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Abstract. Intuitively one expects that for any plausible parametric epi-
demic model, there will be some region in parameter-space where the epi-
demic affects (with high probability) only a small proportion of a large
population, another region where it affects (with high probability) a non-
negligible proportion, with a lower-dimensional “critical” interface. This
dichotomy is certainly true in well-studied specific models, but we know of
no very general results. A recent result stated for a bond percolation model
can be restated as giving weak conditions under which the dichotomy holds
for an SI epidemic model on arbitrary finite networks. This result suggests
a conjecture for more complex and more realistic SIR epidemic models, and
the purpose of this article∗∗ is to record the conjecture.

2010 AMS Mathematics Subject Classification: Primary: 60K35;
Secondary: 92D60.
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1. A BOND PERCOLATION RESULT

We start by repeating almost verbatim the statement of the main result of
the paper [1]. Take a finite connected graph (V,E) with edge-weights w = (we),
where we > 0 for all e ∈ E. To the edges e ∈ E attach independent exponential
(rate we) random variables ξe. In the language of percolation theory, say that edge
e becomes open at time ξe. The set of open edges at time t constitutes a random
graph G(t), and in particular determines a random partition of V into the connected
components of G(t); write C(t) for the largest number of vertices in any such con-
nected component. Now consider a sequence (Vn,En) of such weighted graphs,

∗ Research supported by NSF Grant DMS-1504802.
∗∗ Based on a talk at the workshop Stochastic models of the spread of disease and information

on networks, ICMS, Edinburgh, July 2016.
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where both the graph topologies and the edge-weights are arbitrary subject only to
the conditions that |Vn| → ∞ and that for some 0 < t1 < t2 <∞

(1.1) lim
n

ECn(t1)/|Vn| = 0, lim inf
n

ECn(t2)/|Vn| > 0.

In the language of random graph theory, this condition says that a giant component
emerges (with non-vanishing probability) sometime between t1 and t2. The fol-
lowing proposition asserts, informally, that the “incipient” time at which the giant
component starts to emerge is deterministic to first order.

PROPOSITION 1.1 (Aldous [1]). Given a sequence of graphs satisfying (1.1),
there exists a deterministic sequence τn ∈ [t1, t2] such that, for every sequence
εn ↓ 0 sufficiently slowly, the random times

Tn := inf{t : Cn(t)  εn|Vn|}

satisfy
Tn − τn →p 0.

2. REFORMULATION AS AN SI EPIDEMIC MODEL

Mathematical modeling of epidemics has a long history and a large literature,
and relevant issues will be briefly indicated in Section 3. An SI model refers to
a model in which individuals are either infected or susceptible. In our context,
individuals are represented as vertices of an edge-weighted graph, and the model
is the following:

For each edge (vy), if at some time one individual (v or y) becomes
infected while the other is susceptible, then the other will later become
infected with some transmission probability pvy.

These transmission events are independent over edges. Regardless of details of the
time for such transmissions to occur, it is clear that this model is closely related to
the random graph model in which edges e = (vy) are present independently with
probabilities pe = pvy, as follows:

(∗) The set of ultimately infected individuals in the SI model is, in the
random graph model, the union of the connected components which
contain initially infected individuals.

In modeling an epidemic within a population with a given graph structure, we
regard edge-weights we = wvy as indicating relative frequency of contact. Intro-
duce a virulence parameter θ, and define transmission probabilities

(2.1) pe = 1− exp(−weθ).
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Note this allows completely arbitrary values of (pe), by appropriate choice of (we).
Now the point of the parametrization (2.1) is that the random graph in (∗) above is
exactly the same as the random graph G(θ) in Section 1. So we can study how to
translate Proposition 1.1 into a statement about the SI epidemic model. It is impor-
tant to note a conceptual shift in this translation. Proposition 1.1 is most naturally
interpreted as a result about a random graph process evolving with time t, and the
proof in [1] relies on this being a Markov process on graph-space. However, in the
SI model we retain no notion of “time”; we use (2.1) as a device to define a one-
parameter family (with parameter θ) of edge-transmission probabilities, designed
to pass through an arbitrary given set (pe), and our results concern how the size of
the epidemic varies with θ.

The translation rests upon a simple observation leading to (2.2) below. For a
graph with vertex-set V and transmission probabilities (pe), write C for the size of
the largest connected component in the random graph model, and write C ′k for the
number of ultimately infected individuals in the SI epidemic model started with k
uniformly random infected individuals. From relation (∗) we clearly have

C ′k ¬ kC and P(C ′k  C | C)  1− (1− C/|V|)k.

These inequalities imply

P(C ′k  ε|V|) ¬ P(C  k−1ε|V|)
P(C ′k  ε|V|) 

(
1− (1− ε)k

)
P(C  ε|V|).

Considering edge-weighted graphs Vn and transmission probabilities of form (2.1),
we see that the relation between the largest component size Cn(θ) and the number
of ultimately infected individuals C ′n,k(θ) is of the form(

1− (1− ε)k
)
P
(
Cn(θ)  ε|Vn|

)
¬ P

(
C ′n,k(θ)  ε|Vn|

)
(2.2)

¬ P
(
Cn(θ)  k−1ε|Vn|

)
.

But we can apply Proposition 1.1 to the
(
Cn(θ)

)
, under condition (1.1), and write

its conclusion as follows: there exist deterministic τn such that, for every sequence
εn ↓ 0 sufficiently slowly, for each fixed δ > 0

P
(
Cn(τn − δ)  εn|Vn|

)
→ 0, P

(
Cn(τn + δ)  εn|Vn|

)
→ 1.

It is now straightforward to use (2.2) to translate this into a result for the SI epi-
demic, which we state carefully as follows. Say a sequence of non-negative random
variables (Yn) is bounded away from zero in probability if

lim
δ↓0

lim sup
n

P(Yn ¬ δ) = 0,

and write this as Yn ≫p 0.
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PROPOSITION 2.1. Take edge-weighted graphs with |Vn| → ∞, consider the
SI epidemics with transmission probabilities of form (2.1), and write C ′n,k(θ) for
the number of ultimately infected individuals in the epidemic started with k uni-
formly random infected individuals. Suppose there exist some 0 < θ1 < θ2 < ∞
such that, for all kn →∞ sufficiently slowly,

(2.3) lim
n

EC ′n,kn(θ1)/|Vn| = 0, lim inf
n

EC ′n,kn(θ2)/|Vn| > 0.

Then there exist deterministic τn ∈ [θ1, θ2] such that, for all kn →∞ sufficiently
slowly,

C ′n,kn(τn − δ)/|Vn| →p 0, C ′n,kn(τn + δ)/|Vn| ≫p 0

for all fixed δ > 0.

Proposition 2.1 provides a subcritical/supercritical dichotomy for the SI epi-
demics under consideration. The conceptual point is that, for virulence parameter θ
not close to the critical value τn, either almost all or almost none of the realizations
of the epidemic affect a non-negligible proportion of the population.

3. EPIDEMIC MODELS ON NETWORKS

Classical results on epidemic models can be found in textbooks such as [2],
and a more recent extensive account is [4]. Since around 2000 there has been inten-
sive study of models with explicit network structure; recent surveys are [5] from
the statistical physics viewpoint and [3] from the epidemiology/applied probability
viewpoint. But all this literature focuses on the analysis of specific models. Intu-
itively one expects that for any plausible parametric epidemic model, there will be
some region in parameter-space where the epidemic affects (with high probability)
only a small proportion of a large population, another region where it affects (with
high probability) a non-negligible proportion, with a lower-dimensional “critical”
interface. This dichotomy is certainly true in well-studied specific models, but we
know of no attempt at very general results. Indeed, discussion in the survey papers
cited above and in [6] mentions the difficulty in modeling population heterogeneity
realistically in a specific model, whereas our setting allows arbitrary heterogeneity.

Note also that the classical way of viewing the sub/supercritical dichotomy
is via an “effective growth rate” R0, the number of new infectives arising from a
typical infective, with the sub/supercritical dichotomy determined by R0 < 1 or
R0 > 1. But this does not apply to typical spatial models with short-range interac-
tion, so is not helpful for the very general results we seek. In fact, the “R0 > 1”
condition is better interpreted than the condition for order n infectives to occur in
O(log n) time.
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4. A CONJECTURE FOR A VERY GENERAL SIR MODEL ON NETWORKS

The proof of Proposition 1.1 relies on the exponential distribution assumption
but (intuitively) such results must hold much more generally. Let us formulate a
conjecture for a very general SIR model on networks. Recall R stands for recov-
ered: infectives will after a time recover and not be susceptible in future.

We need to define a set H of distribution functions “not wildly different from
exponential”. Let us tentatively use the following definition. For a constant β > 1

writeH(1)
β for the set of distribution functions for densities f on (0,∞) with mean

one and f(x) ¬ β exp(−x/β). Then write Hβ for the set of distributions of cY ,
where Y has distribution function inH(1)

β and 0 < c <∞.
We model an SIR epidemic on population size n as follows. Introduce a viru-

lence parameter 0 < θ <∞ and a “difference from exponential” parameter β > 1.
• Each individual v, if infected, remains infectious for a random time with

some distribution ι(v, θ).
• For each individual v and parameter θ the distribution function for ι(v, θ) is

inHβ .
• For each individual v, the distributions ι(v, θ) are stochastically increasing

as θ increases.
• For each ordered pair (vy) where v is infectious and y is susceptible, infec-

tion may spread from v to y at probability rate qvw(θ) per unit time.
• For each unordered pair (vy), the function θ → qvw(θ) is in Hβ or is the

zero function.
We want to conjecture that an analog of Proposition 2.1 remains true at this

level of generality. Consider a sequence of such models with n → ∞, and write
C ′n,kn(θ) for the number of individuals ever infected, given kn initial infectives. As
before, suppose this number is o(n) for very small θ and is not o(n) for very large
θ. That is, we assume that, for kn →∞ sufficiently slowly,

(4.1) lim
n

EC ′n,kn(θ1)/n = 0, lim
n

EC ′n,kn(θ2)/n > 0

for some 0 < θ1 < θ2 <∞.

CONJECTURE 1. Under the assumptions above, with fixed β, there exist de-
terministic θ∗n ∈ [θ1, θ2] such that, for all kn →∞ sufficiently slowly,

C ′n,kn(θ
∗
n − δ)/|Vn| →p 0, C ′n,kn(θ

∗
n + δ)/|Vn| ≫p 0

for all fixed δ > 0.

We have not attempted to prove the conjecture; a possible start would be to
look for a proof of Proposition 1.1 in the case where distributions were in a class
such asHβ .
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