
UC Berkeley
Econ 221 - Industrial Organization Seminar

Title
Competition with Social Externalities

Permalink
https://escholarship.org/uc/item/0qc6c868

Authors
Fjeldstad, Oystein D
moen, espen
Riis, Christian

Publication Date
2009-02-05

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0qc6c868
https://escholarship.org
http://www.cdlib.org/


Competition with Social Externalities (preliminary
version)

Øystein Fjeldstad, Espen R. Moen, and Christian Riis
Norwegian School of Management

February 5, 2009

Abstract

1 Introduction

In a large number of markets and transactions, the agents, when choosing between suppliers,
have preferences over the identity of the other agents using the same suppliers. The examples
are abound:
When consuming goods that involve social interaction, consumers naturally have pref-

erences for the identity of other customers. This can be various types of clubs and dating
sites. Another example regards choice of schools, where the other customers (students) is
a pool both for social interaction and as basis for a social network that may be valuable in
professional life. Even in restaurants and bars, low-key social interaction (as well as social
identi�cation) may imply that the customers have preferences over the types of consumers
that visit the establishment.
Similar e¤ects take place when choosing between platform providers. For instance, the

attractiveness of connecting to Windows relative to Macintosh is in�uenced by the choices
of other consumers. First there is a direct e¤ect; it may be more convenient to use the same
system as colleagues and business partners with whom the person in question has direct
contact with. In addition, increasing returns to scale in providing applications imply that
the number and types of applications available will depend on the number and preferences
of the consumers connected to that platform. Thus, not only the number, but also the
preferences of the other consumers matter for the attractiveness of a given platform.
Another industry where the "type" of consumers is important is in the transactions in-

dustry, like the banking and credit card industry. When choosing credit card, it is important
not only to buy one with a large customer base, but also (for a given size) to chose one where
the customers have the same trading habit as you have. This will increase the likelihood that
the sellers you approach will accept that credit card (is Diners a good example here?). In
banking it matters for a �rm if its present and future trading partners, suppliers, customers
etc. are likely to use the same bank, as this may reduce direct transaction costs as well as
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problems associated with asymmetric information (the bank will receive more information
about your trading partner and thereby learn about your credit worthiness. The bank may
also be able to internalize external e¤ects of default between suppliers and manufacturers.
In addition, the customers may care about previous customers, as this may give information
about the �rms�areas of expertise.
Finally, the identity of consumers may be of importance in classical network industries,

like telecommunication. Several telecommunication �rms (particularly mobile phones) set
di¤erent on-and o¤ net prices. As a result, consumers have a preference for staying in the
same network as the people they are communicating with.
Social preferences can naturally be divided into a vertical and a horizontal part. The

vertical part, which is often the focus in for instance housing markets and models for provision
of local public goods, relates to variables for which agents have the same preferences. The
preferences may for instance relate to the income, social capital, human capital, beauty
etc. of the potential peers. The horizontal part re�ects idiosyncratic taste parameters and
history. In a club setting, personal interests and taste are example of horizontal di¤erences,
occupation when choosing platform, industry when choosing bank, and family and friends
when choosing mobile phone.
Existing literature: social interaction
Existing literature, network e¤ects

2 Modelling social externalities

We analyze competition between two suppliers (or �rms) of a good, supplier A and sup-
plier B. The suppliers are horisontally di¤erentiated along two dimensions. First, they are
di¤erentiated along a technological dimension. This is exogenous in the model. Second,
they are di¤erentiated regarding the set of consumers they attract. This will be determined
endogenously.
We want to capture horizontal social preferences as described in the introduction. We

do this two steps. First we assume that each consumer has a social location on the Salop
circle,with circumference equal to two.1 . Denote by zi�
 agent i�s social location, where

 = [�1; 1] . Finally, let d denote a distance measure on 
, de�ned as

d(zi; zj) = min[jzi � zjj; 2� jzi � zjj]

Thus d(zi; zj) is the shortest distance between the two agents along the circle.
Let us give some examples. If the application at hand relates to membership in clubs,

social location re�ects preferences and interests. If it relates to the choice of platform (like
Macintosh andWindows), the social location will be in�uenced by occupation and education.
If the application at hand relates to banking, social location may re�ect industry and business
niche, while if it relates to mobile telephony it may be related to the position of your personal
friends.

1The motivation behind letting agents be distributed on the circle is to avoid the asymmetry associated
with consumers on the end of a line that only communicate in one direction. Each consumer has a set of
other agents with which he or she interact, hereafter called friends.
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The second step regards the utility obtained by "social interaction" with the peers choos-
ing the same supplier. The function g : [�1; 1]! [0; 1] shows agent i�s preference for being
in the same network as an agent at social distance d. We assume that g is strictly decreasing
in d, re�ecting that agents gain more from "being together" with people that are socially
close than socially distant. We do not allow g to be negative. Finally, we assume that the
value of social interaction is additiv, in the following sense: suppose a fraction H(z) of the
agents of social location z belongs to network A. Then the social utility of joining �rm A

for a person of location zi can be written as
Z



g(d(z; zi))H(z)dz. We refer to this as the

network utility associated with joining �rm A.
Hence there is no crowding-out e¤ects of membership. This seems to be a reasonable

assumption for platforms, banks, and telephony, but maybe less so for social clubs, where
the average member "type" may matter. Note also that this additivity property gives rise to
increasing return to scale on the demand side (reference), but in contrast with the existing
models with increasing returns to scale not only the number, but also the social location of
the other customers matter for own utility.
The second element in our analysis relates to technological di¤erentiation. We assume

that two rivaling suppliers A and B o¤er horisontally di¤erentiated products. We model
technological preferences by the Hotelling line, where the suppliers are located at the end
points of a line of unit length, while the consumers are located between them. Technological
di¤erences may re�ect pure technological features, user-friendliness, and design. Macintosh
and PCs have chosen di¤erent solutions, as have Playstation and X-box. Di¤erent mobile
phone operators also o¤er services with di¤erent features that appeal to di¤erent segments
of the market, and the Hotelling model is a workhorse when modelling competition within
telecommunication. Finally, schools may o¤er di¤erent currucila and students may di¤er in
their preference for these.2

A driving assumption in our analysis is that social and technical preferences may be
related. People who are socially close are then more likely to share the same technological
preferences. For instance, when choosing between Macintosh and PC, the technological
solutions the platforms may be better suited for some professional tasks than others, and
thus suit members of some professions better than others. People like one would prefer to
socialize with may have similar interests as oneself regarding curriculum (schools) activities
(clubs) and calling plans (mobile phones). More speci�cally, we assume that we can write
the technological preference of an agent with social location zi is given by

yi = ajzij+ (1� a)"i (1)

where "i is drawn from a uniform distribution on [0; 1], i.i.d. for all agents, and the parameter
a satis�es 0 � a � 1 . If a = 0 then y and z are independent, there is no correlation between
social location and and if a = 1 the two variables are perfectly correlated. Finally, in
technology space, all agents are located between the two platforms at 0 and 1. It follows

2Note that the social positions of the customers may shape the technological properties of the supplier.
For instance, we argued that professionals of a given type prefer to stay on the same platform as their peers
since this may increase the number of applications that will developed. In our set-up this is embodied in the
g-function. Technological di¤erences refer to pre-existing technological di¤erences, i.e., di¤erences between
the products that are prsent before the social location of the customers are determined.

3



that the expected social location (conditioned on z) can be written as

Eyjzi = ajzij+ (1� a)=2

Thus Eyj0 = (1 � a)=2 and Eyj1 = (1 + a)=2, while Eyj1=2 = 1=2. Note the symmetry
around 1=2. The cumulative distribution function of y conditional on z , F (yjz) can thus be
written as

F (yjz) = 0 if y < ajzj

=
y � ajzj
1� a if ajzj � y � ajzj+ 1� a

= 1 if y > ajzj+ 1� a (2)

Or, more compactly,

F (yjz) � max
�
min

�
y � ajzj
1� a ; 1

�
; 0

�
The pair (yi; zi) completely characterizes any given agent i.
The utility of an agent (yi; zi) by joining network A at price pA is given by

uA(yi; zi) = �� tyi +
Z



g(d(z; zi))H(z)dz � pA (3)

We have already de�ned the third term. The parameter t re�ects the intensity of technolog-
ical preferences, while � denote the intrinsic value of being connected to a platform. In what
follows we assume that � is su¢ ciently big so that the entire market is covered. Analogously,
we have that

uB(yi; zi) = �� t(1� yi) +
Z



g(d(z; zi))(1�H(z))dz � pB (4)

Finally, de�ne g as

g =

Z



g(d(z; zi))dz

Note that g denotes the maximum network utility obtainable, obtained if all agents in the
economy join the same supplier.
The timing of the model goes as follows:

1. The two �rms A and B simultaneously and independently choose prices pA and pB,
respectively. The �rms are not able to price discriminate by setting di¤erent prices for
agents with di¤erent locations at the circle.

2. The agents independently decide which �rm to go to, given the prices and given their
expectations about the choice of the other agents in the economy. In equilibrium,
expectations are rational.
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3 Equilibrium

In this section we derive the equilibrium of the model. We �rst solve the second stage of the
game, which we refer to as the assignment game. Then we solve for the optimal prices given
the equilibrium of the assignment game.

3.1 The assignment game

In this section we focus on the agents choice of network for given prices pA and pB.
For any given distribution H0(zi) de�ned on [�1; 1],3 let ym(zi) denote the technological

preference of an agent that is indi¤erent between the two platforms. From (3) and (4) it
follows that

uA(ym(zi); zi) = u
B(ym(zi); zi)

()

tym(zi)�
Z
g(d(z; zi))H0(z)dz =

pB � pA � g + t
2

(5)

or

ym(zi) = [

Z
g(d(z; zi))H0(z)dz +

pB � pA � g + t
2

]=t (6)

Let H1(z) denote the fraction of agents at social localization z that prefers the A-network
given H0, and write H1(z) = �H0(z). In order to characterize � we use the fact that there
is a close relationship between ym and H1. From (2) it follows that

�H(zi) = 0 if ym(zi) < ajzij (7)

=
ym(zi)� ajzij

1� a if ajzij � y � ajzij+ 1� a

= 1 if ym(zi) > ajzij+ 1� a

Or, more compactly,

H1(zi) = �H0(zi) = max

�
min

�
ym(zi)� ajzij

1� a ; 1

�
; 0

�
(8)

Since (3) and (4) are continuous in y, it follows that ym(zi) and thus H1(zi) are continuous.
For given prices pA and pB, an equilibrium distribution function He(z) is a �xed-point

satisfying
He(z) = �He(z)

or by combining (6) and (8)

3We do ont require that H(1) = H(�1). Below we show that for the equilibrium distribution, this is
always the case.
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�H(zi) = max

2664min
2664
Z
g(d(z; zi))H(z)dz +

pB�pA�g+t
2

� tajzij

t(1� a) ; 1

3775 ; 0
3775 (9)

Proposition 1 Suppose g < t(1�a). Then � is a contraction mapping with modulus g
t(1�a) .

Hence, for any given prices pA and pB, the �xed point H(z) = �H(z) exists and is unique.

Proof. We apply Blackwell�s su¢ cient condition4. It follows from Blackwell�s su¢ cient
condition that � is a contraction if it satis�es i) a monotonicity condition, and ii) discounting.
Denote by S the set of all bounded continuous functions on [�1; 1]. Then � is a mapping from
S into S. It is bounded above by 1 and below by 0, and continuous as H(z) is continuous.
The monotonicity condition requires that ifHi; Hj�S andHi(z) � Hj(z) all z, then �Hi(z) �
�Hj(z) all z. Since the RHS of (9) is increasing in H(z) for all z; the monotonicity condition
is satis�ed. Consider next the discounting condition. The discounting condition requires
that there exists some � in (0; 1) such that for all Hi in S, all v � 0, and all zi we have
�(Hi + v)(zi) � �(Hi)(zi) + �v. It follows from (9) that

�(Hi + v)(zi) = max

2664min
2664
Z
g(d(z; zi))(Hi(z) + v)dz +

pB�pA�g+t
2

� ajzij

t(1� a) ; 1

3775 ; 0
3775

= max

2664min
2664
Z
g(d(z; zi))Hi(z)dz +

pB�pA�g+t
2

� ajzij

t(1� a) + v
g

t(1� a) ; 1

3775 ; 0
3775

Hence, if neither the requirement that H � 1 (the minimum operator) or the requirement
that H � 0 (the max operator) binds, it follows that �(Hi + v)(zi) = �(Hi)(zi) + v g

t(1�a) . If
either the minimum operator or the maximum operator strictly binds, then �(Hi+a)(zi) <
�(Hi)(zi) + v

g
t(1�a) . It follows that � is a contraction mapping with modulus

g
t(1�a) .

Thus, whenever g < t(1 � a), the coordination game between the agents has a unique
solution. In order to understand the result, note that the assumption on parameter values
imply that the technology preferences are strong compared with the network e¤ect. Assume
for the moment thatH(z) < 1 for all z and suppose as an example that all types increase their
threshold value ym(z) with � units. This increases the density function H with �=(1 � a)
units. The increased utility of joining networkH due to network externalities is thus�g=(1�
a). The increase in transportation cost for the marginal agent however is �t, which is greater
than �g=(1� a) by assumption.
As a result, self-ful�lling prophesies is not an issue in this model: an increase in the

number of agents going to one network increases the attractiveness of the network, but not
su¢ ciently much to compensate for the increased transportation costs for the new agents.

Given proposition 1, we can easily show that He(z) has the following properties:

4See e.g. Sydsæter, Strøm and Berck (2005) or Stokey and Lucas (1989).
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Lemma 1 The equilibrium function He(z) has the following properties
i) He(z) is symmetric around z = 0; He(z) = He(�z): If pA = pB then H(zi) = 1 �

H(1� zi) for all zi�[0; 1]
ii) For all values of z where 0 < He(z) < 1, He(z) is strictly decreasing in z for z > 0 and

strictly increasing in z for z < 0 (except in the special case where He(z) = 0:5 everywhere,
see below).
iii) H can be written as a function of pB � pA and is increasing in pB � pA for all z

Proof in appendix.
The equilibrium function He(z) is rather di¢ cult to analyze. However, in the case with

pA = pB we can derive some nice properties for the function, and since we are mostly
interested in the symmetric equilibrium this is also the most interesting case. With pA = pB
and g = 0 it follows that an agent chooses the A network if and only if y � 0:5. Denote the
equilibrium distribution in this special case by H t(z). It follows that

H t(z) = 1 if jzj � 1

2a
� 1� a

a

H t(z) =
1=2� ajzj
1� a if

1

2a
� 1� a

a
� jzj < 1

2a

H t(z) = 0 if jzj > 1

2a

For g > 0, the equilibrium H is as follows: for jzj < 1=2 is H a concave function above H t,
for jzj > 1=2 it is a convex function below H t.
Our next concern is how the H function depends on the underlying parameters. Our

�rst concern regards the spread of g. De�ne a g-preserving increase in the spread of g as a
transformation where mass is moved from the center to the periphery in a symmetric fashion,
analogous to mean-preserving increase in spread. We can then show the following result

Lemma 2 The equilibrium function He(z) has the following properties:
a) A g-preserving increase in the spread of g reduces He(z) for jzj < 1=2 and the reduction

is strict if 0 < He(z) < 1. The opposite holds for jzj > 1=2.
b) An increase in g or a decrease in t increases He(z) for jzj < 1=2, and the decrease is

strict if He(z) < 1. The opposite holds for jzj > 1=2.
c) An increase in a (a reduction in 1�a) increases He(z) for jzj < 1=2, and the increase

is strict if He(z) < 1. The opposite holds for jzj > 1=2:

Proof in appendix.

3.2 Equilibrium prices

In this section we derive the equilibrium prices pA and pB. To this end, de�ne

NA(pB � pA) =

Z
H(z; pB � pA)dz

NB(pA � pB) =

Z
[1�H(z; pB � pA)] dz = 2�NA(pB � pA)
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Thus NA and NB denote the total number of agents in the two networks. Suppose the per
agent connection cost is ci; i = A;B. The pro�t of �rm i can be written

�i = (pi � ci)Ni(p�i � pi)

with �rst order conditions

Ni(p�i � pi)� (pi � ci)N 0
i(p�i � pi) = 0 (10)

and second order conditions

�2N 0
i(p�i � pi) + (pi � ci)N 00

i (p�i � pi) < 0 (11)

With identical costs, the �rst order conditions for maximum are given by

pA = pB = c+
1

N 0(0)
(12)

Due to symmetry, N(�) is odd, and thus has an in�ection point at zero. Hence N 00(0) = 0,
and the second order conditions are satis�ed locally. Finally, it follows directly from (10)
that (12) is unique.5Note the similarity with the standard Hotelling model. In that model,
N 0(0) = 1=t, which gives pA = pB = c+ t as usual.
It is hard to show generally that the second order conditions for the �rms maximiza-

tion problem is satis�ed globally. If not there may exist mixed-strategy equilibria. In the
symmetric case (with cA = cB) or close to the symmetric case, the second order conditions
are always satis�ed locally. Furthermore, we are able to demonstrate uniqueness in the gen-
eral case in the two market con�gurations analyzed below, referred to as global and local
competition.

4 Characterizing equilibrium

In what follows we want to characterize the equilibrium in some detail. To simplify the
exposition we assume that cA = cB = c. The general case is brie�y discussed in footnotes. We
distinguish between three types of equilibria; with global competition, with local competition
and a intermediate case referred to as having hybrid competition. Global competition refers
to a situation where H(z) < 1 for all z, so that there are marginal consumers for all social
locations. We show that in this case, global network externalities play an important role.
Local competition requires among other things that H(z) = 1 around z = 0 (and H(z) = 0
around 1). In this case, global network externalities play no role at all, and network e¤ects
play no role for the degree of competition.

5It follows from (10) that pA�cpB�c =
NA(pB�pA)
2�NA(pB�pA) . If pA exceeds pB , the left hand side exceeds one whereas

the right hand side is strictly below one.
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4.1 Global competition

With global condition we refer to equilibria where He(z) is strictly between zero and one
at all social locations z. Thus, competition is global in the sense that �rms are competing
for agents (there are indi¤erent agents) for all locations z. In the appendix we show that a
su¢ cient condition for global competition is that

g < t(1� 2a)

The left-hand side is an upper bound on the social gain of being in the A-network, while
the right-hand side shows the largest technological preference for the B-network over the
A-network when located at z = 0 (obtained when " = 1, see equation 1). The condition
states that if the latter dominates the former, H(z) < 1. A neccesary condition for existence
of global competition is that

1� a > 1=2
The latter follows from the fact that at z = 0, the highest possible value of y is 1�a. As the
social value for this person of joining the A-network is bigger than the social value of joining
the B-network, a necessary condition is that this person has a technological preference for
the B-network, i.e. that 1� a > 1=2:
Furthermore, global competition is more likely if g is su¢ ciently close to the uniform

distribution on [0; 1], in the sense that a bigger set of other parameter values will lead to
global competition (social location does not matter for social interaction). It is trivial to
show that if g is uniform on [0; 1], there is global competition whenever 1� a > 1=2.

Lemma 3 Suppose 0 < He(z) < 1 for all z. Then

N 0(�) = � 1

t(1� a)� g (13)

Proof. We want to show by construction that dHe(z)=dpA is the same for all z. Suppose
this is the case, and di¤erentiate (5). This gives

tdym(z)� gdH = �dpA=2

From (9) it follows that dym = (1� a)dH, which inserted gives

[t(1� a)� g]dH = dpA=2

By construction, He+dH is an equilibrium distribution, and as the equilibrium distribution
is unique it is also the only one. As the social circle has a circumference of 2, dNA = 2dH,
and this gives (13).
Inserted into (12) it follows that the equilibrium price is given by (with topscript G

indicating global competition)

pGA = p
G
B = c+ t(1� a)� g (14)
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This is analogous to the equilibrium price level with global network externalities, see La¤ont,
Rey and Tirole (1998). Most importantly, the existence of network externalities increases
competition and decreases prices. The point is as demand becomes more price sensitive: a
reduction in price brings in new agents. This makes the network even more attractive, and
even more agents are attracted to the network, and it is the existence of transportation costs
that keep demand from exploding.6 Furthermore, note also that the shape of g does not
in�uence for network pricing, only g
The factor 1 � a re�ects that the transportation costs becomes less important when

technology preference y is more a¢ liated with social location z. To be more speci�c, note
that for any given z, the "distance" between the most extreme agents in technology space
is exactly 1� a, not 1 as in the standard model. Absent global network e¤ects, an increase
in pA will therefore imply that a larger fraction of the customers at any z switches supplier.
The reduced maximum distance between the two alternatives has exactly the same e¤ect
as using the transportation cost parameter t proportionally. As a consistency check, note
that when 1� a = 1 (no relationship between social location and technological preferences),
p = c+ t+ g as in LRT.

4.2 Local competition

With local competition we refer to equilibria for whichH(z) = 1 on su¢ ciently large intervals
around z = 0 and H(z) = 0 around z = 1. To be more precise, de�ne z0 > 0 to be the
smallest value such that g(2z0) = 0. In equilibria with local competition, we require that
H(z) = 1 on an interval around 0 containing [�z0; z0]. The interval at which H(z) = 1 is
thus su¢ ciently large so that the social value of bringing in more customers in one end of
the interval for persons at the other side of the interval is zero. Due to symmetry, it then
follows that H(z) = 0 on an equally large interval around 1.
Note that z0 is exogenously determined by the shape of g. For local competition to exist,

it must be so that z0 < 1=2. As the social value of joining supplier A is greater than that
of joining supplier B, a su¢ cient condition for local competition to exist (in the symmetric
case) is that all agents with social location at z0 has a technical preference for the A network,
or from (1) that az0 + (1 � a) � 1=2. This is always satis�ed if 1 � a is su¢ ciently small.
[Note that local competition can only exist when 1� a < 1=2.]
With local competition, the equilibrium distribution H has some remarkable properties.

Let H0(z) denote the equilibrium distribution of customers when �p = 0, and let H�p(z)
denote the equilibrium distribution of H for a small �p = pB � pA. Furthermore, denote by
z1 the highest value of z such that H(z1) = 1. Then the following holds:

Lemma 4 With local competition for both �p = 0 and pB � pA = �p, the following holds
a) For all zi > 0, H�p(zi) = H

0(zi � �), where � = �p
ta

b)

N 0(0) =
1

ta
(15)

6Consider brie�y the general case where cA may di¤er from cB . Under global competition N 00(�) = 0,
hence (10 ) yields a unique equilibrium.Thus equilibrium prices are pi = ci + t(1� a)� g.
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Proof. a) Consider any value zi > 0. We want to show that H�p(zi) = H0(zi � �)
is an equilibrium. Suppose it is true. For zi < � it then follows directly from (9) that
H�p(zi) = 1 = H

0(zi � �). We therefore concentrate on the case where zi > �. Then

H�p(zi) = max

"
min

"R


g(d(z; zi))H

�p(z)dz + �p�g+t
2

� tazi
t(1� a) ; 1

#
; 0

#
(16)

= max

"
min

"R


g(d(z; zi � �))H0(z)dz + g+t

2
� ta(zi � �)

t(1� a) ; 1

#
; 0

#
(17)

Consider then the integral. Inserting H�p(zi) = H
0(z � �) and taking into account that

g(d) = 0 whenever d > 2z0, givesZ



g(d(z; zi))H
�p(z)dz =

Z zi+2z0

zi�2z0
g(d(z; zi))H

�p(z)dz

=

Z zi+2z0

zi�2z0
g(d(z; zi))H(z � �)dz =

Z zi��+2z0

zi���2z0
g(d(z; zi � �))H(z)dz

=

Z



g(d(z; zi � �))H(z)dz

It thus follows thatH0(z��) satis�es the �xed pointHp = �p(Hp) and is thus an equilibrium.
Furthermore, since we know that the equilibrium is unique it is also the only equilibrium.
b) Due to symmetry we have

N(�) = 2

264 z1��p
2tZ

0

1dz +

1�z1+�p
2tZ

z1��p
2t

H(z � �p
2t
)dz +

1Z
1�z1+�p

2t

0dz

375
Di¤erentiating with respect to �p yields the result.
By inserting (15) into (12) it follows that (with topscript L indicating local competition)

pLA = p
L
B = c+ at (18)

Proposition 2 Suppose the network externalities are local. Then the network externalities
have no e¤ect on equilibrium prices.

As mentioned above, the additional value for the marginal agent of increasing the net-
work�s market share is positive and proportional to g > 0. Still, this will not in�uence the
pricing decision of the �rm.
To gain intuition for the proposition, �rst note that global network externalities tend to

increase price competition, because they increase the price elasticity of demand. Reducing
the price will then increase the size of the network, and this will make the network even
more attractive. This mechanism does not hold with local externalities. A reduction in price
will increase the network size, and this has a substantial e¤ect on the utility of the agents
that previously were marginal. However, these agents are now inframarginal. The utility
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of joining the network for the marginal agents is unchanged (taking into account that the
identities of the marginal agents also change).
Finally, note that the the technology preference in�uences prices in a di¤erent way with

local than with global competition (at in 18 and (1 � a)t in 14). Again this re�ects how
di¤erent competition works in the two cases. With global competition, there are marginal
customers for all z. For a given z, the technology preferences are spread over an interval of
length 1�a, and the relevant "transportation cost" is thus (1�a)t. With local competition it
is di¤erent, as a price increase in this case shifts the entire distribution to the right. Consider
a person at z = z1 > 0 (the highest value of z such that H(z) = 1. An increase in the price
shifts this point to the right, without changing the social value of joining the network. It
follows that z1 must fall su¢ ciently much so that the person with noise parameter drawn
at " = 1 still is indi¤erent between joining the network and not. Given " = 1; technological
preferences are spread over an interval with length a (as z moves from 0 to 1), and the
relevant transportation cost is ta.

4.3 Hybrid competition

Hybrid competition occurs if there is neither global nor local competition in equilibrium, i.e.,
when H(z) = 1 for jzj close to one while H(z0) < 1. Hybrid equilibria may exist for a wide
range of parameter values. A su¢ cient condition for the existence of hybrid competition
is that a < 1=2 (which rules out global competition) and z0 > 1=2 (which rules out local
competition).

4.4 Type of competition and competition intensity

Recall that z1 < 1=2 is the highest value of z1 such that H(z1) = 1. Consider a shift in
parameters. We say that the equilibrium is getting closer to the global competition whenever
a shift in parameters reduces z1. Analogously, we say that the equilibrium is getting closer
to local competition whenever a shift in parameters increases z1 and decreases z0. We want
to analyze how such a shift in�uence competition. To get clean result we look at shifts that
does not in�uence pricing with pure local and pure global competition, that is, g� preserving
increase in spread as de�ned above. From lemma 2 the following lemma is immediate

Lemma 5 A g-preserving increase in spread implies that the equilibrium is getting closer to
global competition and further away from local competition

We can then show the following proposition

Proposition 3 Suppose the equilibrium is getting closer to global competitions (and further
away from local competition) as a result of a g-preserving increase in spread. Then the
equilibrium price is always larger with local competition than with hybrid competition, and
always lower with global competition than with hybrid competition.

Proof. In appendix.
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5 E¢ ciency

In this section we derive the optimal distribution of agents over networks, and refer to this
as composition e¢ ciency. An important issue here is the total social value created in the
two networks, de�ned as

VA =

ZZ
g(d(z; zi))H(z)H(zi)dzdzi

VB =

ZZ
g(d(z; zi))(1�H(z))(1�H(zi))dzdzi

where VA and VB are the total social value created in A and B, respectively.
Let us �rst derive the distribution of agents on networks that maximize the number of

connections, see appendix for proofs. Given that the two networks are equally large (that is,R


H(z)dz = 1) , we show that the social value is maximized if H(z) = 1 for all z 2 (�1

2
; 1
2
]

and H(z) = 0 otherwise. The social value is minimized if H(z) = 1
2
for all z.

The number of connections is minimized if H(z) = 0:5 for all z, in which case each agent
can communicate with exactly half of her friends. The number of connections is maximized
if H(z) equals 1 up to a certain z value and then jumps to zero. However, in that case some
of the marginal agents bear a high cost associated with a strong technological preference
for the other network than they are attached to. Hence there is a trade-o¤ between the
social bene�t of increasing the number of connections and costs associated with technology
preferences.
Similarly, for a given distribution H(z) let TA and TB denote the aggregate "travel cost".

It follows that

TA =

Z



ym(H(zi))Z
0

tydF (y; zi)dzi

TB =

Z



1Z
ym(H(zi))

t(1� y)dF (y; zi)dzi

where F (y; zi) is de�ned in equation (2) and where ym(H(z)) = ajzij+(1�a)H(z) (from 8).
We say that H�(�) is composition e¢ cient if it coincides with the social planner�s al-

location of agents on networks. A composition e¢ cient distribution H�(z) maximizes the
aggregate agent utility and aggregate pro�ts. Clearly, the optimal allocation solves the sum
of connections net of total transport costs,

max
H(zi)

W = max
H(zi)

VA + VB � TA � TB all zi�[0; 1]

The �rst order conditions for maximum writes

dW

dH(zi)
= 2

Z
g(d(z; zi))H(z)dz�tym(zi)�

�
2

Z
g(d(z; zi))(1�H(z))dz � t(1� ym(zi))

�
= 0

(19)
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which can be expressed

t

2
ym(zi)�

Z
g(d(z; zi))H(z)dz =

pB � pA � g + t
2

2

Thus H�(z) is a �xed-point to the mapping �ggiven by

�gH�(zi) = max

2664min
2664
Z
g(d(z; zi))H

�(z)dz +
pB�pA�g+ t

2

2
� t

2
ajzij

t
2
(1� a) ; 1

3775 ; 0
3775 (20)

If we compare (9) and (20) we see that the only di¤erence between � and �g is that t in �
is replaced with t=2 in �g. Hence following proposition is immediate

Proposition 4 The equilibrium distribution is not composition e¢ cient. The social e¢ cient
composition pro�le H�(�) is steeper than the equilibrium pro�le H(�). Thus, for jzj < 1=2 it
follows that H�(z) � H(z) with strict inequality whenever H(z) < 1. The opposite is true
for jzj > 1=2.

The result follows from lemma 2 b) and the fact that the planner�s solution is equivalent
with the market solution with t replaced by t=2:
The e¢ ciency result is quite intuitive. The consumers, when choosing between suppliers,

trade o¤ travel cost and social gains. However, there is an externality associated with the
latter but with the latter: the social value of joining a network gives rise to an equally large
social gain for the agents that have already chosen the same supplier. As a result, the planner
puts twice as much weight on social value relative to transportation cost as the market, or
equivalently half as much weight on travel costs.
For zi < 1=2, He(z) > 1=2. Thus, the agent located at z obtains more social value by

joining the A-network than the B-network. For the same reason, the positive externality
of joining the A-network is larger than the positive externality associated with joining the
B�network, and it follows that H�(zi) = H

e(zi).
To be even more precise, by inserting from (5) in (19) we �nd the marginal social value

of increasing the A network�s market share at zi evaluated at He(zi) is given by

dW

dH(zi)
=

Z
g(zi � z)He(z)dz �

Z
g(zi � z)(1�He(z))dz

which captures the net externality associated with the choice of network. Again observe that
the net externality is positive if the marginal agent at zi has a majority of friends in the
A-network. Hence, when a agent located at zi < 0:5 (hence has her majority of friends in
the A-network) joins the B-network (due to her technological preference for B), she exerts a
negative net externality since the majority of her friends su¤er. Thus, compared to �rst best
composition e¢ ciency, too many agents with social location below 0.5 choose the B network,
and too many above 0.5 choose the A network. Hence the welfare maximizing distribution
H�(z) is steeper than the equilibrium contribution.
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6 Endogenous agent heterogeneity

It is well known that di¤erences between marginal and average agents may give rise to distor-
tions. This was �rst explored in Spence (1975). He studied a monopolist�s choice of product
quality level, and showed that this will depend on the marginal consumer�s preferences for
quality. A social planner�s choice of quality, by contrast, depends on the average preference
for quality among the consumers. If marginal and average valuation di¤er, the quality level
chosen by the monopolist is not socially optimal.
Local network externalities give rise to a certain structure on the di¤erence between the

marginal and the average agents in a network. The marginal agents obtains less utility from
social interacting than the average agent. If we extend the model by including more choice
variables for consumers this di¤erence between the marginal and the average consumer will
lead to new distortions, which are absent with global network externalities.

6.1 Communication intensity

In this subsection we assume that consumers, when connected to a network, choose how
intensively to use the network. A very natural example here is communications, where usage
depends on the number of people a person communicates with. With a club interpretation
usage may be how many times a member uses the club, and with platform competition it
may be the number of applications purchased. The �rms compete by o¤ering two-part
tari¤s, with a �xed fee (connection or membership fee K) and a usage price q. Both are set
by the two �rms simultaneously and independently.
Our driving assumption is that utility of usage depends positively on the social value

of the network to the consumer. This is obviously the case in a communication network,
where g() can be interpreted as the number of "friends" in the network. In what follows
we therefore use communication networks as our reference. We assume that the utility
obtained by communicating with one friend is !(x), where x is usage. If the consumer has
N friends in the network, we assume that total utility is !(x)N . As all friends are equally
valuable, all consumers choose the same communication intensity x with all friends (the
exact speci�cation of preferences at this point is not so important. For simplicity, we assume
that only communication paid by the agent gives rise to utility.7 Finally, an agent can only
communicate with the agents in the same network. Compatibility is discussed in the next
section.
The net surplus v(qA) for a consumer attached to network A for each "friend" in that

network is given by
v(qA) =Max

x
[!(x)� qAx]

We write the optimal usage as a function of qA, x(qA). Note that x(qA) � �v0(qA).
Then we turn to the assignment game. Given prices pA and qA, the net surplus for a

agent (zi; yi) of joining the A network is

uA(yi; zi) = �� tyi + v(qA)
Z
g(d(z; zi))H(z)dz � pA (21)

7Note that the social externality identi�ed in the previous section is still presnet: If a person joins a
network, her "friends" in that network obtains utility from having one more person to contact.

15



and similarly, the net bene�t of joining the B network is

uB(yi; zi) = �� t(1� yi) + v(qB)
Z
g(d(z; zi))[1�H(z)]dz � pB (22)

As above, if all zi types prefer the A network then H(zi) = 1, and if all prefer the B
network H(zi) = 0. Otherwise, zi types are divided in two groups. Those with technol-
ogy preference yi < ym(zi) who prefer the A network, and yi > ym(zi) who prefer the B
network. From equations (21) and (22) it follows that the indi¤erent consumer has tech-
nology preferences given by agents with technology preference y(zi) are indi¤erent, that is
uA(y(zi); zi) = u

B(y(zi); zi) or

ty(zi)�
v(qA) + v(qB)

2

Z
g(d(z; zi))H(z)dz =

pB � pA � v(qB)g + t
2

(23)

By following exactly the same procedure as when deriving (8), it follows that we can write
the equilibrium of the assignment game as a �xed point H = �xH, where the mapping �x is
de�ned as

�xH(zi) = max

2664min
2664
v(qA)+v(qB)

2

Z
g(d(z; zi))H(z)dz +

pB�pA�v(qB)g+t
2

� tajzij

t(1� a) ; 1

3775 ; 0
3775
(24)

Note that for given qA and qB, v(qA) and v(qB) are constants, hence we can show existence and
uniqueness of the �xed point in exactly the same way as above. We refer to the equilibrium
distribution as Hx(z) (which of course depends on prices)
The pro�t of �rm A is given by

�A = (pA � c)
Z
H(z)dz + x(qA)(qA � c)

Z Z
g(d(z; zi))H(z)H(zi)dzdzi (25)

The �rst integral is the size of the network (the number of customers). The double integral
shows the aggregate number of communication links in the network. Note that the �rm
not only care about the size of its network, but also its composition (the social location of
its customers), as this in�uences the amount of communication that takes place within the
network.
We want to characterize equilibrium in the symmetric case. Since the optimizing with

respect to pA corresponds to the simpler case above, we focus on the choice of usage price qA.
Maximizing �A with respect to qA yields the following �rst order condition (see appendix for
details):

[1� 
]x(qA) + (qA � c)x0(qA) = 0 (26)

where


 :=
1
2
gZ Z

g(d(z; zi))H(z)H(zi)dzdzi
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Note that in the symmetric equilibrium, the agent located at z = 1=2 has half of its friend in
both networks. For marginal customers at z < 1=2 they have more than half of their friends
in the network, and vice versa for z > 1=2. Due to symmetry it follows that the nominator
shows the average number of friends for the marginal agents. The denominator shows the
number of communication links, which is equal to the average number of friends in the entire
network (since the measure of agents in the network is 1 in the symmetric equilibrium). The
variable 
 thus measures the average number of friends for the marginal agents relative to
the average number of friends of all agents attached to the network. Note that 
 2 (1=2; 1].
The second term in (26) captures the demand e¤ects of the usage price, which can be

divided in two parts. The �rst part is the standard direct negative demand e¤ect x0(qA). The
second part is the indirect negative demand e¤ect from the change in network composition.
A higher usage price implies hurts the marginal agents with many friends in the network
(z low) more than those with a few friends in their network (z high):The H function thus
decreases for values of z above 1=2 (with many friends) and decreases for z > 1=2 (with few
friends in the network). As a result the total amount of communication decreases.
It follows that the pro�t-maximizing tra¢ c price exceeds marginal cost. Local externali-

ties creates agent heterogeneity, and tra¢ c price can be used as a rent extraction device. In
this case the marginal agent has a lower level of exchange than the inframarginal. Hence,
the network owner is better o¤ increasing the usage price slightly and compensate the mar-
ginal agent by reducing the �xed fee. The �rm thus trades o¤ e¢ ciency for the "low-type"
(marginal) agents and rent extraction for the "high-type" (inframarginal) agents.

Proposition 5 The �rms set the communication price qk, k = A;B above marginal cost.
Thus, the communication price exceeds the price level that induces a static �rst best level of
tra¢ c represented by marginal cost pricing .

It can be show that this result does not depend on the particular speci�cation of two
part tari¤s. With an optimal general contract, increasing the usage price for marginal agents
relaxes the incentive compatibility constraint of the inframarginal workers, and hence enables
to �rm to extract more rents from the latter. Finally, the e¤ect is weakened by the negative
e¤ect increased usage price has on the composition of the network. As long as the network
has a positive margin on usage, this is costly for the network.
The network owner price internal tra¢ c as if he had some degree of market power, where

the degree of market power is captured by the relative deviation between the marginal and
average intensity of exchange. With global network externalities, symmetry between agents
prevails (hence 
 = 1), which means that the network adopts marginal cost pricing. Note
that 
 > 1=2: Denoting the inverse demand elasticities of x(qA) by ", the equilibrium usage
price (assuming constant elasticity) is

qA =
1

1� " [1� 
]c (27)

Note that 
 decreases in network size, and approach 1=2 when the network goes to in�nity.
Thus, large network will have a stronger incentive than small networks to overprice tra¢ c.
BRA
Consider the socially e¢ cient usage price. In the proposition we referred to static �rst

best usage price as marginal cost pricing. De�ne the constrained e¢ cient usage price as
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the usage price that maximizes net welfare given that agents are distributed according to
individual optimization (i.e., the price that emerges if a planner could set the usage price
but make no other decisions). Then the following holds:

Proposition 6 The constrained e¢ cient usage price is below marginal cost under pure local
network externalities.

The proposition is almost like a corollary to proposition 4. Note that there are no
externalities related to communication intensity (since only the payer gets utility from com-
munication). However, the externality identi�ed in a previous section related to the agents�
choice of network carries directly over to this setting. It is trivial to show, analogous with
the results above, that the socially optimal H (for given v) solves (24) with t=2 substituted
in for t. As we have seen, a low usage price increases the steepness of the H function. It
follows that by subsidizing usage, the planner can make the distribution function steeper
and thus closer to the socially optimal distribution.
It thus follows that the market solution for usage pricing distorts the distribution of H

in the wrong direction, and leads to a distribution of agents on the networks that are even
further away from the optimal distribution.

6.2 Compatibility

We will now discuss the agents�incentives to undertake investments in order to make the
networks compatible. We focus on the situation with one-way compatibility. Thus, network
A may give its members (inferior) access to network B by undertaking an investment C. Let
�A � 1 denote the degree at which the agents in network A can utilize network B, and write
the cost of compatibility as C(�A).
The timing of the game is as follows: Firms �rst set prices pi, i = A;B and the degree

of compatibility �i, i = A;B, independently and simultaneously. Then agents choose which
platform to assign to. The utility of a agent in network A is then given by

uA(yi; zi) = �� tyi +
Z
g(d(z; zi))H(z)dz + �A

Z
g(d(z; zi))(1�H(z))dz � pA (28)

By doing the exact same reasoning as in the previous subsection it follows that the equilib-
rium distribution Hc is a �xed-point to the mapping

�CH(zi) = max

�
min

��
1� �A + �B

2

�Z
g(d(z; zi))H(z)dz +

pB � pA � (1� �A)g + t
2

; 1

�
; 0

�
(29)

Network A�s net pro�t equals

�A = pA

Z
H(z)dz � C(�A) (30)

verdien til konnektivitet As with two-part tari¤ case, it is convenient to distinguish
between the composition e¤ect and the scale e¤ect when solving the network�s optimization
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problem in �xed fee pA and degree of compatibility �A. Increasing pA for a given �A shifts the
H(z) pro�le to the right with no e¤ects on its slope. The optimal degree of compatibility can
then be characterized by maximizing (30) w.r.t. �A and simultaneously adjusting pA such
that the average agent is indi¤erent (who has half of her friends in the network). Analogously
with the former section, we have the required adjustment dpA = (g=2)d�A:
Simple manipulations yield the following �rst order condition for compatibility

g

2
� C 0(�A) = 0 (31)

Increased compatibility is valuable to the agents and allow the network to raise access
price without making the marginal agents (on average) worse o¤ - this is captured by the �rst
term of (31). In optimum the network�s marginal gain from compatibility exactly balances
the marginal cost of compatibility.
The socially e¢ cient degree of compatibility (contingent on equal market shares), by

contrast, maximizes welfare given by

W =

Z Z y(zi)

�y(zi)
uA(yi; zi)f(yi � zi)dyidzi +

Z Z �y(zi)

y(zi)

uB(yi; zi)f(yi � zi)dyidzi (32)

�C(�A)� C(�B)

Maximizing (32) w.r.t. �A, given that �A = �B yields the �rst order condition,

2

Z Z
g(d(z; zi))H(zi)(1�H(z))dzdzi +

@W

@(H(z))

dH(z)

d�A
� C 0(�) = 0 (33)

The �rst term in (33) is the average agent value of compatibility. The second term captures
the composition e¤ect of a higher degree of compatibility.
If the network externality is global, a comparison of (31) and (33) shows that the mar-

ket solution is optimal: Average agent value coincides with marginal agents value due to
anonymity, and the composition e¤ect is zero. With local externalities both terms matter.
With local network externalities, the marginal agents value compatibility higher than

the average agent, since the marginal agent communicates more with the agents in the other
network than does the average agent. Since the �rms compete for the marginal agent, it is
his/her preferences that governs the choice of compatibility, and therefore too much resources
are spent on making the systems compatible compared with the socially optimal level. Hence
the �rst term in (33) is strictly lower than g=2.
Consider then the composition e¤ect. Increasing �A has a partial negative e¤ect on

composition e¢ ciency since it attracts agents that communicate intensively with the other
network (that is types zi > 0:5) and punish agents with most of their friends in the A-network
(types zi < 0:5). Hence the H(z) pro�le becomes �atter. Thus, the second term of (33) is
negative. This yields the following result.

Proposition 7 Suppose the network externalities are local. Then the �rms have too strong
incentives to make the networks (one-way) compatible.
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6.3 Interconnection fees

In this section we generalize the model by introducing internetwork exchange. We maintain
the linear price structure. We assume that the networks can discriminate between internal
and external tra¢ c, and we denote by qTA the unit price charged by agents in network A
for communication with the agents in network B. We assume that the termination price is
exogenously given (for instance set by the regulator) and equal to c. Our main �nding is
that as marginal agents communicate more intensively with agents outside the network, it
is optimal for the �rms to set the price for external tra¢ c below marginal cost.
The game structure corresponds to the previous section on two-part tari¤s. In stage

one of the game the networks independently and simultaneously determine their inter- and
infranetwork prices qi and qTi and the �xed parts of the tari¤s pi, i = A;B, whereas agents
independently choose which network to join in stage 2. The utility of agent y if he joins
network A is

uA(yi; zi) = �� tyi + v(qA)
Z
g(d(z; zi))H(z)dz + v(q

T
A)

Z
g(d(z; zi))(1�H(z))dz � pA

with corresponding expressions for the utility obtained if he becomes a member of the B
network.
Network A�s pro�t can be written

�A = pA

Z
H(z)dz + x(qA)(qA � c)

Z Z
g(d(z; zi))H(z)H(zi)dzdzi (34)

+x(qTA)(q
T
A � c)

Z Z
g(d(z; zi))(1�H(z))H(zi)dzdzi

As in previous sections we characterize the optimal inter- and intranet usage prices by
maximizing (34) with respect to qA and qTA conditioned on a given network scale. The optimal
value of qA is still given by (27). Maximizing (34) with respect to qTA gives the analogous
expression

[1� 
T ]x(qTA) + (qTA � c)
�
x0(qTA) + noe

�
= 0; (35)

where 
T is given by


T :=
0:5gZ Z

g(d(z; zi))(1�H(z))dzdzi
> 1

Thus, 
T is the number of intranet transactions for the marginal agent relative to that of
the average agent, and with local externalities this fraction is greater than unity. It thus
follows immediately that the �rm subsidizes tra¢ c out of the network. Solving (35) gives

qTA =
1

1� " [1� 
T ]c

We have thus shown the following:
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Proposition 8 With local network externalities, the �rms set the price for tra¢ c out of the
net, qk, k = A;B below marginal cost. Thus, the tra¢ c price is below the price level that
induces a �rst best level of tra¢ c out of the net.

Observe that network composition is not a concern in this section due to full compatibility.
Hence the socially e¢ cient usage prices are represented by marginal cost pricing.

7 Concluding remarks

This paper contributes to the small but growing literature on local externalities. We demon-
strate the local externalities do not sti¤en competition. Furthermore, due to the coordination
problem that arises with non-anonymity, the equilibrium su¤ers from composition e¢ ciency.
Finally we derive the e¤ects of local externalities on price setting when networks charge two
parts tari¤s.

8 Appendix

Proof of Lemma 1
i) Suppose the equilibrium is not symmetric around 0. Then there exists a strictly positive

number z0 such that H(z0) 6= H(�z0). But since the model is symmetric, there must exists
another equilibrium distribution H 0 de�ned as H 0(z0) = H(�z0) and H 0(�z0) = H(z0). Since
the equilibrium is unique we have thus derived a contradiction. The claim that if pA = pB
then H(zi) = 1�H(1� zi) for all zi�[0; 1] can be proved by exactly the same argument
ii) Suppose H(z) is strictly increasing in z at an interval in [0; 1]. It follows that H has

a local maximum for some z� 6= 0. De�ne z0 as the highest value of z less than z� such
that H(z0) = H(z�). If z� is also a global maximum, let z0 = �z�. Now de�ne a new
distribution function eH(z) such that eH(z) = H(z�) on [z0; z�] and eH(z) = H(z) otherwise.
Since, by construction, eH(z) � H(z) for all z and strictly greater on the interval (z0; z�) it
follows that �T eH(z) � �T eH(z), with strict inequality on [z0; z�], T = 1; 2:::. Since H(�) is a
contraction there exists a �x point H2(z) = lim

T!1
�T eH(z) � eH(z), which is a contradiction

due to uniqueness.
Finally, suppose H is decreasing but not strictly, and constant at some interval [z1; z2],

and strictly decreasing otherwise. This cannot be an equilibrium either. The agent localized
at z1 obtains stronger network e¤ects than one localized at z2, hence ym(z1) > ym(z2). From
equation (7) it then follows that �H(z1) > �H(z2), and H cannot be a �xed point
iii) From (9) it follows that �, and thus the �xed-point H, depends on the di¤erence

pB � pA. Let H�(z) denote the initial equilibrium, and consider an increase in pB � pA. It
follows that �H� � H�, with strict inequality for all z where 1 > H�(z) > 0. The result
thus follows from monotonicity, see proof Proposition 1.

Proof of Lemma 2.
a) The following lemma is used in the proof:
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Lemma 6 Assume H0(z) is symmetric and that H0(z) � �H0(z) for all z�[0; 1=2) with
strict inequality for some z. Then H0(z) � �H0(z) � �T�1H0(z) � �TH0(z) � H(z) and
�1H0(z) = H(z): For z�[1=2; 1) and z�[�1;�1=2) the signs are reversed.

Proof of lemma: Due to symmetry we have that �H0(12) = H0(
1
2
) = H(1

2
) = 1

2
and similar

for z = �1
2
. Also, due to symmetry �H0(z) � H0(z) = �H0(1 � z) � H0(1 � z) for all z.

Observe that all marginal agents with social location z�(�1
2
; 1
2
) are at least as good o¤ with

�H0(z) as with H0(z), and some are strictly better o¤, thus �2H0(z) � �H0(z) with strong
equality for some. This holds for each step �T . QED
Let us then return to the proof of lemma 2. We �rst provide intuition for the proof. As

will be shown, H is concave on [�1
2
; 1
2
] and convex on [1

2
; 1] and [�1;�1

2
]. A g-preserving

increase decreases the number of friends an agent has on concave segments and increases
the number of friends on convex segments However, since agents with social location on
[�1

2
; 1
2
] have a majority of their friends on [�1

2
; 1
2
], the concave segment weights more. Thus

H reduces on [�1
2
; 1
2
]. On [1

2
; 1] and [�1;�1

2
] H is convex, and with the same argument H

increases. This reasoning is shown formally below.
We �rst prove that if H(z) is concave on [�1

2
; 1
2
], then it is strictly concave on every

segment on (�1
2
; 1
2
) at which H(z) < 1. Afterwards we prove concavity.

Consider segments where H(z) < 1. Assume on the contrary that H(z) is linear on a
subinterval [zi; zj] � (0; 1

2
), and on [�zj;�zi] by symmetry. It is now convenient to change

notation. Denote by 
(v) := g(d(z; z+ v)), the number of friends located at distance v from
z. Due to symmetry, 
(v) does not depend on the agent�s own location as such, only on the
distance. Let bg(z) denote the equilibrium number of friends of an agent located at z;

bg(z) = Z 1

�1

(v)H(z + v)dv

Consider any two marginal agents z0 < z00 such that z0� [zi; zj] and z00� [zi; zj]. It follows
from (5) and (8) that

bg0 � bg00 = t �(1� a)H(z0)�H(z00)
z00 � z0 � a

�
(z00 � z0)

H(z0)�H(z00)
z00�z0 is the slope (in absolute value) of H(z) over the linear segment [zi; zj]. Thus,

comparing agents at z0 and z00, the di¤erence in their number of friends is proportional to
the distance (z00� z0). Hence, considering an in between agent zk = �zi+(1��)zj, we have
under the assumed linearity of the H(z) function thatbg(�zi + (1� �)zj) = �bg(zi) + (1� �)bg(zj)
We will now show that bg(�zi+(1��)zj) > �bg(zi)+(1��)bg(zj) contradicting the assumed

linearity. We have that

�bg(zi) + (1� �)bg(zj)
= �

Z 1

�1

(v)H(zi + v)dv + (1� �)

Z 1

�1

(v)H(zj + v)dv

=

Z 1

�1

(v) [�H(zi + v) + (1� �)H(zj + v)] dv
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Denote by � = zi+zj
2
. Let v and v be de�ned as follows (see �gure below)

v =
1

2
��; v = �1

2
��

Let 
1 := [v;�v] and 
0 := [�1;�v] [[v; 1].
Then we can write

�

Z 1

�1

(v) [�H(zi + v) + (1� �)H(zj + v)] dv

= �

Z

1


(v) [�H(zi + v) + (1� �)H(zj + v)] dv

+�

Z

0


(v) [�H(zi + v) + (1� �)H(zj + v)] dv

Since H(z) is concave on [�1
2
; 1
2
] by assumption, we have thatZ


1

[�H(zi + v) + (1� �)H(zj + v)]dv �
Z

1

[H(�zi + (1� �)zj)]dv

Observe that v is de�ned such that �H(zi+v)+(1��)H(zj+v) = H(1=2), which follows
directly from the symmetry of H around 1/2. The equivalent result holds for v.
On [�1

2
;�1] and [1

2
; 1] H(z) is assumed convex, thusZ


0

[�H(zi + v) + (1� �)H(zj + v)]dv �
Z

0

[H(�zi + (1� �)zj)]dv

Finally, due to symmetry the following must holdZ

0[
1

[�H(zi + v) + (1� �)H(zj + v)]dv =
Z

0[
1

[H(�zi + (1� �)zj)]dv =
1

2
(36)

Let 
pos1 := [0; v], 
neg1 := [v; 0], 
pos0 := [v; 1], 
neg0 := [�1; v]. Since 
(v) is single
peaked with maximum at v = 0, we have that 
(v0) > 
(v00) for any pair (v0; v00) such that
v0� 
pos1 and v00� 
pos0 , and 
(v0) > 
(v00) for any v0� 
neg1 and v00� 
neg0 . Thus, integrating over
the circle, the concave segment on 
1 has a higher weight than the negative segment 
0,
that is Z





(v) [�H(zi + v) + (1� �)H(zj + v)] dv

<

Z




(v)[H(�zi + (1� �)zj)]dv

This contradicts linearity.
It remains to show that H(z) is concave on [�1

2
; 1
2
]. Assume not. We can now prove

concavity on [�1
2
; 1
2
], by symmetry this also proves convexity on remaining parts of the

circle. Assume H(z) has strictly convex segments on [�1
2
; 1
2
]. Denote by H t(z) the envelope

of H(z) on [�1
2
; 1
2
]. Accordingly H t(z) has linear segments everywhere concavity on H(z) is
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not satis�ed. As above refer to such intervals as [zi; zj]. For all z =2 [�1
2
; 1
2
], segments that

are strictly concave are replaced by linear segments. Hence H t(z) is symmetric. Clearly,
all z on the intervals [�1

2
; 1
2
]; who are not on [zi; zj], are better o¤ with H t(z) than with

H(z);thus �H t(z) � H t(z) on these intervals. Consider then intervals [zi; zj]. As shown
above, �H t(z) > H t(z) for all z�[zi; zj]: It follows now directly from the reasoning above
that �H t(z) � H t(z) for all z�[�1

2
; 1
2
] and �H t(z) � H t(z) otherwise. Then it follows

from Lemma x that there exists an equilibrium H(z) � H t(z) contradicting the suggested
equilibrium.
b) and c) Due to Lemma (6) above it is su¢ cient to consider the �rst round e¤ect of

parameter changes. Let H0(z) denote the initial equilibrium, and consider an increase in g, a
decrease in t or an increase in a. Then it follows that �H0(z) � (>)H0(z) for all z � (>)1=2.

Existence of global competition.
Recall that H(z) reaches a maximum at 0. In a symmetric equilibrium with pA = pB it

follows from (9) that we have global competition ifZ
g(d(z; 0))H(z)dz +

�g + t
2

< t(1� a)

ref . Since
Z
g(d(z; 0))H(z)dz � g, a su¢ cient condition for global competition is

g +
�g + t
2

< t(1� a)

g < t(1� 2a)

Proof of Proposition 3
Proof. The following Lemma is used:

Lemma 7 Assume H1(z) = �H0(z) � H0(z). Then �H1(z) � H1(z)

Proof. Assume on the contrary that �H1(z) < H1(z) for some z. This is only possible if
the increase in A�s market share associated with the mapping from H0 to H1 has a negative
impact on the welfare of some members of the A-network. Since an increase in market share
has either a neutral or a positive impact on every network�s members�welfare this is not
possible. QED

Under global competition a reduction in pA generates a vertical parallel shift in the
H-function of size 1=(t(1� a) � g), thus after the price change �(H0 + 1=(t(1� a) � g)) =
H0+1=(t(1�a)�g). Assume the equilibrium is characterized by local or hybrid competition,
thus H = 1 around 0 and H = 0 around 1. Denote by H0 the equilibrium before the
decrease in pA. If H were allowed to take values strictly above 1, then from (9) the following
would hold: �(H0 + 1=(t(1� a)� g)) = H0 + 1=(t(1� a)� g). Consider the function Hd :=
H0+min[1=(t(1�a)�g); 1�H0]. Then it follows directly from (9) that �[H0+min[1=(t(1�
a)�g); 1�H0]] � [H0+min[1=(t(1�a)�g); 1�H0]), with strict inequality for some z. Due to
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Lemma (7) we thus now that there is an equilibrium below �[H0+min[1=(t(1�a)�g); 1�H0]]
which due to uniqueness is the only equilibrium. Since N 0 is monotonically increasing in the
derived change in H, it follows that N 0 is always larger with global competition than with
hybrid or local.
Under local competition a reduction in pA generates a horizontal parallel shift in the

H-function of size 1=ta. Assume the equilibrium is characterized by hybrid competition,
and refer to H0(z) as the equilibrium before the price decrease. Consider the function
Hd(z) := H0(z � 1=ta). By construction, the parallel shift captures the e¤ect from the
increased number of friends "on the same side of the market". However, under hybrid
competition some agents get access to new friends on the "other side of the market", thus
�H0(z � 1=ta) � H0(z � 1=ta) with strict inequality for some z. Thus N 0 is always larger
under hybrid than under local competition.

Maximizing versus minimizing social value
In the appendix we show that the social value in the the following: With two symmetric

networks this is equivalent to maximizing VA with respect to the distribution H(z) subject

to
Z
H(z)dz = 1, that is

max
H(zi)

ZZ
g(zi � z)H(z)H(zi)dzdzi s:t:

Z
H(zi)dzi = 1 all zi�[0; 1]

with the associated LangrangianZ �Z
g(zi � z)H(z)dz � �

�
H(zi)dzi

Point-wize maximization yields the �rst order conditionZ
g(zi � z)H(z)dz � � > 0! H(zi) = 1Z
g(zi � z)H(z)dz � � < 0! H(zi) = 0Z
g(zi � z)H(z)dz � � = 0! H(zi) undetermined

Obviously there are two solutions satisfying the �rst order conditions, either H(z) = 0:5
all z, or H(z) = 1 for all z�[z0;�(1 � z0)] where z0 is arbitrary, and H(z) = 0 otherwise.8

The two solutions are referred to as the maximum and minimum solutions respectively.
Two part tari¤
It is convenient to characterize the optimal usage price (hence optimal subscriber com-

position) holding network size �xed (this requires an adjustment in connection fee), and
then afterwards characterize the optimal network size (which is to determine the optimal
connection fee). Due to symmetry, an increase in qA matched with a decrease in pA such

8Observe from the �rst order conditions that the number of friends in the A network,
Z
g(zi� z)H(z)dz,

must be equal for all zi at which H(zi) is strictly between 0 and 1. Then it follows trivially that H can be
interior only if H = 0:5 everywhere.
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that �pA + v(qA)g=2 is constant will not change H(1=2) and will not change the size of the
network (but will reduce H(z) for z < 1=2 and increase H(z) for z > 1=2 in such a way
that symmetry is preserved). Increasing qA and adjusting pA such that the scale e¤ect is
neutralized requires

dpA
dqA

=
v0(qA)g

2
=
�x(qA)g

2
(37)

Maximizing (25) with respect to qA subject to (37) yields the �rst order condition

�
Z
H(z)dz

x(qA)g

2
+ pA

Z
dH(z)

dqA
dz + [x(qA) + x

0(qA)(qA � c)]
ZZ

g(d(z; zi))H(z)H(zi)dzdzi

+x(qA)(qA � c)
ZZ

g(d(z; zi))
dH(z)

dqA
H(zi)dzdzi = 0

Since dH(z)
dqA

and H(z) are odd it follows that
Z Z

g(d(z; zi))
dH(z)
dqA

H(zi)dzdzi = 0 and thatZ
dH(z)
dqA

dz = 0. Hence

[1� 
]x(qA) + (qA � c)x0(qA) = 0

where 
 := 1
2
g=

Z Z
g(d(z; zi))H(z)dzdzi.
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