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Abstract
Isogeometric analysis (IGA) has emerged as a promising approach in the field of structural optimization, benefiting from the 
seamless integration between the computer-aided design (CAD) geometry and the analysis model by employing non-uniform 
rational B-splines (NURBS) as basis functions. However, structural optimization for real-world CAD geometries consisting 
of multiple non-matching NURBS patches remains a challenging task. In this work, we propose a unified formulation for 
shape and thickness optimization of separately parametrized shell structures by adopting the free-form deformation (FFD) 
technique, so that continuity with respect to design variables is preserved at patch intersections during optimization. Shell 
patches are modeled with isogeometric Kirchhoff–Love theory and coupled using a penalty-based method in the analysis. We 
use Lagrange extraction to link the control points associated with the B-spline FFD block and shell patches, and we perform 
IGA using the same extraction matrices by taking advantage of existing finite element assembly procedures in the FEniCS 
partial differential equation (PDE) solution library. Moreover, we enable automated analytical derivative computation by 
leveraging advanced code generation in FEniCS, thereby facilitating efficient gradient-based optimization algorithms. The 
framework is validated using a collection of benchmark problems, demonstrating its applications to shape and thickness 
optimization of aircraft wings with complex shell layouts.

Keywords Isogeometric analysis · Kirchhoff–Love shells · Non-matching coupling · Free-form deformation · Lagrange 
extraction · Aircraft wing optimization · FEniCS

1 Introduction

Shell structures exhibit exceptional stiffness and strength-
to-self-weight ratios, and are extensively employed in vari-
ous engineering fields, such as aerospace, automotive, and 
marine engineering [1]. The performance of such structures 
is greatly influenced by geometric and material properties. 
Thus, structural optimization plays a vital role in obtaining 
superior designs for shell structures. In this paper, we present 
an optimization approach based on free-form deformation 

(FFD) [2] to achieve the optimal shape and thickness distri-
bution for isogeometric shell structures.

Structural analysis is involved in the optimization process 
to evaluate the response of the current design and guide the 
subsequent iterations. The finite element (FE) method [3] 
is a well-established approach used to approximate PDEs 
with Lagrange polynomial basis functions. However, the dis-
cretization of the computational domain through intercon-
nected simple elements, known as meshing, for complicated 
geometries is the primary challenge in FE analysis. The FE 
mesh generation and related process can account for up to 
80% of total analysis time [4]. Alternatively, isogeometric 
analysis (IGA) [5, 6] offers the possibility to bypass FE mesh 
generation by approximating the solution using the smooth 
non-uniform rational B-spline (NURBS) [7] basis functions. 
NURBS is the industrial standard widely used to represent 
computer-aided design (CAD) models, making IGA an ideal 
method to streamline the design-through-analysis process.

IGA has gained growing interest since its introduction 
not only due to the unified description between design and 
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analysis models but also the regularity provided by NURBS 
basis functions. The smoothness in splines allows direct dis-
cretization of the Kirchhoff–Love shell model [8], a fourth-
order PDE that requires at least C1 continuity with the Galer-
kin method. Various applications including wind turbines 
[9–11], bioprosthetic heart valves [12–14], and car hoods 
[15] have employed the isogeometric Kirchhoff–Love shell 
formulations [16–20] and demonstrated exceptional results. 
However, practical CAD geometries are often too complex 
to be represented by a single tensor product NURBS surface. 
To make the CAD models with multiple NURBS patches 
directly available for analysis, [21] introduces a fictitious 
strip to add bending stiffness at patch interfaces with con-
forming discretizations. Additionally, various methods, 
such as Nitsche’s method [22, 23], penalty method [24, 25], 
and super-penalty method [26, 27], have been applied to 
CAD models with non-matching NURBS surfaces, further 
expanding the applicability of IGA in dealing with complex 
geometries.

The seamless integration between CAD and analysis 
models in IGA makes it a natural choice for design optimi-
zation. The updated design in the optimization process can 
be precisely captured in the analysis, which in turn ensures 
accurate responses due to the exact geometry representation 
and excellent approximation capabilities of spline basis func-
tions [28]. Shape optimization using IGA has been investi-
gated extensively [29–34]. Many applications, such as beam 
structures [35], vibrating membranes [36], shell structures 
[37, 38], and complex photonic crystals [39], show superior 
design by employing IGA in optimization. Moreover, topol-
ogy optimization [40, 41] also benefits from the same spline 
basis in design models and analysis. Shape optimization for 
shell structures with stiffeners has been explored in [42, 43] 
using the FFD concept, a B-spline solid is extruded from a 
“master” part, which is stiffened with several “slave” stiffen-
ers, to modify the shape of the whole shell structure.

In this work, we employ the open-source framework 
PENGoLINS [44] for automated IGA of non-matching shell 
structures using the penalty method in [24]. The shape of 
the shell structure is updated through a trivariate B-spline 
FFD block, which encompasses the entire shell structure, 
without differentiating the “master” and “slave” parts. The 
FFD block modifies the Lagrange control points of all shell 
patches concurrently to preserve the surface–surface inter-
sections. Subsequently, we obtain the resulting NURBS sur-
faces of shells using the Lagrange extraction technique [45], 
which is also implemented in the IGA using FE subroutines. 
Moreover, this approach is also applicable to shell thickness 
optimization where the thickness distribution is continu-
ous at patch intersections. By integrating these two design 
variables, simultaneous shape and thickness optimization 
for non-matching shells can be effectively achieved. This 
combined optimization approach enables the exploration 

of complex design spaces while preserving the geometric 
integrity of the non-matching shell structure. To demonstrate 
the capability of the proposed method, we apply it to the 
design optimization of aircraft wings, effectively navigating 
the unconventional design space.

The structure of this paper is outlined as follows: we 
introduce commonly used notations and terminologies in 
Sect. 2 for reference. Section 3 reviews the penalty-based 
formulation for coupling of non-matching isogeometric 
Kirchhoff–Love shells and the computational algorithm for 
automated IGA of non-matching shell structures. We present 
the FFD-based shape and thickness optimization approach 
and formulate the sensitivities using the Lagrange extrac-
tion technique in Sect. 4. The optimization approach is vali-
dated using a suite of benchmark problems in Sect. 5 and 
is applied to aircraft wing design optimization in Sect. 6, 
where superior design solutions are demonstrated. Lastly, 
we conclude the effectiveness of the proposed method and 
discuss potential future directions in Sect. 7.

2  Notation and terminology

In this section, we provide a summary of commonly used 
notions and terminologies for reference, as the formulations 
in the following sections can become complex due to the use 
of the extraction concept in IGA, interval quadrature meshes 
for coupling separate spline patches, and FFD B-spline 
blocks in optimization.

• psh : order of spline surfaces for shell structures.
•  I,IGA : IGA function space for shell patch SI . Superscript 

I indicates shell patch index. For single-patch formula-
tions, index I is neglected.

• nI,IGA : number of degrees of freedom (DoFs) in VI,IGA.
• N

I,IGA : spline basis functions in VI,IGA.
• uI,IGA : displacement in IGA DoFs for shell patch SI.
• P

I,IGA : NURBS control points for shell patch SI.
•  I,FE : FE function space for shell patch SI.
• nI,FE : number of DoFs in VI,FE.
• N

I,FE : Lagrange polynomial basis functions in VI,FE.
• uI,FE : displacement in FE DoFs for shell patch SI.
• P

I,FE : Lagrange control points for shell patch SI.
• M

I : extraction matrix for I-th shell patch that represents 
spline basis functions with Lagrange basis functions.

• �MI : parametric coordinates of intersection L with respect 
to shell patch SI.

• V
�M : function space of the interval quadrature mesh. 

Superscript � ∈ {0, 1} indicates the derivative order of 
the functions interpolated from VI,FE to V�M.
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• u�MI : interpolated displacement with �-th derivative from 
V
I,FE to V�M.

• P
�MI : interpolated control point functions with �-th deriv-

ative from VI,FE to V�M.
• T

�MI : interpolation or transfer matrix that interpolates �
-th derivative of functions from VI,FE to V�M.

• pFFD : order of B-spline basis functions for the FFD block.
• NFFD : basis functions of 3D B-spline FFD block.
• PFFD : B-spline control points of FFD block.

In Sect. 3.1, we review the basic Kirchhoff–Love shell and 
penalty formulations, and the IGA and FE function spaces 
are not differentiated in the subsection.

3  Coupling of non‑matching isogeometric 
shells

In aerospace structural applications, many components, such 
as aircraft wings, empennage, and fuselage, can be modeled 
using shell theory. The Kirchhoff–Love shell model [16] is 
employed in this work with IGA discretization. Typically, 
aircraft CAD geometries are composed of a collection of 
NURBS patches, and we adopt a penalty-based coupling 
method [24] to perform analysis for shells composed of 
multiple patches with arbitrary intersections and assume St. 
Venant–Kirchhoff material model. We first review the basic 
kinematics of Kirchhoff–Love shell theory and the coupling 
formulation for a pair of intersecting shell patches. We then 
elucidate the computational procedures for the analysis of 
non-matching shell structures.

3.1  Penalty‑based shell coupling

The Kirchhoff–Love shell model neglects transverse shear 
strains, with straight lines normal to the midsurface remain-
ing straight and normal to the midsurface before and after 
the deformation, and shell thickness kept unchanged. Thus, 
the displacement field of the 3D shell can be uniquely 
represented by the displacement of its midsurface. In the 
reference configuration, the midsurface of a single-patch 
shell can be represented by X(�) , where � = {�1, �2} , are 
parametric coordinates of the midsurface. In the deformed 
configuration with displacement u(�) , the shell midsurface 
is expressed as

Taking derivatives of midsurface with respect to parametric 
coordinates, we can obtain the covariant basis vectors in ref-
erence and deformed configurations on the tangent plane as

(1)x(�) = X(�) + u(�) .

and unit vectors normal to the midsurface read as

Membrane strain � and change of curvature � can be derived 
from (2) and (3). Applying the appropriate material model, 
we can obtain the corresponding normal forces n and 
bending moments m . The internal virtual work of Kirch-
hoff–Love shell is given by

where S is the midsurface of the shell. External virtual work 
is defined as

where � is the density, B is the body force, and T is the trac-
tion. Ω is the 3D domain of the shell volume with a thickness 
of t about the midsurface, and Γ is the 2D surface boundary 
where T is applied. The principle of virtual work states

(6) is a nonlinear equation and can be solved using the New-
ton–Raphson method,

Here, we only go through the fundamental equations of the 
Kirchhoff–Love shell model, readers are referred to [17, Sec-
tion 3] for detailed derivation.

Practical complex shell structures typically consist of 
multiple NURBS patches. For example, a pair of inter-
secting shells joined at a certain angle, which is prevalent 
when modeling the stiffeners of an aircraft wing, cannot be 
described by one NURBS surface. To make the CAD geom-
etry directly available for IGA, separate NURBS patches 
need to be coupled together so that both displacement con-
tinuity and joint angle conservation on the surface–surface 
intersections are maintained during deformation.

In this project, we use the penalty-based shell coupling 
formulation proposed by Herrema et al. [24], which offers 
a good balance between accuracy and simplicity. Consider 
two shells modeled with spline patches SA and SB that share 
one intersection L , as depicted in Fig. 1. The unit vector aA

t
 

is tangent to the intersection in the deformed configuration. 
In the reference and deformed configurations, conormal vec-
tors are defined as

(2)A� =
�X

���
and a� =

�x

���
for � ∈ {1, 2} ,

(3)A3 =
A1 × A2

‖A1 × A2‖ and a3 =
a1 × a2

‖a1 × a2‖ .

(4)�Wint = ∫
S

(n ∶ �� +m ∶ ��) dS ,

(5)�Wext = ∫Ω

�B ⋅ �u dΩ + ∫Γ

T ⋅ �u dΓ ,

(6)�W = �Wint − �Wext = 0 .

(7)
�2W

(�u)2
Δu = −

�W

�u
.
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Subsequently, shell patches SA and SB are coupled through 
the following penalty energy

where the �d term penalizes the differences of the displace-
ment on the intersection to maintain C0 continuity, and the 
�r term penalizes the change of the angle between SA and 
S
B to keep joint angle conservation. Displacement and angle 

conservation penalty parameters �d and �r are defined based 
on a problem-independent, dimensionless penalty coefficient 
� scaled with element size and material properties. For iso-
tropic materials, the penalty parameters are given by

where E is Young’s modulus, � is Poisson ratio, t is shell 
thickness, and h is element size. Details about the derivation 
of penalty parameters can be found in [24, Section 2]. The 
recommended value of the penalty coefficient, � = 1000 , 
is consistently applied across all benchmark problems 
and applications in this paper and yields accurate analysis 
results.

(8)A
A
n
= A

A
t
× A

A
3

and a
A
n
= a

A
t
× a

A
3
.

(9)
WAB

pen
=

1

2 ∫
L

�d
‖‖‖u

A − u
B‖‖‖

2

+ �r

((
a
A
3
⋅ a

B
3
− A

A
3
⋅ A

B
3

)2

+
(
a
A
n
⋅ a

B
3
− A

A
n
⋅ A

B
3

)2)
dL ,

(10)�d =
�Et

h(1 − �2)
and �r =

�Et3

12h(1 − �2)
,

3.2  Computational procedures for non‑matching 
shells

In this section, we go through the computational proce-
dures for structural analysis of isogeometric Kirchhoff–Love 
shells. The stiffness matrix of non-matching shells is formu-
lated and used as the sensitivity in the design optimization 
in Sect. 4.

3.2.1  IGA of Kirchhoff–Love shells using extraction

The concept of extraction [45–48] is utilized in the imple-
mentation of IGA, whose spline basis functions can be 
represented exactly by the linear combination of Lagrange 
basis functions. These Lagrange basis functions can be 
used in the classical FEM, allowing IGA to be imple-
mented using finite element software with pre-defined 
extraction operators. An open-source IGA Python library 
named tIGAr is developed by Kamensky et al. [49] using 
the finite element software FEniCS [50]. Implementation 
and technical details are discussed in Sect. 4.4. In this sec-
tion, we illustrate the basic mathematical operations and 
workflow of IGA using extraction.

To perform IGA, an extraction matrix M is generated to 
represent functions defined in spline function space VIGA 
with FE basis functions in VFE . The relation between these 
two sets of basis functions is given by

where NIGA are IGA basis functions and NFE are FE basis 
functions. Each column of M is the linear combination of 
N

FE giving an IGA basis function. In the analysis, we first 
create an extraction matrix M and assemble the stiffness 
matrix KFE and force vector FFE in VFE using existing finite 
element subroutines. Then the displacement in VIGA is solved 
as

with problem-specific boundary conditions applied to 
M

T
K

FE
M and MT

F
FE.

Remark 1 For the purpose of clarity, we assume control 
points of spline surfaces have unit weights. Therefore, 
rational spline basis functions are the same as homogene-
ous spline basis functions, both denoted as NIGA . In practice, 
weights need to be taken into consideration for correct geo-
metric mapping and analysis.

For single-patch Kirchhoff–Love shell analysis, stiffness 
matrix KFE is the second derivative of total work �2W

(�uFE)2
 . 

M
T �2W

(�uFE)2
M changes basis of �2W

(�uFE)2
 from VFE to VIGA , and 

(11)N
IGA = M

T
N

FE ,

(12)(MT
K

FE
M)uIGA = M

T
F
FE ,

Fig. 1  Spline patches SA and SB with one intersection L (indicated 
with red curves), where u and a

3
 are displacement and unit normal 

vector of midsurface, a
t
 and a

n
 are unit tangent vector and unit conor-

mal vector on the intersection
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the formulation of IGA stiffness matrix can also be 
expressed as

The right-hand side (RHS) of (12) for Kirchhoff–Love shell 
is equivalent to

Therefore, (12) is recovered as the linear system in VIGA to 
solve for displacements increments in IGA DoFs,

Remark 2 While the Kirchhoff–Love shell theory neglects 
transverse shear strains, membrane locking can still occur in 
cases of curved geometry. In our current implementation, we 
use the standard Gauss quadrature rule to perform numeri-
cal integration without including special treatment to avoid 
membrane locking. We have conducted numerical studies 
in our earlier work [44, Section 4] to assess the accuracy 
and convergence of the framework for a series of bench-
mark problems. Solutions converge quickly to the reference 
solution with increased refinement, particularly evident for 
cubic NURBS surfaces, which are utilized in the numerical 
examples and applications in Sects. 5 and 6. Nevertheless, 

(13)

M
T �2W

(�uFE)2
M =

(
�uFE

�uIGA

)T
�2W

(�uFE)2
�uFE

�uIGA
=

�2W

(�uIGA)2
.

(14)M
T
(
−

�W

�uFE

)
=

(
�uFE

�uIGA

)T(
−

�W

�uFE

)
= −

�W

�uIGA
.

(15)
�2W

(�uIGA)2
ΔuIGA = −

�W

�uIGA
.

incorporating methods to alleviate potential membrane lock-
ing in isogeometric Kirchhoff–Love shells into our open-
source framework will be an appealing research topic in 
future. We refer readers who are interested in techniques for 
removing membrane locking to [51–58].

3.2.2  Integration of penalty energy on patch intersections

For shell geometries that comprise multiple NURBS sur-
faces with non-matching intersections, the penalty energy is 
introduced to couple separate shell patches. In this section, 
we demonstrate the process to integrate the penalty energy 
(9) by using quadrature meshes. Again, taking two intersect-
ing shells with one intersection as an illustrative example, 
the schematic configuration in parametric and physical 
spaces is shown in Fig. 2. We generate a geometrically 2D, 
topologically 1D interval mesh ΩM , which is named quad-
rature mesh, in the parametric space to represent the inter-
section curve for the penalty energy integration. The para-
metric coordinates of the surface–surface intersection with 
respect to two spline patches are denoted with �MA and �MB . 
The overall algorithm to compute WAB

pen
 on ΩM are outlined 

as follows: 

1. Define function spaces V0M and V1M on ΩM with linear 
FE basis functions to create displacements, control point 
functions, and their first derivatives.

2. Move quadrature mesh ΩM to parametric coordinate �MA 
to generate transfer matrices between function spaces 
of shell patch SA and quadrature mesh ΩM , where the 

Fig. 2  A pair of shell patches 
share one surface–surface inter-
section in the physical space, 
associated parametric surfaces 
are illustrated. A topologically 
1D, geometrically 2D quadra-
ture mesh (red interval mesh) is 
created in the parametric space 
and moved to parametric loca-
tions of the intersection with 
respect to two shells to create 
transfer matrices. Geometric 
and displacement quantities of 
shell patches are interpolated to 
the quadrature mesh, where the 
penalty energy is integrated
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configuration is shown in the upper left part of Fig. 2. 
The following transfer matrices are created: 

(a) T
0MA ∶ V

A,FE
→ V

0M , which interpolates functions 
from VA,FE to V0M . Each entry is defined as 

 where NA,FE

i
 is the ith basis function in VA,FE , and 

�MA
j

 is the jth coordinate of ΩM.
(b) T

1MA ∶ V
A,FE

→ V
1M , which interpolates the first 

derivative of functions from VA,FE to V1M . T1MA is 
defined as 

 where NA,FE

i, �
 is the parametric derivative of ith 

basis function in VA,FE.
3. Compute displacement u0MA , geometric mapping P0MA , 

and their first derivatives u1MA,P1MA from parametric 
domain of SA to ΩM using transfer matrices generated 
from last step, 

4. Substitute interpolated quantities from previous step into 
(1)–(3) to obtain basis vectors on ΩM before and after 
deformation: AMA

i
 and aMA

i
 for i ∈ {1, 2, 3}.

5. Use (8) to compute conormal vectors: AMA
n

 and aMA
n

.
6. Compute physical element size hA

X
 of SA , then interpolate 

it to ΩM to obtain hMA
X

.
7. Move quadrature mesh ΩM to parametric coordinate 

�MB , which is depicted in the lower left configuration in 
Fig. 2. Then create transfer matrices T0MB and T1MB.

8. Repeat steps 3, 4 and 6 to obtain corresponding displace-
ment u0MB , normal vectors ABM

3
 and aBM

3
 , and element 

size hMB
X

 from SB.
9. Calculate penalty parameters based on (10) using aver-

aged physical element size hM
X
=

1

2
(hMA

X
+ hMB

X
) for each 

node on ΩM , 

Remark 3 In this section, we assume SA and SB have the 
same thickness tM = tA = tB in penalty parameters, same for 
Young’s modulus and Poisson ratio. For the thickness opti-
mization problem discussed in Sect. 4.3, shell patches may 
have different thicknesses, or each shell patch has variable 
thickness distribution. In these scenarios, we use an iden-
tical method to the element size calculation to interpolate 

(16)T
0MA
ij

= N
A,FE

i
(�MA

j
) ,

(17)T
1MA
ij

= N
A,FE

i, �
(�MA

j
) ,

(18)
u
�MA = T

�MA
u
A,FE and

P
�MA = T

�MA
P
A,FE for � ∈ {0, 1} .

(19)�M
d
=

�EtM

hM
X
(1 − �2)

and �M
r
=

�E(tM)3

12hM
X
(1 − �2)

.

thickness from shell patches to quadrature mesh and take 
the average, i.e., tM =

1

2
(tMA + tMB).

 10. Based on (9), we can integrate the penalty energy on 
ΩM with quantities computed from previous steps, 

 where JM is the associated line Jacobian mapping ΩM 
to L.

3.2.3  Assembly of non‑matching system

With the coupled formulations for intersecting shells, we can 
perform IGA on the non-matching shells directly. For a pair 
of shells with one intersection illustrated in Fig. 2, the total 
virtual energy in equilibrium is given by

which can be solved by the Newton–Raphson method. We 
can solve the linearized problem of (21) to obtain the full 
displacement uIGA =

[
uA,IGA uB,IGA

]T with one iteration,

Formulations for the derivative of Wt can be obtained by 
means of the chain rule. Using SA for demonstration, the 
derivative of Wt with respect to uA,IGA is given by

The second derivatives of W in the left-hand side (LHS) of 
(22) can be computed with the following formulations. Tak-
ing SA for illustration, the diagonal block reads as

and the off-diagonal block can be expressed as

(20)

WAB
pen

=
1

2 ∫ΩM

�
�M
d
‖u0MA − u

0MB‖2

+ �M
r

�
(aMA

3
⋅ a

MB
3

− A
MA
3

⋅ A
MB
3

)2

+ (aMA
n

⋅ a
MB
3

− A
MA
n

⋅ A
MB
3

)2
��

JM dΩ ,

(21)�Wt = �WA + �WB + �WAB
pen

= 0 ,

(22)
⎡⎢⎢⎣

�2Wt

(��A,IGA)2

�2Wt

��A,IGA��B,IGA

�2Wt

��B,IGA��A,IGA

�2Wt

(��B,IGA)2

⎤⎥⎥⎦

�
uA,IGA

uB,IGA

�
= −

�
�Wt

�uA,IGA
�Wt

�uB,IGA

�
.

(23)
�Wt

�uA,IGA
= (MA)T

(
�WA

�uA,FE
+

1∑
�=0

(T�MA)T
�WAB

pen

�u�MA

)
.

(24)

�2Wt

(��A,IGA)2
= (MA)T

(
�2WA

(�uA,FE)2
+

1∑
�=0

1∑
�=0

(T�MA)T
�2WAB

pen

�u�MA�u�MA
T
�MA

)
M

A ,
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In (23)–(25), expressions of derivatives of WA can be found 
in [16, Section 3], and [24, Section 2.2] spells out derivatives 
of WAB

pen
 . These derivatives are computed automatically by 

the implementation discussed in Sect. 4.4 using computer 
algebra and code generation capabilities in FEniCS. Substi-
tuting (23)–(25) into (22), one can solve the displacements 
in IGA DoFs for SA and SB.

Remark 4 For clarity, we only demonstrate the non-matching 
system with two shell patches. However, (22) can be readily 
extended to shell geometries consisting of more than two 
surfaces. We refer interested readers to [44, Section 3.2] for 
the assembly of shell structures with m patches and arbitrary 
intersections.

4  FFD‑based design optimization

CAD geometries of Kirchhoff–Love shells can be used for 
analysis without finite element mesh generation by employ-
ing formulations from Sect. 3. This provides attractive fea-
tures for shape optimization of shell structures, where the 
discretization of shell patches stays unaltered during shape 
evolution. The updated geometry in optimization iterations 

(25)

�2Wt

��A,IGA��B,IGA
= (MA)T

(
1∑

�=0

1∑
�=0

(T�MA)T
�2WAB

pen

�u�MA�u�MB
T
�MB

)
M

B .

stays consistent with the analysis model. As a result, this 
approach minimizes the effort required for geometry pro-
cessing while simultaneously enhancing accuracy.

In the context of shape optimization for non-matching shell 
structures, it is crucial to ensure that updated shell patches 
remain properly connected. Failure to maintain this connectiv-
ity can result in separation or self-penetration of shell patches 
during the optimization iteration. Such issues would lead to 
false analysis and yield unrealistic optimal shapes. To tackle 
this challenge, we adopt the FFD-based [2] technique com-
bined with Lagrange extraction to update shell geometry and 
demonstrate the workflow in Sect. 4.1. A comparable concept 
can be applied to thickness optimization to ensure continuous 
thickness distribution at the surface–surface intersections if 
needed. Sensitivities for both shape and thickness optimization 
are given in the subsequent sections.

4.1  Non‑matching shells update through FFD block

We use a cylindrical roof consisting of four non-matching shell 
patches that are shown in the upper-left part of Fig. 3 as an 
example to demonstrate the FFD-based shape optimization 
approach. Note that this approach can be applied to shell struc-
tures with an arbitrary number of patches.

4.1.1  Approximating shell patches with extraction

For the initial CAD geometry consisting of m Kirchhoff–Love 
shell patches, define a set of NURBS surface functions 
{SA(�), SB(�),… ,SI

m

(�)} , and the I-th shell patch SI(�) is 
expressed as

Fig. 3  Workflow of FFD-
based shape optimization for 
non-matching shell structures. 
A cylindrical roof consisting 
of four non-matching NURBS 
patches is first immersed in a 
trivariate B-spline block. We 
update the control points of the 
FFD block to deform the shape 
of the non-matching cylindri-
cal roof. Control nets of the 
NURBS surfaces are indicated 
with red color, and black is used 
for the control net of the FFD 
block
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where NI,IGA(�) are the spline basis functions of degree psh 
in VI,IGA . We omit degree psh in the notation for clarity. PI,IGA 
are the NURBS control points for surface function SI.

Using the extraction concept discussed in Sect. 3.2.1, 
NURBS surface function SI(�) can be represented with 
Lagrange polynomials as well,

where NI,FE(�) are basis functions in the finite element func-
tion space VI,FE

s
 with nodal interpolatory property, and PI,FE 

are Lagrange control points, or nodal values of SI . Plugging 
nodal coordinate �I,FE of VI,FE

s
 into (27), coordinate of the 

NURBS surface SI is represented with nodal values in the 
discrete setting,

Based on (11), Lagrange control points can be obtained 
through the extraction matrix and NURBS control points. 
We have the following relation,

4.1.2  Relating FFD block control points and shell geometry

The first step of Fig. 3 illustrates the initial configuration of 
a collection of intersecting non-matching shell patches S, 
where red control nets are displayed. To enforce connectiv-
ity of the intersections during optimization, we immerse S 
in a trivariate B-spline block, which is referred to as an FFD 
block, and use control points of the FFD block as design 
variables. A schematic demonstration is shown in the second 
step of Fig. 3. The FFD B-spline block is defined as

(26)S
I(�) = N

I,IGA(�)PI,IGA ,

(27)S
I(�) = N

I,FE(�)PI,FE ,

(28)S
I(�I,FE) = N

I,FE(�I,FE)PI,FE = P
I,FE .

(29)S
I(�I,FE) = P

I,FE = M
I
P
I,IGA .

(30)V(�) = NFFD(�)PFFD ,

where � is the parametric coordinate of the FFD block, 
NFFD(�) are B-spline solid basis functions of degree pFFD 
with knots vector, and PFFD are B-spline block control points.

To simplify formulation and implementation, we use 
an identity mapping for the FFD block B-spline block, so 
that the parametric coordinate coincides with the physical 
coordinate,

Substituting (29) into (31), NURBS surfaces of the non-
matching shells can be expressed using the FFD block basis 
functions and control points,

In the continuous context of (32), shell patches will not 
separate in the final configuration as long as they are inter-
connected in the initial geometry. As the shape update of 
the FFD block is continuous, there is no relative movement 
between patches within the FFD block. In the discrete space, 
we can relate the NURBS control points of the shell patches 
to the control points of the FFD block,

The control points of the NURBS surface PI,IGA of shell 
patches can be updated through the control points of the FFD 
block PFFD . Let NFFD(P̊

I,FE
)∶=AI

FFD
 , where P̊

I,FE denotes 
Lagrange control points of spline patch I in the baseline 
configuration. Then PI,IGA can be computed as

It is noted that we need to solve the system using 
Moore–Penrose pseudo inverse due to the non-square 
nature of the extraction matrix MI , which has dimen-
sions of nI,FE × nI,IGA . For the extraction matrix, we have 
nI,FE > nI,IGA , which means that we are solving an overde-
termined system. Therefore, PI,IGA is considered as a least 
square fit in (34) rather than an exact solution. The shape 

(31)V(�) = NFFD(�)PFFD = � .

(32)V
(
S
I(�)

)
= NFFD

(
S
I(�)

)
PFFD = S

I(�) .

(33)NFFD

(
S
I(�I,FE)

)
PFFD = NFFD(P

I,FE)PFFD = M
I
P
I,IGA .

(34)P
I,IGA =

((
(MI)TMI

)−1
(MI)TAI

FFD

)
PFFD .

Fig. 4  a Initial configuration of 
the cylindrical roof geometry 
consisting of four non-matching 
NURBS patches. b Updated 
NURBS surfaces using FFD 
block
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update strategy using FFD block is illustrated in the third 
step in Fig. 3, and the resulting shell patches with control net 
are depicted in the fourth step. A comparison between the 
initial non-matching cylindrical roof and updated NURBS 
surfaces is shown in Fig. 4, where the surface–surface inter-
sections keep overlapping within tolerance in the updated 
configuration.

The procedures to update control points of non-matching 
shells with m patches are summarized as follows: 

1. In the preprocessing step, generate sparse matrices 
of evaluation of FFD block B-spline basis functions 
at shells’ Lagrange control points in the initial con-
figuration 

{
A

I
FFD

}
 and Lagrange extraction matrices {

M
I
}
, for I ∈ {A,B,… , Im}.

2. At optimization iteration step iopt , obtain updated con-
trol points of the FFD block 

(
PFFD

)iopt . Compute updated 
Lagrange control points 

(
P
I,FE

)iopt for all shell patches, 

3. Solve NURBS control points 
(
P
I,IGA

)iopt at step iopt 
through Moore–Penrose pseudo inverse, 

4. Perform IGA with updated shell geometry, evaluate 
objective function and derivatives if needed, then pro-
ceed with optimization iteration.

(35)A
I
FFD

(
PFFD

)iopt
=
(
P
I,FE

)iopt
.

(36)M
I
(
P
I,IGA

)iopt
=
(
P
I,FE

)iopt
.

Though the control points of the shell patches are computed 
in the least square fit sense, the updated geometry can still 
retain the intersection with sufficient discretization. A sliced 
view of the intersection, in accompaniment with NURBS and 
Lagrange control points, between the right two spline patches 
S
C and SD in the first step of Fig. 3 is shown in Fig. 5, where 

we use coarser discretizations to make the comparison clearer. 
In the updated configuration, the two cubic intersecting edges 
are still overlapping even with only 5 and 6 NURBS control 
points.

Remark 5 Since there is no relative movement between 
intersecting spline patches within the FFD block, which 
can be achieved with adequate control points in the discrete 
context, parametric coordinates of surface–surface intersec-
tions remain unchanged during shape updates. Therefore, 
transfer matrices introduced in Sect. 3.2.2 can be reused to 
interpolate data from spline patches to quadrature meshes 
when integrating penalty energies in the optimization itera-
tion. These matrices only need to be generated once at the 
preprocessing stage.

4.2  Sensitivities for shape optimization

Utilizing the capabilities of direct analysis for non-match-
ing isogeometric shells and incorporating FFD-based shape 
updates, we are able to conduct shape optimization for the 
shell structures in a seamless manner. The problem that opti-
mizes the shape of non-matching shells can be formulated as 
follows,

Fig. 5  Sliced view of the 
intersecting edges between 
shell patches SC and SD of 
the cylindrical roof. The two 
edges remain overlapping in the 
updated configuration
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where control points of the FFD block PFFD are design vari-
ables, f obj is the objective function, gcon

ig
 are inequality con-

straints, and hcon
ih

 are equality constraints. PFFDl and PFFDu are 
lower and upper limits for the design variables.

To perform gradient-based design optimization, we formu-
late total derivatives of the objective function with respect to 
design variables as

w h e r e  P
IGA =

[
P
A,IGA

P
B,IGA … P

Im,IGA
]T  i s  t h e 

full vector of NURBS control points, and similarly, 
uIGA =

[
uA,IGA uB,IGA … uI

m,IGA
]T is the full vector of shell 

displacements in IGA DoFs.
Partial derivatives �f

obj

�PIGA and �f
obj

�uIGA
 in (38) can be computed 

and depend on the objective function combined with extrac-
tion matrices,

w h e r e  P
FE =

[
P
A,FE

P
B,FE … P

Im,FE
]T  , 

uFE =
[

uA,FE uB,FE … uIm ,FE
]T

 . M = diag(MA,MB,… ,MIm ) is a diagonal 
block matrix for global extraction. Calculation of partial 
derivatives in (39) is automated using FEniCS. Formulation 
for total derivative dP

IGA

dPFFD

 is introduced in (34). As for total 

derivative du
IGA

dPIGA , we have the implicit relation between PIGA 
and uIGA,

where Wt is the total energy of the non-matching shells 
defined in (21). Once an updated PIGA is obtained, the shell 
displacements need to be solved using (21) until the residual 
vector rt reaches a tolerance. Thus, rt is supposed to remain 
as 0 despite the change of PIGA , and we have the following 
derivative

and the total derivative du
IGA

dPIGA in (38) is given by

(37)

minimize f obj
(
PFFD

)
subject to gcon

ig

(
PFFD

) ≤ 0 , for ig ∈ {1, 2,… , ng}

hcon
ih

(
PFFD

)
= 0 , for ih ∈ {1, 2,… , nh}

PFFDl ≤ PFFD ≤ PFFDu ,

(38)
df obj

dPFFD

=

(
�f obj

�PIGA
+

�f obj

�uIGA
duIGA

dPIGA

)
dPIGA

dPFFD

,

(39)
�f obj

�PIGA
= M

T �f
obj

�PFE
and

�f obj

�uIGA
= M

T �f
obj

�uFE
,

(40)rt = Rt(P
IGA, uIGA) =

�Wt(u
IGA,PIGA)

�uIGA
= 0 ,

(41)
drt

dPIGA
=

�Rt

�PIGA
+

�Rt

�uIGA
duIGA

dPIGA
= 0 ,

Partial derivative �Rt

�uIGA
 is equivalent to �2Wt

�(uIGA)2
 and is the stiff-

ness matrix defined in (22). Analogously, we use a pair of 
shell patches to illustrate the formulation of partial deriva-
tive �Rt

�PIGA,

Partial derivatives in (43) have identical expressions to (24) 
and (25).

Extend partial derivatives in (43) to shell structures with 
an arbitrary number of patches, and substitute du

IGA

dPIGA in (38) 
with (42), we can obtain the total derivative of the shape 
optimization

4.3  Sensitivities for thickness optimization

The idea of FFD-based shape update can be applied to shell 
thickness optimization, where the shell thickness is treated as 
an extra field of the NURBS control points. We can use (34) 
to build the relation of the thickness between shell patches 
and FFD block,

where tI,IGA is the thickness for shell SI in IGA DoFs, and 
tFFD is the corresponding thickness field of the FFD block. 
Subscript s in MI

s
 and AI

FFDs
 denotes matrices for scalar fields. 

Note that tFFD is not the actual thickness of the B-spline solid 
geometry, but an extra set of the control points on the FFD 
block to update the thickness of the non-matching shells. 
Accordingly, the identical shape update strategy Sect. 4.1.2 
is applicable to thickness update. FFD-based thickness opti-
mization also offers the benefit that shell thickness remains 
continuous on the surface–surface intersections.

Replacing control points of the FFD block in (37) with tFFD , 
one can have the problem description of thickness optimiza-
tion. Since both Kirchhoff–Love shell total work WA and WB , 
and penalty energy WAB

pen
 involve shell thickness, the total 

derivative and associated partial derivatives of the thickness 
optimization problem can be acquired by replacing PFFD , PFE , 
P
IGA with tFFD , tFE and tIGA in Eqs. (42)–(44), respectively. The 

total derivative of FFD-based thickness optimization reads as

(42)duIGA

dPIGA
= −

(
�Rt

�uIGA

)−1
�Rt

�PIGA
.

(43)
�Rt

�PIGA
=

⎡
⎢⎢⎣

�2Wt

�uA,IGA�PA,IGA

�2Wt

�uA,IGA�PB,IGA

�2Wt

�uB,IGA�PA,IGA

�2Wt

�uB,IGA�PB,IGA

⎤
⎥⎥⎦
.

(44)

df obj

dPFFD

=

(
�f obj

�PIGA
−

�f obj

�uIGA

(
�Rt

�uIGA

)−1
�Rt

�PIGA

)
dPIGA

dPFFD

.

(45)t
I,IGA =

((
(MI

s
)TMI

s

)−1
(MI

s
)TAI

FFDs

)
tFFD ,
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In some applications, one may choose to have a constant 
thickness for each shell patch. This can be easily achieved 
within the current framework by relating the shell thickness 
in IGA DoFs to one scalar value tI,const as

where cI =
[
1 1 … 1

]T is a unit column vector contains 
nI,IGA entries. The total derivative for piecewise constant 
thickness optimization can be obtained by replacing dt

IGA

dtFFD
 in 

(46) with the following derivative,

The FFD block is not needed in piecewise constant only 
thickness optimization.

These two approaches can be combined together to 
achieve a more realistic design, where specific sections of 
the structure necessitate a continuous thickness distribution 
while constant thickness is better suited for other patches. 
In the implementation, shell patches can be separated into 
various groups. One group comprises the shell patches 
immersed within an FFD block allowing for a continuous 
thickness distribution. On the other hand, the shell patches 
not contained in an FFD block are assumed to have a con-
stant thickness. Moreover, shell patches originating from 
different FFD blocks would exhibit discontinuous thickness 
at their intersections. Therefore, the combined thickness 
optimization approach provides more flexibility.

4.4  Implementation

This section introduces the open-source implementation 
for the proposed optimization method in Sects. 4.1–4.3. 
We employ the open-source Python library PENGoLINS 
[44] for IGA of non-matching shell structures. PENGoLINS 
utilizes functionalities in pythonOCC [59] to approximate 
patch intersections in CAD geometries. Additionally, it 
leverages advanced code generation in FEniCS [50] and 
extraction operators in tIGAr [49] to perform IGA. CAD 
models in IGES or STEP formats can be imported into 
PENGoLINS, making them directly available for IGA. The 
code generation capabilities and computer algebra in FEn-
iCS allow us to obtain partial derivatives in (23)–(25), as 
well as (39) automatically. Integrating computed analytical 
derivatives with matrices M = diag(MA,MB,… ,MIm) and 

(46)
df obj

dtFFD
=

(
�f obj

�tIGA
−

�f obj

�uIGA

(
�Rt

�uIGA

)−1
�Rt

�tIGA

)
dtIGA

dtFFD
.

(47)t
I,IGA = c

ItI,const ,

(48)
dtIGA

dtconst
= diag(cA, cB,… , cI

m

) .

AFFD = diag(AA
FFD

,AB
FFD

,… ,AIm

FFD
) , we can calculate the 

total derivatives in (44) and (46) for shape and thickness 
optimization.

With the availability of automated derivatives, we use the 
open-source framework CSDL [60] for conducting gradient-
based large-scale optimization. Each partial derivative com-
puted from FEniCS, in combination with predefined matri-
ces, is passed to a CSDL sub-model, which contains explicit 
or implicit operations. A system-level model is created to 
connect all sub-models to enable efficient and modularized 
design optimization. For the FFD-based shape optimization 
problem, which involves minimizing the internal energy of a 
non-matching shell structure, four essential sub-models are 
required and listed in Table 1. All the derivatives required 
for these models are defined in Sects. 3.2 and 4.2.

The models listed in Table 1 and other constraint mod-
els are modularized in a Python library named GOLDFISH 
(Gradient-based Optimization, Large-scale Design Frame-
work for Isogeometric SHells). This library provides users 
with the option to use predefined models or create custom 
models to build the system-level model for their specific 
optimization needs. The library also includes an open-
source optimizer, SLSQP [61], which can be utilized for 
shape or thickness optimization of non-matching shells. For 
optimization problems involving a large number of design 
variables, the SNOPT [62] optimizer is available for faster 
convergence. Furthermore, we have integrated the analysis 
framework with another optimization library OpenMDAO 
[63], which is developed by NASA. This integration further 
enhances the accessibility of the GOLDFISH library, ena-
bling users to benefit from the collective expertise of the 
OpenMDAO community. The GOLDFISH library is hosted 
on a GitHub repository [64] and open to the public.

5  Benchmark problems

A series of benchmark problems are considered to verify the 
effectiveness of the optimization method. Sections 5.1–5.3 
illustrate that baseline non-matching shell structures with 

Table 1  Essential CSDL models for FFD-based shape optimization

Model Input(s) Output Operation Derivative(s)

CP FFD to FE P
FFD P

FE Explicit A
FFD

CP FE to IGA P
FE

P
IGA Implicit M

Disp P
IGA uIGA Implicit �R

t

�PIGA
 , �R

t

�uIGA

Int energy P
IGA , uIGA W

int
Explicit �W

int

�PIGA
 , �Wint

�uIGA
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arbitrary intersections are able to accurately converge to the 
analytical optimum. Section 5.4 studies the capability and 
flexibility of the framework for thickness optimization.

5.1  Arch shape optimization

An arch fixed at two ends and subjected to a constant 
downward load per unit horizontal length is modeled by a 
Kirchhoff–Love shell theory. Detailed problem definitions 
can be found in [38, Section 8]. To test the effectiveness of 
FFD-based shape optimization for the non-matching shells 
approach, we model the arch using four NURBS patches 
with three intersections, where the arch geometry in the 
baseline configuration is shown in Fig. 6a. We immerse the 
arch geometry in a trivariate B-spline block in the initial 
configuration, as is illustrated in Fig. 6b. The analytical opti-
mal solution is given by a quadratic parabola, where the ratio 
between the height of the arch and the horizontal distance of 
two fixed edges is 0.54779.

We use quadratic B-spline for the FFD block in all three 
directions, pFFD = 2 . The arch shell patches are described 
by cubic NURBS surfaces, psh = 3 , with 1086 DoFs in total. 
This benchmark problem minimizes the internal energy of 
the shell structure, with vertical coordinates of the control 
points of the FFD block being the design variables. From 
the control net in Fig. 6b, it can be observed that there are 
54 design variables. Two constraints are applied to this 
problem. The first constraint ensures that the lines in the 
FFD control net are parallel to the axial direction of the 
arch, keeping the arch devoid of tilting or twisting during 
the optimization process. The second constraint fixes the 
bottom layer of FFD control points so that the two edges of 
the arch remain in the initial position. We use the SLSQP 
optimizer with a tolerance of 10−12 to perform the optimi-
zation, snapshots of the optimization iteration are demon-
strated in Fig. 7.

The arch converges to the analytical optimum shape after 
40 iterations. The shape of the FFD block in the final con-
figuration is shown in Fig. 7. As anticipated, the optimized 

Fig. 6  a Baseline geometry of 
a non-matching arch consisting 
of four NRUBS patches, three 
surface–surface intersections 
are indicated with red lines. b 
Initial configuration of the arch 
immersed in an FFD block, 
where black lines and dots 
denote the control net. The ana-
lytical optimal shape is plotted 
with a red curve

Fig. 7  Snapshots of non-match-
ing arch shape optimization
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arch geometry is still contained in the FFD block. The height 
to base span ratio in this problem is measured as 0.54748, 
exhibiting a relative error of 0.057% compared to the exact 
value. Considering the coarse discretization of the arch 
geometry, the results are encouraging.

5.2  Tube shape optimization

A square tube in the baseline configuration is subjected to an 
internal constant pressure. The optimal shape is given by a 
cylindrical tube [38, Section 7]. We use four cubic NURBS 
surfaces to model one-quarter of the square tube, where the 
initial geometry is illustrated in Fig. 8a. The square tube 
geometry contains four non-matching intersections with 

1035 DoFs in total, and symmetric boundary conditions are 
applied in the analysis. The geometry is immersed in a cubic 
B-spline block to perform FFD-based shape optimization, 
as shown in Fig. 8b, where the cross-section of the optimal 
shape is indicated by the red curve. In this example, the 
horizontal and vertical coordinates of the FFD control points 
are design variables, totaling 200 design variables. Similar 
constraints are employed in this problem as those in the arch 
shape optimization. Control points on the left and bottom 
layers are fixed, where the lines in the FFD control net that 
are parallel to the tube axis maintain their orientations.

The optimization problem converges successfully after 42 
iterations using SLSQP optimizer with a tolerance of 10−12 , 
and snapshots are depicted in Fig. 9. As expected, the initial 
square tube converges to the cylindrical tube.

Fig. 8  a Baseline geometry of 
the square tube, a quarter of 
the tube is modeled using four 
non-matching B-spline patches 
with four intersections. b Initial 
configuration of the FFD block 
with control net. The optimal 
cross section is depicted by a 
red circle

Fig. 9  Iteration history for tube 
shape optimization under fol-
lower pressure
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5.3  T‑beam shape optimization

In this section, a T-beam is considered to test the method for 
shell structures with intersections in the middle. We model 
a T-beam using two NURBS patches which are shown in 
Fig. 10a. In the baseline design, the vertical patch in the 

T-beam is located at the three-quarter position, where the 
mismatched intersection is indicated with a red line.

In this benchmark problem, we aim to minimize the 
internal energy of the T-beam by updating the horizontal 
coordinates of shell patches’ control points. Subsequently, 
the T-beam is placed in a cubic FFD block, where the 

Fig. 10  a Baseline configura-
tion of a T-beam whose vertical 
patch is at the three-quarter 
position of the horizontal patch. 
b The T-beam is placed in 
an FFD B-spline block. The 
optimal position of the vertical 
patch is depicted with red lines

Fig. 11  Screenshots of T-beam 
shape optimization process
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horizontal coordinates of the FFD block’s control points 
serve as design variables. The rear end of the T-beam is 
fixed. Given a downward distributed load, the optimal shape 
of the T-beam is expected to have a junction at the center of 
the horizontal patch under a constant volume constraint. The 
optimal position of the vertical patch is depicted in Fig. 10b 
with red lines. The right and left layers of the FFD block’s 
control points are fixed by employing equality constraints, 
and control points stay collinear in the axial direction. Using 
a tolerance of 10−15 , the SLSQP optimizer converges suc-
cessfully after 16 iterations, and the optimization process is 
shown in Fig. 11.

In Fig. 11, the T-beam converges to the optimal solu-
tion, indicating that the proposed method is effective for 
non-matching shell structures with intersections. A more 
complicated demonstration is presented in Sect. 6.2, where 
the geometry contains curved T-junctions.

5.4  Thickness optimization of a clamped plate

As stated in Sect. 4.3, the FFD-based optimization method-
ology can also be applied to thickness optimization. In the 
following section, we first demonstrate a piecewise constant 
thickness optimization for a clamped non-matching plate, 

in which the FFD block is not needed. Subsequently, we 
proceed to perform the variable thickness optimization for 
the same geometry.

5.4.1  Piecewise constant thickness optimization

For the thickness optimization example, a unit square plate 
composed of six cubic non-matching NURBS surfaces is 
considered. The geometry, which is shown in Fig. 12a, 
exhibits 5 intersections with a total of 1449 DoFs. We apply 
a clamped boundary condition on the left side and with a 
line force applied to the right side in the normal direction 
of the plate. All patches of the plate have an initial thick-
ness of 0.01 m. Using the strategy introduced in Sect. 4.3, 
we perform piecewise constant thickness optimization for 
the clamped plate to minimize the internal energy under the 
constant volume constraint. This problem only has 6 design 
variables. In this and the following sections, the SNOPT 
optimizer is used for faster convergence. The optimal thick-
ness is plotted in Fig. 12b.

The observed optimal piecewise constant thickness in 
Fig. 12b shows material redistributes toward the clamped 
side, which provides enhanced support to the plate. The 

Fig. 12  a A unit square plate 
consisting of six non-matching 
patches, intersections are 
indicated with red lines. b Final 
plate thickness for piecewise 
constant thickness optimization

Fig. 13  a The non-matching 
plate is immersed in an FFD 
block. b Optimized thickness 
distribution using the FFD-
based approach
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internal energy in the final configuration is 37.17% less than 
the baseline configuration.

5.4.2  Variable thickness optimization

We now perform variable thickness optimization for the non-
matching plate. The plate is placed in a cubic B-spline block, 
which is shown in Fig. 13a. Besides the constant volume 
constraint, we only optimize the plate thickness in one direc-
tion that is perpendicular to the intersections.

With the FFD-based approach, the continuity of shell 
thickness is maintained at all intersections. Figure  13b 
depicts the converged solution, where a smooth thickness 
distribution is observed. The smooth thickness profile offers 
an improved design compared to the piecewise constant 
thickness approach, resulting in a 40.20% reduction of the 
initial internal energy. A comparison of optimization itera-
tion of normalized internal energy between the two methods 
is illustrated in Fig. 14a. The FFD-based thickness optimiza-
tion approach converges to a smaller internal energy.

To validate the proposed method, we compare the contin-
uous thickness profile to an optimal thickness configuration 
of a cantilever beam [65]. The cantilever beam is modeled 
using the Euler–Bernoulli beam theory, where a point load 
is applied to the free end. Since the Kirchhoff–Love shell 
is an extension of the Euler–Bernoulli beam, both models 
are expected to yield identical thickness distributions. The 
normalized thickness profiles of these two models, along 
with the piecewise constant thickness profile, are plotted 
in Fig. 14b. A good agreement is observed between the 
variable thickness of the Kirchhoff–Love shell at the center 

line and the Euler–Bernoulli beam. Meanwhile, the cross-
sectional view of the piecewise constant thickness shows a 
similar trend to the Euler–Bernoulli beam, albeit with dis-
continuities at the intersections.

We then investigate the effect of basis function order 
of continuity in the FFD block. Using the same knots vec-
tors as illustrated in Fig. 13a, we increase the order of the 
B-spline basis functions from linear ( C0 ) to quartic ( C3 ) 
and compare the amounts of reduced internal energy rela-
tive to the baseline configuration. These data points are 
summarized in Table 2. The results presented in Table 2 
indicate that an FFD block with quadratic B-spline basis 
functions can achieve a better optimal thickness distri-
bution for the clamped plate. The internal energy with 
quadratic FFD block only exhibits 0.27% of relative dif-
ference compared to the quartic FFD block. Table 2 also 
suggests that elevating the order of continuity of the FFD 
block leads to better designs with lower internal energy, 
particularly when transitioning from linear to quadratic 
B-spline basis functions.

The plate example demonstrates that both piecewise 
constant and variable thickness optimization can be con-
ducted in the proposed framework. One can select desired 
thickness distribution, or a mixed approach of these two, 

(a) (b)

Fig. 14  a Optimization process of normalized internal energy for two approaches. b Cross-sectional view of piecewise constant thickness and 
variable thickness, and comparison with Euler–Bernoulli beam thickness optimization

Table 2  Reduction of internal energy of the clamped plate for differ-
ent degrees of the FFD block

p
FFD

1 2 3 4

Internal energy reduction (%) 39.76 40.11 40.20 40.22
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demonstrated in Sect. 6, based on the physical conditions 
and problem requirements to obtain an optimal design.

6  Application to aircraft wings

Two aircraft wing design optimization problems are 
performed. Section  6.1 considers a Parallel Electric-
Gas Architecture with Synergistic Utilization Scheme 
(PEGASUS) wing thickness optimization problem, and 
Sect. 6.2 demonstrates a simultaneous shape and thickness 
optimization for an Electric Vertical Takeoff and Landing 
(eVTOL) aircraft wing. Both applications illustrate that 
a design-analysis-optimization workflow can be achieved 
with the proposed framework.

6.1  PEGASUS wing thickness optimization

For the PEGASUS wing problem, we first verify the accu-
racy of the structural analysis using PENGoLINS for a shell 
structure with a large number of patches and intersections. 
Then two types of thickness design optimizations are per-
formed in the following section.

6.1.1  Structural analysis of the PEGASUS wing

The PEGASUS wing CAD model is created using a custom-
ized geometry engine, an exploded view of the wing with 
IGA discretization is shown in Fig. 15. The CAD model 
consists of 90 NURBS patches, two outer skins (one lower 
skin and one upper skin) and two spars (one front spar and 
one rear spar) connecting two adjacent ribs. The NURBS 
surfaces in the PEGASUS wing are represented using cubic 
basis functions with maximal continuity, resulting in 19,572 

DoFs in total. Additionally, 280 patch intersections are 
formed in the wing structure.

The PEGASUS wing is made of material with Young’s 
modulus 69 GPa and Poisson’s ratio 0.35, and the wing 
span is 12.22 m. At the wing root, the chord is 1.52 m and 
the airfoil thickness is 0.37 m. A uniform initial thickness 
is 5 mm for all patches. Considering an aircraft take-off 
weight of 9000 kg, a distributed upward pressure with a 
magnitude of 132.5 N/m2 is determined by dividing half 
of the take-off weight by the surface area of the wing. 
Clamped boundary conditions are imposed at the wing 
root. Importing the PEGASUS wing geometry in IGES 
format to PENGoLINS, we perform structural analysis 
directly without finite element mesh generation. Given 
an analysis-suitable CAD file, the only required geometry 
preprocessing is to approximate surface–surface intersec-
tions, which is a much easier effort than finite element 
mesh generation and is automated in PENGoLINS using 
the functionality provided by pythonOCC. Figure 16a 
shows all the intersections presented in the PEGASUS 
wing, while the displacements computed by PENGoLINS 
are visualized in Fig. 16c. Figure 16e shows the distribu-
tion of von Mises stress on top surfaces (�3 = h∕2) of the 
PEGASUS wing.

To validate the proposed non-matching coupling method 
for complex shell structures, we conduct a much refined 
FE analysis (utilizing quadratic triangular elements with 
118644 DoFs) for the PEGASUS wing using COMSOL 
[66]. Figure 16b displays an extensively refined finite ele-
ment mesh for the COMSOL FE analysis. Displacements 
solved in COMSOL and corresponding von Mises stress 
are depicted in Fig. 16d and f, respectively. Figures 16c 
and d indicate that the displacements obtained from PEN-
GoLINS closely match the results from COMSOL. The 
maximum displacement magnitude in PENGoLINS is 

Fig. 15  CAD geometry of the 
PEGASUS wing which is com-
posed of 90 NURBS patches 
with 280 intersections, totaling 
19,572 DoFs
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0.06662 m, which has a relative difference of 0.15% com-
pared to the corresponding value of 0.06672 m in COM-
SOL. This aligns well with the findings of a numerical 
experiment presented in [44, Section 5.3]. The von Mises 
stress distributions between PENGoLINS and COMSOL 
also exhibit good agreement as shown in Fig. 16e and f, 
where zoom-in views are included for the observation of 
von Mises stress at patch intersections. Note that while 
Reissner–Mindlin shell theory was employed in COM-
SOL, the mixed interpolation of tensorial components 
(MITC) [67] technique implemented in COMSOL has 
been carefully validated and is reliable for comparison 
with our solution based on Kirchhoff–Love shell theory 
in the limit of thin shells. The simulation results for the 
PEGASUS wing indicate that PENGoLINS provides good 
accuracy for complex shell structures, which is crucial for 
the subsequent design optimization.

6.1.2  Thickness optimization of the PEGASUS wing

Similar to the thickness optimization of the clamped plate 
discussed in Sect. 5.4, we apply the same methodology to the 
PEGASUS wing for piecewise constant thickness optimiza-
tion. The same boundary conditions are employed through-
out the optimization. In the piecewise constant thickness 

Fig. 16  Structural analysis 
of the PEGASUS wing using 
PENGoLINS, and the resulting 
displacement magnitude and 
von Mises stress are compared 
with the corresponding outputs 
obtained from COMSOL

(a) Illustration of surface–surface intersections

in the PEGASUS wing geometry.

(b) Finite element mesh of PEGASUS wing

generated in COMSOL.

(c) Visualization of displacement magnitude

solved by PENGoLINS in baseline design.

(d) Analysis result obtained from COMSOL

using Reissner–Mindlin shell theory.

(e) von Mises stress on top surfaces of PEGA-

SUS wing computed by PENGoLINS.

(f) Distribution of von Mises stress obtained

from COMSOL.

Fig. 17  Optimization result of the PEGASUS wing with piecewise 
constant thickness
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optimization case, a total of 90 design variables are included 
with lower and upper bounds of 1 mm and 100 mm, respec-
tively. The initial thickness for all patches is taken as 5 mm. 
A constant volume constraint is employed in the optimi-
zation. The resulting shell thickness with minimum inter-
nal energy is depicted in Fig. 17. The shell patch with the 
maximum thickness is observed at the wing root in the outer 
skins, while the thickness decreases consistently along the 
span direction for both the outer skins and spars, following a 
pattern similar to that of the clamped plate. The thicknesses 
of the internal ribs and the wingtip are close to the lower 
bound since the bending moments are mainly carried by the 
lower and upper skins given the distributed upward load. 
Therefore, the majority of material is redistributed toward 
the clamped root of the outer skins. The optimized design 
in Fig. 17 gives an internal energy 38.17% less than that of 
the baseline configuration.

To achieve an improved design, we consider variable 
thickness in the outer skins and spars of the PEGASUS 
wing, while keeping the internal ribs with piecewise con-
stant thickness. The configuration of the FFD blocks for 
variable thickness optimization is illustrated in Fig. 18a. 
Four FFD blocks with quadratic bases are created to allow 
for variation in thickness within a single spline patch while 
ensuring continuity at patch intersections, with a total of 
402 design variables used for this problem. By minimizing 
the internal energy again, the optimal thickness distribution 
is obtained as shown in Fig. 18b. Both applications in this 
section use the SNOPT optimizer with a tolerance of 10−4 . In 
the optimized design, the outer skins of the PEGASUS wing 

at the clamped edge still have the largest thickness, where 
the thickness distribution is smooth at the surface–surface 
intersections within each FFD block. The decreasing thick-
ness trend in outer skins and spars remains consistent with 
the optimal piecewise constant thickness case. Compar-
ing the combined optimization strategy with the piecewise 
constant method, the maximum thickness in the former is 
higher while maintaining the same volume. Additionally, the 
internal energy is reduced by 44.71% compared to the base-
line design. These observations indicate that the combined 
thickness optimization method demonstrates a more efficient 
utilization of material than the piecewise constant method.

6.2  Simultaneous optimization for eVTOL wing

With the continuous advancements in aviation battery tech-
nology [68], eVTOL aircraft have emerged as a promising 
solution for cost-effective urban mobility [69]. In this sec-
tion, we use a more advanced eVTOL wing to demonstrate 
the capabilities of the FFD-based optimization approach, 
where both the thickness and shape control points are con-
sidered as design variables simultaneously. By incorporat-
ing both thickness and shape coordinates in the design of 
shell structures, we can utilize the material more efficiently 
than considering thickness optimization only. The CAD 
geometry of the eVTOL wing, material parameters, and the 
corresponding structural analysis can be found in [44, Sec-
tion 5]. For the optimization problem, we implement the 
same clamped boundary conditions and distributed upward 
pressure as those in the previous application. The magnitude 

Fig. 18  a Configuration of the 
combined thickness optimiza-
tion. Each group of outer skins 
and spars is placed in one 
FFD block, and the remaining 
internal ribs have a piecewise 
constant thickness. b Opti-
mal thickness distribution of 
PEGASUS wing

Fig. 19  a FFD blocks for 
eVTOL wing thickness opti-
mization, where the lower and 
upper skins have a variable 
thickness. Wingtips and internal 
ribs and spars have a piecewise 
constant thickness. b FFD block 
for shape optimization
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of pressure is set to 120 N∕m2 , approximated by dividing the 
take-off weight by the surface area of the eVTOL wing. The 
baseline configuration of the eVTOL wing, which is com-
posed of 27 cubic NURBS patches with 87 intersections, 
is illustrated in Fig. 19. We note that we perform the shape 
optimization for the eVTOL wing without including an aero-
dynamic model (which would be needed for a well-posed 
wing design problem) purely to provide a demonstration of 
the FFD-based method for complex aerospace structures.

To achieve a meaningful design for the eVTOL wing, we 
use two quadratic B-spline FFD blocks for thickness optimiza-
tion. This configuration allows for varying thicknesses in the 
lower and upper skins of the eVTOL, while using piecewise 
constant thicknesses for the internal stiffeners and wingtips. 
The arrangement of the thickness FFD blocks is illustrated 
in Fig. 19a. Furthermore, a cubic B-spline FFD block is cre-
ated for shape optimization, as depicted in Fig. 19b. Only the 
vertical coordinates of control points for the shape FFD block, 
denoted as PFFD3 , are updated. In total, there are 642 design 
variables involved in this optimization process, and a constant 

volume constraint is applied as well. Regarding the thickness 
design variables, the lower and upper limits are selected as 
1 mm and 50 mm, respectively. All shell components have 
initial thicknesses of 3 mm.

One challenge encountered during shape optimization of 
complex shell structures, such as eVTOL wings, is the poten-
tial occurrence of oscillatory or highly distorted geometries in 
the updated designs. These distorted shapes can lead to poor 
element quality, resulting in spurious energy and affecting 
the accuracy of the analysis. To mitigate oscillation or radi-
cal change of shell components, an additional term is intro-
duced in the objective function to regularize the gradient of 
the shape. The objective is formulated as

where I is the index of shell patches, � is a dimensionless 
regularization coefficient, hI

A
 is the element area of shell 

patch I in the physical space, PI
3
 is the vertical component of 

(49)

f obj =

m�
I=1

�
W I

int
+ 𝜆

E(t̊I)3

12h̊I
A
(1 − 𝜈2) ∫S

I
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3
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I

3
‖2 dS

�
,

Fig. 20  Optimized solutions of 
the eVTOL wing with varying 
regularization coefficient

Table 3  Reduction of internal energy of the eVTOL wing after simultaneous optimization with varying regularization coefficients

� 1 0.1 10
−2

10
−3

10
−4

10
−5

Internal energy reduction (%) 49.07 51.58 66.45 83.23 92.82 95.09
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the shape variable for shell patch I , and SI is the midsurface 
of shell patch I . ̊(⋅) denotes quantities in the baseline con-
figuration. The regularization term in (49) serves as an addi-
tional artificial bending energy associated with the curvature 
of the eVTOL wing. Therefore, the shape oscillation can 
be eliminated by adjusting the regularization coefficient � . 
The SNOPT optimizer is employed with a tolerance of 10−3 . 
Figure 20 demonstrates the optimized eVTOL wing designs 
achieved with varying � values, providing insights into the 
influence of regularization on the final shape and thickness 
distribution. It can be seen that the patch intersections of 
the optimized shapes in Fig. 20 are still connected using the 
FFD-based approach. The reductions of internal energy for 
different � are listed in Table 3.

For this eVTOL wing optimization problem, different 
regularization coefficients yield distinct outcomes. A regu-
larization coefficient of 1 and 0.1 provide optimal designs 
dominated by thickness update, resembling the patterns 
observed in the combined thickness optimization of the 
PEGASUS wing, refer to Fig. 18b. The optimized shapes 
in these two cases are similar to the baseline configuration 
since the artificial bending energies are the major contribu-
tor to the objective function due to the large regularization 
coefficients. Even slight variations in the shape variables 
result in substantial increases in the objective function. 
Conversely, small regularization coefficients, i.e., 10−4 
and 10−5 , lead to considerable changes in the shape of the 
eVTOL wing and reduction of internal energy, amounting 
to 92.82% and 95.09% , respectively. However, these cases 
exhibit noticeable oscillations in the wingtip area, which can 
lead to ill-conditioned systems. On the other hand, employ-
ing regularization coefficients with values of 10−2 and 10−3 
yields balanced solutions, where both the thickness redistri-
bution and shape updates contribute to the optimal design. 
The material moves toward the clamped area, accompanied 
by a widening of the cross-section to provide increased 
wing support. An exploded view of the optimal design with 
� = 10−3 is shown in Fig. 21. This optimal design achieves 

an internal energy reduction of 83.23% compared to the 
baseline configuration.

7  Conclusion

In this paper, we have introduced an FFD-based shape and 
thickness optimization approach for shell structures com-
posed of separately-parametrized NURBS surfaces. The 
integration of this method with the Lagrange extraction tech-
nique enables IGA with existing FE toolkits and provides a 
connection between the FFD block and non-matching shell 
patches. By employing the FFD block approach, the updated 
shell geometry and thickness remain properly connected at 
patch intersections throughout the optimization process. 
This feature prevents undesired shape discontinuities in shell 
structures.

We made use of the penalty-based coupling formulation 
for Kirchhoff–Love shells to perform IGA in the optimiza-
tion. The automation of analytical derivative computations 
is achieved through code generation in FEniCS, enabling 
gradient-based multidisciplinary design optimization. 
This automation streamlines the optimization process 
and allows for efficient exploration of design spaces. The 
unified NURBS representation shared by both the design 
geometry and analysis model enhances accuracy per DoF 
in the analysis and precise design updates. Moreover, the 
proposed framework circumvents FE mesh generation 
and streamlines design–analysis–optimization workflow 
for complex shell structures. Consequently, the automated 
workflow is expected to accelerate the conceptual design 
of novel eVTOL aircraft with minimal manual effort.

A suite of benchmark problems is adopted to verify 
the effectiveness of the FFD-based optimization approach 
proposed in this paper. Both the shape optimization and 
thickness optimization results agree well with analytical 
solutions or other established references. Furthermore, 
we have applied the framework to two different aircraft 
wings. This demonstration highlights the potential of the 
proposed method in exploring complex design spaces and 
obtaining superior designs for innovative aircraft struc-
tures. Future works can extend the shape optimization for 
aircraft wings with more realistic loads by coupling the 
structural solver with an aerodynamic solver [70]. Addi-
tionally, practical constraints such as von Mises stress can 
be incorporated into the optimization process to ensure 
that the obtained designs meet the requirements of real-
world applications. To promote code transparency and 
potential contributions to the shell optimization com-
munity, we make the Python library GOLDFISH openly 
accessible in a GitHub repository [64].

Fig. 21  Exploded view of optimal design of eVTOL wing with regu-
larization coefficient � = 10

−3 , which results in 83.23% reduction of 
internal energy compared to the baseline design
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