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Abstract 
We use hierarchical drift diffusion models to investigate the 
effect of prominence in two-alternative multi-attribute 
preferential choice. We find that two types of prominence 
effects, option-based and attribute-based, both increase choice 
probabilities for options favored by prominence. However, 
model fits suggest that the two effects work through different 
mechanisms. Altering choice option prominence leads to a 
response bias for the prominent option, whereas altering 
attribute prominence leads to an evaluation bias for the option 
that is dominant on the prominent attribute. Our results 
illustrate how seemingly identical contextual factors can be 
distinguished with the use of drift-diffusion modelling. 

Keywords: drift diffusion model; multi-attribute choice; 
prominence effect 

Introduction 
Prominence effects are well documented in multi-attribute 
choice research (Armel et al., 2008; Atalay et al., 2012; Li & 
Epley, 2009; Nedungadi, 1990). These effects pertain to 
changes in choice behavior as the salience of information in 
the choice environment is altered. Understanding the 
cognitive underpinnings of prominence effects is necessary 
to fully characterize the psychological mechanisms involved 
in multi-attribute choice.  

In this paper we study prominence through the lens of a 
drift diffusion model (DDM). The DDM is a mathematical 
model capable of predicting choice probabilities, reaction 
time (RT) distributions, and their relationships in two-option 
forced choice (e.g., Ratcliff, 1978). It has been successfully 
applied in a variety of perceptual and lexical choice tasks and 
is compatible with key insights in  neuroscience (a recent 
review: Forstmann et al., 2016).  

The core assumption of the DDM is that noisy evidence is 
accumulated dynamically over the course of the decision 
process. Figure 1 is a schematic representation of such a 
process. Evidence accumulation begins at a starting point (𝑧), 
and increments based on a normally distributed signal. The 
mean accumulation speed is determined by the drift rate, 𝑣. 
The diffusion process is terminated as soon as one of the 
decision boundaries (+𝑎 or −𝑎) is hit. The specific decision 
boundary to be hit determines the chosen option. The time to 
hit the boundary, plus a non-decisional time, 𝑡'( , 
corresponds to the reaction time (RT) of that trial. Note that 
𝑧 = 0 indicates a neutral starting point. 

 
                         Figure 1 The drift diffusion model. 
 

Each of the DDM parameters has an intuitive 
interpretation in terms of the psychological processes 
involved. Due to space constraints we summarize the 
parameter-process relationships as follows:  
𝑎: accuracy vs. speed motivation  
𝑧: a priori response bias  
𝑣: relative signal strength for evaluation 
𝑡'(: non-decisional process  
In this paper, we use these relationships to infer the 

cognitive components that are influenced by prominence 
manipulations in multi-attribute preferential choice. Our use 
of the DDM framework to model multi-attribute choice 
(rather than perceptual or lexical choice) necessitates some 
minor modifications: Instead of accumulating signal 
strengths, we assume that the DDM in preferential choice 
accumulates the relative utility of option 1 over option 2, i.e. 
𝑣 = 𝛥𝑈 = 𝑈- − 𝑈..  

Our use of the DDM reflects existing insights regarding 
the psychological determinants of multi-attribute choice. 
Firstly, the model assumes that preference is not static but 
constructed on the spot, as is argued by a number of existing 
theories (AAM: Bhatia, 2013; DFT: Busemeyer & 
Townsend, 1993; Query theory: Dinner et al., 2011, etc.) 
Secondly, some process components (e.g. the a priori bias) 
quickly influence the decision, prior to the stimuli being 
evaluated, whereas other components (e.g. the drift rate 
𝑣	)	involve the gradual evaluation and aggregation of stimuli 
values over a period of time.  This distinction mirrors the 
automatic vs. deliberative dichotomy proposed by dual 
process theories (e.g. Stanovich & West, 2000). Thirdly the 
choice probability predicted by the DDM is identical to the 
well-known logit choice rule (Luce, 1959) when 𝑧 = 0 , 
implying that the DDM can be seen as a dynamic extension 
of established approaches for modelling multi-attribute 
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choice.  Finally, past work has also demonstrated the 
descriptive power of the DDM in preferential choice 
research. For example, the DDM outperforms static models 
in predicting intertemporal choices (Dai & Busemeyer, 
2014). Models that share several core assumptions with the 
DDM have also been shown to account for a set of important 
contextual effects (e.g. decoy effects and compromise 
effects) in multi-attribute choice (Bhatia, 2013; Roe et al., 
2001). 

The Prominence Task 
The task we study involves a forced choice between two 
options (options 1 and 2) that vary on two attributes (𝑋 and 
𝑌). We denote the value of option 𝑖 on attribute X as 𝑋4, and 
the value of option 𝑖 on attribute Y as Yi. 𝛥𝑋 and 𝛥𝑌 denote 
the attribute value differences between option 1 and 2 on the 
two attributes. The choice information can be displayed in 
an attribute-by-option matrix as in Figure 2 (left panel). 

We vary information prominence with a bright orange 
frame, and use this manipulation to test for two types of 
prominence effects. The first type of prominence 
manipulation involves highlighting both the attribute values 
of a single option. We refer to this as option-based 
prominence. The second type involves highlighting the 
attribute values for one attribute for both options. We refer 
to this as attribute-based prominence. Figure 2 (middle and 
right panels) illustrate these two types of manipulations.  

As discussed earlier, the drift rate for preferential DDMs 
can be written as 𝑣 = 𝛥𝑈 = 𝑈- − 𝑈.. Subjective utilities in 
multi-attribute choices are typically modeled as a weighted 
sum of the attribute values (e.g. Keeney & Raiffa, 1993). 
Therefore, without prominent options or attributes we obtain  
Δ𝑈 = (𝜔9𝑋- + 𝜔:𝑌-) − (𝜔9𝑋. + 𝜔:𝑌.) = 𝜔9Δ𝑋 + 𝜔:Δ𝑌	 ,  

where 𝜔9 and 𝜔:  denote weights for attributes 𝑋 and 𝑌.  
Before using the DDM to model prominence effects, we 

define three variables. The first (𝑃<) is an indicator for the 
option that is prominent. The second (𝑃=) is an indicator for 
the attribute that is prominent. Finally, as attribute-based 
prominence can disproportionality impact the option that is 
superior on the prominent attribute, we define a 3rd variable 
( 𝑃=( ) to indicate the option that is dominant on the 
prominent attribute. 

 
In the left panel of Figure 2, 𝑃< = 𝑃= = 𝑃=( = 0. In the 

middle panel, 𝑃< = 1	and 𝑃= = 𝑃=( = 0. In the right panel, 

𝑃< = 0, 𝑃= = 1, and 𝑃=( = ? 1	if	𝑋- > 𝑋.
−1	if	𝑋- < 𝑋.	

.  

 
Figure 2 Choice task presentation. Left panel: no visual prominence 
manipulations. Middle panel: option-based prominence. Right 
panel: Attribute-based prominence. 

Models 
Next, we discuss how to model prominence effects in the 
DDM. There are two possibilities. First, prominence can be 
assumed to alter how prominent attributes are weighted. The 
effect of prominence within this approach depends on the 
attribute values offered in the choice problem. For this 
reason, we call this a stimuli-dependent approach. Second, 
the influence of prominence on the decision process can be 
assumed to influence choice independently of the attribute 
values. We refer to this as a stimuli-independent approach. 

Stimuli-Dependent Approach  
For option-based prominence, we assume that attribute 
values for the prominent options are given higher weights 
compared to attribute values for the non-prominent options. 
Suppose the weight change for attribute 𝑋  is 𝛼	 and the 
weight change for attribute 𝑌 is 𝛽, then 
 𝑣 = 	𝜔9F(1+ 𝛼𝑃<)𝑋- − (1 − 𝛼𝑃<)𝑋.G	 

+𝜔:F(1+ 𝛽𝑃<)𝑌- − (1 − 𝛽𝑃<)𝑌.G	
					= 𝜔9𝛥𝑋 +𝜔9𝛼𝑃<(𝑋- + 𝑋.) + 𝜔:𝛥𝑌 +𝜔:𝛽𝑃<(𝑌- + 𝑌.).	
This way 𝛼, 𝛽 > 0	would indicate increased weights for the 
two attribute values of the prominent option and decreased 
weights for the two attribute values of the non-prominent 
option.  

Next, we consider attribute-based prominence, which may 
increase the weights for the prominent attribute and decrease 
the weights for the non-prominent attribute. We denote the 
weight change for attribute 𝑋 as δ	and the weight change for 
attribute 𝑌 as 𝛾.	 Therefore, 
  𝑣 = 	𝜔9F(1 + 𝛿𝑃=)𝑋- − (1 + 𝛿𝑃=)𝑋.G	 

+𝜔:F(1 − 𝛾𝑃=)𝑌- − (1 − 𝛾𝑃=)𝑌.G	 
 = 𝜔9𝛥𝑋+𝜔9𝛿𝑃=𝛥𝑋 +𝜔:𝛥𝑌 −𝜔:𝛾𝑃=𝛥𝑌.  

In this case δ, γ > 0  would suggest weight changes for 
attribute 𝑋 and 𝑌 in the hypothesized directions. 

Stimuli-Independent Approach.   
In essence, the stimuli-dependent approach assumes a 
multiplicative effect on attribute values. However, in 
addition to this multiplicative effect, the DDM can also 
incorporate additive stimuli-independent effects. These 
effects pertain to biases in the starting point and the drift rate, 
biases that  can be distinguished both theoretically and 
empirically (e.g. Ashby, 1983, White & Poldrack, 2014).  

A shift in the starting point indicates an a priori bias that 
prepares the response before information evaluation. A shift 
in the drift rate influences how information is accumulated 
throughout the decision process. Hereafter we denote the 
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response bias as 𝐵N  and the evaluation bias as 𝐵O . Note that 
although we use the word bias here, we have no intention to 
suggest that the respective processes are irrational.  

For option-based prominence, the model specification for 
a response bias can be written as 𝑧 = 𝑃<𝐵N . Hence 𝑧 =
𝐵N	 when Option 1 is prominent (i.e. 𝑃< = 1 ), 𝑧 =
−𝐵N	when option 2 is prominent (i.e. 𝑃< = −1), and 𝑧 = 0 
when neither option is prominent (i.e. 𝑃< = 0). Therefore, 
𝐵N > 0 indicates that the decision maker has a response bias 
towards choosing the prominent option, and has a neutral 
starting point when neither option is prominent.  

Similarly, the evaluation bias 𝐵O  can be written as 𝑣 =
𝑃<𝐵O + 𝛥𝑈 . Hence 𝑣 = 𝐵O + 𝛥𝑈  when option 1 is 
prominent, 𝑣 = −𝐵O + 𝛥𝑈 when option 2 is prominent, and 
𝑣 = 𝛥𝑈 when neither option is prominent. Therefore,  𝐵O >
0 indicates that the decision maker has an evaluation bias 
towards choosing the prominent option, and has no 
evaluation bias when neither option is prominent.  

For attribute-based prominence, a stimuli-independent 
effect should favor the option dominant on the prominent 
attribute. Therefore, similarly to the approach in option-
based prominence, a response bias can be modelled by 
specifying 𝑧 = 𝑃=(𝐵N , whereas the evaluation bias can be 
modelled by specifying 𝑣 = 𝑃=(𝐵O + 𝛥𝑈.  

Summary 
To summarize, the DDM can incorporate prominence effects 
using a stimuli-dependent (multiplicative) approach and/or a 
stimuli-independent (additive) approach. Table 1 provides a 
model summary with different combinations of possible 
mechanisms. The most flexible model allows for both 
stimuli-dependent and stimuli-independent influences of 
prominence (SDSI). Nested in that, we have models that 
either include only stimuli-dependent effects (SD) or only 
stimuli-independent effects (SI). Further nested in the SI 
model, we have a model with only evaluation biases (SIBE) 
and a model with only response biases (SIBR).  

These models can be evaluated using goodness of fit to 
observed datasets. Additionally, as the DDM predicts 
qualitatively distinct choice-RT patterns for changes in drift 
rates (rows 1&2 of Table 1) vs. changes in starting points 
(row 3 of Table 1), choice-RT data can be used to rule out 
certain models. This alleviates the problems of using 
goodness-of-fit as a single piece of evidence for theory 
testing (Roberts & Pashler, 2000). Intuitively, a change in 
the drift rate is persistent throughout the evaluation process 
and hence can be observed in choices with both short and 
long RTs. However, a change in the starting point gets 
gradually washed out by the evaluation process. Therefore, 
the influence of a change in the starting point on choice 
probabilities is mainly observable in choices with shorter 
RTs. In the following sections, we test the models 
summarized in Table 1 using behavioral data collected from 
lab experiments, considering both quantitative goodness-of-
fits measures and corresponding qualitative choice-RT 
patterns. Experiment 1 examined option-based prominence, 
and experiment 2 examined attribute-based prominence. 

Table 1 Model specifications. 
 SDSI SD SI SIBR SIBE 
Stimuli-dependent 
weight change in 𝒗 X X    

Stimuli-independent 
evaluation bias in 𝒗 X  X  X 

Stimuli-independent 
response bias in 𝒛 X  X X  

Experiment 1: Option-Based Prominence 

Methods 
47 participants were recruited from a paid participant pool at 
the University of Pennsylvania. Their task was to choose 
hotel options from choice pairs. The hotel options varied on 
two attributes (Attribute 𝑋: comfort; Attribute 𝑌: Location). 
The two attributes were measured on a 6-10 scale. 
Participants chose their preferred options using keyboard 
presses. Responses and reaction times were recorded. 
Participants could take as long as they wanted before making 
choices, and were instructed to press keys as soon as they 
reached a decision. 

In this experiment, the set of stimuli was pre-determined 
for all participants. As each choice problem can be uniquely 
characterized by the two attribute values of the two options, 
we randomly chose four one-decimal numbers from 6 to 10 
for each problem. There were 72 unique problems in total. 
To control for the position effect, we counterbalanced the 
position of the two hotel options for each unique choice 
problem. To investigate the option-based prominence effect 
in this experiment, we implemented three conditions for 
each unique choice problem: (1) Option 1 was prominent 
(𝑃< = 1). (2) Neither of the options were prominent (𝑃< =
0). (3)  Option 2 was prominent (𝑃< = −1).  Thus, each 
unique choice problem repeated 6 times for a participant (2 
positions * 3 prominence conditions). The 72*6=432 trials 
were distributed into blocks of 50 trials (the last block had 
32). 

Descriptive Results 
We first compared the group-level choice probabilities in the 
three different prominence conditions. Note that as the 
display positions of the choice problems were 
counterbalanced, the choice probabilities for each option 
should have been 50% (the chance level). However, when 
option 1 was prominent, the mean choice probability for 
option 1 across participants was 52.2%, which deviated from 
the chance level significantly ( 𝑡(46) = 2.86, 𝑝 = .006 ). 
When option 2 was prominent, the mean choice probability 
for option 1 was 47.6%, again significantly deviating from 
the chance level (𝑡(46) = −4.13, 𝑝 < .001). When neither 
option was prominent, the mean choice probability for 
option 1 was 49.7%. The preliminary analysis suggests that 
making an option prominent increases choice probabilities 
for that option. To further understand the nature of this effect, 
we fit the DDMs to data. 
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Modeling results 
The models were fit to choice and RT data using HDDM 
(Wiecki et al., 2013), a Python package for hierarchical 
Bayesian estimation of drift-diffusion models. This 
approach estimates group and individual level parameters 
simultaneously, with group-level parameters forming the 
prior distributions from which individual subject estimates 
are sampled. A recent study comparing HDDM with 
alternative estimation approaches showed that hierarchical 
fitting requires fewer data to recover parameters (Ratcliff & 
Childers, 2015; Wiecki et al., 2013). Moreover, the Bayesian 
approach permits direct inferences for parameter variability 
and parameter distribution. To fit the models, 4 chains of 
50,000 samples were generated, where the first 25,000 were 
burn-ins, and a thinning of 2 was applied. The Gelman-
Rubin convergence statistics for model parameters were all 
close to 1, suggesting that the sample size was sufficient for 
the chains to converge. Note that we also controlled for the 
position effect (left vs right) on choices in the starting point 
and the drift rate parameters, but the position results are not 
reported here for brevity. 

Model comparisons: goodness-of-fit. The DDMs with 
different prominence effect specifications were compared 
using the deviance information criterion (DIC; Spiegelhalter 
et al., 2002), which measures the model fits while penalizing 
model complexity to avoid over-fitting. Smaller DICs 
indicates better model performance. Besides DICs, we also 
report the average deviance (the posterior mean of the model 
deviance) and the effective number of parameters pD. pD is 
calculated as the difference between the average deviance 
and the deviance of the model with the parameter posterior 
mean substituted in, and is a measure of model complexity.   

The results are presented in Table 2. Across the model 
tested, SD and SIBE had relatively larger DICs and hence 
worse fits. Among these two models, SD included only 
stimuli-dependent effects of prominence, indicating that it is 
essential to include a stimuli-independent component to 
adequately fit data. SIBE included only a stimuli-
independent evaluation bias. The bad fit of this model 
indicates that the response bias (𝐵N) was a more important 
stimuli-independent component than the evaluation bias 
(𝐵O ). Unlike SD and SIBE, the other three models (SDSI, SI 
and SIBR), which all had a relatively good fit, all included a 
response bias. Moreover, the most complex model (SDSI) 
had a larger DIC and thus worse fit than the most constrained 
model (SIBR). The next most complex model (SI) had an 
almost identical DIC as SIBR (Δ < 0.9 ). These results 
suggest that using only response bias (𝐵N) to account for 
option-based prominence effects in the DDM was sufficient, 
and that adding more mechanisms might led to over fitting.  

Model comparisons: choice-RT patterns. As discussed 
before, a shift in the starting point has a larger influence in 
trials with shorter RTs compared to trials with longer RTs. 
In contrast, a shift in the drift rate influences choice 
probabilities in trials with both shorter and longer RTs 
(White & Poldrack, 2014). This qualitative distinction for 

choice-RT relationships could help disentangle whether 
option-based prominence influences the drift rate or whether 
it influences the starting point.     

For each participant, we plot how choice probabilities 
vary across trials with shorter vs longer RTs under different 
prominence conditions (Figure 3 upper panels). As can be 
seen from the graphs, the observed choice probability 
differences were mainly present in trials with smaller RTs. 
In other words, the choice probabilities for option 1 were 
larger than 50% when option 1 was prominent (solid red 
lines), and smaller than 50% when option 2 was prominent 
(solid blue lines), only for quicker choices. The observed 
choice probabilities were almost 50% in trials with longer 
RTs across all 3 prominence conditions. This choice-RT 
relationship has the characteristics of a response bias effect. 
Not surprisingly, the relationship can be captured by the SI 
model (Figure 3 top-left panel dashed lines), and the 
constrained model with only a response bias (Figure 3 top-
right dashed panel lines). However, the constrained model 
with only an evaluation bias fails to capture this relationship, 
and thus performs worse than the other two models (Figure 
3 top-middle panel dashed lines). The choice-RT 
relationship serves as a behavior marker showing that the 
responses biases are the more important mechanism in 
option-based prominence, and explaining why including 
only the response bias in the DDM was sufficient to generate 
a good fit to the data. 

 
Table 2 Model comparisons: DIC, average deviance and pD for the 
five candidate models in experiment 1 and experiment 2. 
  SDSI SD SI SIBR SIBE 

Exp 1 
DIC 59064 59144 59061 59062 59144 
Avg. Dev. 58791 58886 58795 58800 58890 
pD 273 258 266 263 254 

Exp 2  
DIC 57133 57360 57140 57402 57136 
Avg. Dev. 56864 57084 56882 57160 56890 
pD 270 276 258 242 246 

 

Experiment 2: Attribute-Based Prominence 

Methods 
In this experiment, we investigated attribute-based 
prominence. 42 participants were recruited. To make the 
experimental results comparable to experiment 1, the stimuli 
and the procedure of the experiment was kept the same, 
except for the information prominence manipulation, which 
was changed from option-based to attribute-based. Again, 
there were three conditions: (1) Attribute 𝑋 (Comfort) was 
prominent (𝑃= = 1 ). (2) Neither of the attributes were 
prominent ( 𝑃= = 0 ). (3)  Attribute 𝑌  (Location) was 
prominent (𝑃= = −1).  In total, there were 432 trials (72 
unique choice problems * 2 position counterbalance * 3 
prominence conditions).  
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Descriptive Results 
We first examined how group-level choice probabilities 
varied with the prominence conditions and the choice 
attributes. Both stimuli-dependent and stimuli-independent 
models predicted that the option dominating on the 
prominent attribute should be selected more frequently. 
Therefore, we clustered choice problems into 3 groups, on 
the basis of the option that was dominant on the prominent 
attribute (i.e. 𝑃=( = 1,−1,  or 0). When option 1 was 
dominant on the prominent attribute, it was chosen 56.9% of 
the time across participants. This is significantly larger than 
50% ( 𝑡(41) = 6.08, 𝑝 < .001 ). When option 2 was 
dominant on the prominent attribute, it was chosen 43.1% of 
the time across participants, which is significantly smaller 
than 50% (𝑡(41) = −5.41, 𝑝 < .001). When neither option 
was dominant, the choice probability for option 1 was 50.1%. 
This preliminary result showed that attribute-based 
prominence made choice probabilities deviate from the 
chance level (50%).  

Modeling results 
The model fitting procedures were the same as experiment 1. 

Model comparisons: goodness-of-fit. As Table 2 shows, 
SD and SIBR had relatively larger DICs and thus worse fits. 
As in experiment 1, the SD model with only stimuli-
dependent effects failed to fit the data well. However, unlike 
experiment 1, the SIBR model with only a stimuli-
independent response bias was not a good model either. The 
other three models performed closely in terms of DIC, and 
they all included the evaluation bias. These results suggest 
that using only evaluation bias (𝐵O) to account for attribute-
based prominence effects might be sufficient, and other 

additional model specifications are not very useful once the 
evaluation bias has been included. 

Model comparisons: choice-RT patterns. Observed 
choice probabilities for option 1 across the three conditions 
were different for the entire range of RTs. This is illustrated 
by the near parallel solid lines in Figure 3. This choice-RT 
relationship is compatible with a drift rate effect in the DDM. 
In line with this, the observed pattern is best captured by the 
SI model (Figure 3 bottom-left panel dashed lines), and the 
constrained model with only an evaluation bias (Figure 3 
bottom-middle panel dashed lines). The constrained model 
with only a response bias fails to capture this relationship 
(Figure 3 bottom-middle panel dashed lines). The choice-RT 
relationship suggests that evaluation biases in the drift rate 
accounted for the effects of attribute-based prominence.  
Comparison with experiment 1. We have shown that 
response biases are essential for explaining option-based 
prominence (experiment 1) and that evaluation biases are 
essential for explaining attribute-based prominence 
(experiment 2). Because the two experiments used 
essentially the same design and the same set of stimuli values, 
we could compare the parameter estimates across 
experiments. For brevity, we only compare individual-level 
posterior means of response biases and evaluation biases in 
the SI models (Figure 4). Response biases in experiment 1 
were positive for most participants, and their magnitude was 
larger than responses biases in experiment 2. The opposite is 
the case for evaluation biases in experiments 1 and 2. This 
again shows that option-based prominence operates through 
response biases and attribute-based prominence operates 
through evaluation biases.  

Figure 3 Choice-RT relationships for observed data (solid lines) and model simulated data (dashed lines). Here the x-axis indicates RTs, which 
were adjusted for choice attribute value differences and assorted into 5 bins. Trials with smaller (longer) adjusted RTs are on the left (right). 
The y-axis indicates choice probabilities for option 1. Red (blue) lines indicate the condition where option 1 (2) was favored by prominence. 
Yellow lines are for the neutral condition.  The SI, SIBE, and SIBR model predictions are presented in the left, middle, and right panels 
respectively, and are based on 500 samples from their posterior predictive distributions. The error bars are 95% confidence intervals. 
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Figure 4 Individual level estimates for response biases and 
evaluation biases. Dots represent parameter posterior means and 
error bars indicate 95% credible intervals. 

Discussion 
In this paper we used hierarchical drift-diffusion models to 
investigate the effect of visual prominence on two-
alternative multi-attribute preferential choices. Our results 
highlight the value of using mathematical models to 
simultaneously analyze choice probabilities and RTs in 
decision research.  For both option-based and attribute-based 
visual prominence, the stimuli-independent models 
outperformed the stimuli-dependent ones. Both types of 
prominence effects increased choice probabilities for 
options favored by prominence. However, model fits 
indicated that the two effects worked through different 
mechanisms. Option-based visual prominence led to a 
response bias while attribute-based prominence led to an 
evaluation bias. These quantitative comparisons were 
accompanied by qualitatively different choice-RT patterns 
across the two types of prominence effects. Option-based 
prominence influenced choice primarily in trials with shorter 
RTs, whereas attribute-based prominence effects were 
present in trials with both shorter and longer RTs.  

Although our study was on prominence effects in mufti-
attribute choices, our methods could be easily extended to 
study other incidental factors and other types of preferential 
choices. The distinct choice-RT patterns found in our data 
may also be useful to classify the effects of different types 
of incidental factors in preferential choice.  
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