Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Phenomenological two-gap model for the specific heat of MgB2

Permalink
https://escholarship.org/uc/item/0gb2x3wx

Authors

Bouquet, F.
Wang, Y.
Fisher, R.A.

Publication Date
2001-06-22

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0qb2x3wx
https://escholarship.org/uc/item/0qb2x3wx#author
https://escholarship.org
http://www.cdlib.org/

ruropinysics Letters FREFRIN

Phenomenological two—gap model for the specific heat of
MgB,

F. BouQuetr!?, Y. Wancg!, R. A. Fisaer?, D. G. Hinks?, J. D. JORGENSEN?,
A. JuNoD!, and N. E. PHILLIPS?

L' Département de Physique de la Matiére Condensée, Université de Genéve — CH-1211
Genéve 4 (Switzerland)

2 Lawrence Berkeley National Laboratory and Department of Chemistry, University of
California — Berkeley, CA 94720 (USA)

3 Materials Science Division, Argonne National Laboratory — Argonne, IL 60439 (USA)

PACS. 74.25.Bt — Thermodynamic properties.
PACS. 74.20.De — Phenomenological theories.
PACS. 74.60.-w — Type-I1I superconductivity.

Abstract. — We show that the specific heat of the superconductor MgB> in zero field, for which
significant non—-BCS features have been reported, can be fitted, essentially within experimental
error, over the entire range of temperature to 7. by a phenomenological two—gap model. The
resulting gap parameters agree with previous determinations from band-structure calculations,
and from various spectroscopic experiments. The determination from specific heat, a bulk
property, shows that the presence of two superconducting gaps in MgB» is a volume effect.

The discovery of superconductivity in MgB, [1] raised the questions of its nature and
the origin of its relatively high transition temperature 7. ~ 40 K. Specific heat (C) is a
powerful tool to aid in answering these questions and, more generally, to provide information
on the thermodynamics of the transition. Several groups have reported such measurements
on MgBs [2-10]. It is now established that C significantly deviates from the standard BCS
behaviour. First, a large excess in C is observed in the vicinity of T./4 [2-6]. Second, an
exponential fit of C(T') in the region T' <« T, indicates a gap ratio 2Aq/kpT, only one—
quarter to one-third of the isotropic BCS value [3,4,6]. This excess was interpreted as a
possible sign of a second superconducting gap, whose existence is predicted by band—structure
calculations [11-13]. The specific heat near T, is puzzling also with the jump AC at T
consistently smaller than the BCS weak—coupling lower bound. In this Letter, we present an
empirical two—gap model that fits the experimental data over the whole range of temperature
to T¢. This model resolves the apparent contradiction between different analyses of the specific
heat, and relevant parameters show good agreement with determinations based on independent
experiments.

We focus on two sets of specific-heat data obtained independently in two different lab-
oratories. Experimental methods and results have been described elsewhere [2,3,5,6]. The
unusual excess specific heat at ~ Tt /4, which denotes the presence of excitations within the
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main gap, is a consistent feature that is common to different samples and different techniques.
These measurements also give similar values for the normal-state contribution, with a coeffi-
cient of the linear term 7, ~ 2.65(15) mJ mol~! K2, and satisfy the criterion of the normal—-
and superconducting—state entropy being equal at 7.. However, detailed results, such as the
height and the width of the jump AC at T, are sample-dependent. The sample of Ref. [3]
was a powder of isotopically pure Mg!!By embedded in GE7031 varnish, whereas the sample
of Ref. [2] was a sintered commercial powder. A third sample prepared from Mg and B by
high—pressure techniques gave similar results [5]. The electronic part of the specific heat was
determined by subtraction of the normal-state data, obtained either at fields of 14 or 16 T
in Ref. [2], or with a short extrapolation of the 9 T data in Ref. [3]. We refer to the original
articles for details.

Although the low—T behaviour of the specific heat data in the earlier studies [2,3] definitely
pointed to the presence of excitations with a characteristic energy smaller than the BCS gap
Apcs = 3.53kpT., it was not clear whether this was due to a continuous, but extreme,
distribution of the gap resulting from anisotropy, or two discrete values of the gap closing at the
same temperature T, with possible anomalous temperature dependence at some intermediate
temperature. Furthermore, it was not clear whether these models could account for the specific
heat over the whole range of temperature to 7.. We present here a simple empirical model,
based on the existence of two discrete gaps A; and Ay at T' = 0, both closing at T¢.. In order to
calculate their respective contributions, we first consider the case of a single gap Ay, following
the method developed by Padamsee et al., and generally referred to as the a—model [14].
The ratio 2A¢/kpTe (3.53 in the BCS theory) is not fixed, but is considered to be a fitting
variable. The temperature dependence is taken to be the same as in the BCS theory, i.e.
A(t) = Apd(t), where §(t) is the normalised BCS gap at the reduced temperature t = T'/T,
as tabulated by Miihlschlegel [15]. The thermodynamic properties, entropy (S) and C, can
be calculated as appropriate for a system of independent fermion quasiparticles:

S 6 A
’YnTc w2 kgTe

o C  d(S/mT)
| Umrea-pwa-pay, =S,

(1)

where f = [exp(BE) + 1]7! and 8 = (kgT)!. The energy of the quasiparticles is given by
E = [e2 + A%(t)]%?, where ¢ is the energy of the normal electrons relative to the Fermi surface.
The integration variable is y = £/Ay.

The fit of experimental data for MgB, leads to very low values of 2A¢/kpT, for one of
the gaps, substantially less than 3.53 (see below). The a—model was devised for simulation of
strong—coupling effects [14], and has usually been applied to strong—coupling superconductors,
leading to values > 3.53. In that case, the temperature at which the gap closes is lowered
relative to the normal BCS closing temperature by retardation effects. Since the BCS ratio,
2A¢/kpT. = 3.53, is the weak—coupling lower limit, smaller values can have no physical mean-
ing as measures of the strength of the coupling. (However, anisotropy, both as theoretically
studied [16] and experimentally observed [17], does lead to values < 3.5.) In the present case,
as applied to a two—gap superconductor, a small value of 2A/kgT. has no bearing on the
strength of the coupling , but means only that the temperature at which the small gap closes
is raised relative to the normal BCS closing temperature by coupling to a larger gap.

Figure 1 shows the calculated C/tv,T. for 1 < 2Ag/kpTe < 5. We checked the numerical
results by comparing the data for 2A¢/kgT. = 3.53 with Miihlschlegel’s tables [15], and
by verifying that the entropy at 7. is equal to that of the normal state. The curves for
2A¢/kpT. > 3.5 are similar to those reported in Ref. [14]. The unusual shape of the curves
for low values of 2Ao /kpT. may be understood by considering two characteristic temperatures,
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Fig. 1 — C'/tynTc vs. t according to the a—model for 2Ao/kgT. = 1,1.5,2,2.5,3,3.5 (BCS),4,4.5,5.
Inset: specific-heat jump at T, vs. (2A0/kBTC)2.

Tar = Ag/(1.76kp), and T., which are equal in the BCS limit, but which are independent in
the present model:

e For T' < Ta, the thermal energy is too small for many quasiparticles to be excited
across the gap. Only the tail of the statistical distribution contributes, so that the
electronic specific heat follows an exponential behaviour approximately, similar to that
of a semiconductor.

e Above T =~ Tha < T¢, the temperature is high enough to excite most of the quasiparticles
across the gap. The specific heat approaches that of the normal state, although the
system is still superconducting.

o At T =T, the gap closes. If T, > Tx, i.e. if the gap is small compared to the thermal
energy at T¢, only a small change occurs in the number of excited quasiparticles. The
BCS ground state is essentially empty. As a consequence, the specific-heat jump is
small.

The smaller the gap, the closer the C/ty,T, curve approaches the normal-state line, and
the smaller the AC at the transition. We verify numerically the relation between the gap
and the jump, AC = kgN(0)/(kpT.)*(dA%/dB) o< A3 (inset of Fig. 1) [18]. This quadratic
dependence holds only because the variation of the normalised gap with ¢ is common to all
curves.

In a two—band, two—gap model, the total specific heat can be considered as the sum of the
contributions of each band calculated independently according to eq. (1) if interband transi-
tions due to scattering by impurities or phonons can be neglected. Each band is characterised
by a partial Sommerfeld constant ~y;, with v; + 72 = 7,. C data are fitted with three free
parameters, the gap widths A; and A,, and the relative weights v, /vy, = ¢ and v /v, = 1 —=.
Figure 2 shows the data (circles) and the fit (thick line), compared to the BCS specific heat
(thin line). Insets show the gap functions, and the various contributions to the total electronic
specific heat. The latter curves show evidence of weak correlation between the fitting param-
eters; the low—temperature excess is related to Ay, whereas the jump at T, is due essentially
to the Ay component. Numerical results are given in Table 1.
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Fig. 2 — BCS normalized specific heat (thin line), experimental data (o), and two-gap fits (thick
lines), versus the reduced temperature ¢. (a) data from Ref. [3]; (b) data from Ref. [2]. Insets: gaps
2A, /kgTe. and 2A,/kpT. versus t (dotted lines), and partial specific heat of both bands (full lines).
Parameters obtained from the fits are given in Table L.
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Fig. 3 — Semi-logarithmic plot of the electronic specific heat versus 1/7. Dashed line: asymptotic
curve, eq. (2) with v = ~y,; thick line: eq. (2) with v = 0.4y, (see text); thin line: standard BCS
curve, also shown in Fig. 2; (o), data from Ref. [3].

Fig. 4 — Superfluid fraction versus reduced temperature. Thin line: contribution of A;; dotted
line: contribution of As; thick line: full two-gap fit; (o): data obtained from measurements of the
penetration depth presented in Ref. [25]. Fitted parameters are given in Table I.
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TABLE I — Gap ratios 2A, [ksTe, 2A3 /kpTe and weights x as determined by the two—gap model (lines
1-4) and by different techniques (lines 5-10).

Ref. Technique 2A1 /kpTe 2As [kpTe z:(l—x)
3] specific heat 4.4 1.2 55% : 45%
2] specific heat 3.8 1.3 50% : 50%
[5] specific heat 3.9 1.3 50% : 50%
[25] penetration depth 4.6 1.6 60% : 40%
[19] Raman 3.7 1.6
[20] photoemission 3.6 1.1
[21] tunneling 4.5 1.9
[22] point—contact spectroscopy 4.1 1.7
[23] point—contact spectroscopy 4.2 1.0
[13] band structure 4.0 1.3 53% : 47%

In spite of its limitations, this empirical model fits the measured specific heat well over
the whole range of T to T;. The sample dependence of the results is reasonably low, and may
reflect metallurgical differences. The larger value of A; for the sample of Fig. 2a (isotopically
pure Mg!'B, powder [3]) reflects a sharper jump and a steeper slope just below T, compared
to the sample of Fig. 2b (MgB> sinter [2]). On average, 2A; /kpT, ~ 4.0 and 2A5/kpT ~ 1.2,
with approximately equal weights.

Moreover, the fitted parameters are qualitatively and quantitatively comparable with inde-
pendent determinations from other sources. They are consistent with band—structure calcula-
tions [13] and spectroscopic measurements [19-23], which report the presence of two gaps, the
smaller gap having approximately one—third the BCS value and the larger gap being slightly
greater than the BCS value (Table I). We emphasise that C, a thermodynamic property,
probes the whole volume, whereas spectroscopic measurements are more sensitive to surface
conditions.

The relative weights (1:1, i.e. & ~ 0.5) are consistent with the calculations of Ref. [13]. Liu
et al. attribute the larger gap A; to particular 2D sheets of the Fermi surface, whereas the
smaller gap A is associated with 3D sheets. Using partial densities of states and de Haas—van
Alphen mass renormalizations, the weight of the smaller gap is evaluated as z ~ 0.47, and
1 — 2 ~ 0.53 for the larger one. The agreement with the two—gap model fits is remarkable.

The present two—gap model reconciles the apparently conflicting results of Ref. [9] and [3,4].
By fitting their specific heat data close to T¢, Kremer et al. [9] concluded that their data was
consistent with a medium- to strong—coupling 2Aq /kgT, ~ 4.2. However, the fitted value of y,
at T, was 1.1 mJ mol 'K 2, less than half of v, measured in the normal state. Alternatively,
Yang et al. [4] and Bouquet et al. [3] fitted the exponential decrease of the low—T data and
concluded that 2A¢/kpTc ~ 0.9. However, the fitted value of v, at low T was too small also,
0.7 mJ mol~'K~2 in Ref. [3]. In the framework of the two—gap model, the main contribution
just below Tt is that of the larger gap A;, with a break in the slope characteristic of medium—
to strong—coupling, and an amplitude of AC determined by v1 = zy, ~ 7./2 (insets of Fig. 2),
in qualitative agreement with Kremer’s analysis. The main contribution at T' < T¢ is that of
the smaller gap As, with the exponential decrease determined by A, and the amplitude by
Y2 = (1 — 2)¥n ~ /2 (insets of Fig. 2), again in qualitative agreement with the analysis of
Ref. [3]. The latter data are presented below in a slightly different approach. Rather than the
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usual empirical interpolation C' o exp(—1.44T,/T'), we use the low—T" asymptotic formula [24]:

- Ao\ Ay

In Fig. 3, we plot data in the form In(C/v,T') versus 1/T, together with the limit given by
eq. (2). With 2A¢/kgTe = 0.9 and v = 7y, eq. (2) overestimates the data, although the slope
determined by Ag is correct. With v = 0.4,, the fit is good in the domain where eq. (2)
holds.

The same two—gap model can be applied to the superfluid density p, which is given, for
a single gap, by p = 1 — 2A¢/kgT [;* f(1 — f)dy. The penetration depth A o p~1/2 is
given in Ref. [25] and is plotted in Fig. 4, together with a two—gap fit (thick line) and its
components (full and dotted lines). These data are not strictly bulk measurements, but
probe the sample to a typical depth of A = 1800 A [2]. Nevertheless, A is large compared to
the typical sampling depth of many spectroscopic experiments, which is on the scale of the
coherence length € = 50 A [2]. The fitted parameters 2A;/kpT. and z are consistent with
other determinations (Table I).

The empirical a—model allows a quantitative comparison to be made between different
experiments and theory within a general framework. The results are numerically consistent,
and confirm the coexistence of two gaps for the bulk sample. This situation holds the promise
of interesting single—crystals properties. Our two—gap model is phenomenological since we
postulate the existence of the gaps, without specifying their origin. Any theoretical approach
leading to a similar average electronic density of states would be compatible with the present
results, so that specific-heat measurements alone cannot settle in favour of any particular
microscopic model [11,13].

Some limitations exist. First, the a—model assumes a BCS-like T'-dependence of the
gap. However, if the variation of the smaller gap is reasonably smooth, the results should
not depend critically on its exact shape, since the main effect on the specific heat occurs
below Ta where Ax(T') is expected to be essentially constant. Self-consistent calculations of
A(T) might lead to corrections, and more elaborate simulations are currently under way [26].
Second, we calculate each contribution of the gaps independently and assume that they are
additive. Some coupling is present, but within the present model, its sole effect amounts to
bringing the natural closing temperature of the smaller gap, i.e. &~ 10 K, up to =~ 40 K.

Our two—gap model describes only the zero—field specific heat. As data in H > 0 suggest a
different field dependence for each gap, a theory of the mixed—state specific heat for a two—gap
superconductor would be most useful in extracting quantitative information from C(T, H).
Indeed, the field dependence of the electronic contribution at low temperature is unusual.
The coefficient of the linear term in the mixed-state, v(H), dramatically increases in small
fields [2-6], in a quasi-logarithmic way [5], and saturates for fields much below Hco, in fact
near Hc/2. Moreover, the characteristic dip in C'/T for 0 < T' < 10 K associated with the
gap As in one of the bands vanishes by ~ 0.5 T. Qualitatively, these results would seem to
indicate that a small field is able to quench the smaller gap, in agreement with spectroscopic
measurements [22]. The saturation of v(H) much below H» suggests that a major part of the
electrons are either normal or in a gapless state, possibly by virtue of inter—band scattering
in the presence of a normal sheet on the Fermi surface. Forthcoming models may have to
embody the different dimensionality of the gaps. Interesting developments are expected for
the physics of the vortex state for superconductors with such an unusual k—dependent gap.

* X X%
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