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Abstract
Scoliosis is a condition of abnormal lateral spinal curvature affecting an estimated 2 to 3% of the US population, or seven 
million people. The Cobb angle is the standard measurement of spinal curvature in scoliosis but is known to have high 
interobserver and intraobserver variability. Thus, the objective of this study was to build and validate a system for automatic 
quantitative evaluation of the Cobb angle and to compare AI generated and human reports in the clinical setting. After IRB 
was obtained, we retrospectively collected 2150 frontal view scoliosis radiographs at a tertiary referral center (January 1, 
2019, to January 1, 2021, ≥ 16 years old, no hardware). The dataset was partitioned into 1505 train (70%), 215 validation 
(10%), and 430 test images (20%). All thoracic and lumbar vertebral bodies were segmented with bounding boxes, generat-
ing approximately 36,550 object annotations that were used to train a Faster R-CNN Resnet-101 object detection model. A 
controller algorithm was written to localize vertebral centroid coordinates and derive the Cobb properties (angle and endplate) 
of dominant and secondary curves. AI-derived Cobb angle measurements were compared to the clinical report measure-
ments, and the Spearman rank-order demonstrated significant correlation (0.89, p < 0.001). Mean difference between AI and 
clinical report angle measurements was 7.34° (95% CI: 5.90–8.78°), which is similar to published literature (up to 10°). We 
demonstrate the feasibility of an AI system to automate measurement of level-by-level spinal angulation with performance 
comparable to radiologists.
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Introduction

Scoliosis, or the condition of abnormal spinal curvature, 
is caused by a wide array of etiologies. In the USA, over 
600,000 office visits are made by scoliosis patients each 
year, and this condition impacts an estimated 2–3% of the 
US population, or seven million people [1]. Radiographs 

are the preferred imaging technique for scoliosis alignment, 
with cross-sectional imaging reserved for specific clinical 
scenarios. The most widely used measurement of spinal 
curvature is the Cobb angle, where greater than 10–12° of 
lateral curvature is considered abnormal. The Cobb angle 
was originally described by Cobb [2] and adopted as the 
standard measurement method by the Scoliosis Research 
Society, founded in 1966. To measure the Cobb angle, the 
most tilted superior and inferior vertebrae are identified 
(mathematically correlating to the inflection boundaries of 
a curve) and the angle between them is assessed, although 
the selected vertebrae may not be the exact locations of the 
curve inflections as endplate level is an anatomic landmark 
for improving reader consistency. The measurement of the 
Cobb angle is time consuming with high interobserver and 
intraobserver variability [3–6], and different selections of 
end-vertebrae are a major source of error [7]. The angle 
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may vary up to 10° between observers, and reliability did 
not significantly improve even with the same end-vertebrae 
selected [3]. Thus, computer techniques have been suggested 
to improve consistency and accuracy.

Various researchers have applied mathematical modeling 
to standardize the measurement of the Cobb angle, including 
the Hough transformation developed by Zhang [8–10]. Ani-
tha and Prabhu suggested identifying the horizontal inclina-
tions of all vertebrae using active contouring and filtering 
[11, 12]. Different denoising techniques have been proposed 
with histogram equalization applied to enhance image con-
trast [13]. These pixel value heuristic based techniques 
are limited in generalizability. Recently, segmentation-
based neural networks have also held promise for creating 
fully automatic systems to measure spinal curves [14, 15]. 
Although these methods are applicable for angle quantifica-
tion, they require complex image processing steps including 
feature extraction, filtering, enhancement, and segmentation 
where user bias is still not eliminated. Additionally, second-
ary algorithms are still required to identify landmarks to 
extract the spinal axis and curve inflection boundaries in 
order to calculate scoliosis curve measurements.

Object detection convolutional neural networks (CNNs) 
can be used to identify visual objects and have been success-
fully implemented in radiology, such as detection of lumbar 
spinal stenosis [16] and intervertebral disks [17]. Potentially, 
object detection can identify vertebral bodies and localize 
their centroids to derive the spine axis and Cobb landmarks 
without the complex manual pre-processing and time-con-
suming annotation required of segmentation-based neural 
networks. Therefore, we hypothesize that a CNN-based 
object detection and measurement pipeline can be designed 
to automate the measurement and reporting of Cobb angles 
on scoliosis radiographs.

Materials and Methods

Scoliosis Radiographs

Institutional Review Board approval was obtained, and 
informed consent was waived for this retrospective, HIPAA 
compliant imaging review. Three thousand nine hundred 
fifty-seven sequential anteroposterior scoliosis radiographs 
from 2019 to 2021 were retrospectively collected from our 
tertiary care center institution. Two thousand four hundred 
two radiographs remained after excluding radiographs with 
hardware, and 2150 radiographs remained after excluding 
radiographs with inadequate exam quality, including poor 
soft tissue penetration, over-exposure, and image markups. 
Of patients, 59.9% were female and 40.1% of patients were 
male, with mean patient age 56.4 years ± 21.1 (standard 
deviation). Images were originally in Digital Imaging and 

Communications in Medicine (Dicom) format and were con-
verted into de-identified Joint Photographic Experts Group 
(jpeg) files, with original resolution and default window and 
level settings. The data collection diagram and overall pro-
ject architecture are shown in Fig. 1.

Anatomic Localization for Thoracic and Lumbar 
Vertebrae

All 2150 radiographs were annotated using the LabelImg 
software by 3 investigators (A.Y.H., E.W., S.W.). A mus-
culoskeletal attending with more than 10 years of experi-
ence (B.H.D.) reviewed and revised the annotations (36,550 
objects). Rectangular bounding boxes encompassed the 
entirety of each vertebra, prioritizing the localization of the 
bounding box centroid to the vertebrae centroid for tilt and 
rotation. Annotations were then exported in standard Pascal 
VOC XML format.

A Faster R-CNN Resnet-101 model was implemented for 
vertebrae detection using the Object Detection API within 
the TensorFlow framework (Google, Mountain View, CA) 
[18]. We selected this model due to optimal efficiency and 
accuracy trade-offs after preliminary evaluation of multiple 
TensorFlow feature extraction models: Resnet-101, Incep-
tionV2, and InceptionResnetV2 Atrous. Faster R-CNN is 
known for its shorter training time [19] and utilizes a region 
proposal network (RPN) to simultaneously predict poten-
tial object regions and the probability that each region is an 
object. Resnet-101 is a 101 layer-deep CNN utilizing short-
cut connections between layers to enable deeper networks 
with preserved accuracy. Resnet-101 was used in the Faster 
R-CNN network to generate feature maps that were fed into 
the RPN (Fig. 2). After the RPN, a region of interest (RoI) 
pooling layer, upstream classifier, and bounding box regres-
sor similar to that of Fast R-CNN were utilized to produce 
final bounding boxes and object predictions [20]. The Faster 
R-CNN Resnet-101 was initialized on pre-trained weights 
from the common objects in context (COCO) dataset [21], 
using transfer learning to accelerate weight convergence and 
reduce training requirements.

Training was performed on a workstation equipped with 
a NVIDIA Tesla V100 graphics card (NVIDIA, Santa Clara, 
CA). A training set consisting of 1505 (70%) radiographs 
was used to train the AI model to detect thoracic and lumbar 
vertebrae. Images were resized to a maximum dimension of 
1024 pixels and train-time data augmentation was performed 
with random horizontal flips. Using a momentum optimizer 
[22] and an exponentially decaying learning rate starting 
at 0.0003, we trained the model until validation accuracy 
plateaued at approximately 100,000 steps.

After training and validation, the neural network could 
generate a list of bounding box coordinates for thoracic 
and lumbar vertebrae based on input images (Fig. 3a, b). 
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Individual vertebral levels were assigned by their relative 
craniocaudal location within each class. Four hundred thirty 
(20%) sequential anteroposterior scoliosis radiographs 
excluding hardware were used to test the accuracy of tho-
racic and lumbar vertebrae detection. For each case, unique 
one-to-one mappings between annotated and predicted verte-
bral levels were computed using the highest intersection over 
union of predicted vertebrae for each annotated vertebrae. 
Given the mappings, the mean and 95% confidence interval 
were computed for intersection over union (IoU), Dice simi-
larity coefficient, and the mean bounding box center point 
distance error (normalized by the annotated bounding box 
width and height). Additionally, the mean per-case percent-
age of vertebral levels correctly predicted was calculated by 

dividing the total number of mapped annotated vertebrae 
with the total number of annotated vertebrae.

Cobb Angle Measurement

To compute Cobb angles, we developed an algorithm in 
Python employing spine localization (Fig. 4). The spine 
localization line is defined by a smoothed spline through 
the center points of predicted vertebrae bounding boxes, 
sorted craniocaudally, and filtered out if two center points 
are within a fixed number of pixels of one another. Lateral 
curvature angles are computed based on identifying apex, 
superior, and inferior vertebral bodies. Apex vertebrae are 
those bodies where the inflection of curvature at the center 

Fig. 1   System pipeline for 
automatic measurement of the 
Cobb angle

Fig. 2   Faster R-CNN Resnet-101 model architecture
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point is a local minima. The superior and inferior vertebral 
bodies associated with the apex are those where the inflec-
tion of curvature changes direction. The lateral curvature 
angle is calculated from the difference in slopes between 
superior and inferior body endplate points, which are esti-
mated along the spine localization line based on their center 
point and bounding box craniocaudal coordinates. Figure 5 
shows our Web app that receives a scoliosis radiograph as 
an input and then outputs a radiology report.

After running the object detection CNN on the separate 
test set (430 radiographs), the spine localization algorithm 
was used to extract Cobb angles from primary and second-
ary curves. These predictions were compared to Cobb angles 
computed from the manual bounding box annotations (3 
reader team with expert adjudicator), and Cobb angle meas-
urements manually extracted from clinical reports. Compari-
sons including the mean angle difference, Spearman rank-
order correlation, bias, and standard deviation were computed.

Fig. 3   a Example thoracic ver-
tebrae object detection output. 
b Example lumbar vertebrae 
object detection output
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Results

Anatomic Localization for Thoracic and Lumbar 
Vertebrae

Using the 430 hold-out test cases, we calculated the IoU 
score, Dice similarity coefficient, normalized mean distance 
from the vertebrae box center, and percentage of vertebrae 
detected in order to obtain a comprehensive overview of 
object detection model accuracy. The test scores are pre-
sented in Table 1.

The IoU score for all vertebrae detection was 0.83 (95% 
CI: 0.82–0.83) and the Dice similarity coefficient was 0.90 
(95% CI: 0.90–0.91), showing that our model achieved high 
success not only in detection, but also segmentation of each 
component of the vertebrae. Moreover, the tight confidence 
intervals show that the model is robust, as the performance 
variability is low for unseen test cases, even for challenging 
cases. The normalized mean distance from the vertebrae box 
center was 7.2% (95% CI: 6.8–7.9%), and the percentage of 
vertebrae detected was 0.98 (95% CI: 0.98–0.98), reflecting 
high accuracy for vertebral body object detection.

Cobb Angle Measurement: Comparing Clinical 
Annotators and Object Detection CNN

Our test set included a total of 430 test radiographs (20% 
of dataset). In order to further compare the performance of 
clinical annotators and the object detection CNN, we ran 
the spine localization algorithm on [1] the human annota-
tors’ bounding boxes and [2] the object detection CNN’s 
bounding boxes. The spine localization algorithm found 312 
Cobb angles in [1] and [2], and the angle values were com-
pared. This yielded a mean absolute angle difference was 
5.46 degrees (95% CI: 4.60–6.29°), a Spearman rank-order 
correlation of 0.95 (p < 0.001), and a proportional bias and 
standard deviation of − 0.39 ± 9.38° (Fig. 6a).

Cobb Angle Measurement: Comparing Clinical 
Reports and Object Detection CNN

Out of the 430 test radiographs, 56 of the radiographs had 
clinical reports containing at least one numerical Cobb angle 
value. Three cases were removed since the spine localization 
algorithm did not identify one of the Cobb angles. In the 
remaining 53 reports, a total of 70 Cobb angle values were 
matched and compared to those computed by the spine local-
ization algorithm. These measurements had a mean absolute 
angle difference of 7.34° (95% CI: 5.90–8.78°), a Spearman 
rank-order correlation of 0.89 (p < 0.001), and a proportional 
bias and standard deviation of 0.00 ± 9.62° (Fig. 6b).

Discussion

We demonstrated that a deep learning model trained on sco-
liosis radiographs could automatically measure the Cobb 
angle with high accuracy. To our knowledge, this study is the 
first to evaluate use of a recurrent neural network in conjunc-
tion with a CNN to quantify spinal curves in a radiographic 
image. The task of measuring a Cobb angle is relatively 
straightforward for a trained physician but can be time con-
suming and a source of both interobserver and intraobserver 
variation. In clinical practice, errors for manual Cobb angle 
measurement can often occur during selection of the most 
tilted vertebrae and manual drawing of a line across the end-
plates. As a result, automated detection and measurement of 
scoliosis curvature was recently identified by the ACR Data 
Science Institute as a use case with great promise for clinical 
practice, where the applications of artificial intelligence offer 
clinical and economic value [23].

AI neural networks have recently been introduced for 
fully automated Cobb angle measurement systems [24]. 
Although U-net or segmentation based neural networks 
may allow for the identification of spinal curve inflections to 

Fig. 4   Calculating Cobb angles 
after vertebrae object detection
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Fig. 5   Web app for automatic 
measurement of the Cobb angle
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generate quantification of the curve, they are often depend-
ent on heavy manual preprocessing for training. We utilized 
object detection based CNNs that are more efficient to train, 
robust to variability, and have been previously used for med-
ical diagnosis tasks such as detecting lumbar spinal stenosis 
[16] and intervertebral disks [17].

Using 1505 scoliosis radiographs, we trained a Faster 
R-CNN Resnet-101 model to automatically detect verte-
bral bodies, with an IoU of 0.83 (95% CI: 0.82–0.83) and 
Dice similarity coefficient of 0.90 (95% CI: 0.90–0.91). 
Sun et al. in 2019 utilized U-nets and obtained an IoU of 
0.91 ± 0.05 (SD) for vertebrae segmentation [14]; Peng 
et al. in 2021 obtained a Dice similarity coefficient of 
0.94 ± 0.03 (SD) using a vertebral body segmentation 
approach [15]. However, clinical interpretation of these 
metrics and their clinical significance is limited as there 
is no direct link between these metrics alone, since they 
are only the initial anatomic localization steps. Deriving 
Cobb angle measurements additionally requires a con-
troller algorithm to compute angles between identified 
inflections.

Table 1   Vertebrae object detection accuracy

Test Score

Intersection over union (IoU) 0.83 (95% CI: 0.82–0.83)
Dice similarity coefficient 0.90 (95% CI: 0.90–0.91)
Normalized mean distance from center 7.2% (95% CI: 6.8–7.9%)
Percentage of vertebrae predicted 0.98 (95% CI: 0.98–0.98)

Fig. 6   a Comparison of Cobb angle measurements derived from bounding box annotations and object detection CNN. b Comparison of Cobb 
angle measurements derived from clinical reports and object detection CNN
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To evaluate clinical utility, we wrote a spine localiza-
tion algorithm to calculate Cobb angles from vertebral body 
bounding boxes. On a relatively large set of radiographs, our 
results demonstrate a high and significant correlation (0.95, 
p < 0.001) between Cobb angles calculated from manually 
annotated bounding boxes and Cobb angles calculated from 
the object detection CNN’s bounding boxes, suggesting reli-
able performance with our clinical annotators.

Similarly, the spine localization algorithm’s Cobb angle 
measurements strongly and significantly correlated (0.89, 
p < 0.001) with Cobb angle measurements from the clinical 
reports. Prior works from Sun et al. in 2019 demonstrated a 
Spearman rank-order correlation of 0.89 (p = 0.000) when 
comparing an expert reader’s Cobb angle measurements to 
AI, and Peng et al. in 2021 obtained Spearman rank-order 
correlations of 0.94 and 0.93 when comparing two experts to 
the computer algorithm. Our results reflect similar reliability 

to previous studies that used segmentation based neural net-
works, which require more manual preprocessing and anno-
tation time.

While the system performed well overall, individual 
case inspection offers insight into some of its strengths 
and limitations. Figure 7 demonstrates a case where there 
was a duplicate bounding box prediction, and our algo-
rithm successfully filtered out the duplicate box and cal-
culated the Cobb angle. However, Fig. 8 demonstrates a 
case where the Cobb angle was not calculated due to a 
missing predicted bounding box. There are various oppor-
tunities for improvement and fine-tuning of the R-CNN 
model as our dataset consisted of non-hardware cases. 
Training the object detection model on a larger volume of 
studies and accounting for differences in hardware, obe-
sity, and image quality may improve the model’s clinical 
application.

Fig. 7   Example where duplicate 
bounding box prediction was 
filtered and Cobb angle was 
successfully calculated

Fig. 8   Example where Cobb 
angle was not calculated due to 
missing predicted bounding box
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The Python algorithm that calculated the Cobb angle 
offers numerous opportunities for editing parameters to 
customize physician measurement preferences, potentially 
for providers, such as editing the thresholds on reported 
curves (minimum angle, number of vertebral bodies, level 
of vertebral bodies). By presenting the annotated image to 
the interpreting physician, occasional discrepant curves 
can be refined manually. The 70 Cobb angles from the 53 
clinical reports represent a variety of observers, account-
ing for interobserver variability. The average difference 
between the AI and clinical report measurements was 
7.34 degrees (95% CI: 5.90–8.78°), similar to the error for 
human observers, which was up to 10° (3, 4). Future steps 
include comparing additional readers to the algorithm’s 
Cobb angle measurements.

As a next step for efficient workflow, a work-in-pro-
gress at our institution is incorporating the AI system into 
PACS with a display of the annotated image along with 
the original image and a pre-drafted report in the dictation 
system. Currently, we have developed a publicly available 
Web application that uses our object detection neural net-
work and spine localization algorithm to assess scoliosis 
radiographs.

We developed and validated a system to automate evalu-
ation and quantification of the spinal curve, tracing the 
spine and extracting Cobb angles by identifying upper and 
lower Cobb landmarks. In our test set, the system performed 
with a high IoU, Dice similarity coefficient, and Spearman 
rank-order correlation value, with promising Cobb angle 
measurement performance relative to clinical reports in our 
limited study. With additional training and incorporation in 
workflow, this methodology is promising as an approach 
to build fully automated systems for efficient, reliable, and 
consistent Cobb angle measurements in clinical practice.
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