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Abstract

Consider the complete n-graph with independent exponential (mean
n) edge-weights. Let M (e, n) be the maximal size of subtree for which
the average edge-weight is at most ¢. Tt is shown that M (e, n) transi-
tions from o(n) to Q(n) around some critical value ¢(0), which can be
specified in terms of a fixed point of a mapping on probability distri-

butions.
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1 Introduction

To each edge e of the complete graph on {1,2,...,n} attach a weight w,,
where the (w.) are independent exponential (mean n) r.v.’s. Call this
randomly-weighted graph W,. For each subtree of W,,, that is each tree
t whose vertex-set is a subset of {1,2,...,n}, write |{| for the number of
edges of t and w(t) = 3 ¢, we for the weight of the tree. So w(t)/[t] is the
average edge-weight of the tree ¢{. Consider the maximum size of tree with
average edge-weight at most ¢:

M(e,n) = max{|t| : w(t)/|t] < c}. (1)

It is natural to guess that there exists some critical value ¢(0) such that (for
large n) the random process ¢ — M(c,n) makes the transition from o(n) to
Q(n) as ¢ increases through some neighborhood of ¢(0). Theorem 1 verifies
this guess.

Theorem 1 There exists ¢(0) € [e™2,e™'] such that
(c<c(0)) : lim P(M(c,n)>en)=0Ve >0 (2)
(¢>¢(0)) : 3Fe(e) > 0 such that lim P(M(c,n) > e(e)n) = 1. (3)

This is “natural” by analogy with the case where we replace the average
edge-weight w(t)/[t| by the maximum edge weight max.ect w. and consider

M(e,n) = max{|t] : max we < c}.
€

Then the analog of Theorem 1 holds with critical value 1. This is essentially
the classical result that in the random graph process G(n, P(edge) = A/n)
the time A of first appearance of an Q(n)-size connected component is asymp-
totic to 1. See [11] for a survey of variations of that classical theory.

The asymptotic bounds {e~2, e~ !} stated in Theorem 1 are rather easy:
the lower bound emerges from a counting argument (section 3.4) and the
upper bound is the exact asymptotic critical value when we restrict trees to
be paths (section 3.5). The existence of the limit ¢(0) is less easy, and we
take an indirect approach, as follows. Write M for the set of probability
distributions on [0, cc]. Write §, for the probability measure concentrated
at x. Write 0 < & < & < ... for the times of a Poisson (rate 1) process of
events. For fixed ¢ > 0 define a map T'. : M — M as follows. Given yu € M
let (Y;,7 > 1) be independent with distribution p, independent of (&;), and
define Tzt to be the distribution of Y-02, (¢ —&+Y;)*. Here 27 = max(z,0).
Note that the distribution ., is trivially invariant under T..



Lemma 2 There exists a critical value 0 < ¢(0) < 1 with the following
properties.

(a) For ¢ < ¢(0) the map T'. has an invariant measure p. such that
1e[0,00) = 1 and T56q — p. as k — oc.

(b) For ¢ > ¢(0) the map T'. has no invariant measure except .., and
T560 — 6o as k — oo.

In proving Theorem 1 we use Lemma 2 to provide the definition of ¢(0).
The key idea is the local approximation of the randomly-weighted complete
graph W, by a randomly-weighted infinite tree ’T(OO), described in section
2. This local approximation provides a systematic “probabilistic” approach
to problems concerning W,,: see [2] for this approach to Frieze’s result (4)
and [3] for the random assignment problem. The proofs of Lemma 2 and
Theorem 1 occupy section 3.

The feature that the solution is expressed in terms of a fixed point of
a mapping on distributions occurs quite often in problems involving prob-
ability on trees or probabilistic analysis of recursive algorithms: see [4, 13]
for algorithmic instances, [9] for queueing applications, and [12] for random
walks on Galton-Watson trees.

Our setting may remind the reader of a well-known result of Frieze [7]:

EW, — ((3) = ir?’ as n — 0o (4)
=1

where W, is the average edge-weight in the minimum-weight spanning tree
(MST). The tractability of (4) comes from the existence of the greedy algo-
rithm for constructing the MST, which implies a simple criterion for whether
a specified edge is in the MST. Theorem 1 can be rephrased in terms of
minimum-weight trees spanning some subset of en vertices, but the algo-
rithmic problem of finding such trees is apparently hard!. In this regard,
attempting to estimate ¢(0) by Monte Carlo simulation from its Theorem 1
interpretation would be difficult, but it is straightforward to use Lemma 2
as a basis for simulations, which indicate ¢(0) ~ 0.263.

Deeper study of the critical behavior of our minimum-average-weight
subtrees (in the spirit of the deep known results [8] for critical behavior of
large components in the usual random graph process) presents interesting
challenges. In the usual random graph process, one can define an “incipi-
ent infinite component” C (to borrow terminology from percolation theory),

' An expert said “it must be NP-complete” but could not provide a citation



which turns out to be the critical Poisson Galton-Watson branching process
conditioned to be infinite [5]. In the setting of this paper one can presumably
define an infinite random tree C* as a weak limit of maximal subtrees of av-
erage edge-weight ¢,, for some ¢, | ¢(0). Does C* qualitatively resemble C?
More precisely, C has the scaling property that the number of vertices within
distance d of a reference vertex grows as order d?; does C* have the same
scaling property? This question is motivated by the universality paradigm
from statistical physics, which asserts that scaling behavior at critical points
should be independent of the details of a model.

2 The local approximation

Consider the infinite tree whose vertices are strings b = b1by...b;, where
i > 0 and b > 1, rooted at the empty string ¢, with edges (b, byj), where
for b = b1by...b; the vertex bj = b1by...b;j is a child of b. For each b
attach weights wy, 1,; to the edges (b, byj), where the weights are distributed
as the times (£;) of a Poisson (rate 1) process of events, independently

as b varies. Call this weighted tree 7(00)7 and let 77(50) be the subtree

consisting of the first m generations, i.e. strings b = b1by...b; with i < m,

and let ’Tgnof}z be the further subtree where only the first I children of an
(e0)

individual are allowed, i.e. where each b; < L. So the vertex-set of 7, "} is
N = um (1,2, L

Fix (m, L) and consider the weighted complete graph W,. For large
enough n there is a natural way to define a random map ¢ : N]gm) —

{1,2,...,n}. Set 1(¢) = 1 and inductively, passing through N]gm) in breadth-
first order, let «(bj) be the vertex v for which Wb, 18 minimized, over
vertices v which are not the i-value of any previous b’. This construc-

(n)
m, L

tion yields a weighted tree, say 7
(m)

same vertex-set N; ' as ’Tfnoog. It is elementary that the order statistics
<l <<

with edge-weights w, ) ,(bj), on the

of n independent exponential (mean n) r.v.’s satisfy
(nyb), .. .,ngn)) 4 (&1,...,€) as n — oo, L fixed .
It follows that

’TS;)L 4 ’Tmof}z as n — oo, m, L fixed (5)



in the sense that the edge-weights converge in distribution. This local ap-
prozimation is key to our methodology.

Recall the definition of T'.: T'.pu is the distribution of 372, (¢ — &+ Yi)*.
Write dist for “distribution” and write I'" for the m-fold iteration of T..
The significance of the definition is that

"6 = dist max(elt] — w(t) 1t C Tgnoo)) (6)

where t denotes a (possibly trivial) subtree containing the root ¢. Identity
(6) is established by induction on m: we get the maximum value over height-
m subtrees by considering for each child j = 1,2,... of ¢ the maximal value
Y; over height-(m—1) subtrees rooted at j, and including the branch through
j if the contribution ¢ — &; + Y; made by that branch is positive. Similarly
define T'x 1, by: T'. 1, po is the distribution of Zle(c — & +Y;)T. Then

I é0 = dist max(clt] —w(t): ¢t C ’T(OO)). (7)

my

Remark. The right side of (6) clearly resembles a Lindley equation for
workload in a tree-structured queueing process (cf. [9]), though we cannot
give any precise queueing interpretation of our setup.

We record a simple lemma.

Lemma 3 Let q(k,a,L,n) be the probability that there exists a path 1 =
V0, V1, .., 05,7 < kin W, such that

(4) ey oy, < 0

(b) {v: Wy _q,0 < wvj_1,vj}| > L.
Then for fized k,a

lim limsup ¢(k,a, L,n)=0.

L—co n—oo

Proof. The mean number of paths 1 = vg,vy,...,v,-1,7 < k satisfying
(a) tends to Zf:_ol a' as n — oo. For each such path, the chance there
exists v; satisfying (a,b) tends to P({r,41 < a). So limsup,, ¢(k,a,L,n) <
(Zf;ol aYP(ér41 < a). And clearly limy_., P(£r41 < a) = 0.

3 Proof of Theorem 1

3.1 Proof of Lemma 2

The proof uses only simple monotonicity arguments. Let < be the usual
“stochastically less than” partial order on M:

pa = g ifF [0, 2] > po[0,2],0 < 2 < oo



or equivalently
p1 = g iff there exist Xy, Xy such that dist(X;) = u; and P(X1 < X3) = 1.
It is easy to check from the definitions that ', is an increasing map:

p1 = g implies Topy < Toptg (8)
and that I', increases with e:

¢1 < g implies T'ojpp < Ty pe (9)

By (8) and induction, Fféo < Ff"’léo. It follows that there exists an increas-
ing limit

T80 1 pe as k — oo (10)
where convergence is weak convergence on the compactified half-line [0, oo].
It is easy to check that I'. is continuous w.r.t. increasing limits, and hence
e is invariant for I'.. But an invariant measure p clearly has the property

that p(co) = 0 or 1. And by (9) p. is stochastically increasing with ¢. So if
we define

c(0) = inf{e: po(c0) =1}
then we have proved the assertions of the lemma, except for proving ¢(0) < 1.
Fix ¢ > 1. Then T'.p > dist(Z + Y'), where dist(Y) = p, Z = ¢ — & and
Y, 7 are independent. So inductively I'*6q > dist(Z; + ...+ Z;) where the
(Z;) are independent copies of Z. But EZ = ¢ —1 > 0, so by the law of
large numbers T%6, — é... So ¢(0) < ¢, establishing the result ¢(0) < 1.

3.2 The subcritical regime

The next lemma is the main ingredient for proving the subcritical behavior
(2) in Theorem 1.

Lemma 4 Let ¢ < ¢(0). Forz > 0,k > 1 let N(¢,k,x,n) be the number
of vertices v of W,, such that some tree t containing v has |t| < 3k and
w(t) < clt| —z. Then

lim sup P(N (e, k,x,n) > en) < ez, 00), € > 0.

n—oo



Proof. Recall from section 2 the construction of T%,)L- From (5,7), for fixed
L
_ . (n) d 3k
max{clt| —w(t): 1 CTg'r} — T 60 asn— oo

where “t C 7 denotes a subtree containing the root ¢. Restricting to
subtrees of size at most 3k can only make the left side smaller, so

max{elt] — w(t): 1 C TG, 1] < 3k} <noo T2 6

where <,, .., means “asymptotically stochastically less than”. We now want
to remove the restriction to “first I children” and say

max{c|t|—w(t) : t CW,, |t| < 3k, t contains vertex 1} <, [2%6o. (11)

Since Fi’fzéo < T'?k§y, the only way (11) could fail is if (with probability not
— 0) the maximum were attained by trees ¢,, containing a parent-child pair
(v, ") for which w,, ,» is the /,,’th smallest edge-weight incident at v, for some
[, — oo. But this possibility is precluded by Lemma 3, which implies that
such trees have w(t,) — oco. So (11) is true. Combining (11) with the fact
(10) that T2F8y < p., we see that the chance that vertex 1 has the property
specified in the Lemma is asymptotically at most u.[z,o0). So the result
follows using Markov’s inequality. O
We also quote an elementary fact.

Lemma 5 Fiz k > 1. Any tree with at least k edges may be decomposed
as a union of edge-disjoint subtrees, each subtree having between k and 3k
(inclusive) edges.

Proof of (2). Fix k > 1 and fix ¢ < ¢3 < ¢3 < ¢(0). Suppose there
exists a tree t* with at least en edges and with average edge-weight at most
c1. Apply Lemma 5 to decompose into subtrees. Some subtrees may have
average edge-weight > ¢y, but the proportion of edges of t* in such subtrees
is at most ¢1/ce, and so a proportion at least 1 — E—; of edges of t* lie in
subtrees with average edge-weight at most ¢;. Now any subset of e edges of
a tree are incident to at least e 4 1 distinct vertices. So at least (1 — £-)en
vertices lie in trees of size between k and 3k with average edge-weight at
most ¢g. Defining 2 by

cok = esk —x,

so that ¢co)t| < eslt| — @ whenever k < |t| < 3k, we have shown

P(M(c1,n) > en) < P(N(es, k,z,n) > (1 — Hen).



Applying Lemma 4,

€2

lim sup P(M(er,n) > en) < (1 - 2)71e™ g [k{es — ), 00).
Since k is arbitrary, (2) follows.

3.3 The supercritical regime

The next lemma is the main ingredient for proving the supercritical behavior
(3) in Theorem 1.

Lemma 6 Fiz ¢ > ¢(0) and an integer m. Then there exists an integer q,
depending only on ¢ and m, and an algorithm on W,, (for sufficiently large
n) with the following properties. Given a uniform random initial vertex Vi,
the algorithm finds vertices Vs, ..., V, by looking only at weights on edges
for which one end-vertex is some (V;,1 < q). With probability at least 1/2,
the algorithm “succeeds” in finding a tree whose vertices are a subset of
{V1,...,V,} containing both Vi and V;, such that the tree has at least m
edges and has average edge-weight at most c.

Proof. Since %6y — 8., as k — oo, we can choose k such that I'*6q(em, 00) >
1/2, and then choose I such that F’;Léo (em,00) > 1/2. From (7), this

says that with probability > 1/2 there exists a subtree ¢t C ’T;COZ) such
that ¢|t| — w(t) > em. So by the local approximation (5), for sufficiently

large n there exists, with probability > 1/2, a subtree ¢ C TX% such that
c|t| — w(t) > em. Such a subtree certainly has at least m edges and has av-
erage edge-weight at most ¢. This existence result may be rephrased as an
algorithm; at each step of the construction of T;ﬂnj% we check to see whether
a subtree with the desired properties exists within the tree already con-
structed, and stop if it does. The last vertex examined has the property
that the algorithm has not seen its edge-weights, except for those edges to
previous vertices. At most ¢ = Zf:o L vertices are used, and by incorpo-
rating arbitrary extra vertices we may assume exactly ¢ vertices are used.
O

Proof of (3). Take ¢, m,q as in Lemma 6. We shall describe how to
construct a size §(n) tree in stages. In summary: at each stage we use
Lemma 6 to examine ¢ vertices (in the reduced graph from which vertices
examined in previous stages were removed) and, if a suitable subtree is
found, it is attached to the already-grown tree by a linking edge.



Here is the construction in detail. Take Vi to be a uniform random
vertex, apply Lemma 6, and suppose the algorithm succeeds. Let Wy be
the vertex ¢ {V1,...,V,} for which wy, w, is minimized. Remove vertices
{V1,...,V,} and incident edges from the graph. Then the reduced graph on
n — ¢ vertices has edge-weights which are independent exponential (mean
n) r.v.’s, because the algorithm choosing {V1,...,V,} did not examine any
of its edges, and Wy is a uniform random vertex of the reduced graph. We
want to apply Lemma 6, with n replaced by n — ¢, to the reduced graph.
Because the edge-weights have mean n instead of n — ¢, we need to modify
the criterion of “success” to say that the average edge-weight is at most
H”ch. Apply the lemma to the reduced graph, to produce {Wy,...,W,}.
Suppose the algorithm succeeds. We then include the edge (V,, Wy) as the
“linking edge”, set X to be the vertex & {Wy,...,W,} for which ww, x, in
minimized, and remove vertices {W7,..., W,} and incident edges from the
graph. If alternatively the algorithm fails, remove vertices {Wy,...,W,} and
incident edges from the graph, and let Xy be the vertex in the remaining
graph for which wy, x, in minimized.

In general, at the end of stage s we have constructed a subtree with a
distinguished vertex V,, and we have a reduced graph on n — sg vertices
whose internal edge-weights, and the weights on edges to Vi, are indepen-
dent exponential (mean n). Stage s 4 1 starts with the vertex Zy in the
reduced graph for which wy, 7 is minimized, uses Lemma 6 to examine
some {71, Za, ..., Z,} seeking a subtree with average weight at most —-
if successful, the subtree is linked to the existing tree via the edge (Vi, Zy)
and vertex Z, becomes the new distinguished vertex. Whether successful or
not, vertices {7y, Zs, ..., Z,} are removed from the reduced graph.

Continue for n/q stages, and consider the resulting tree T. With prob-
ability — 1 as n — oo (w.h.p.) at least én/(3q) stages were successes, and
in this case T has at least g—Z(m + 1) — 1 edges, and its average edge-weight
is at most

=

c 7

1-46 t m+ 1
where v is the average weight of the “linking” edges. For large n, each
linking edge-weight is approximately distributed as the time of first success
in a Poisson (rate 1) process of events, where each event has chance > 1/2 to
be a success. So the mean linking edge-weight is asymptotically at most 2,

and so w.h.p. v < 3. So w.h.p. T has at least %—Tgn edges and average edge-

weight at most ;5 + mi-l—l By choosing é small and m large, we establish
(3)-



3.4 The lower bound on ¢(0)

This is just the natural counting argument. Fix ¢ > 0 and consider subtrees

t of W,.

n

N 1) (k + 1)¥~' P(Poisson() > k)

Et: |t =k, w(t) < ck)| = (k

using Cayley’s formula and the representation of sums of exponential r.v.’s
in terms of the Poisson distribution. Consider n — oo and k£ — oo.
The Poisson probability is asymptotic to the probability “= k”, which is
e~k (ck/n)* k!, and so

E~ og El{t: |t| =k, w(t) < ck}|

< k'log (k f‘r 1) +loghk +log(ck/n) — k= logk! + o(1).

Since (,7,) < n*+1/(k 4 1)!, the right side is at most
k~'logn 4 log(ck?®) — Zlog k! + o(1)
and using Stirling’s formula this is

k™ logn + log(ce?) + o(1).

One can check that the o(1) term is uniform over en < k < n, for fixed e.
So if ¢ < pe~? for some p < 1, then ultimately

El{t: |t| =k, w(t) < ck}| < p*, en <k < n.
So

P(M(c,n)>en)< > EHt: |t| =k, w(t) < ck}| < np™ — 0.
en<k<n

By (3) ¢(0) > ¢, implying ¢(0) > e~2.

3.5 The critical value for paths
Specialize (1) to paths, i.e. define
M.(¢,n) = max{|t| : tis apathin W,, w(t)/|t] < c}.
The next result asserts that the critical value is now e~!, implying the upper

bound ¢(0) < e~ .

10



Proposition 7
(e<e™) lim P(M.(c,n) > en) =0Ve >0 (12)
(e>e ') : Fe(c) > 0 such that lim P(M,(c,n) > e(c)n) = 1. (13)

Proof. The subcritical result (12) is just the counting argument from section
3.4, counting paths instead of trees: we omit details. For the supercritical
result (13), the key idea is that the weighted tree 7(>) in section 2 may be
identified with the standard Yule process (continuous-time rate-1 branching
process), by regarding the weight on edge (b, bj) as the time between the
birth of individual b and the birth of individual bj. Now a standard fact
about the Yule process is that the maximal generation G5 of the individuals
born before time s satisfies

571G, — e as. as s — oo, (14)

This is a simple special case of general results (see e.g. [10, 6]) about
continuous-time branching random walk (regarding a generation-g individ-
ual as positioned at ¢); see [1] for a direct proof of the special case. Rephras-
ing (14) in terms of subtrees t C 7(>),

min{w(t)/|t| : t C T is a path of length m from the root}

— e las asm— . (15)

The supercritical result (13) can be deduced from (15) by constructing a
Q(n)-length path by linking path segments of fixed large size m, analogous
to the construction of the Q(n)-size tree in section 3.3. Again, we omit
details.

4 Final remarks

(a) It is easy to see that at the critical value ¢(0) the invariant distribu-
tion fi o) of the map T (o) is still supported on [0,00). So we have the
distributional identity

Y £ 3 (e(0) - &+ Vo) (16)

i>1

where dist ¥; = dist Y = p.(). Now we can use (16) to define a branching
Markov chain on (0,00), in which an individual at position y has offspring

11



at positions (V;) specified as follows: condition the sum in (16) to equal y,
and take the (V;) for which the summands are positive. It seems heuristi-
cally clear that the “incipient minimal-average-weight infinite tree” C* men-
tioned at the end of the Introduction is just the family tree of this branching
Markov chain, conditioned on non-extinction. But in the absence of explicit
information about the distribution fi.(g) it seems hard to study C*.

(b) In place of the complete graph, one could base a “mean-field” model
on the infinite regular tree of degree r, putting independent exponential
(mean r) weights on edges, and study the minimal value ¢(r) of average
edge-weight of infinite subtrees. Without checking details, we believe that
the analogs of Theorem 1 and Lemma 2, with the sum defining T'. replaced
by Szl (e — m + Vi), where (11,...,m,_1) are independent exponential
(mean r), are true (and much simpler to prove) in this alternate setting.

(¢) The relation between our “percolation” result (Theorem 1) for trees
and Frieze’s result (4) for spanning trees is analogous to the relation between
the “percolation” result for paths (Proposition 7) and the TSP result for W,
i.e. the fact that the average edge-weight in the minimum-weight tour of all
n vertices is asymptotic to a constant ergp. Ironically, the relative difficulty
of the “percolation” and “all n” results is reversed: the explicit value of
crsp 18 not known.

12
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