and assuming the existence of a very low initial frequency of 0.01% 
MET amplification of EGFRL858R, BRAFV600E and EGFRT790M in the presence of 1 μM erlotinib (Fig. 2A,B).

To systematically explore the utility of many different drug combination regimens to overcome polygenic 
resistance, we used our computational model to calculate the efficacy of clinically relevant doses of erlotinib and 
afatinib in combination with either crizotinib, trametinib or vemurafenib on the growth of parental 11–18 and 
H1975 cells EGFR mutant cell lines. We found that most polytherapies could address only certain subpopulations 
(Fig. 3A). For example, the afatnib/trametinib combination elicited a complete response for a representative heter-
ogeneous MET-negative tumor cell population comprised of (89% EGFRL858R, 10% EGFRL858R BRAFV600E, 
1% EGFRL858R, T790M) compared to rapid progression for its MET activated analog (Fig. 3C). Moreover, we 
computed the concentrations of erlotinib or afatinib in combination that could guarantee a progression-free 
response for both MET activated or MET neutral tumor cell populations (SI, Mathematical Methods) and found 
that in many cases, the concentrations were considerably higher than clinically feasible (due to either known 
pharmacokinetic limitations or dose limiting toxicities) (Fig. 3B).

To better understand the efficacy of the combination therapy over time, we sought to classify which initial 
tumor cell subpopulations could eventually lead to therapeutic failure when treated with different concentrations 
of EGFR TKIs in combination with crizotinib, trametinib or vemurafenib. We defined the evolutionary stability 
of a subpopulation as the worst-case evolutionary outcome, in each case where the particular subpopulation is 
present upon treatment initiation. More precisely, the evolutionary stability is the maximum eigenvalue of each 
evolutionary branch downstream of the subclone (SI, Section 3.2). This approach provides an assessment of which 
subclones present in the initial tumor cell population are likely to lead to overall progression (a positive evolution-
ary stability) versus those that lead to response (a negative evolutionary stability) when treated with a particular 
combination therapy. Our analysis confirms that progression-free response on combination therapies is sensitive 
to both EGFR TKI concentration and dependent on whether pre-existent subpopulations are effectively targeted 
at these concentrations (Fig. 3D and Figs S6–S8). Overall, this analysis revealed that combinations of two signal 
transduction inhibitors had limited effectiveness in durably controlling resistance over a longer time horizon.

Engineering Drug Scheduling to Control Tumor Evolution. We next explored how the rational design 
of combination drug scheduling strategies could address this issue. Experimental studies have recently proposed 
drug pulsing30 or drug switching10 as a strategy to delay the growth of certain cancers. To this end, we proposed 
a novel methodology rooted in engineering principles to design drug scheduling strategies that best control the 
growth and evolution of tumor cell populations. In particular, we apply concepts from optimal and receding 
horizon control theory to our experimentally integrated model of lung adenocarcinoma evolution to compute 
treatment strategies that minimize tumor cell populations over time. Our algorithm allows for the specification 
of treatment design constraints such as maximum dose, the time horizon over which the treatment strategy is 
applied and the switching horizon, that is the minimum time over which one particular treatment can be applied. 
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This algorithm can be extended to include other drug related characteristics and treatment design constraints. 
In addition, the framework allows for the analysis of tradeoffs between these aspects of the design space as well 
as others, such as how robust the predicted treatment strategies are with respect to uncertainties in the model or 
perturbations in drug dosages.

For a predetermined time and minimum switching horizon, we define an optimal control problem  
(SI, Algorithm 1) and solve for the drug combination that best minimizes the existing tumor cell subpopulations 
for every receding switching horizon. Given that any one polytherapy is unlikely to be simultaneously effective 
against all subpopulations, the resulting optimal strategy, which maximizes the response of the tumor cells pres-
ent at every time horizon (SI, Mathematical Methods), is potentially one that switches between drug combina-
tions, at defined time points during the treatment course.

As proof-of-principle, we determined which drug scheduling regimens could maximally reduce different ini-
tial tumor cell populations by solving our control problem for different allowable switching horizons over a thirty 
day period (Fig. 4). The afatinib/trametinib combination was the optimal constant strategy for tumor cell popula-
tions harboring the EGFRL858R, T790M mutation, and although this strategy invoked progression free response 
in HGF− tumor cell populations, most EGFRL858R HGF+  tumor cell populations progressed on the therapy 
over thirty days (Fig. 4A vs 4C and Fig. S7AB). For the HGF− tumor population comprised of 89% EGFRL858R, 

Figure 2. Mathematical simulation qualitatively captures the patient’s evolution on erlotinib. (A) A 
simulation of the mathematical model of lung adenocarcinoma evolution (SI, Equation (S1)) in the presence 
of 1 μM erlotinib, given the patient-derived pretreatment initial tumor cell subpopulations (94% EGFRL858R, 
6% BRAF V600E, 0.01% MET amplification of EGFRL858R, BRAFV600E and EGFRT790M). Parameters used 
in the simulation were derived from growth and viability assays of parental 11–18 EGFRL858R-positive lung 
adenocarcinoma cells or those cells engineered to express mutations listed above and treated with 0 or 50 ng/ml  
HGF, in the presence of varying concentrations of erlotinib and fit according to Equations S8, S9 and S11. 
(B) Tumor cell populations present at day 0, 6 and 17 of the simulation in (A), including the total HGF+  cell 
population at day 17 (gray). The model qualitatively captures a possible evolutionary trajectory and results in a 
similar final tumor cell composition as that of the patient, (B) day 17 vs. Fig. 1(B and C).
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10% EGFRL858RBRAFV600E and 1% EGFRL858R, T790M, the optimal constant strategy provided overall 
response leaving a dominant EGFRL858RBRAFV600E tumor subpopulation present whereas the optimal ten day 
switching strategy provided an enhanced response over the constant strategy by alternately targeting EGFRL858R 
and EGFRL858R, T790M tumor cell subpopulations (Fig. 4B). In the case of the HGF treated tumor cell distri-
bution consisting of 90% EGFRL858R and 10% EGFRL858R, T790M, a constant combination of afatinib/tra-
metinib was effective against the EGFRL858R, T790M, HGF+  subpopulation despite overall progression due to 

Figure 3. Modeling pharmacodyamic effects of concurrent BRAFV600E expression and MET activation in 
EGFR-mutant lung adenocarcinoma cells and their implication on progression. (A) Drug efficacy as measured 
by the effect of 1.5 μM erlotinib or 0.5 μM afatinib in combination with either 0.5 μM MET inhibitor crizotinib, 
0.5 μM MEK inhibitor trametinib or 5 μM BRAF inhibitor vemurafenib on cell growth (SI, Equation S1) of 
parental 11–18 EGFRL858R-positive lung adenocarcinoma cells or those cells engineered to express mutations 
listed above and treated with 0 or 50 ng/ml HGF. (B) Concentrations of EGFR TKIs afatinib and erlotinib in 
combination with either 0.5 μM crizotinib, 0.5 μM trametinib or 5 μM vemurafenib that guarantee progression 
free tumor reduction for any HGF− or HGF+  initial tumor subpopulations according to the model, measured 
by the minimum concentration of erlotinib or afatinib that results in exponential stability of the evolutionary 
dynamics model (SI, Section 3.2). (C) Simulations of the lung adenocarcinoma model for combinations of 
0.5M afatinib +  0.5 μM trametinib and 1.5 μM erlotinib +  0.5 μM μcrizotinib for the HGF−  and HGF+  tumors 
specified. (D) (Left) Simulations of the evolutionary dynamics of different HGF− lung adenocarcinoma initial 
tumor subpopulations with a constant treatment of 0.7 μM, 0.5, 0.3 or 0.1 μM afatinib in combination with 
0.5 μM of trametinib (red) and of different HGF+  lung adenocarcinoma initial tumor subpopulations with 
a constant treatment of 8.32 μM, 3.2 μM, 1.5 μM or 0.75 μM erlotinib in combination with 0.5 μM crizotinib 
(blue). (Right) Maximum eigenvalue decompositions (SI, Section 3.2) classify which subpopulations can lead 
to progression at different concentrations of EGFR TKI for the afatinib +  trametinib combination and the 
erlotinib +  crizotinib combination.
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the outgrowth of the EGFRL858R, HGF+  tumor cell population, whereas a five day switching regimen between 
afatinib/trametinib and erlotinib/crizotinib combinations alternately targeted the HGF+  EGFRL858R, T790M 
and the EGFRL858R subpopulations (Figs 3A and 4B) leading to overall response.

More generally, the optimal constant strategies determined by our algorithm are combinations that best min-
imize existing tumor cell subpopulations at every switching horizon. In particular, a greater reduction in tumor 
cells can be achieved by switching between therapies that alternately target different subpopulations, even while 
there is overall response in the tumor (Fig. 4A). This finding suggests a non-intuitive approach to the clinical 
management of solid tumors that would represent a departure from the current standard clinical practice. Our 
model suggests an advantage to switching treatments pro-actively even during a bulk tumor response, while the 
current paradigm in the field is to switch from the initial treatment to a new drug(s) only after there is clear evi-
dence of radiographic or clinical progression on the initial treatment.

To understand the potential benefits of switching strategies in tumors with different initial genetic heteroge-
neity, we computed the optimal switching strategies for a subset of tumor cell distributions and compared them 
to their corresponding computed optimal constant strategies. We found that the larger the number of subclones 
present in the initial tumor, the more beneficial even a small number of switches could be for overall tumor cell 
population control (Fig. 5A and Fig. S9A). For a highly heterogeneous tumor cell population comprised of HGF 
treated 89% EGFRL858R, 10% EGFRL858RBRAFV600E, 1% EGFRL858R, T790M mutations, the predicted fif-
teen day switching therapy (afatinib/trametib followed by erlotinib/crizotinib) provides an immediate benefit 
versus the predicted constant treatment strategy (afatinib/trametinib), yielding a 10-fold decrease in final tumor 
population. By contrast, for a more homogeneous tumor consisting of 90% EGFRL858R, 10% EGFRL858R, 
T790M, the optimal predicted 30, 15 and 10 day switching strategies are indistinguishable from the constant ther-
apy strategy for population control. Our predictions indicate that a similar 10-fold reduction in final population 

Figure 4. Optimal drug scheduling strategies solved by Algorithm 1 (SI, Section 2.2) for representative initial 
tumor cell distributions (A),(C), for a 30 day timeframe and 30, 15, 10, 5, 3 and 1 day minimum switching 
horizons, give one EGFR TKI, either 1.5 μM erlotinib (ERL) or 0.5 μM afatinib (AFA) in combination with 
either 5 μM vemurafenib (VEM), 0.5 μM trametinib (TRA) or 0.5 μM crizotinib (CRI) and corresponding 
simulations (B,D) of the lung adenocarcinoma evolutionary dynamics for a subset of optimal drug scheduling 
strategies.
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(similar to that achieved in the heterogeneous tumor instance analyzed above) is achieved only with a more rapid, 
five day switching strategy for this more homogeneous tumor population (afatinib/trametinib, then alternating 
between erlotinib/trametinib and afatinib/vemurafenib). These findings emphasize our results that while poly-
therapy may a provide response in some subsets of tumor cell populations, it provides only a temporary or no 

Figure 5. Exploring the robustness of treatment strategies through model simulation. (A) Switching 
strategies are more beneficial to tumor cell populations with more initial heterogeneity. (Left) Fold change in 
final lung adenocarcinoma tumor cell populations at day 30 versus day 0 over the course of the optimal 30,  
15, 10, 5, 3, and 1 day treatment strategies solved by algorithm 1 (SI, Section 2.2) and normalized by fold 
change in final tumor cell population for the constant 30 day treatment strategy for an initial tumor cell 
population comprised of (90% EGFRL858R, 10% H1975 EGFRL858R, T790M) and another comprised of 
(89% EGFRL858R, 10% BRAFV600E, 1% EGFRL858R, T790M) subclones. (Right) Sum of fold change for the 
final lung adenocarcinoma populations (SI, Equation S5) for select initial tumor cell distributions (SI, Table 1)  
and their corresponding optimal 30, 15, 10, 5, 3, and 1 day treatment strategies, categorized by the number 
of subclones in the initial tumor cell population. Smaller fold change sums indicate that more switching is 
beneficial to reduce final populations, whereas larger fold changes indicate that more switching does not 
necessarily help in reducing the final tumor populations. (B) EGFR TKI dose perturbations. (Left) Fold change 
in number of lung adenocarcinoma cells between day 30 and day 0, as a function of percent EGFR TKI dose 
reduction for the optimal 30, 15, 10, 5 and 1 day strategies solved by algorithm 1 (SI, Section 2.2) for tumor 
cell populations indicated above. The shaded areas indicate the regions of the perturbation space where the 
treatment strategy reduces the initial tumor cell population by more than 30% (response, light blue), increases 
the size of the original tumor population size by more than 20% (progression, red), or maintains the original 
tumor population size between the two (stability, white). (Right) Bar graphs indicate the maximum reduction in 
EGFR TKI dose supported by the optimal strategy such that there is still reduction in tumor size at day 30 with 
respect to day 0 for the V600E and the pretreatment MET tumor. (C) The average maximum percent EGFR TKI 
dose reduction supported before progression for lung adenocarcinoma tumors with different number of initial 
tumor cell subpopulations and for predicted optimal 30, 15, 10, 5, and 1 day switching strategies.
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response in heterogeneous or MET activated tumors; in these cases, even minimal therapy switching can provide 
an immediate and more substantial benefit for overall tumor population control.

Robustness Analysis of Switching Strategies. Motivated by studies indicating that tissue to plasma 
ratios for certain drugs such as erlotinib can be low31, we sought to computationally explore how dose reductions 
of TKI combinations could affect the evolution of tumor cell populations. This is a particularly relevant clinical 
issue, as many drugs when used in combination often require a reduction in the recommended monotherapy dose 
due to toxicity of the dual drug therapy in patients. To examine this question, we simulated the optimal switching 
strategies corresponding to 30, 15, 10, 5 and 1 day switching horizons subject to EGFR TKI dose reductions for 
a set of initial tumor cell populations and studied the effects on the final and average tumor populations over the 
course of the treatment (SI, Mathematical Methods).

For a tumor with a smaller number of initial subclones, such as one comprised of 90% EGFRL858R and 10% 
EGFRL858R, T790M, all switching strategies induced a response for EGFR TKI dose reductions of up to 50% 
(Fig. 5B). In contrast, with the more complex HGF treated tumor cell population comprised of 89% EGFRL858R, 
10% EGFRL858RBRAFV600E, 1% EGFRL858R, T790M, only combination strategies with switching horizons of 
10 day or shorter induced a response (Fig. 5B). Notably, we observed that the shorter the switching horizon, the 
higher dose reduction that could be supported while still maintaining a progression free response (Fig. 5B and 
Fig. S9B). We observed this phenomenon more generally when we simulated different tumor cell initial distri-
butions (Fig. 5C). Thus, we find that the greater number of subclones present in the initial tumor, the greater the 
benefit there is in increasing switching frequency in terms of the achieving robustness to perturbations in EGFR 
TKI drug concentration.

Switching Strategies Control or Delay Progression in vitro. Motivated by the results of our treatment 
strategy algorithm, we tested drug scheduling strategies on select tumor subpopulations in an in vitro model of 
EGFR mutant lung adenocarcinoma. Specifically, we synthesized the optimal treatment strategy for a heteroge-
neous HGF treated tumor cell population consisting of 89% EGFRL858R, 10% EGFRL858RBRAFV600E, 1% 
EGFRL858R, T790M, and imposed a constraint that at most one switch could occur, as a starting point to simu-
late what might be most clinically feasible. The resulting optimal treatment strategy predicted by our modeling, 
consisting of the erlotinib/crizotinib (days 0–5) followed by the afatinib/trametinib (days 5–30) combination, was 
shown to elicit the best response in vitro, validating our predictive model (Fig. 6B).

To show how a delay in the switching time might affect response to therapy, we tested equivalent initial tumor 
cell populations but changed the treatment strategy to start the afatinib/trametinib combination at day 10 instead 
of at day 5. This resulted in worse overall response than the 5 day switching regimen (Fig. 6B). The correspond-
ing model simulation highlights that although the erlotinib/crizotinib combination effectively targeted the HGF 
treated EGFRL858R mutation during the first 10 days, it allowed the HGF treated EGFRL858R, T790M subclone 
to dominate for a longer period of time, thereby impeding overall response.

Discussion
One of the fundamental challenges in the principled design of combination therapies is the pre-existence and 
temporal expansion of intratumor genetic heterogeneity that can often lead to rapid resistance with first-line 
targeted therapies. To address this problem, we sought to develop a new modeling framework to systematically 
design principled tumor monitoring and therapeutic strategies. We applied a receding horizon optimal control 
approach to an evolutionary dynamics and drug response model of lung adenocarcinoma that was identified from 
experimental and clinical data. Based on the clinical and experimental data, our computational method generated 
optimal drug scheduling strategies for a comprehensive set of initial tumor cell subpopulation distributions.

Our initial insight was that constant drug combination strategies that guarantee progression free response 
for tumor cell populations with considerable heterogeneity and/or MET activation, required EGFR TKI con-
centrations that were considerably higher than are typically clinically feasible. At clinically relevant doses, these 
constant combination strategies were not effective against all tumor cell subpopulations and inevitably, those 
subpopulations with even slight evolutionary advantages could undergo clonal expansion and cause resistance. To 
overcome this issue, we used our algorithm to generate optimal drug scheduling strategies that could preempt the 
outgrowth of these subpopulations over fixed switching periods, and showed that these strategies outperformed 
constant combination strategies for most tumor cell subpopulation distributions. Notably, our computational 
analysis showed there was more benefit in applying switching strategies in the context of increasing pre-existing 
genetic heterogeneity and these switching strategies provided more robustness guarantees in the presence of 
perturbations in drug concentrations that can occur in patients. We demonstrated successful in vitro validation of 
our optimal control approach for selected tumor subpopulation distributions. In particular, for an in vitro analog 
of our clinical case, a non-intuitive combination therapy switching strategy offered better tumor control than 
constant treatment strategies.

We found that the most effective drug scheduling strategies were ones that addressed existing subpopulations 
as they emerged during the course of the treatment, even during a bulk tumor response. In contrast, current 
standard of care clinical practice is generally to delay switching to second-line therapy until after there is clear 
evidence of radiographic or clinical progression. Our approach suggests a paradigm shift that would require reg-
ular monitoring of an individual patient’s tumor mutational status, for instance by mutational analysis of plasma 
cell-free circulating tumor DNA, so-called “liquid biopsies”32–36. Our modeling strategy could potentially synthe-
size this genetic information to yield both the design and prioritization of specific drug regimens and the optimal 
time for clinical deployment, informed by the molecular findings in a particular patient. Such treatments may 
need to be applied (non-intuitively) during the initial tumor response, instead of later during therapy or after drug 
resistance is readily apparent by standard clinical measures in some cases. We envision that our approach could 
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help contribute to the shift from a reactive to pro-active, dynamic management paradigm in solid tumor patients 
in the molecular era. Drug scheduling strategies synthesized by the algorithm for the initial tumor cell population 
could be adapted to account for genetic alterations that are detected by the analysis of serial liquid (or tumor) 
biopsies, leading to a dynamic learning model through iterative refinements; as such, the model could suggest 

Figure 6. Engineering optimal treatment strategies for concurrent, clonal genetic alterations in EGFR-
mutant lung adenocarcinoma and predicting their therapeutic impact. (A) Simulations of the optimal 
treatment strategy predicted by algorithm 1 (SI, Section 2.2) consisting of 1.5 μM erlotinib +  0.5 μM crizotinib 
for days (0–5) followed by 0.5 μM afatinib +  0.5 μM trametinib for days (5–30); the same strategy but with 
the switch occurring at day 10 and, constant strategies of 0.5 μM afatinib +  0.5 μM trametinib or 1.5 μM 
erlotinib +  0.5 μM crizotinib for 30 days, for an initial tumor cell population of 89% EGFRL858R, 10% 
EGFRL858RBRAFV600E, 1% EGFRL858R, T790M, HGF treated. (B) Evolution experiment shows that the 
predicted strategy for an initial tumor cell population of 89% EGFRL858R, 10% EGFRL858RBRAFV600E, 1% 
EGFRL858R, T790M, treated with 50 ng/ml HGF, is optimal. Overlaid numbers indicate the relative cell density 
of each well at day 30 compared to the erlotinib +  crizotinib well (magenta). Computational simulations in  
(A) show that the predicted optimal strategy has the greatest reduction in tumor cells in vitro (B, red) compared 
to the same strategy with a 10 day switch (yellow). A simulation of the model predicts that a constant treatment 
of afatinib +  trametinib produces little change in number of tumor cells (B, blue) and that a constant treatment 
of erlotinib +  crizotinib predicts the exponential outgrowth of the initial EGFRL858R, T790M MET amplified 
subpopulation, experimentally validated in (B, magenta).
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more effective strategies with time. Additional validation and refinement of our model is required to address 
several important open questions, that include defining the role and impact, if any, of subclones of unclear signif-
icance, and the degree and implications of mutational and clonal concordance and discordance in liquid versus 
tumor biopsies. If a dose reduction is required due to drug toxicity, this framework allows for the computational 
exploration of alternative strategies that can best control tumor progression for a particular patient’s dosage con-
straints. In particular, we can quantify the effectiveness of these strategies and begin to understand the tradeoffs 
between dose reductions, tumor heterogeneity and frequency of switching. Additional considerations such as 
pharmacokinetics, the tumor microenvironment and metastatic processes37,38 could extend this model to add 
more clinical relevance. Our approach, if further validated in prospective clinical trials, could guide the optimal 
timing of serial clinical specimen sampling (plasma, tumor) and radiographic analysis to streamline clinical man-
agement. Overall, the combination of techniques stemming from mathematical optimization and control theory 
combined with more clinically applicable tumor dynamics models is a promising approach to aid the rational 
design, clinical testing, and clinical adoption of dynamic molecular monitoring and drug scheduling strategies to 
better control complex solid cancers such as lung cancer in real-time and improve clinical outcomes.

Materials and Methods
Computational Methods. The details of mathematical models and experimental methods may be found 
in SI Mathematical Methods. The mathematical model of lung adenocarcinoma growth mutation and selection 
by small molecule inhibitors was formulated as system of ordinary differential equations (ODEs). The treatment 
strategy algorithm was formulated as a receding horizon optimal control problem with the objective of mini-
mizing lung adenocarcinoma populations at every horizon and implemented using python version 3.4.3, scipy 
version 1.11.0.

Experimental Methods. Patient sample preparation and sequence capture. Formalin fixed paraffin embed-
ded (FFPE) NSCLC fine needle aspirate biopsy specimens and a normal blood sample were obtained from the 
patient under institutional informed consent both prior to erlotinib treatment and upon erlotinib resistance. 
Lung tumor biopsy specimens contained > 75% tumor cells upon histopathological analysis by a board-certified 
pathologist. Barcoded sequence libraries were generated using genomic DNA from FFPE tumor material and 
matched normal blood using the NuGEN Ovation ultralow library systems and according to manufacturer’s 
instructions (NuGEN, San Carlos, CA). These libraries were among an equimolar pool of 16 barcoded libraries 
generated and subjected to solution-phase hybrid capture with biotinylated oligonucleotides targeting the cod-
ing exons of 389 cancer-associated genes using Nimblegen SeqV.D.J.Cap EZ (Roche NimbleGen, Inc, Madison, 
WI). Each hybrid capture pool was sequenced in a single lane of Illumina HiSeq2000 instrumentation producing 
100 bp paired-end reads (UCSF Next Generation Sequencing Service). Sequencing data was demultiplexed to 
match all high-quality barcoded reads with the corresponding samples.

Sequencing Analysis. Paired-end sequence reads from normal blood, pre-treatment tumor, and 
erlotinib-resistant tumor samples were aligned against build hg19 of the reference genome with BWA39. Duplicate 
reads were marked, alignment and hybridization metrics calculated, multiple sequence realignment around can-
didate indels performed, and base quality scores recalibrated across all samples with the Picard suite (http://
picard.sourceforge.net/) and the Genome Analysis Toolkit (GATK)40. Somatic point mutations were detected 
in the treatment-naïve and resistant tumors using MuTect41, while small insertions and deletions (indels) were 
identified with GATK. Given the depth of sequencing achieved and the presence of low-frequency oncogenic 
mutations in the normal sample likely due to circulating tumor DNA, mutations were excluded as germline if 
they exceeded a frequency of 10% in the normal sample. Non-synonymous mutations were annotated for their 
sequence context, effect, and frequency in lung adenocarcinoma and squamous cell tumors from The Cancer 
Genome Atlas (TCGA) project and Imielinski et al.42. All previously characterized oncogenic alleles in NSCLC 
or mutations previously linked to erlotinib resistance were also manual inspected in both treatment-naïve and 
resistant tumors. This analysis revealed a single sequencing read bearing the T790M mutation in the primary 
tumor (total coverage at this locus: 1300x). This was insufficient evidence from sequencing data to formally 
call the mutation, but we cannot exclude the possibility that EGFRT790M exists pre-treatment in a very rare 
clone (< 0.08%) for which our target depth of coverage limited our sensitivity. DNA copy number alterations 
where inferred from the mean sequence coverage for each target region in each sample corrected for overall 
library size. Amplifications and deletions were determined from ratios of coverage levels between the pre- and 
post-treatment tumors and the matched normal blood sample. Due to the elevated signal to noise from tar-
geted capture and sequencing of FFPE material from lower input amounts, overt genomic amplifications and 
deletions were required to affect multiple target regions (exons) of a given gene before being called as detected. 
The EGFRT790M and BRAFV600E variants were confirmed by a standard Clinical Laboratory Improvement 
Amendments (CLIA)-approved PCR-based shifted termination assay (data not shown). The changes in EGFR 
and MET copy number were validated using established fluorescence in situ hybridization clinical assays.

Cell Lines and Reagents. Human lung cancer cell lines were acquired as previously described43,44. Cells were 
grown in RPMI 1640 supplemented with 10% (high serum) or 0.5% (low serum) fetal bovine serum (FBS), peni-
cillin G (100 U/ml) and streptomycin SO4 (100 U/ml). Erlotinib, afatinib, vemurafenib, crizotinib, and trametinib 
were purchased from Selleck Chemicals (Houston, TX). Drugs were resuspended in DMSO at a concentration 
of 10 mM and stored at − 20 °C. Erlotinib and afatinib were used at working concentrations ranging from 0.010–
1.5 μM. Vemurafenib was used at a working concentration of 5.0 μM, and trametinib and crizotinib were used at 
a 0.5 μM. HGF was purchased from Peprotech (Rocky Hill, NJ) and resuspended at 50 g/ml in sterile PBS +  0.1% 
BSA. Cells were treated with HGF at 50 ng/ml.

http://picard.sourceforge.net/
http://picard.sourceforge.net/
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Generation of stable cell lines. 293-GPG viral packaging cells were transfected with pBABE (empty vector), 
pBABE-mCherry-BRAF-WT and pBABE-mCherry-BRAFV600E constructs (kindly provided by Dr. Eric 
Collision, UCSF, San Francisco, CA) using Lipofectamine-2000 (Life Technologies, Pleasanton, CA) per man-
ufacturer’s instructions. Virus containing media was harvested three days post transfection and used to infect 
11–18 and H1975 lung cancer cell lines. Cells were incubated with virus containing media supplemented with 
6 μg/ml of polybrene for 24 hours. Media was changed to standard cell growth media (RPMI-1640 +  10% fetal 
bovine serum and 100 U/ml penicillin G and 100 U/ml streptomycin SO4) and cells were expanded for 48 hours, 
at which point puromycin (2 μg/ml) was added to the media and cells were allowed to grow for an additional 4 
days. Cells that survived puromycin selection (stable cell lines) were used in all subsequent experiments.

Cell Viability and Growth Assays. Assays were performed as previously described43,44. Briefly, cells were seeded 
overnight at a density of 5,000 cells per well in 96-well plates in RPMI containing 10% FBS and treated with 
indicated reagents for 72 hours. Viable cell numbers were determined using the CellTiterGLO assay according to 
manufacturer’s instructions (Promega). Each assay consisted of six replicate wells and was repeated at least twice 
in independent experiments. Cell viability is presented as the mean (± s.e.m.) erlotinib or afatinib inhibitory 
concentration 50 (IC50). Statistical significance between treatment groups was determined by the Bonferroni’s 
multiple comparisons ANOVA statistical test.

Immunoblot analysis. Cells were harvested 24 h after initiation of treatment with reagents. Cells were scraped and 
lysed in lysis buffer (50 mM Tris·HCl pH 8.0, 150 mM sodium chloride, 0.1% SDS, 0.5% sodium deoxycholate, 1% 
Triton X 100, 5 mM EDTA containing protease and phosphatase inhibitors (Roche Diagnostics. Indianapolis, IN).  
After quantitation by Pierce BCA assays (Thermo Scientific, Rockford, IL), 25 μg of each sample was separated by 
gel electrophoresis on 4–15% Criterion TGX precast gels (BioRad, Hercules, CA) and transferred to nitrocellu-
lose membrane. For immunoblots, the following antibodies were used: anti-total EGFR (1:1000 dilution, Bethyl 
Laboratories, Inc., Montgomery TX), anti-pEGFR, anti-total Met, anti-pMet, anti-total Mek, anti-pMek, anti-total 
Akt, anti-pAkt, anti-total Erk, anti-pErk (1:1000, Cell Signaling Technology Inc., Danvers, MA), BRAFV600E 
Monoclonal Antibody (Clone VE1, 1:1000, Spring Bioscience, Pleasonton, CA), BRAF WT (1:1000, Santa Cruz 
Biotech, Santa Cruz, CA) and anti-actin (1:5000 dilution, Sigma-Aldrich, Saint Loius, MO), HRP-conjugated 
anti-rabbit Ig (used at a 1:3000 dilution, Cell Signaling), and HRP-conjugated anti-mouse IgG (used at a 1:3000 
dilution, Cell Signaling). Specific proteins were detected by using either ECL Prime (Amersham Biosciences, 
Sunnyvale, CA) or the Odyssey Li-Cor (Lincoln, NE) with the infrared dye (IR Dye 800, IR Dye 680)-conjugated 
secondary antibodies (1:20,000, Li-Cor).

Immunofluorescence. 5 micron FFPE sections were adhered to glass microscope slides (Fischer), and dewaxed 
2×  with Histoclear II (National Diagnostics). Tissues were rehydradated through an ethanol series (100%, 95%, 
70% 2 min each), and then washed in with phosphate buffered saline (PBS). Antigen retrieval was performed with 
0.1 M Citrate pH 6.0 with the 2100 Retriever (Electron Microscopy Sciences). After antigen retrieval, slides were 
washed with PBS, followed by blocking for 30 minutes with PBS +  20% normal bovine serum, 4% bovine serum 
albumin (Sigma Life Sciences). Sections were then incubated with EGFRL858R rabbit (43B2, Cell signaling) and 
BRAFV600E mouse (VE1, Spring Biosciences) primary antibodies at 1:50 in blocking buffer overnight at 4 °C 
in a humidified chamber. A negative control in which the primary antibodies were omitted was included. Slides 
were washed 3x with PBS and then incubated with secondary antibodies Alexa-fluor 488 goat anti-rabbit IgG 
and Alexa-fluor 594 goat anti-mouse IgG secondary antibodies (Life Technologies) (1:200 in blocking buffer) 
for 60 minutes at room temperature. Slides were then washed 3x with PBS and coverslipped with Prolong Gold 
Antifade with DAPI (Invitrogen). Images were obtained using the Eclipse C1si spectral confocal laser scanning 
microsope (Nikon) with identical laser settings for pre-treatment and resistant tumor sections.

Fluorescence in situ hybridization (FISH). FISH analysis was performed using probes targeting MET, EGFR, 
BRAF and CEP 6 as previously described45,46. Slides were analyzed with an epi-fluorescence microscope equipped 
with DAPI single band-pass, Aqua single band-pass, Gold single band-pass and Red single band-pass filter sets 
(Abbott Molecular Inc.). Tumor-bearing areas were identified using the DAPI filter at low magnification 10x 
lens) with the aid of hematoxylin and eosin stained sections. All areas involving tumor cells were scanned and 
within this area the cells that did not overlap and had bright signals for the probes were used for enumeration. For 
identification of focal amplification, the signals targeting BRAF, MET and EGFR were compared to Centromere 6 
(CEP6) signal as in Supplemental Fig. 1 with a ratio greater than 2 considered evidence of amplification47.

All methods and experimental protocols were performed in accordance with UCSF laboratory biosafety 
regulations under a protocol approved by the UCSF Biosafety Committee. Informed consent was obtained 
for the analysis of the human clinical specimens in accordance with UCSF institutional regulations under an 
IRB-approved research protocol approved by the UCSF Committee on Human Research.
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