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De novo generation of multi-target
compounds using deepgenerative chemistry

Brenton P. Munson1,2, Michael Chen1, Audrey Bogosian1, Jason F. Kreisberg 1,
Katherine Licon1, Ruben Abagyan3, Brent M. Kuenzi1 & Trey Ideker 1,2,4

Polypharmacology drugs—compounds that inhibit multiple proteins—have
many applications but aredifficult to design. Toaddress this challengewehave
developed POLYGON, an approach to polypharmacology based on generative
reinforcement learning. POLYGON embeds chemical space and iteratively
samples it to generate new molecular structures; these are rewarded by the
predicted ability to inhibit each of two protein targets and by drug-likeness
and ease-of-synthesis. In binding data for >100,000 compounds, POLYGON
correctly recognizes polypharmacology interactions with 82.5% accuracy. We
subsequently generate de-novo compounds targeting ten pairs of proteins
with documented co-dependency. Docking analysis indicates that top struc-
tures bind their two targets with low free energies and similar 3D orientations
to canonical single-protein inhibitors. We synthesize 32 compounds targeting
MEK1 and mTOR, with most yielding >50% reduction in each protein activity
and in cell viability when dosed at 1–10μM. These results support the potential
of generative modeling for polypharmacology.

Classical drug discovery operates by a “one disease—one target—one
drug” model. While this model has yielded numerous successful
therapies, many diseases do not have a single molecular cause but
instead are associated with various potential points of intervention,
each of which may have a partial effect on disease etiology. Such dif-
ficulty is especially apparent for polygenic diseases like cancer and
psychiatric disorders, which integrate functional effects across many
genes organized in complex biological networks1–3.

Accordingly, there has been increasing interest in treatment
strategies that addressmultiple targets4. This strategy can be achieved
through a combination of multiple therapies or through the use of
polypharmacology drugs, which bind and functionally modulate two
ormoremolecular targets simultaneously. While polypharmacology is
still in its infancy, recent studies have begun to demonstrate its utility
in treating disease. For example, several groups have shown that KRAS
mutant non-small cell lung cancers, which have been recalcitrant to
treatment with classical single-target agents, can be effectively treated

using polypharmacological compounds5–7. Polypharmacology also
offers potential advantages over combination therapy, such as a
superior pharmacokinetic and safety profile, lower likelihood of
acquired resistance, and simplified therapy formulation leading to
increased patient compliance4,8,9.

A major barrier to polypharmacology compounds has been the
challenge of designing a single agent that potently inhibits multiple
proteins simultaneously8. Effective polypharmacologydesigns, such as
agents targeting RET and VEGFR2 in thyroid cancer10, required sub-
stantial time and resources before suitable hit scaffolds could be
identified. For these reasons, such compounds have largely been dis-
covered serendipitously rather than systematically5,11. On the other
hand,many recent advancements inmachine learning arebeginning to
show promise in related activities, including systematic prediction of
compound-target interactions12, de novo generation of single-target
inhibitors13–18, and recognition of existing drugs with poly-
pharmacology (dual targeting) potential19.
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To enable the programmatic generation of new poly-
pharmacology compounds, we developed the POLYpharmacology
Generative Optimization Network (POLYGON), a deep machine learn-
ing model based on generative AI and reinforcement learning13–18. In
what follows,wefirst describe the architecture of POLYGONandhow it
was trained and benchmarked. Using this model, we then generate a
collection of de novo molecular compounds targeting ten pairs of
synthetically lethal cancer proteins, which we assess by several means
including 3D molecular docking analysis. Finally, we synthesize 32
POLYGON compounds generated for dual inhibition of MEK1 and
mTOR, which we subsequently validate in both cell-free assays and
lung tumor cells.

Results and discussion
A generative model for polypharmacology
Akin to de novo generation of human portraits20, where multiple
independent facial features can be tuned toward a specific goal (e.g.
mood and age), POLYGON optimizes multiple, potentially indepen-
dent, chemical properties (Fig. 1). The first component of POLYGON is
a variational autoencoder21 (VAE), a type of deepneural network,which
is used to process the chemical formula of amolecular compound into
a “chemical embedding” (Fig. 2a). An embedding is a low-dimensional
representation of a complex input, in which each data point (here a
chemical structure) is assigned coordinates in the reduced dimen-
sions.Muchmachine learning research has focused on creating a good
embedding, where similar inputs (here, similar chemical structures)
are close in the embedded space22. This chemical encoder is coupled to
a decoder, which converts any position in the chemical embedding
back into a valid molecular formula (Fig. 2a).

This encoder/decoder model was trained (Supplementary Fig. 1a)
using a diversedataset of over onemillion smallmolecules drawn from
the ChEMBL database15,23 (Methods). Once trained, we verified the
model was able to encode and recover the chemical formulas of held-
out molecules that had not been used for training (Supplementary
Fig. 1b). A further important aspect for de novomolecule generation is
the ability to decode any coordinate in the embedding into a valid
chemical compound. In this respect, we found that most coordinates
selected from the chemical embedding resulted in valid new SMILES
strings (Supplementary Fig. 1c). We also examined the extent to which
compounds drawn from similar positions in the chemical embedding
were able to bind the same targets. For this purpose, we amassed

18,763 compound-target binding affinities measured for 24 different
targets24, drawing from sources including BindingDB25 and Pharos26,27.
We observed that pairs of compounds with affinity for the same target
were significantly closer in the chemical embedding than compounds
with affinity for different targets (p < 0.01; one-sided t test = −50.2;
DOF = 5,757,396; 95% CI −9.12 to −0.10; n = 100 compounds per target
tested). Multiclass target prediction for held-out compounds had
individual target accuracies ranging from 0.76 to 0.95 (Area under
Receiver Operating Characteristic, Supplementary Fig. 1d) with an
accuracy of 0.85 ± 0.05 (mean± stdev). Some targets had partial
overlap in their corresponding distributions of compounds (Fig. 2b,
Supplementary Fig. 2), suggesting regions of the embedding with
potential for polypharmacology.

This embedding framework was used to control the secondmajor
component of POLYGON, a reinforcement learning system for the
generation of polypharmacology compounds with activity against two
different targets of interest (Fig. 2c). Reinforcement learning15,28 is a
powerful machine learning strategy by which a model is trained
iteratively, at each step rewarding desired outputs and/or punishing
undesired ones. It differs from supervised learning in that it does not
need labeled input/output pairs but instead seeks a balance between
exploitation of current knowledge and exploration of uncharted ter-
ritory (here, chemical space)29. In our implementation, compounds
were randomly sampled from the chemical embedding and scored
based on their predicted ability to inhibit each of two specific targets,
together with multiple other reward criteria related to compound
synthesizability and drug-likeness (Methods)30. Coordinates of high-
scoring compounds were then used to define reduced subspaces of
the chemical embedding formodel retraining and random sampling in
further iterations (Fig. 2c, Methods), yielding compounds of increas-
ingly high quality. Predictions of the compound-target scoringmodule
compared favorably to those of previous compound-target predictors,
ranking in the top tier of those evaluated in a recent IDG-DREAM
competition (Supplementary Fig. 3, Methods). As another benchmark,
we tasked POLYGON with scoring a held-out set of (compound, target
1, target 2) triplets for which the IC50s against both targets had been
characterized and recorded in BindingDB (covering a broad set of
109,811 compounds and 1850 targets; Fig. 3a). At an activity threshold
of IC50< 1μM, POLYGON achieved an accuracy of 81.9% in classifying
cases for which the compound was active against both targets, i.e.
showed polypharmacologic activity (p = 2.2 × 10−16; 95%CI 20.7 to 22.0;
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Fig. 1 | Generative models of portraits versus small molecules. Multiple facial
features such as mood and age can be simultaneously optimized in generating de
novo portraits of faces (top). Likewise, multiple biological features such as

inhibition of two protein targets can be simultaneously optimized in generating de
novo small molecules (bottom). Portrait images were generated with StarGAN v220.
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chi-squared test; Fig. 3b; performance at other IC50 thresholds shown
in Fig. 3c, d).

Generation of compounds targeting synthetic-lethal cancer
proteins
We next asked POLYGON to perform de novo generation of poly-
pharmacology compounds against ten pairs of protein targets that had
been previously determined to be codependent (synthetic lethal) in
human cancer cell lines (Fig. 4a)31–33. The targeted proteins comprised
several protein classes, including serine/threonine kinases, tyrosine
kinases, DNA binding factors, and histone modifiers. The top 100
highest scoring compounds for each target pair were selected. To
model the interactions of these compounds against their corre-
sponding protein targets, we performed molecular docking analysis
using AutoDock Vina34 and UCSF Chimera35. Across this set of com-
pounds and targets, we found that themean ΔG shift upon compound
docking was favorable, at –1.09 kcal/mol, supporting the POLYGON
predictions of binding (Fig. 4b p = 9.25 × 10−6; one-sided t test = −4.285;
DOF = 7146; 95% CI –1.21 to –0.98).

For example, to study POLYGON compounds targeting the
synthetic-lethal combination of MEK1 (mitogen-activated protein

kinase kinase 1) and mTOR (mammalian target of rapamycin), we first
queried the Protein Data Bank36 to obtain the co-crystal structures of
these proteins with their canonical single-target inhibitors. In parti-
cular, we obtained the structure of MEK1 with trametinib, a canonical
MEK1 inhibitor, and of the mTOR-FRB/FKBP12 complex with rapamy-
cin, a canonical mTOR inhibitor (PDB records 7M0Y and 3FAP). We
verified that AutoDock Vina could correctly orient trametinib within
MEK1 with a favorableΔG of –9.2 kcal/mol, and that its best placement
of trametinib within the second target, mTOR, was substantially less
favorable at ΔG of –7.4 kcal/mol (Fig. 5a, b). In a complementary
fashion, we confirmed that rapamycin was correctly placed in the
mTOR complex with a favorable ΔG of –8.6 kcal/mol, and that its best
placementwithin thefirst target,MEK1,was substantially less favorable
with ΔG of –3.7 kcal/mol (Fig. 5c, d). We next investigated the docking
positions of the top POLYGON compound (IDK12008), finding its best
orientation in MEK1 to be similar to trametinib with a ΔG of –8.4 kcal/
mol (Fig. 5e) and its best orientation in themTORcomplex tobe similar
to rapamycin with a binding energy of –9.3 kcal/mol (Fig. 5f). Quali-
tatively similar docking results were obtained for POLYGON-generated
compounds against other synthetic-lethal protein pairs (Supplemen-
tary Fig. 4, Methods).
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Fig. 2 | Embedding chemical space for generative discovery of
polypharmacology drugs. a Use of a variational autoencoder (VAE) to create an
embedded representation of chemical structure (middle), where input ChEMBL
compounds (left) are encoded and decoded with separate deep neural networks.
Here the embedding is approximated in two dimensions (Methods). Example
embedded compounds are shown (points), along with their Murcko scaffold clas-
sification (colors).bMEK1ormTOR-targeting compounds (blue or purple points) in
the chemical embedding space, approximated in two dimensions as for (a).

c Reinforcement learning strategy for de novo generation of compounds recog-
nizing two targets. Compounds are sampled from the chemical embedding (top)
and scored by the predicted inhibitory concentration against each target (pIC50)
alongside a panel of metrics to assess synthesizability and drug likeness (middle).
Top-scoring compounds are used to refocus the chemical embedding for pro-
gressive epochs of compound sampling (descending arrows, bottom). Source data
are provided as a Source Data file.
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Synthesis and validation of dual MEK1/mTOR compounds
Given the current interest in MEK1 andmTOR kinases for combination
therapy37–40 (Supplementary Fig. 5a), we sought to validate POLYGON-
generated compounds against these targets in the laboratory. First, we
experimentally confirmed that current single-target inhibitors ofMEK1
and mTOR can be combined to achieve a synergistic reduction of
viability (Supplementary Fig. 5b–e); that this synergy extends to a wide
variety of human cancer cells (Supplementary Fig. 5f); and that these
effects are due to specific inhibition of each target (Supplemen-
tary Fig. 5g).

Turning to the top 100 de novo MEK1/mTOR candidate com-
pounds, we synthesized 32 for validation, with the goal of minimizing
reaction steps; as such, anilines were overrepresented due to shared
synthetic routes (Supplementary Data 2, Supplementary Fig. 6). We
first performed an activity screen of the synthesized compounds,

including dose-response assays of overall cell growth inhibition (IC50,
Fig. 6a) and direct measurements of phosphorylation activities of the
target mTOR and MEK1 kinases (phospho-P70 and phospho-ERK,
Fig. 6b, c). We found that the majority of compounds had IC50s in the
1–10μM range (Fig. 6d) with a concomitant >50% reduction in both
kinase activities (10μM, Fig. 6e, f). Reductions in mTOR and MEK1
activity were significantly correlated with overall growth inhibition
(Pearson’s ρmTOR =0.47; DOF = 32; 95%CI 0.20 to 1.00; p =0.0032; and
ρMEK1 = 0.45; DOF = 32; 95% CI 0.17 to 1.00; p =0.0049), suggesting
that the molecular and cellular readouts were consistent. We further
replicated the polyphamacologic capacity of six compounds with the
largest reductions in mTOR and MEK1 activity in the primary screen,
validating that four reduced phosphorylation activity of both targets
by >50% at 1μM (IDK12008, IDK12038, IDK12058, and IDK12065; 3
replicates; p <0.05 by one-sided t test, Fig. 6g, Source Data). We also
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validated the inhibitory capacity of IDK12008 in a cell-free in vitro
kinase assay, finding IC50 values for mTOR (Fig. 6h) andMEK1 (Fig. 6i)
that were consistent with what was observed earlier in human cells
(Fig. 6b, c, g).

Finally, we checked the specificity of the lead IDK compounds
against mTOR/MEK1 by scoring the potential for off-target kinase
inhibition. For this purpose, we used western blots to profile the
phosphorylation activity of three representative unrelated kinases
(PDK1, ATR, RAF) after exposure to each of the four doubly validated
IDK compounds (Supplementary Fig. 7a–d). None of the representa-
tive kinases were reduced in activity by more than 20% by any IDK
compound, with the exception of a 38% reduction in ATR activity after
treatment with IDK12065. In addition to immunoblotting of these
representative targets, we also performed a commercial screen of one
of the lead IDK compounds, IDK12038, against a commercial panel of
371 human kinases (Methods). In these experiments, IDK12038 was
shown to have activity against its target MEK1 (Supplementary Fig. 7e,
SourceData); the other primary target,mTOR,was not included on the
commercial panel. Otherwise, most kinases on the panel were mini-
mally affected (330 out of 371 with >50% activity preserved post-
treatment). This degree of promiscuity was similar to that of FDA-

approved kinase inhibitors, which have been found to inhibit between
10 and 100 off-target kinases41. Regardless, one cannot rule out that,
the effects of inhibiting some kinases on the kinome panel might lead
to unintended cellular mechanisms that could be driving a portion of
the effects seen in humancancer cell lines. This effect could explain the
slight discrepancy in the potency between the biochemical and cell-
based assays for mTOR (Fig. 6e, h).

In summary, our results demonstrate a pipeline by which candi-
date polypharmacology compounds are systematically generated,
synthesized, and experimentally validated, resulting in a library of
diverse molecular structures with activity against two targets. As pre-
sented, POLYGON addresses the initial phases of polypharmacology
design, fromwhich further optimization canproceed through classical
techniques such as structure-activity relationships (SAR)42. It does not,
in its current form, provide molecules optimized for absorption, dis-
tribution, metabolism, excretion, and toxicity (ADMET). An attractive
avenue for further research would be to use SAR data collected from
synthesized compounds for additional rounds of training to improve
potency and selectivity against one or both targets. Such an iterative
approach is akin to how medicinal chemists optimize compound
structures following an initial molecular hit. Additionally, there are
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opportunities to improve the generative capacity of the POLYGON
algorithm for dual protein inhibitors. Including IC50 predictions for a
panel of off-target proteins (as a negative reward in the scoring mod-
ule) could aid in minimizing unintended side effects. Likewise,
including direct structural information of both the intended and
unintended protein targets (again, in the scoring module) could allow
for improvement in the potency of the generated small-molecule
inhibitors. Given the proof-of-concept here, it will be exciting to
explore polypharmacology compounds that exploit the growing
number of genetic dependencies and synthetic-lethal combinations
emerging from ongoing genomic and chemo-genomic screens,
including the Cancer Dependency Map43.

Methods
Variational autoencoder (VAE) architecture
Relevant to Fig. 2, Supplementary Fig. 1. POLYGON’s VAE uses and
extends code from the MOSES17 and GuacaMol15 pipelines for auto-
mated chemical design, which are based on deep learning modules in
the PyTorch library (version 1.4.0). The VAE consists of two gated

recurrent unit recurrent neural networks17,44 (GRU-RNNs) implement-
ing an encoder and decoder, respectively. The encoder unit e(x) → z
converts any small molecule x to a probability distribution z of points
in a chemical embedding (characterized by mean μz and standard
deviation σz). The decoder unit d(z) → x′ converts the embedding
coordinates back into a valid small molecule, x′. During training, a VAE
is optimized to minimize two different loss functions18, one penalizing
the reconstruction error, x – d(e(x)), and the other penalizing depar-
tures from normality (Kullback–Leibler divergence). To represent a
small molecule x numerically, the SMILES string of the molecule is
padded so that strings for all molecules are of equal length=100, then
converted to a floating point array of 128 dimensions using the
PyTorch function torch.nn.Embedding. The encoder is then con-
structed as follows:
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Fig. 6 | Design and synthesis of de novo mTOR/MEK1 inhibitors. a Growth of
A549 cells (y-axis, relative toDMSO) treatedwith increasing concentrations of each
of four compounds generated by POLYGON (IDK compounds) versus two negative
controls (ChemBridge compounds 32574271 and 91530087, respectively). Error
bars are the standard error of the mean cell growth across three independent
replicates. b Capillary western blot of P70 S6K (top band), phospho-P70 S6K
(middle band), and GAPDH (bottom band, loading control). Four synthesized IDK
compounds are shown after treatment at 10μM (vertical lanes) with MK-8669
treatment at 100nM as the positive control and DMSO and trametinib treatment at
100nM as the negative controls. Experiments were repeated three times with
similar results. c Capillary western blot of ERK (top band), phospho-ERK (middle
band), and GAPDH (bottom band, loading control). As for b, with trametinib as
positive control and DMSO and MK-8669 as negative controls. Experiments were
repeated three times with similar results. d IC50 from dose-response assays of IDK
compounds inA549 cells. Error bars show the standarderrors of themean across at

least three independent replicates. The first two rows (trametinib, MK-8669) are
positive controls forMEK ormTOR inhibition, respectively. e, fmTOR (e) andMEK1
(f) activity measured by percent reduction of phospho-P70 S6K and phospho-ERK,
respectively, upon three-hour treatment of IDK compounds at 1 µM or 10 µM.
Controls were treated with MK8669 or trametinib for three hours at 100 nM (top
dark gray bars).gValidation ofMEK1 andmTOR activity upon three-hour treatment
of IDK compounds at 1 µM, asmeasured by percent reduction of phospho-ERK and
phospho-P70, respectively. Bars represent the mean across three independent
treatments; error bars show the standard error of the mean; *p <0.05 by one
sample t test. h, i Cell-free in-vitro mTOR/FRBP12 (h) and MEK1 (i) activity quanti-
fied with 33P-labeled phosphate transfer upon three independent treatments of IDK
compounds, select Chembridge compounds, trametinib, orMK8669. Error bars are
the standard errorof themeancell growth at a givendose across three independent
replicates. Source data are provided as a Source Data file.
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where F() is torch.nn.GRU (1 layer, float output 256 dim, dropout rate
of 0.2) andG() is torch.nn.Linear (float output 128 dim). The decoder is
constructed as z=μz+ε e^(σz/2), where ε is drawn from a standard
normal distribution ~ N(0,1).

whereH() is torch.nn.Linear (float output 512); I() is torch.nn.GRU with
the output of H as the hidden state and the concatenation of z and x as
an input (3 layers, float output 512 dim, dropout rate of 0.0); J() is
torch.nn.Linear (float output 55 dim); and K() is the softmax function.
Note that given the recurrent nature of the model, x appears as an
input to the decoder above. When sampling the chemical embedding
without an input molecule, the input x is replaced with a dummy array
w. A SMILE sequence is then iteratively generated, character-by-char-
acter, updating w after each character.

Curation of small molecules in ChEMBL
Relevant to Fig. 2. The compound structures used for training and
validation were obtained from a previously filtered set of molecules15

from the ChEMBL 24 database23. Briefly, the ChEMBL database was
processed by removing salts, charge neutralization, SMILES strings
larger than 100 characters, andmolecules containing atoms not in the
set: {H, B, C, N, O, F, Si, P, S, Cl, Se, Br, I}. The resulting datasets were
arbitrarily divided to form a total of 1,273,104 training molecules and
238,706 validation molecules.

VAE training
Relevant to Fig. 2a, c, Supplementary Fig. 1. The VAE was trained using
small molecules from the ChEMBL database as examples, as described
in the main text. Training was performed across 200 epochs using the
Adam optimizer45 in PyTorch (learning rate of 3×10–4, batch size of
1024 molecules, gradient clipping 50). The learned chemical embed-
ding (μz) was visualized by projecting into two dimensions with Prin-
cipal Component Analysis (PCA) in scikit-learn v1.0.2. Original source
code implementing the VAE is available on GitHub (https://github.
com/bpmunson/polygon).

Classifying compounds against protein kinase targets
Relevant to Fig. 2b, Supplementary Fig. 1d, 2. We queried the Pharos27

GraphQL API and the BindingDB25 for small molecule ligands against a
list of 31 kinase proteins previously implicated in human cancer24. In
concordance with the recommendations of the Pharos web interface,
we selected ligands with an IC50 concentration of less than 1 µM
against a given protein kinase target. We filtered the list of kinases to
those with more than 300 ligands, resulting in the download of a total
of 18,982 compounds each targeting oneof 24 distinct protein kinases.
SMILES strings for each compoundwere embedded using theVAE. The
embedded values (μz) of all compounds were projected into two
dimensions with linear discriminant analysis, a supervised classifier,
using the kinase targets as class labels (Python package scikit-learn,
using the singular value decomposition solver SVD).

Screening compounds
Two commercially available compounds were selected from the
ChemBridge Core Library, IDs 32574271 and 91530087. The com-
pounds were purchased from ChemBridge Corporation (www.
chembridge.com, San Diego, CA).

De novo molecular generation
Relevant to Figs. 2c, 4, 6; Supplementary Figs. 4, 6. To generate novel
molecules with dual specificity tomultiple targets (i.e. bothmTOR and
MEK1), the following reinforcement learning procedure was

performed iteratively over 200 cycles: First, 8192 coordinates (z) from
the chemical embedding were randomly sampled and decoded into
molecular compounds (SMILES strings). Next, each of these com-
pounds was scored against a set of six rewards ri as follows:

r1, r2: the predicted ligand efficiency46 of the compound in binding
eachof the twoprotein targets. Further information about prediction
of ligand efficiency is below in the next section.

r3, r4: the Euclidean distance of the compound’s embedding (μz) to
the set of closest 20 known ligands for each of the two protein tar-
gets. From Pharos and BindingDB, see previous section.

r5: the compound synthesizability (SA score)47 computed using rdkit
(version 2019.09.3)

r6: the “drug likeness” of the compound (QED score)30 also computed
using rdkit.

The rewards r were then each normalized (r′) to the range [0, 1],
with 0 representing the worst performance and 1 the best. Normal-
ization was achieved by half-Gaussian scaling, as per the GuacaMol15

protocol:

ri0= e
�1
2 ððri�μiÞ=σiÞ2

for ri <μi, otherwise 1 [for rewards r1, r2, r6 which should be
maximized]
for ri >μi, otherwise 1 [for rewards r3, r4, r5 which should be
minimized]

The threshold means (μi) and standard deviations (σi) for normal-
ization of each reward are provided in Supplementary Table 1. The
normalized rewards were averaged to produce a single reward score R
for each molecule. Finally, the top-scoring 4096 molecules were used
for additional training of the VAE (2 additional epochs, batch size 512
molecules, see above section on VAE training).

Compound-target scoring module
Relevant to Figs. 2c, 3, Supplementary Fig. 3. Two random forest
regression models (RFR, scikit-learn v1.0.2, 1000 trees) were con-
structed to predict ligand efficiency46 of compounds generated to
target MEK1 or mTOR, respectively. As training examples for each
target, we collected ligand-target binding data from Pharos and Bin-
dingDB, resulting in 1146or 5315 ligandswith experimentallymeasured
IC50 values against MEK1 or mTOR. These values were converted to
ligand efficiency y:

y= 1:4
�log10IC50

N

� �

where N is the number of non-hydrogen atoms. To provide input
features for the RFR model, each ligand was expressed as a 2048 bit
Morgan fingerprint48 (radius 2). Performance of the RFR models was
measured with five-fold cross validation.

Estimation of effect size
Relevant to Fig. 6d–f, Supplementary Fig. 3. Correlation coefficients
were quantified with Pearson’s correlation coefficient and Spearman’s
correlation coefficient in the python module ‘scipy.stats’ (ver-
sion 1.11.3).

Benchmarking against previous compound-target prediction
methods
Relevant to Supplementary Fig. 3. While the focus of POLYGON is on
the design of novel polypharmacology (dual target) compounds,many
methods have been proposed to predict the affinity of existing
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compounds against single kinase targets. In particular, the DREAM
organization, in partnership with the Illuminating the Druggable
Genome (IDG) program, recently held a drug-kinase binding predic-
tion challenge which attracted a broad field of 268 submitted
algorithms12. We thus reasoned that, while we were not aware of
existing methods against which to benchmark the full POLYGON
approach, its compound-target scoring module (Fig. 2c, above Meth-
ods) could be retroactively entered into the DREAM challenge and
competed against the other algorithms. By the DREAM framework,
predictions were scored by two complementarymeasures – Spearman
rank correlation and root-mean-squared error – against the true
binding affinity (Kd) values of 95 compounds measured for binding
against 295 different kinase targets. Since the POLYGON compound-
target scoring module was based on the predicted 50% inhibitory
concentration (pIC50) rather thanKd (see aboveMethods section), we
retrained its random forest regression (RFR)model to predict Kd, with
all datasets and training procedures asdescribed above for IC50.When
used to predict the DREAM compound-kinase binding data, POLYGON
predictions attained a Spearman rank correlation of 0.46 and 0.45 in
Rounds 1 and 2 of the challenge, respectively (Supplementary
Fig. 3a, b). This performance placed it in the top ~10% of all competing
models (15 of 169 in Round 1 and 11 of 99 in Round 2), indicating the
compound-target scoring component of POLYGON was competitive.
The absolute top performingmodel in the challenge, developed by the
team “AIWinter is Coming” (AIWIC), predicted binding inhibition from
four different molecular fingerprints (radius os 5, 7, 9, 11) using
‘xgboost’. We used this AIWIC model, available as a Docker container
from Sage Bionetworks (syn15667962), to predict the relevant Kd
values for all 100 IDK compounds which POLYGON had generated for
dual mTOR and MEK1 binding. For the majority of these IDK com-
pounds, AIWIC predicted dissociation constants of less than 1μM for
one of the targets and, for 20% of compounds, both targets (Supple-
mentary Fig. 3c, d).

Predicting polypharmacology of existing compounds
Relevant to Fig. 3. To quantify the ability of the compound-target
scoring module in POLYGON, we tasked it with predicting whether a
single compound was active against two specific protein targets. The
BindingDB was filtered to compounds that were assayed against two
and only two protein targets, resulting in 109,9811 compounds
potentially polypharmacological compounds. We then filtered all of
the candidate compounds from the BindingDB training dataset and
used POLYGON to predict the individual compound-target IC50
values. Compound-target activities were categorized as active or non-
active, where less than 1μM IC50 value was defined to be active. Only
compounds that had active predictions for both targets were classified
as polypharmacological (Fig. 3a). POLYGON was able to predict the
experimentally observed polypharmacology compoundswith anOdds
Ratio of 21.3 (p-value = 2.2 × 10−16; 95%CI 20.7 to 22.0; chi-squared test;
Fig. 3b). We also varied the threshold for active compound-target
pairs, finding reasonable performance across a range of activity
thresholds from 1 × 10−5 M to 1 × 10−10 M (Fig. 3c, d).

Cell culture and reagents
Relevant to Fig. 6, Supplementary Fig. 5, 7. A549 cells were retrieved
from the American Type Culture Collection (ATCC, CRM-CCL-185) and
cultured in DMEM (Thermo Fischer Scientific, 11995065) + 10% FBS
(Cell Culture Collective, Inc., FB-01). All cell lines tested negative for
Mycoplasma contamination and were authenticated by short tandem
repeat (STR) analysis. Trametinib (Selleckchem, S2673), MK-8669
(Selleckchem, S1022), molecules from ChemBridge, and de novo
molecules from Bioblocks were dissolved in DMSO (10mM, Sigma,
D2650) and diluted in media for use. ChemBridge molecules were
introduced to cells in the presence of 0.3 µL of lipofectamine (Ther-
moFisher, L3000150) to aid with cell permeability.

Drug response and synergy determinations
Relevant to Fig. 6, Supplementary Fig. 5. Cell viability assays were
conducted using the CellTiter-Glo Luminescent Cell Viability Kit (Pro-
mega, G7570) according to manufacturer specifications. Cells were
seeded at 500 cells/well in a 384-well microtiter plate and grown for
24 h. At this time, compounds were added to the culture medium at
the indicated concentrations (Fig. 6a, d, Supplementary Fig. 5b, d).
Cells were then treated for 72 h before the addition of 25μL CellTiter-
Glo reagent, then analyzed on a Molecular Devices SpectraMax i3x.
Single compound curves were analyzed using the neutcurve package
in Python (version 0.5.7, https://jbloomlab.github.io/neutcurve/), after
which drug combination effects were evaluated using the Loewe
model of additivity49 in the synergyfinder package50 and plotted using
plotnine (version 0.7.0).

CRISPR-Cas9 gene knockouts
Relevant to Supplementary Fig. 5g. For gene knockout experiments,
CRISPR-Cas9 nuclease was stably integrated in human A549 cells
(ATCC, CRM-CCL-185) at the AAVS1 safe harbor locus. LentiCas9-Blast
(Addgene plasmid # 52962; RRID:Addgene_52962) and lentiCRISPR v2
(Addgeneplasmid# 52961; RRID:Addgene_52961)weregifts fromFeng
Zhang51. A549-Cas9 cells were tested for Mycoplasma contamination,
expanded, then frozen in multiple aliquots so that experiments could
be performed at low passage numbers. Cells were grown in DMEM
(ThermoFischer, 11995065), 10% FBS (Cell Culture Collective, Inc., FB-
01), and hygromycin (ThermoFischer, 10687010) to select for Cas9
expression, which was confirmed by capillary western (Wes, Protein
Simple). Three unique 20-bp gRNAs were used for each target gene
(Supplementary Table 2). The pooled library of double gRNA con-
structs (gene + gene or gene + non-targeting) was packaged into len-
tiviruses, and A549 cells were infected at an MOI of 0.3 to ensure each
cell had zero or one double gRNA constructs. Puromycin selection
(2.5 μg/mL, Sigma, P8833) was started two days after transduction,
and the concentration was reduced by half upon each passaging, to a
final concentration of 0.625 μg/mL, which was maintained for
the remainder of the experiment. Following puromycin selection,
cells were maintained in exponential growth by harvesting and
removing a fraction of cells every two days. DNA was extracted from
cells after 21 days of growthwith a Blood andCell CultureDNAMini Kit
(Qiagen, 13323) according to manufacturer protocols. To assess the
frequency of gRNAs before and after selection, integrated DNA
encoding the gRNA sequence was PCR amplified and prepared for
HiSeq4000 sequencing (Illumina) according to manufacturer proto-
cols. Standard Illumina primers were used for library preparation, and
sequencing was conducted to generate 100-bp reads in a paired-end
fashion. After sequencing, data quality was assessed with FastQC
(0.11.9). The fitness effects of gene knockouts were determined as
previously described31 and normalized to the median fitness for non-
targeting guides.

Capillary immunoblotting
Relevant to Fig. 6, Supplementary Fig. 7. Lung cancer A549 cells (ATCC,
CRM-CCL-185) were seeded into 6-well plates (400,000 cells/well) and
treated 3 h at 1μMor 10μM for IDK compounds, 100 nM for MK-8669
(Selleckchem, S1022) and trametinib (Selleckchem, S2673), using
DMEM (ThermoFischer, 11995065) as the diluent. At 3 h post-treat-
ment, cells were collectedby trypsinization (ThermoFisher, 25200114).
Protein was isolated using M-PER Mammalian Protein Extraction
Reagent (ThermoFisher, 78501) plus complete EDTA-free Protease
Inhibitor Cocktail (Roche, 11873580001). Protein was quantified using
660 nM Protein Assay (Pierce, 1861426) with pre-diluted standard
(Pierce, 23208) on a NanoDrop One spectrophotometer (Thermo-
Fisher). Western blots were performed using capillary western (Wes,
ProteinSimple). Protein was diluted to 3mg/mL and run on a 12-
230 kDa separation module (ProteinSimple, SM-W003) with an anti-
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rabbit detection kit (ProteinSimple, DM-001). The expression of pro-
teins of interest was measured using p44/42 MAPK (Erk1/2) (Cell Sig-
naling Technology, 9102) (1:150), Phospho-p44/42 MAPK (Erk1/2)
(Thr202/Tyr204) (Cell Signaling Technology, 9101) (1:500), p70 S6
Kinase (Cell Signaling Technology, 9202) (1:200), Phospho-p70 S6
Kinase (Thr389) (Cell Signaling Technology, 9205) (1:10), Phospho-
AKT (Thr308) (Cell Signaling Technology, 9275) (1:100), Phospho-Chk1
(Ser345) (Cell Signaling Technology, 2348) (1:1000), Phospho-MEK1/2
(Ser217/221) (Cell Signaling Technology, 8154) (1:100) or GAPDH
(14C10) Rabbit mAB (HRP conjugate) (Cell Signaling Technology,
3683) (1:4000). Band intensity was quantified as the area under the
band peak with Compass for SW software (ProteinSimple, version
6.1.0) according to the manufacturer instructions. Uncropped images
of the capillary immunoblots are provided in the Source Data.

Compound synthesis
Relevant to Fig. 6, Supplementary Fig. 6. Synthetic planning and
synthesis were carried out by Bioblocks Inc, San Diego CA.
SMILES strings are provided for all molecules in SupplementaryData 1,
synthesis pathways are provided for all molecules in Supplementary
Data 2, and 1H NMR spectra are provided in Supplementary Data 3.

Molecular docking simulations
Relevant to Figs. 4, 5, Supplementary Fig. 4. Simulations of the binding
orientations of POLYGON-generated IDK compounds versus existing
smallmolecule controlswere performedusingAutoDockVina (version
1.1.2)34 andUCSFCHIMERA (version 1.16)35. Receptorprotein structures
were extracted from X-ray diffraction structures in the Protein Data
Bank (https://www.rcsb.org/). The structure of MEK1 and its small-
molecule inhibitor trametinib was extracted from a larger structure
which also contained the BRAF kinase in complex with AMP-PNP (PDB
ID: 7M0Y). The FKBP12/FRB co-crystal structure was used tomodel the
binding of rapamycin to mTOR within the MTORC1 complex (PDB ID:
3FAP). Likewise, we downloaded co-crystal structures for the receptor-
ligand pairs of PARP1 in complex with olaparib (PDB ID: 7KK4) and
BRD4 in complex with JQ1 (PDB ID: 3MXF). For the other protein tar-
gets we extracted the relevant chain from the following PCB IDs: CDK7
from 6XD3, CDK9 from 6Z45, CDK12 from 7NXK, PRMT5 from 6RLQ,
ERBB2 from 7PCD, FGFR3 from 6LVM, and TOP1 from 1TL8. Docking
positions were computed with default AutoDoc settings, with the
exception of an exhaustive search setting of 8 and a maximum energy
difference of 8 kcal/mol. Search volumes were set to encompass the
entire crystal structure instead of specific a priori subdomains.

In itro kinase binding
Relevant to Supplementary Figs. 7e. In-vitro whole kinome screening
was performed with IDK12038 at 10 μM treatment and 1μM ATP con-
centration against a panel of 371 wild-type human kinases using the
HotSpot Assay (Reaction Biology Wild Type Panel) (data provided in
Source Data).

Cell-free kinase binding
Relevant to Fig. 6. In-vitro inhibition of mTOR (Fig. 6h) and MEK1
(Fig. 6i) activity by IDK12008, Trametinib, MK8669, and two negative
control compounds (ChemBridge compounds 32574271 and
91530087)wasmeasuredbyHotSpotAssay (ReactionBiology) across a
three-fold serial dilution with three independent replicates. ThemTOR
inhibition assay included FKBP12 as a co-factor.

Statistics and reproducibility
Relevant to Figs. 2, 3, 6 and Supplementary Fig. 5. We chose eight
molecular scaffolds to highlight in the embedding of the chemical
space (Fig. 2a) as a balance between highlighting chemical diversity
and interpretability. To validate the specific compound-dual-target
activities predicted by POLYGON we filtered the BindingDB to

compounds that had activity profiles measured against two and only
two protein structures, this resulted in 109,811 unique compounds.We
chose ten pairs of protein targets for compound generation to high-
light the generalizability of POLYGON across different proteins and
different protein classes. The number of compounds synthesized in
this study, 32, was a result of minimizing the number of reaction steps
used across all molecules.

In general, we chose conventional statistical analysis, such as
Pearson’s correlation coefficient (Fig. 6d–f), one-sided t-tests (Figs. 4b,
6g), and chi-squared tests (Fig. 3b). For statistical analysis with many
groups (Fig. 6g), exact p-values are provided in the Source Data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets and materials generated in this study are provided in the
Supplementary Information/Source Data or from the corresponding
author on request. A key resource to the POLYGON framework is
experimental binding data of small molecule ligands. We use the Bin-
dingDB (https://www.bindingdb.org/), ChEMBL 24 database (https://
doi.org/10.6019/CHEMBL.database.24.1), and the Pharos (https://
pharos.nih.gov/) as a source for this information. Molecule training
datasets are available from theGuacaMolpackage: https://github.com/
BenevolentAI/guacamol (https://doi.org/10.1021/acs.jcim.8b00839).
Validation data of MEK1 and mTOR synergy under combination ther-
apy across a panel of cancer cell lines was sourced from O’Neil et al.52.
(https://doi.org/10.1158/1535-7163.mct-15-0843). For molecular dock-
ing simulations, we sourced the receptor protein structures from the
Protein Data Bank (https://www.rcsb.org/). The following accession
codes were used in this study: 7M0Y, 3FAP, 7KK4, 3MXF, 6XD3, 6Z45,
7NXK, 6RLQ, 7PCD, 6LVM, and 1TL8. Source data are provided with
this paper.

Code availability
The POLYGON source code is publicly available at https://github.com/
bpmunson/polygon and https://doi.org/10.5281/zenodo.1071232553.
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