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ABSTRACT OF THE DISSERTATION

Task-oriented Visual Understanding for Scenes and Events

by

Siyuan Qi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Song-Chun Zhu, Chair

Scene understanding and event understanding of humans correspond to the spatial and

temporal aspects of computer vision. Such abilities serve as a foundation for humans to

learn and perform tasks in the world we live in, thus motivating a task-oriented represen-

tation for machines to interpret observations of this world.

Toward the goal of task-oriented scene understanding, I begin this thesis by presenting

a human-centric scene synthesis algorithm. Realistic synthesis of indoor scenes is more

complicated than neatly aligning objects; the scene needs to be functionally plausible,

which requires the machine to understand the tasks that could be performed in the scene.

Instead of directly modeling the object-object relationships, the algorithm learns the

human-object relations and generate scene configurations by imagining the hidden human

factors in the scene. I analyze the realisticity of the synthesized scenes, as well as its

usefulness for various computer vision tasks. This framework is useful for backward in-

ference of 3D scenes structures from images in an analysis-by-synthesis fashion; it is also

useful for generating data to train various algorithms.

Moving forward, I introduce a task-oriented event understanding framework for event
ii



parsing, event prediction, and task planning. In the computer vision literature, event un-

derstanding usually refers to action recognition from videos, i.e., “what is the action of

the person”. Task-oriented event understanding goes beyond this definition to find out the

underlying driving forces of other agents. It answers questions such as intention recogni-

tion (“what is the person trying to achieve”), and intention prediction (“how the person is

going to achieve the goal”), from a planning perspective.

The core of this framework lies in the temporal representation for tasks that is ap-

propriate for humans, robots, and the transfer between these two. In particular, inspired

by natural language modeling, I represent the tasks by stochastic context-free grammars,

which are natural choices to capture the semantics of tasks, but traditional grammar parsers

(e.g., Earley parser) only take symbolic sentences as inputs. To overcome this drawback,

I generalize the Earley parser to parse sequence data which is neither segmented nor la-

beled. This generalized Earley parser integrates a grammar parser with a classifier to find

the optimal segmentation and labels. It can be used for event parsing, future predictions,

as well as incorporating top-down task planning with bottom-up sensor inputs.
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CHAPTER 1

Introduction

“Perhaps the composition and layout of surfaces constitute what they afford. If so, to

perceive them is to perceive what they afford. ”

—- James J. Gibson, 1979 [Gib79]

The success of human species could be partly attributed to our remarkable capability

to perceive and survive the physical world. Some computer scientists and psychologists

believe that perception is more about perceiving the affordance of the environment than

recognizing the geometric structure of it. Affordances of the environment, first proposed

by Gibson [Gib79], means what it offers the animals. For example, if a surface is hor-

izontal, flat, extended, and rigid, then it might provide the affordance of support to an

animal.

Such affordances are highly related to the task at hand, and the perception of affor-

dances is a foundation for humans to learn and perform tasks in the world we live in. To

mimic human intelligence, we need machines that can understand human tasks and their

relations with the environment. In two of the most important aspects of computer vision,

scene understanding, and event understanding, this inspires a task-oriented representation

for machines to interpret observations of this world.

Toward the goal of task-oriented scene understanding, I begin this thesis by presenting
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a human-centric scene synthesis algorithm in Chapter 2. Realistic synthesis of indoor

scenes is more complicated than neatly aligning objects; the scene needs to demonstrate

feasible affordances to humans, i.e., be functionally plausible. It addresses the question of

“how the scene is related to humans”. This requires the machine to understand the human

tasks that could be performed in the scene.

Instead of directly modeling the object-object relationships, the algorithm learns the

human-object relations and generate scene configurations by imagining the hidden human

factors in the scene. The scenes are modeled by spatial And-Or graphs (S-AOGs). An

S-AOG is a probabilistic grammar model, in which the terminal nodes are object entities

including room, furniture, and supported objects. Human contexts as contextual relations

are encoded by Markov Random Fields (MRF) on the terminal nodes. Synthesis of indoor

scenes is achieved by sampling from this distribution via Markov chain Monte Carlo.

I analyze the realisticity of the synthesized scenes, as well as its usefulness for various

computer vision tasks. This framework is useful for backward inference of 3D scenes

structures from images in an analysis-by-synthesis fashion; it is also useful for generating

data to train various algorithms.

Moving forward, in Chapter 3 I introduce a task-oriented event understanding frame-

work for event parsing, event prediction, and task planning. In the computer vision liter-

ature, event understanding usually refers to action recognition from videos, i.e. “what is

the action of the person”. Task-oriented event understanding goes beyond this definition to

find out the underlying driving forces of other agents. It answers questions such as inten-

tion recognition (“what is the person trying to achieve”), and intention prediction (“how

the person is going to achieve the goal”), from a planning perspective.

The core of this framework lies in the temporal representation for tasks that is ap-

2



propriate for humans, robots, and the transfer between these two. In particular, inspired

by natural language modeling, I represent the tasks by stochastic context-free grammars,

which are natural choices to capture the semantics of tasks, but traditional grammar parsers

(e.g., Earley parser) only take symbolic sentences as inputs. To overcome this drawback,

I generalize the Earley parser to parse sequence data which is neither segmented nor la-

beled. This generalized Earley parser integrates a grammar parser with a classifier to find

the optimal segmentation and labels. It can be used for event parsing, future predictions,

as well as incorporating top-down task planning with bottom-up sensor inputs.

This thesis aims to make progress in the direction of task-oriented perception, for lay-

ing down foundations for developing human-like robots in the sense of task learning and

planning. Although still far from being comprehensive, it develops frameworks for both

the spatial and temporal aspects of visual understanding. Finally, I conclude the thesis in

Chapter 4 with a summary of these two frameworks and insights for future research under

the theme of task-oriented representations.
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CHAPTER 2

Human-centric Indoor Scene Synthesis Using Stochastic

Grammar

In this chapter, we present a human-centric method to sample and synthesize 3D room

layouts and 2D images thereof, to obtain large-scale 2D/3D image data with the per-

fect per-pixel ground truth, for the purposes of training, benchmarking, and diagnosing

learning-based computer vision and robotics algorithms.

We propose an attributed spatial And-Or graph (S-AOG) to represent indoor scenes.

The S-AOG is a probabilistic grammar model, in which the terminal nodes are object

entities including room, furniture, and supported objects. Human contexts as contextual

relations are encoded by Markov Random Fields (MRF) on the terminal nodes. We learn

the distributions from an indoor scene dataset and sample new layouts using Monte Carlo

Markov Chain. Our pipeline is capable of synthesizing scene layouts with high diversity,

and it is configurable in that it enables the precise customization and control of important

attributes of the generated scenes. It renders photorealistic RGB images of the generated

scenes while automatically synthesizing detailed, per-pixel ground truth data, including

visible surface depth and normal, object identity, and material information (detailed to

object parts), as well as environments (e.g., illumination and camera viewpoints).

Experiments demonstrate that the proposed method can robustly sample a large va-
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Figure 2.1: An example of synthesized indoor scene (bedroom) with affordance heatmap.

The joint sampling of a scene is achieved by alternative sampling of humans and objects

according to the joint probability distribution.

riety of realistic room layouts based on three criteria: (i) visual realism comparing to

a state-of-the-art room arrangement method, (ii) accuracy of the affordance maps with

respect to ground-truth, and (ii) the functionality and naturalness of synthesized rooms

evaluated by human subjects. We also demonstrate the value of our dataset, by improving

performance in certain machine-learning-based scene understanding tasks–e.g., depth and

surface normal prediction, semantic segmentation, reconstruction, etc.—and by providing

benchmarks for and diagnostics of trained models by modifying object attributes and scene

properties in a controllable manner.
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2.1 Introduction

Recent advances in visual recognition and classification through machine-learning-based

vision algorithms have yielded similar or even better than human performance (e.g., [HZR15,

EEV15]) by leveraging large-scale, ground-truth-labeled RGB datasets [DDS09, LMB14].

However, indoor scene understanding remains a largely unsolved challenge due in part to

the limitations of appropriate RGB-D datasets available for training purposes. To date,

the most commonly used RGB-D dataset for scene understanding is the NYU-Depth V2

dataset [SHK12], which comprises only 464 scenes with only 1449 labeled RGB-D pairs

provided while the remaining 407,024 pairs are unlabeled. This is clearly insufficient for

the supervised training of modern computer vision methods, especially those based on

deep learning.

Furthermore, traditional methods of 2D/3D image data collection and ground-truth

labeling have evident limitations. i) High-quality ground truths are hard to obtain, as

depth and surface normal obtained from sensors are always noisy. ii) It is impossible to

label certain ground truth information, e.g., 3D objects sizes in 2D images. iii) Manual

labeling of massive ground-truth is tedious and error-prone even if possible. To provide

training data for modern machine learning algorithms, an approach to generate large-scale,

high-quality data with the perfect per-pixel ground truth is in need.

To address this deficiency, recent years have seen the increased use of synthetic im-

age datasets as training data. In fact, recent advances in computer vision and robotics

community [ZSY17, HWM14] have shown that synthetic datasets are beneficial for either

improving data-driven methods or analyzing problems that are difficult to obtain accurate

ground truth.

However, synthesizing indoor scenes is a non-trivial task. It is often difficult to prop-
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erly model either the relations between furniture of a functional group, or the relations

between the supported objects and the supporting furniture. Specifically, we argue there

are four major difficulties. (i) In a functional group such as a dining set, the number

of pieces may vary. How should we model the relationship between a dining table and

a chair so that we can generate such functional groups? Using multi-modal probability

distributions for position relations would be restricted to simple and rigid configurations,

disallowing a large variety of possible layouts. (ii) Even if we only consider pair-wise

relations, there is already a quadratic number of object-object relations. (iii) What makes

it worse is that most object-object relations are not obviously meaningful. For example,

it is unnecessary to model the relation between a pen and a monitor, even though they

are both placed on a desk. (iv) Due to the previous difficulties, an excessive number of

constraints are generated. Many of the constraints contain loops, making the final layout

hard to sample and optimize.

To date, little effort has been devoted to the learning-based systematic generation of

massive quantities of sufficiently complex synthetic indoor scenes for the purposes of

training scene understanding algorithms. This is also partially due to the difficulties other

than modeling the object relations in the scenes: (i) devising sampling processes capable

of generating diverse scene configurations, and (ii) the intensive computational costs of

photorealistically rendering large-scale scenes. Aside from a few efforts, reviewed in Sec-

tion 2.2, in generating small-scale synthetic scenes, the most notable work was recently

reported by Song et al. [SYZ17a], in which a large scene layout dataset was downloaded

from the Planner5D website.

To address these challenges, we propose a human-centric approach to model indoor

scene layout, from which we can render 2D images with pixel-wise ground-truth of the

surface normal, depth, and segmentation, etc.. It integrates human activities and func-
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tional grouping/supporting relations as illustrated in Figure 2.1. This method not only

captures the human context but also simplifies the scene structure. Specifically, we use a

probabilistic grammar model for images and scenes [ZM07] – an attributed spatial And-Or

graph (S-AOG), including vertical hierarchy and horizontal contextual relations. The con-

textual relations encode functional grouping relations and supporting relations modeled by

object affordances [Gib79]. For each object, we learn the affordance distribution, i.e., an

object-human relation, so that a human can be sampled based on that object. Besides static

object affordance, we also consider dynamic human activities in a scene, constraining the

layout by planning trajectories from one piece of furniture to another.

The proposed algorithm is useful for tasks including but not limited to: i) learning

and inference for various computer vision tasks; ii) 3D content generation for 3D mod-

eling and games; iii) 3D reconstruction and robot mappings problems; iv) benchmarking

of both low-level and high-level task-planning problems in robotics. The proposed al-

gorithm especially benefit scene understanding tasks, including a) 3D scene completion

using partially observed 3D scenes, b) various scene understanding tasks such as depth

and surface normal prediction, semantic segmentation, etc., and c) fundamental computer

vision problems like object detection.

By comparison, our work is also unique in that we devise a complete learning-based

pipeline for synthesizing large scale learning-based configurable scene layouts via stochas-

tic sampling, as well as the photorealistic physics-based rendering of these scenes with

associated per-pixel ground truth to serve as training data. Our pipeline has the following

characteristics:

• By utilizing a stochastic grammar model, one represented by an attributed Spatial

And-Or Graph (S-AOG), our sampling algorithm combines hierarchical composi-
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Figure 2.2: (Top Left) An example automatically-generated 3D bedroom scene, rendered

as a photorealistic RGB image, along with per-pixel ground truth of surface normal, depth,

and object identity. (Top Right) Another synthesized bedroom scene. Synthesized scenes

include fine details—objects (e.g., the duvet and pillows on beds) and their textures are

changeable, by sampling physical parameters of materials (reflectance, roughness, glossi-

ness, etc..), and illumination parameters are sampled from continuous spaces of possible

positions, intensities, and colors. (Bottom) Rendered images of 4 example synthetic indoor

scenes.

tions and contextual constraints to enable the systematic generation of 3D scenes

with high variability, not only at the scene level (e.g., control of size of the room

and the number of objects within), but also at the object level (e.g., control of the

material properties of individual object parts).

• As Figure 2.2 shows, we employ state-of-the-art physics-based rendering, yield-

ing photorealistic synthetic images. Our advanced rendering enables the systematic
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sampling of an infinite variety of environmental conditions and attributes, includ-

ing illumination conditions (positions, intensities, colors, etc., of the light sources),

camera parameters (Kinect, fisheye, panorama, camera models and depth of field,

etc.), and object properties (color, texture, reflectance, roughness, glossiness, etc.).

Since our synthetic data is generated in a forward manner—by rendering 2D images

from 3D scenes of detailed geometric object models—ground truth information is natu-

rally available without the need for any manual labeling. Hence, not only are our rendered

images highly realistic, but they are also accompanied by accurate, per-pixel ground truth

color, depth, surface normals, and object labels.

In our experimental study, we first demonstrate the sampled room configurations are

realistic based on three criteria: (i) visual realism comparing to a state-of-the-art room ar-

rangement method, (ii) accuracy of the affordance maps with respect to ground-truth, and

(ii) the functionality and naturalness of synthesized rooms evaluated by human subjects.

Then we further demonstrate the usefulness of our dataset by improving the perfor-

mance in certain scene understanding tasks, showcasing the prediction of surface normals

from RGB images, as well as the depth prediction from RGB images. Furthermore, by

modifying object attributes and scene properties in a controllable manner, we provide

benchmarks and diagnostics of trained models for common scene understanding tasks;

e.g., depth and surface normal prediction, semantic segmentation, reconstruction, etc.

Our work makes the following contributions:

1. We introduce a learning-based configurable pipeline for generating massive quanti-

ties of photorealistic images of indoor scenes with perfect per-pixel ground truth,

including color, surface depth, surface normal, and object identity. The param-

eters and constraints are automatically learned from the SUNCG [SYZ17a] and
10



ShapeNet [CFG15] datasets.

2. For scene generation, we propose the use of a stochastic grammar model in the form

of an attributed Spatial And-Or graph (S-AOG). It jointly models objects, affor-

dances, and activity planning for indoor scene configurations. Our model supports

the arbitrary addition and deletion of objects and modification of their categories,

yielding significant variation in the resulting collection of synthetic scenes.

3. By precisely customizing and controlling important attributes of the generated scenes,

we provide a set of diagnostic benchmarks of previous work on several common

computer vision tasks. To our knowledge, this is the first work to provide com-

prehensive diagnostics with respect to algorithm stability and sensitivity to certain

scene attributes.

4. We demonstrate that the sampled configurations are realistic. We also demonstrate

the effectiveness of the proposed synthesized scene dataset by advancing the state-

of-the-art in the prediction of surface normals and depth.

2.2 Related Work

3D content generation is one of the largest communities in the game industry and we

refer readers to a recent survey [HMV13] and book [STN16, QZH18]. In this work, we fo-

cus on approaches related to our work [JQZ18] using probabilistic inference. Yu [YYT11]

and Handa [HPS16] optimize the layout of rooms given a set of furniture using MCMC,

while Talton [TLL11] and Yeh [YYW12] consider an open world layout using RJMCMC.

These 3D room re-arrangement algorithms optimize room layouts based on constraints to

generate new room layouts using a given set of objects. In contrast, the proposed method
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is capable of adding or deleting objects without fixing the number of objects. Some liter-

ature focused on fine-grained room arrangement for specific problems, e.g., small objects

arrangement using user-input examples [FRS12, YYT16], optimizing the number of ob-

jects in scenes using LARJ-MCMC [YYW12], and procedural modeling of objects to en-

courage volumetric similarity to a target shape [RMG15]. [FSL15] synthesizes 3D scenes

given a 3D scan of a room. To achieve better realism, Merrell [MSL11] introduced an in-

teractive system providing suggestions following interior design guidelines. Jiang [JKS16]

uses a mixture of conditional random field (CRF) to model the hidden human context and

arrange new small objects based on existing furniture in a room. However, it cannot di-

rect sampling/synthesizing an indoor scene, since the CRF is intrinsically a discriminative

model for structured classification instead of generation.

Synthetic image datasets have recently been a source of training data for object detec-

tion and correspondence matching [SGS10, SS14, SX14, FKI14, DFI15, PSA15, ZKA16,

GWC16, MKS16, QSN16], single-view reconstruction [HWK15], view-point estimation [MSB14,

SQL15], 2D human pose estimation [PJA12, RLB15, Qiu16], 3D human pose estima-

tion [SSK13, SVD03, YIK16, DWL16, GKS16, RS16, ZZL16, CWL16, VRM17], depth

prediction [SHM14], pedestrian detection [MVG10, PJW11, VLM14, HNK15], action

recognition [RM15, RM16, SGC17], semantic segmentation[RVR16], scene understand-

ing [HPS16, KIX16, QY16, HPB16, ZBK17, HQX18], autonomous pedestrians and crowd [OPO10,

QZ18, ST05], VQA [JHM17], training autonomous vehicles [CSK15, DRC17, SDL17],

human utility learning [YQK17, ZJZ16], and in benchmark data sets [HWM14]. Previ-

ously, synthetic imagery, generated on the fly, online, had been used in visual surveil-

lance [QT08] and active vision / sensorimotor control [TR95]. Although prior work

demonstrates the potential of synthetic imagery to advance computer vision research, to
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our knowledge no large synthetic RGB-D dataset of learning-based configurable indoor

scenes has yet been released.

Image synthesis has been attempted using various deep neural network architectures,

including recurrent neural networks (RNN) [GDG15], generative adversarial networks

(GAN) [WG16, RMC15], inverse graphics networks [KWK15], and generative convo-

lutional networks [LZW16, XLZ16b, XLZ16a]. However, images of indoor scenes syn-

thesized by these models often suffer from glaring artifacts, such as blurred patches. More

recently, some applications of general purpose inverse graphics solutions using probabilis-

tic programming languages have been reported [MKP13, LB14, KKT15]. However, the

problem space is enormous, and the quality of inverse graphics “renderings” is disappoint-

ingly low and slow.

Stochastic grammar model has been used for parsing the hierarchical structures from

images of indoor [LZZ14, ZZ13, HQZ18] and outdoor scenes [LZZ14], and images/videos

involving humans [QHW17, WXS18]. In this work, instead of using stochastic grammar

for parsing, we forward sample from a grammar model to generate large variations of

indoor scenes.

Domain adaptation Although the presented work does not directly involve domain

adaptation, this plays an important role in learning from synthetic data, as the goal of

using synthetic data is to transfer the learned knowledge and apply it to real-world sce-

narios. A review of existing work in this area is beyond the scope of this work; we re-

fer the reader to a recent comprehensive survey [Csu17]. Traditionally, the widely used

techniques for domain adaptation can be divided into four categories: i) covariate shift
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Figure 2.3: Scene grammar as an attributed S-AOG. A scene of different types is de-

composed into a room, furniture, and supported objects. Attributes of terminal nodes are

internal attributes (sizes), external attributes (positions and orientations), and a human po-

sition that interacts with this entity. Furniture and object nodes are combined by an address

terminal node and a regular terminal node. A furniture node (e.g., a chair) is grouped with

another furniture node (e.g., a desk) pointed by its address terminal node. An object (e.g.,

a monitor) is supported by the furniture (e.g., a desk) it is pointing to. If the value of the

address node is null, the furniture is not grouped with any furniture, or the object is put

on the floor. Contextual relations are defined between the room and furniture, between a

supported object and supporting furniture, among different pieces of furniture, and among

functional groups.

with shared support [Hec77, GSH09, CMR08, BBS09], ii) learning shared representa-

tions [BMP06, BBC07, MMR09], iii) feature-based learning [EP04, Dau07, WDL09], and

iv) parameter-based learning [CH05b, YTS05, XLC07, Dau09]. With the recent boost of

deep learning, researchers have started to apply deep features to domain adaptation (e.g.,

[GL15, THD15]).
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2.3 Representation and Formulation

2.3.1 Representation: Attributed Spatial And-Or Graph

A scene model should be capable of: (i) representing the compositional/hierarchical struc-

ture of indoor scenes, and (ii) capturing the rich contextual relationships between different

components of the scene. Specifically,

• Compositional hierarchy of the indoor scene structure is embedded in a graph-based

model to model the decomposition into sub-components and the switch among mul-

tiple alternative sub-configurations. In general, an indoor scene can first be catego-

rized into different indoor settings (i.e., bedrooms, bathrooms, etc.), each of which

has a set of walls, furniture, and supported objects. Furniture can be decomposed

into functional groups that are composed of multiple pieces of furniture; e.g., a

“work” functional group consists of a desk and a chair.

• Contextual relations between pieces of furniture are helpful in distinguishing the

functionality of each furniture item and furniture pairs, providing a strong constraint

for representing natural indoor scenes. In this work, we consider four types of con-

textual relations: (i) relations between furniture and walls; (ii) relations among fur-

niture; (iii) relations between supported objects and their supporting objects (e.g.,

monitor and desk); and (iv) relations between objects of a functional pair (e.g., sofa

and TV).

Representation: We represent the hierarchical structure of indoor scenes by an attributed

Spatial And-Or Graph (S-AOG), which is a Stochastic Context-Sensitive Grammar (SCSG)
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with attributes on the terminal nodes. An example is shown in Figure 2.3. This represen-

tation combines (i) a stochastic context-free grammar (SCFG) and (ii) contextual relations

defined on a Markov random field (MRF); i.e., the horizontal links among the terminal

nodes. The S-AOG represents the hierarchical decompositions from scenes (top level)

to objects (bottom level), whereas contextual relations encode the spatial and functional

relations through horizontal links between nodes.

Definitions: Formally, an S-AOG is denoted by a 5-tuple: G = 〈S, V,R, P,E〉, where S

is the root node of the grammar, V = VNT ∪ VT is the vertex set including non-terminal

nodes VNT and terminal nodes VT, R stands for the production rules, P represents the

probability model defined on the attributed S-AOG, and E denotes the contextual relations

represented as horizontal links between nodes in the same layer.

Vertex Set V can be decomposed into a finite set of non-terminal and terminal nodes:

V = VNT ∪ VT .

• VNT = V And ∪ V Or ∪ V Set. The non-terminal nodes consists of three subsets. i) A

set of And-nodes V And, in which each node represents a decomposition of a larger entity

(e.g., a bedroom) into smaller components (e.g., walls, furniture and supported objects). ii)

A set of Or-nodes V Or, in which each node branches to alternative decompositions (e.g.,

an indoor scene can be a bedroom or a living room), enabling the algorithm to reconfigure

a scene. iii) A set of Set nodes V Set, in which each node represents a nested And-Or

relation: a set of Or-nodes serving as child branches are grouped by an And-node, and

each child branch may include different numbers of objects.

• VT = V r
T ∪ V a

T . The terminal nodes consists of two subsets of nodes: regular nodes

and address nodes. i) A regular terminal node v ∈ V r
T represents a spatial entity in
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a scene (e.g., an office chair in a bedroom) with attributes. In this work, the attributes

include internal attributes Aint of object sizes (w, l, h), external attributes Aext of object

position (x, y, z) and orientation (x − y plane) θ, and sampled human positions Ah. ii)

To avoid excessively dense graphs, an address terminal node v ∈ V a
T is introduced to

encode interactions that only occur in a certain context but are absent in all others [Fri03].

It is a pointer to regular terminal nodes, taking values in the set V r
T ∪ {nil}, representing

supporting or grouping relations as shown in Figure 2.3. For instance, an address node

connected with a “monitor” node from the “supported objects” node points to a “desk”

node, meaning a monitor is supported by a desk; an address node of a “chair” from the

“furniture” node points to a “desk” node, meaning the chair is associated with the desk as

a functional group.

Production Rules: Corresponding to three different types of non-terminal nodes, three

types of production rules are defined:

• And rules for an And-node v ∈ V And, are defined as a deterministic decomposition

v → u1 · u2 · · ·un(v). (2.1)

• Or rules for an Or-node v ∈ V Or, are defined as a switch

v → u1|u2 · · · |un(v), (2.2)

with ρ1|ρ2 · · · |ρn(v).

• Set rules for a Set-node v ∈ V Set are defined as

v → (nil|u1
1|u2

1| · · · ) · · · (nil|u1
n(v)|u2

n(v)| · · · ), (2.3)

with (ρ1,0|ρ1,1|ρ1,2| · · · ) · · · (ρn(v),0|ρn(v),1|ρn(v),2| · · · ), where uki denotes the case

that object ui appears k times, and the probability is ρi,k.
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Terminal Nodes: The set of terminal nodes can be divided into two types: (i) regular

terminal nodes v ∈ V r
T representing spatial entities in a scene, with attributes A divided

into internal Ain (size) and external Aex (position and orientation) attributes, and (ii) ad-

dress terminal nodes v ∈ V a
T that point to regular terminal nodes and take values in the set

V r
T ∪ {nil}. These latter nodes avoid excessively dense graphs by encoding interactions

that occur only in a certain context [Fri03].

Contextual Relations: The contextual relations E = Ew ∪Ef ∪Eo ∪Eg among nodes

are represented by horizontal links in the AOG. The relations are divided into four subsets:

• relations between furniture and walls Ew;

• relations among furniture Ef ;

• relations between supported objects and their supporting objects Eo (e.g., monitor and

desk); and

• relations between objects of a functional pair Eg (e.g., sofa and TV).

Accordingly, the cliques formed in the terminal layer may also be divided into four subsets:

C = Cw ∪ Cf ∪ Co ∪ Cg.

Note that the contextual relations of nodes will be inherited from their parents; hence,

the relations at a higher level will eventually collapse into cliques C among the terminal

nodes. These contextual relations also form an MRF on the terminal nodes. To encode the

contextual relations, we define different types of potential functions for different kinds of

cliques.
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Parse Tree: A hierarchical parse tree pt instantiates the S-AOG by selecting a child node

for the Or-nodes as well as determining the state of each child node for the Set-nodes. A

parse graph pg consists of a parse tree pt and a number of contextual relations E on the

parse tree: pg = (pt , Ept). Figure 2.4 illustrates a simple example of a parse graph and

four types of cliques formed in the terminal layer.

2.4 Probabilistic Formulation of S-AOG

The purpose of representing indoor scenes using an S-AOG is to bring the advantages of

compositional hierarchy and contextual relations to the generation of realistic and diverse

novel/unseen scene configurations from a learned S-AOG. In this section, we introduce

the related probabilistic formulation.

Prior: We define the prior probability of a scene configuration generated by an S-AOG

with the parameter set Θ. A scene configuration is represented by pg , including objects

in the scene and their attributes. The prior probability of pg generated by an S-AOG

parameterized by Θ is formulated as a Gibbs distribution

p(pg |Θ) =
1

Z
exp{−E(pg |Θ)} (2.4)

=
1

Z
exp{−E(pt |Θ)− E(Ept |Θ)}, (2.5)

where E(pg |Θ) is the energy function of the parse graph, E(pt |Θ) is the energy function of

a parse tree, and E(Ept |Θ) is the energy function of the contextual relations. Here, E(pt |Θ)

is defined as combinations of probability distributions with closed-form expressions, and

E(Ept |Θ) is defined as potential functions relating to the external attributes of the terminal

nodes.
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Figure 2.4: (a) A simplified example of a parse graph of a bedroom. The terminal nodes of

the parse graph form an MRF in the terminal layer. Cliques are formed by the contextual

relations projected to the terminal layer. Examples of the four types of cliques are shown

in (b)-(e), representing four different types of contextual relations.
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Figure 2.5: The learning-based pipeline for synthesizing images of indoor scenes.

Energy of Parse Tree: Energy E(pt |Θ) is further decomposed into energy functions of

different types of non-terminal nodes, and energy functions of internal attributes of both

regular and address terminal nodes:

E(pt |Θ) =
∑
v∈V Or

EOr
Θ (v) +

∑
v∈V Set

ESet
Θ (v)︸ ︷︷ ︸

non-terminal nodes

+
∑
v∈V rT

EAin
Θ (v)

︸ ︷︷ ︸
terminal nodes

, (2.6)

where the choice of child node of an Or-node v ∈ V Or follows a multinomial distribution,

and each child branch of a Set-Note v ∈ V Set follows a Bernoulli distribution. Note

that the And-nodes are deterministically expanded; hence, (Eq. 2.6) lacks an energy term

for the And-nodes. The internal attributes Ain (size) of terminal nodes follows a non-

parametric probability distribution learned via kernel density estimation.

Energy of Contextual Relations: E(Ept|Θ) combines the potentials of the four types of

cliques formed in the terminal layer, integrating human attributes and external attributes

of regular terminal nodes:

p(Ept|Θ) =
1

Z
exp{−E(Ept|Θ)} (2.7)

=
∏
c∈Cf

φf (c)
∏
c∈Co

φo(c)
∏
c∈Cg

φg(c)
∏
c∈Cr

φr(c). (2.8)
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Human Centric Potential Functions:

• Potential function φf (c) is defined on relations between furniture (Figure 2.4(b)).

The clique c = {fi} ∈ Cf includes all the terminal nodes representing furniture:

φf (c) =
1

Z
exp{−λf · 〈

∑
fi 6=fj

lcol(fi, fj), lent(c)〉}, (2.9)

where λf is a weight vector,< ·, · > denotes a vector, and the cost function lcol(fi, fj) is the

overlapping volume of the two pieces of furniture, serving as the penalty of collision. The

cost function lent(c) = −H(Γ) = Σip(γi) log p(γi) yields better utility of the room space

by sampling human trajectories, where Γ is the set of planned trajectories in the room,

and H(Γ) is the entropy. The trajectory probability map is first obtained by planning a

trajectory γi from the center of every piece of furniture to another one using bi-directional

rapidly-exploring random tree (RRT) [LaV98], which forms a heatmap. The entropy is

computed from the heatmap as shown in Figure 2.6.

• Potential function φo(c) is defined on relations between a supported object and the

supporting furniture (Figure 2.4(c)). A clique c = {f, a, o} ∈ Co includes a supported ob-

ject terminal node o, the address node a connected to the object, and the furniture terminal

node f pointed by a:

φo(c) =
1

Z
exp{−λo · 〈lhum(f, o), ladd(a)〉}, (2.10)

where the cost function lhum(f, o) defines the human usability cost—a favorable human

position should enable an agent to access or use both the furniture and the object. To com-

pute the usability cost, human positions hoi are first sampled based on position, orientation,

and the affordance map of the supported object. Given a piece of furniture, the probability
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(a) Planned trajectories (b) Probability map

Figure 2.6: Given a scene configuration, we use bi-directional RRT to plan from every

piece of furniture to another, generating a human activity probability map.

of the human positions is then computed by:

lhum(f, o) = max
i
p(hoi |f). (2.11)

The cost function ladd(a) is the negative log probability of an address node v ∈ V a
T , treated

as a certain regular terminal node, following a multinomial distribution.

• Potential function φg(c) is defined on functional grouping relations between furni-

ture (Figure 2.4(d)). A clique c = {fi, a, fj} ∈ Cg consists of terminal nodes of a core

functional furniture fi, pointed by the address node a of an associated furniture fj . The

grouping relation potential is defined similarly to the supporting relation potential

φg(c) =
1

Z
exp{−λc · 〈lhum(fi, fj), ladd(a)〉}. (2.12)

Other Potential Functions:
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• Potential function φr(c) is defined on relations between the room and furniture (Fig-

ure 2.4(e)). A clique c = {f, r} ∈ Cr includes a terminal node f and r representing a

piece of furniture and a room, respectively. The potential is defined as

φr(c) =
1

Z
exp{−λr · 〈ldis(f, r), lori(f, r)〉}, (2.13)

where the distance cost function is defined as ldis(f, r) = − log p(d|Θ), in which d ∼

lnN (µ, σ2) is the distance between the furniture and the nearest wall modeled by a log

normal distribution. The orientation cost function is defined as lori(f, r) = − log p(θ|Θ),

where θ ∼ p(µ, κ) = eκ cos(x−µ)

2πI0(κ)
is the relative orientation between the model and the nearest

wall modeled by a von Mises distribution.

2.5 Learning, Sampling and Synthesis

Before introducing the algorithm for learning all the parameters associated with an S-

AOG, in Section 2.5.1, note that our configurable scene synthesis pipeline includes the

following components:

• A sampling algorithm based on the learned S-AOG for synthesizing realistic scene

geometric configurations. This sampling algorithm controls the size of the individ-

ual objects as well as their pair-wise relations. More complex relations are recur-

sively formed using pair-wised relations. The details are found in Section 2.5.2.

• An attribute assignment process, which sets different material attributes to each ob-

ject part, as well as various camera parameters and illuminations of the environment.

The details are found in Section 2.5.4.

The above two components are the essence of configurable scene synthesis; the first gener-
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ates the structure of the scene while the second controls its detailed attributes. In between

these two components, a scene instantiation process is applied to generate a 3D mesh of

the scene based on the sampled scene layout. This step is described in Section 2.5.3. Fig-

ure 2.5 illustrates the pipeline. At the end of this section, we showcase several examples

of synthesized scenes with different configurable attributes.

2.5.1 Learning the S-AOG

We use the SUNCG dataset [SYZ17b] as training data. It contains over 45K different

scenes with manually created realistic room and furniture layouts. We collect the statis-

tics of room types, room sizes, furniture occurrences, furniture sizes, relative distances,

orientations between furniture and walls, furniture affordance, grouping occurrences, and

supporting relations. The parameters Θ of a probability model can be learned in a su-

pervised way from a set of N observed parse trees {ptn, n = 1, 2, · · · , N} by maximum

likelihood estimation (MLE)

Θ∗ = arg max
Θ

N∏
n=1

p(ptn|Θ). (2.14)

We now describe how to learn all the parameters Θ, with the focus on learning the weights

of the loss functions.

Weights of Loss Functions: Recall that the probability distribution of cliques formed

in the terminal layer is

p(Ept |Θ) =
1

Z
exp{−E(Ept |Θ)} (2.15)

=
1

Z
exp{−〈λ, l(Ept)〉}, (2.16)

where λ is the weight vector and l(Ept) is the loss vector given by four different types of

potential functions.
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To learn the weight vector, the standard MLE maximizes the average log-likelihood:

L(Ept |Θ) = − 1

N

N∑
n=1

〈λ, l(Eptn )〉 − logZ. (2.17)

This is usually maximized by following the gradient:

∂L(Ept |Θ)

∂λ
= − 1

N

N∑
n=1

l(Eptn )− ∂ logZ

∂λ
(2.18)

= − 1

N

N∑
n=1

l(Eptn )−
∂ log

∑
pt exp{−〈λ, l(Ept)〉}

∂λ
(2.19)

= − 1

N

N∑
n=1

l(Eptn ) +
∑
pt

1

Z
exp{−〈λ, l(Ept)〉}l(Ept) (2.20)

= − 1

N

N∑
n=1

l(Eptn ) +
1

Ñ

Ñ∑
ñ=1

l(Eptñ ), (2.21)

where {Eptñ}ñ=1,··· ,Ñ is the set of synthesized examples from the current model.

It is usually computationally infeasible to sample a Markov chain that burns into an

equilibrium distribution at every iteration of gradient ascent. Hence, instead of waiting

for the Markov chain to converge, we adopt the contrastive divergence (CD) learning that

follows the gradient of difference of two divergences [Hin02]

CDÑ = KL(p0||p∞)− KL(pñ||p∞), (2.22)

where KL(p0||p∞) is the Kullback-Leibler divergence between the data distribution p0 and

the model distribution p∞, and pñ is the distribution obtained by a Markov chain started at

the data distribution and run for a small number ñ of steps. In this work, we set ñ = 1.

Contrastive divergence learning has been applied effectively to addressing various

problems; one of the most notable work is in the context of Restricted Boltzmann Ma-

chines [HS06]. Both theoretical and empirical evidences shows its efficiency while keep-

ing bias typically very small [CH05a]. The gradient of the contrastive divergence is given
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by

∂CDÑ

∂λ
=

1

N

N∑
n=1

l(Eptn )− 1

Ñ

Ñ∑
ñ=1

l(Eptñ )− ∂pñ
∂λ

∂KL(pñ||p∞)

∂pñ
. (2.23)

Extensive simulations [Hin02] showed that the third term can be safely ignored since it is

small and seldom opposes the resultant of the other two terms.

Finally, the weight vector is learned by gradient descent computed by generating a

small number Ñ of examples from the Markov chain

λt+1 = λt − ηt
∂CDÑ

∂λ
(2.24)

= λt + ηt

 1

Ñ

Ñ∑
ñ=1

l(Eptñ )− 1

N

N∑
n=1

l(Eptn )

 . (2.25)

Branching Probabilities: The MLE of the branch probabilities ρi of Or-nodes, Set-

nodes and address terminal nodes is simply the frequency of each alternative choice [ZM07]:

ρi =
#(v → ui)

n(v)∑
j=1

#(v → uj)

(2.26)

Grouping Relations: The grouping relations are hand-defined (i.e., nightstands are

associated with beds, chairs are associated with desks and tables). The probability of

occurrence is learned as a multinomial distribution, and the supporting relations are auto-

matically extracted from SUNCG.

Room Size and Object Sizes: The distribution of the room size and object size among

all the furniture and supported objects is learned as a non-parametric distribution. We first

extract the size information from the 3D models inside SUNCG dataset, and then fit a

non-parametric distribution using kernel density estimation. The distances and relative
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orientations of the furniture and objects to the nearest wall are computed and fitted into a

log normal and a mixture of von Mises distributions, respectively.

Affordances: We learn the affordance maps of all the furniture and supported objects

by computing the heatmap of possible human positions. These position include annotated

humans, and we assume that the center of chairs, sofas, and beds are positions that humans

often visit. By accumulating the relative positions, we get reasonable affordance maps as

non-parametric distributions as shown in Figure 2.7.

2.5.2 Sampling Scene Geometry Configurations

Based on the learned S-AOG, we sample scene configurations (parse graphs) based on

the prior probability p(pg |Θ) using a Markov Chain Monte Carlo (MCMC) sampler. The

sampling process comprises two major steps:

1. Top-down sampling of the parse tree structure pt and internal attributes of objects.

This step selects a branch for each Or-node as well as chooses a child branch for

every Set-node. In addition, internal attributes (sizes) of each regular terminal node

are also sampled. Note that this can be easily done by sampling from closed-form

distributions.

2. MCMC sampling of the external attributes (positions and orientations) of objects as

well as the values of the address nodes. Samples are proposed by Markov chain

dynamics, and are taken after the Markov chain converges to the prior probability.

These attributes are constrained by multiple potential functions, hence it is difficult

to directly sample from the true underlying probability distribution.

Algorithm 1 provides an overview of the sampling process. Some qualitative results are
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(a) desk (b) coffee table (c) dining table (d) books

(e) laptop (f) nightstand (g) fruit bowl (h) vase

(i) floor lamp (j) wall lamp (k) fireplace (l) ceiling fan

Figure 2.7: Examples of the learned affordance maps. Given the object positioned in the

center facing upwards, i.e., coordinate of (0, 0) facing direction (0, 1), the maps show

the distributions of human positions. The affordance maps accurately capture the subtle

differences among desks, coffee tables, and dining tables. Some objects are orientation

sensitive, e.g., books, laptops, and night stands, while some are orientation invariant, e.g.,

fruit bowls and vases.
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Algorithm 1: Sampling Scene Configurations
Input : Attributed S-AOG G

Landscape parameter β

sample number n

Output: Synthesized room layouts {pg i}i=1,··· ,n

1 for i = 1 to n do

2 Sample the child nodes of the Set nodes and Or nodes from G directly to get the

structure of pg i.

3 Sample the sizes of room, furniture f and objects o in pg i directly.

4 Sample the address nodes V a.

5 Randomly initialize positions and orientations of furniture f and objects o in

pg i.

6 iter = 0

7 while iter < itermax do

8 Propose a new move and get proposal pg ′i.

9 Sample u ∼ unif(0, 1).

10 if u < min(1, exp(β(E(pg i|Θ)− E(pg ′i|Θ)))) then

11 pg i = pg ′i

12 end

13 iter += 1

14 end

15 end

shown in Figure 2.10.
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Figure 2.8: MCMC sampling process (from left to right) of scene configurations with

simulated annealing.

(a) β = 10. (b) β = 10. (c) β = 10. (d) β = 10.

Figure 2.9: Synthesis for different values of β. Each image shows a typical configuration

sampled from a Markov chain.

Markov Chain Dynamics: Four types of Markov chain dynamics qi, i = 1, 2, 3, 4 are

designed to be chosen randomly with probabilities to propose moves. Specifically, the

dynamics q1 and q2 are diffusion, while q3 and q4 are reversible jumps:

1. Translation of Objects. Dynamic q1 chooses a regular terminal node and samples a

new position based on the current position of the object

pos→ pos + δpos, (2.27)

where δpos follows a bivariate normal distribution.

2. Rotation of Objects. Dynamic q2 chooses a regular terminal node and samples a new
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orientation based on the current orientation of the object

θ → θ + δθ, (2.28)

where δθ follows a normal distribution.

3. Swapping of Objects. Dynamic q3 chooses two regular terminal nodes and swaps

the positions and orientations of the objects.

4. Swapping of Supporting Objects. Dynamic q4 chooses an address terminal node and

samples a new regular furniture terminal node pointed to. We sample a new 3D

location (x, y, z) for the supported object:

• Randomly sample x = ux ∗wp, where ux ∼ unif(0, 1), and wp is the width of the

supporting object.

• Randomly sample y = uy ∗ lp, where uy ∼ unif(0, 1), and lp is the length of the

supporting object.

• The height z is simply the height of the supporting object.

Adopting the Metropolis-Hastings algorithm, a newly proposed parse graph pg ′ is accepted

according to the following acceptance probability:

α(pg ′|pg ,Θ) = min(1,
p(pg ′|Θ)p(pg |pg ′)
p(pg |Θ)p(pg ′|pg)

) (2.29)

= min(1,
p(pg ′|Θ)

p(pg |Θ)
) (2.30)

= min(1, exp(E(pg |Θ)− E(pg ′|Θ))). (2.31)

The proposal probabilities are canceled since the proposed moves are symmetric in prob-

ability.
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Convergence: To test if the Markov chain has converged to the prior probability, we

keep a histogram of the energy of the last w samples. When the difference between two

histograms at a distance of s sampling steps is smaller than a threshold ε, the Markov chain

is considered to have converged.

Tidiness of Scenes: During the sampling process, a typical state is drawn from the dis-

tribution. We can easily control the level of tidiness of the sampled scenes by adding an

extra parameter β to control the landscape of the prior distribution:

p(pg |Θ) =
1

Z
exp{−βE(pg |Θ)}. (2.32)

Some examples are shown in Figure 2.9.

Note that the parameter β is analogous albeit differs from the temperature in simulated

annealing optimization—the temperature in simulated annealing is time-variant; i.e., it

changes during the simulated annealing process. In our model, we simulate a Markov

chain under one specific β to get typical samples at a certain level of tidiness. When β

is small, the distribution is “smooth”; i.e., the differences between local minima and local

maxima are small. A simulated annealing scheme is adopted to obtain samples with high

probability as shown in Figure 2.8.

2.5.3 Scene Instantiation using 3D Object Datasets

Given a generated 3D scene layout, the 3D scene is instantiated by assembling objects into

it using 3D object datasets. In this work, we incorporate both ShapeNet dataset [CFG15]

and SUNCG dataset [SYZ17a] as our 3D model dataset. Scene instantiation includes five

steps:

33



1. For each object in the scene layout, find the model has the closest the length/width

ratio to the dimension specified in the scene layout.

2. Align the orientations of selected models according to the orientation specified in

the scene layout.

3. Transform the models to the specified positions, and scales the models according to

the generated scene layout.

4. Since we only fit the length and width in Step 1, an extra step to adjust object position

along the gravity direction is needed, eliminating all the floating models and the

models that penetrated into each other.

5. Add the floor, walls, and ceiling to complete the instantiated scene.

2.5.4 Scene Attribute Configurations

As we generate scenes in a forward fashion, our pipeline enables the precise customization

and control of important attributes of the generated scenes. Some configurations are shown

in Figure 2.11. The rendered images are determined by combinations of the following four

factors:

• Illuminations, including light source positions, intensities, colors, and the number

of light sources.

• Material and texture of the environment; i.e., the walls, floor and ceiling.

• Cameras, such as fisheye, panorama, and Kinect cameras, have different focal lengths

and apertures, yielding dramatically different rendered images. By virtue of physics-
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(a) Different categories of the scenes using default attributes of object material, the lighting condi-

tions, and camera parameters. Top row: top view. Bottom row: a random view.

(b) Additional examples of two bedrooms, with corresponding depth map, surface normal, and

semantic segmentation.

Figure 2.10: Qualitative results in different types of scenes.

based rendering, our pipeline can even control the F-stop and focal distance, result-

ing in different depths of field.

• Different object materials and textures will have various properties, represented by

roughness, metallicness, and reflectivity.

2.6 Photorealistic Scene Rendering

We adopt Physics-Based Rendering (PBR) [PH04] to generate the photorealistic 2D im-

ages. PBR has become the industry standard in computer graphics applications in re-

cent years, and has been widely adopted for both offline and real-time rendering. Unlike

traditional rendering techniques where heuristic shaders are used to control how light is

scattered by a surface, PBR simulates the physics of real-world light by computing the

bidirectional scattering distribution function (BSDF) [BDW81] of the surface.
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(a) Lighting intensity: half and double (b) Lighting color: purple and blue

(c) Different object materials: metal, gold, chocolate, and clay

Figure 2.11: We can configure the scene with different (a) illumination intensities, (b)

illumination colors, (c) materials, and (d) even on each object part. We can also control

(e) the number of light source and their positions, (f) camera lenses (e.g., fish eye), (g)

depths of field, or (h) render the scene as a panorama for virtual reality and other virtual

environments. (i) 7 different background wall textures. Note how the background affects

the overall illumination.

Formulation: Following the law of conservation of energy, PBR solves the rendering

equation for the total spectral radiance of outgoing light in direction w from point x on a

surface

Lo(x,w) = Le(x,w) (2.33)

+

∫
Ω

fr(x,w
′,w)Li(x,w

′)(−w′ · n)dw′,

where Lo is the outgoing light, Le is the emitted light (from a light source), Ω is the unit

hemisphere uniquely determined by x and its normal, fr is the bidirectional reflectance

distribution function (BRDF), Li is the incoming light from direction w′, and w′ · n ac-
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(a) Different materials in each object part (b) Using multiple light sources

(c) Fish eye lens (d) Depth of field (e) Panorama images

(f) [Different background materials affect the rendering results

Figure 2.12: (Continue:) we can configure the scene with different (a) illumination in-

tensities, (b) illumination colors, (c) materials, and (d) even on each object part. We can

also control (e) the number of light source and their positions, (f) camera lenses (e.g., fish

eye), (g) depths of field, or (h) render the scene as a panorama for virtual reality and other

virtual environments. (i) 7 different background wall textures. Note how the background

affects the overall illumination.
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counts for the attenuation of the incoming light.

Advantages: In path tracing, the rendering equation is often solved with Monte Carlo

methods. Contrasting what happens in the real world, the paths of photons in a scene

are traced backwards from the camera (screen pixels) to the source lights. Objects in the

scene receive lighting contributions as they interact with the photon paths. By comput-

ing both the reflected and transmitted components of rays in a physically accurate way

while conserving energies and obeying the refraction equations, PBR photorealistically

renders shadows, reflections, and refractions, thereby capturing unprecedented levels of

detail compared to other existing shading techniques. Note PBR describes a shading pro-

cess and does not dictate how images are rasterized in screen space. In this work we use

the Mantra R© PBR engine to render synthetic image data with raytracing for its accurate

calculation of lighting and shading as well as its physically intuitive parameter configura-

tion.

Indoor scenes are typically closed rooms. Various reflective and diffusive surfaces may

exist throughout the space. Therefore the effect of secondary rays is particularly important

in achieving realistic lighting. PBR robustly samples both direct lighting contributions

on surfaces from light sources and indirect lighting from rays reflected and diffused by

other surfaces. The BSDF shader on a surface manages and modifies its color contribution

when hit by a secondary ray. Doing so results in more secondary rays being sent out

from the surface in evaluation. The reflection limit (the number of times a ray can be

reflected) and the diffuse limit (the number of times diffuse rays bounce on surfaces) need

to be chosen wisely to balance the final image quality and the rendering time. Decreasing

indirect lighting samples will likely yield a nice rendering time reduction, but at the cost

of significantly diminished visual realism.
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Table 2.1: Comparisons of rendering time vs quality. The first column tabulates the ref-

erence number and rendering results used in this work, the second column lists all the

criteria, and the remaining columns present comparative results. The color differences be-

tween the reference image and images rendered with various parameters are measured by

LAB Delta E standard [SB02] tracing back to Helmholtz and Hering [BKW98, Val07].

Ref. Criteria Comparisons

3 × 3 Baseline pixel samples 2 × 2 1 × 1 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

0.001 Noise level 0.001 0.001 0.01 0.1 0.001 0.001 0.001 0.001

22 Maximum additional rays 22 22 22 22 10 3 22 22

6 Bounce limit 6 6 6 6 6 6 3 1

203 Time (second) 131 45 196 30 97 36 198 178

LAB Delta E difference

Rendering Time vs Rendering Quality: In summary, we use the following control

parameters to adjust the render quality and speed:

• Baseline pixel samples. This is the minimum number of rays sent per pixel. Each

pixel is typically divided evenly along both directions. Common values for this

parameter are 3× 3 and 5× 5. The higher pixel sample counts are usually required

to produce motion blur and depth of field effects.

• Noise level. Different rays sent from each pixel will not yield identical paths. This

parameter determines the maximum allowed variance among the different results.

If necessary, additional rays (in addition to baseline pixel sample count) will be

generated to decrease the noise.

• Maximum additional rays. This parameter is the upper limit of the additional rays
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sent for satisfying the noise level.

• Bounce limit. The maximum number of secondary ray bounces. We use this param-

eter to restrict both diffuse and reflected rays. Note that in PBR the diffuse ray is one

of the most significant contributors to realistic global illumination, while the other

parameters are more important in controlling the Monte Carlo sampling noise.

Table 2.1 summarizes our analysis of how these parameters affect the render time and

image quality.

2.7 Experiments

2.7.1 Realisticity of Sampled Scene Configurations

First, we design three experiments to test if our algorithm can generate realistic scenes.

It is based on different criteria: i) visual similarity to manually constructed scenes, ii)

the accuracy of affordance maps for the synthesized scenes, and iii) functionalities and

naturalness of the synthesized scenes. The first experiment compares our method with

a state-of-the-art room arrangement method; the second experiment measures the synthe-

sized affordances; the third one is an ablation study. Overall, the experiments show that our

Table 2.2: Classification results on segmentation maps of synthesized scenes using differ-

ent methods vs. SUNCG.

Method Yu et al. [YYT11] SUNCG Perturbed Ours

Accuracy(%) ↓ 87.49 63.69 76.18
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Table 2.3: Comparison between affordance maps computed from our samples and real

data

Metric Bathroom Bedroom Dining Room Garage Guest Room Gym Kitchen Living Room Office Storage

Total variation 0.431 0.202 0.387 0.237 0.175 0.278 0.227 0.117 0.303 0.708

Hellinger distance 0.453 0.252 0.442 0.284 0.212 0.294 0.251 0.158 0.318 0.703

Table 2.4: Human subjects’ ratings (1-5) of the sampled layouts based on functionality

(top) and naturalness (bottom)

Method Bathroom Bedroom Dining Room Garage Guest Room Gym Kitchen Living Room Office Storage

no-context 1.12 ± 0.33 1.25 ± 0.43 1.38 ± 0.48 1.75 ± 0.66 1.50 ± 0.50 3.75 ± 0.97 2.38 ± 0.48 1.50 ± 0.87 1.62 ± 0.48 1.75 ± 0.43

object 3.12 ± 0.60 3.62 ± 1.22 2.50 ± 0.71 3.50 ± 0.71 2.25 ± 0.97 3.62 ± 0.70 3.62 ± 0.70 3.12 ± 0.78 1.62 ± 0.48 4.00 ± 0.71

Yu et al. [YYT11] 3.61 ± 0.52 4.15 ± 0.25 3.15 ± 0.40 3.59 ± 0.51 2.58 ± 0.31 2.03 ± 0.56 3.91 ± 0.98 4.62 ± 0.21 3.32 ± 0.81 2.58 ± 0.64

ours 4.58 ± 0.86 4.67 ± 0.90 3.33 ± 0.90 3.96 ± 0.79 3.25 ± 1.36 4.04 ± 0.79 4.21 ± 0.87 4.58 ± 0.86 3.67 ± 0.75 4.79 ± 0.58

no-context 1.00 ± 0.00 1.00 ± 0.00 1.12 ± 0.33 1.38 ± 0.70 1.12 ± 0.33 1.62 ± 0.86 1.00 ± 0.00 1.25 ± 0.43 1.12 ± 0.33 1.00 ± 0.00

object 2.88 ± 0.78 3.12 ± 1.17 2.38 ± 0.86 3.00 ± 0.71 2.50 ± 0.50 3.38 ± 0.86 3.25 ± 0.66 2.50 ± 0.50 1.25 ± 0.43 3.75 ± 0.66

Yu et al. [YYT11] 4.00 ± 0.52 3.85 ± 0.92 3.27 ± 1.01 2.99 ± 0.25 3.52 ± 0.93 2.14 ± 0.63 3.89 ± 0.90 3.31 ± 0.29 2.77 ± 0.67 2.96 ± 0.41

ours 4.21 ± 0.71 4.25 ± 0.66 3.08 ± 0.70 3.71 ± 0.68 3.83 ± 0.80 4.17 ± 0.75 4.38 ± 0.56 3.42 ± 0.70 3.25 ± 0.72 4.54 ± 0.71
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(a) bathroom

(b) bedroom

(c) dining room

(d) garage

(e) guest room

Figure 2.13: Examples of scenes in ten different categories. Top: top-view. Middle: a

side-view. Bottom: affordance heatmap.
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(a) gym

(b) kitchen

(c) dining room

(d) office

(e) guest room

Figure 2.14: (Continue:) examples of scenes in ten different categories. Top: top-view.

Middle: a side-view. Bottom: affordance heatmap.
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(a) SUNCG Perturbed (b) Yu et al. [YYT11] (c) Ours

Figure 2.15: Top-view segmentation maps for classification.

algorithm can robustly sample a large variety of realistic scenes that exhibits naturalness

and functionality.

2.7.1.1 Layout Classification

To quantitatively evaluate the visual realism, we trained a classifier on the top-view seg-

mentation maps of synthesized scenes and SUNCG scenes. Specifically, we train a ResNet-

152 [HZR16] to classify top view layout segmentation maps (synthesized vs. SUNCG).

Examples of top-view segmentation maps are shown in Figure 2.15. The reason to use

segmentation maps is that we want to evaluate the room layout excluding rendering fac-

tors such as object materials. We use two methods for comparison: i) a state-of-the-art

furniture arrangement optimization method proposed by Yu et al. [YYT11], and ii) slight

perturbation of SUNCG scenes by adding small Gaussian noise (e.g.µ = 0, σ = 0.1) to

the layout. The room arrangement algorithm proposed by [YYT11] takes one pre-fixed in-

put room and re-organizes the room. 1500 scenes are randomly selected for each method

and SUNCG: 800 for training, 200 for validation, and 500 for testing. As shown in Ta-

ble 2.2, the classifier successfully distinguishes Yu et al.vs. SUNCG with an accuracy of

87.49%. Our method achieves a better performance of 76.18%, exhibiting a higher realism

44



Figure 2.16: Top: previous methods [YYT11] only re-arranges a given input scene with

a fixed room size and a predefined set of objects. Bottom: our method samples a large

variety of scenes.

and larger variety. This result indicates our method is much more visually similar to real

scenes than the comparative scene optimization method. Qualitative comparisons of Yu et

al.and our method are shown in Figure 2.16.

2.7.1.2 Affordance Maps Comparison

We sample 500 rooms of 10 different scene categories summarized in Table 2.3. For

each type of room, we compute the affordance maps of the objects in the synthesized

samples, and calculate both the total variation distances and Hellinger distances between

the affordance maps computed from the synthesized samples and the SUNCG dataset.

The two distributions are similar if the distance is close to 0. Most sampled scenes using

the proposed method show similar affordance distributions to manually created ones from

SUNCG. Some scene types (e.g.Storage) show a larger distance since they do not exhibit
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clear affordances. Overall, the results indicate that affordance maps computed from the

synthesized scenes are reasonably close to the ones computed from manually constructed

scenes by artists.

2.7.1.3 Functionality and naturalness

Three methods are used for comparison: (i) direct sampling of rooms according to the

statistics of furniture occurrence without adding contextual relation, (ii) an approach that

only models object-wise relations by removing the human constraints in our model, and

(iii) the algorithm proposed by Yu et al. [YYT11]. We showed the sampled layouts us-

ing three methods to 4 human subjects. Subjects were told the room category in advance,

and instructed to rate given scene layouts without knowing the method used to generate

the layouts. For each of the 10 room categories, 24 samples were randomly selected us-

ing our method and [YYT11], and 8 samples were selected using both the object-wise

modeling method and the random generation. The subjects evaluated the layouts based

on two criteria: (i) functionality of the rooms, e.g., can the “bedroom” satisfies a human’s

needs for daily life; and (ii) the naturalness and realism of the layout. Scales of responses

range from 1 to 5, with 5 indicating perfect functionalilty or perfect naturalness and re-

alism. The mean ratings and the standard deviations are summarized in Table 2.4. Our

approach outperforms the three methods in both criteria, demonstrating the ability to sam-

ple a functionally reasonable and realistic scene layout. More qualitative results are shown

in Figure 2.13.
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Table 2.5: Performance of normal estimation for the NYU-Depth V2 dataset with different

training protocols.

pre-train fine-tune mean↓ median↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

NYUv2 27.30 21.12 27.21 52.61 64.72

Eigen 22.2 15.3 38.6 64.0 73.9

[ZSY17] NYUv2 21.74 14.75 39.37 66.25 76.06

ours+[ZSY17] NYUv2 21.47 14.45 39.84 67.05 76.72

2.7.2 Synthesized Indoor Scene Data for Scene Understanding

In this section, we further demonstrate the usefulness of the generated synthetic indoor

scenes from two perspectives:

1. Improving state-of-the-art computer vision models by training with our synthetic

data. We showcase our results on the task of normal prediction and depth prediction

from a single RGB image, demonstrating the potential of using the proposed dataset.

2. Benchmarking common scene understanding tasks with configurable object attributes

and various environments, which evaluates the stabilities and sensitivities of the al-

gorithms, providing directions and guidelines for their further improvement in vari-

ous vision tasks.

The reported results use the reference parameters indicated in Table 2.1. We found that

choosing parameters for lower-quality rendering via the Mantra renderer does not provide

training images that suffice to outperform state-of-the-art methods using the experimental

setup described below.
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(a) RGB (b) ground truth (c) estimation (d) error

Figure 2.17: Examples of normal estimation results predicted by the model trained with

our synthetic data.

2.7.2.1 Normal Prediction

Predicting surface normals from a single RGB image is an essential task in scene un-

derstanding since it provides important information in recovering the 3D structure of the

scenes. We train a neural network with our synthetic data to demonstrate that the per-

fect per-pixel ground truth generated using our pipeline could be utilized to improve upon
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the state-of-the-art performance on a specific scene understanding task. Using the fully

convolutional network model described by Zhang et al. [ZSY17], we compare the normal

estimation results given by models trained under two different protocols: (i) the network

is directly trained and tested on the NYU-Depth V2 dataset, and (ii) the network is first

pre-trained using our synthetic data, then fine-tuned and tested on NYU-Depth V2.

Following the standard evaluation protocol [FGH13, BRG16], we evaluate a per-pixel

error over the entire dataset. To evaluate the prediction error, we computed the mean, me-

dian, and RMSE of angular error between the predicted normals and ground truth normals.

Prediction accuracy is given by calculating the fraction of pixels that are correct within a

threshold t, where t = 11.25◦, 22.5◦, 30◦. Our experimental results are summarized in

Table 2.5. By utilizing our synthetic data, the model achieves better performance. From

the visualized results in Figure 2.17, we can see that the error mainly accrues in the area

where the ground truth normal map is noisy. We argue that part of the reason is due to the

sensor’s noise or sensing distance limit. Such results in turn imply the importance to have

perfect per-pixel ground truth for training and evaluation.

2.7.2.2 Depth Estimation

Single-image depth estimation is a fundamental problem in computer vision, which has

found broad applications in scene understanding, 3D modeling, and robotics. The problem

is challenging since no reliable depth cues are available. In this task, the algorithms output

a depth image based on a single RGB input image.

To demonstrate the efficacy of our synthetic data, we compare the depth estimation

results provided by models trained following protocols similar to those we used in normal

prediction with the network in [LSL15]. To perform a quantitative evaluation, we used the
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Table 2.6: Depth estimation performance on the NYU-Depth V2 dataset with different

training protocols.

Pre-Train Fine-Tune

Error Accuracy

Abs Rel Sqr Rel Log10 RMSE(linear) RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

NYUv2 - 0.233 0.158 0.098 0.831 0.117 0.605 0.879 0.965

Ours - 0.241 0.173 0.108 0.842 0.125 0.612 0.882 0.966

Ours NYUv2 0.226 0.152 0.090 0.820 0.108 0.616 0.887 0.972

metrics applied in previous work [EPF14]:

• Abs relative error: 1
N

∑
p

|dp−dgtp |
dgtp

,

• Square relative difference: 1
N

∑
p

|dp−dgtp |2
dgtp

,

• Average log10 error: 1
N

∑
x

∣∣log10(dp)− log10(dgtp )
∣∣,

• RMSE :
√

1
N

∑
x

∣∣dp − dgtp ∣∣2,

• Log RMSE:
√

1
N

∑
x

∣∣log(dp)− log(dgtp )
∣∣2,

• Threshold: % of dp s.t. max ( dp
dgtp
,
dgtp
dp

) < threshold,

where dp and dgtp are the predicted depths and the ground truth depths at the pixel indexed

by p, respectively, and N is the number of pixels in all the evaluated images. The first

five metrics capture the error calculated over all the pixels; lower values are better. The

threshold criteria capture the estimation accuracy; higher values are better.

Table 2.6 summarizes the results. We can see that the model pretrained on our dataset

and fine-tuned on the NYU-Depth V2 dataset achieves the best performance, both in error

and accuracy. Figure 2.18 shows qualitative results. This demonstrates the usefulness of

our dataset in improving algorithm performance in scene understanding tasks.
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(a) RGB (b) ground truth (c) NYUv2 (d) Ours+NYUv2

Figure 2.18: Examples of depth estimation results predicted by the model trained with our

synthetic data.

2.7.2.3 Benchmark and Diagnosis

In this section, we show benchmark results and provide a diagnosis of various common

computer vision tasks using our synthetic dataset.
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Table 2.7: Depth estimation. Intensity, color, and material represent the scene with differ-

ent illumination intensities, colors, and object material properties, respectively.

Setting Method

Error Accuracy

Abs Rel Sqr Rel Log10 RMSE(linear) RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

Original

[LSL15] 0.225 0.146 0.089 0.585 0.117 0.642 0.914 0.987

[EPF14] 0.373 0.358 0.147 0.802 0.191 0.367 0.745 0.924

[EF15] 0.366 0.347 0.171 0.910 0.206 0.287 0.617 0.863

Intensity

[LSL15] 0.216 0.165 0.085 0.561 0.118 0.683 0.915 0.971

[EPF14] 0.483 0.511 0.183 0.930 0.24 0.205 0.551 0.802

[EF15] 0.457 0.469 0.201 1.01 0.217 0.284 0.607 0.851

Color

[LSL15] 0.332 0.304 0.113 0.643 0.166 0.582 0.852 0.928

[EPF14] 0.509 0.540 0.190 0.923 0.239 0.263 0.592 0.851

[EF15] 0.491 0.508 0.203 0.961 0.247 0.241 0.531 0.806

Material

[LSL15] 0.192 0.130 0.08 0.534 0.106 0.693 0.930 0.985

[EPF14] 0.395 0.389 0.155 0.823 0.199 0.345 0.709 0.908

[EF15] 0.393 0.395 0.169 0.882 0.209 0.291 0.631 0.889

52



Depth Estimation. In the presented benchmark, we evaluated three state-of-the-art single-

image depth estimation algorithms due to Eigens et al. [EPF14, EF15] and Liu et al. [LSL15].

We evaluated those three algorithms with data generated from different settings including

illumination intensities, colors, and object material properties. Table 2.7 shows a quanti-

tative comparison. We see that both [EPF14] and [EF15] are very sensitive to illumination

conditions, whereas [LSL15] is robust to illumination intensity, but sensitive to illumina-

tion color. All three algorithms are robust to different object materials. The reason may

be that material changes do not alter the continuity of the surfaces. Note that [LSL15]

exhibits nearly the same performance on both our dataset and the NYU-Depth V2 dataset,

supporting the assertion that our synthetic scenes are suitable for algorithm evaluation and

diagnosis.

Normal Estimation. Next, we evaluated two surface normal estimation algorithms due

to Eigens et al. [EF15] and Bansal et al. [BRG16]. Table 2.8 summarizes our quantitative

results. Compared with depth estimation, the surface normal estimation algorithms are

stable to different illumination conditions as well as to different material properties. As in

depth estimation, these two algorithms achieve comparable results on both our dataset and

the NYU dataset.

Semantic Segmentation. Semantic segmentation has become one of the most popular

tasks in scene understanding since the development and success of fully convolutional

networks (FCNs). Given a single RGB image, the algorithm outputs a semantic label

for every image pixel. We applied the semantic segmentation model described by Eigen

et al. [EF15]. Since we have 129 classes of indoor objects whereas the model only has

a maximum of 40 classes, we rearranged and reduced the number of classes to fit the
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Table 2.8: Surface Normal Estimation. Intensity, color, and material represent the setting

with different illumination intensities, illumination colors, and object material properties.

Setting Method

Error Accuracy

Mean Median RMSE 11.25◦ 22.5◦ 30◦

Original

[EF15] 22.74 13.82 32.48 43.34 67.64 75.51

[BRG16] 24.45 16.49 33.07 35.18 61.69 70.85

Intensity

[EF15] 24.15 14.92 33.53 39.23 66.04 73.86

[BRG16] 24.20 16.70 32.29 32.00 62.56 72.22

Color

[EF15] 26.53 17.18 36.36 34.20 60.33 70.46

[BRG16] 27.11 18.65 35.67 28.19 58.23 68.31

Material

[EF15] 22.86 15.33 32.62 36.99 65.21 73.31

[BRG16] 24.15 16.76 32.24 33.52 62.50 72.17
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(a) Video frames
(b) SLAM re-

sult

Figure 2.19: We can render the scenes as (a) a sequence of video frames after setting

a camera trajectory, (b) which can be used to evaluate SLAM reconstruction [WLS15]

results. The top row shows a successful reconstruction case, while the middle and bottom

rows show two failure cases due to a fast moving camera and a plain, untextured surface,

respectively.

prediction of the model. The algorithm achieves 60.5 pixel accuracy and 50.4 mIoU on

our dataset.

3D Reconstructions and SLAM. We can evaluate 3D reconstruction and SLAM algo-

rithms using images rendered from a sequence of different camera views. We generated

different sets of images on diverse synthesized scenes with various camera motion paths

and backgrounds to evaluate the effectiveness of the open-source SLAM algorithm Elas-

ticFusion [WLS15]. A qualitative result is shown in Figure 2.19. Some scenes can be

robustly reconstructed when we rotate the camera evenly and smoothly, as well as when

both the background and foreground objects have rich textures. However, other recon-
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structed 3D meshes are badly fragmented due to the failure to register the current frame

with previous frames due to fast moving cameras or the lack of rich textures. Experiments

indicate that our synthetic scenes with configurable attributes and background can be uti-

lized to diagnose the SLAM algorithm since we have full control of both the scenes and

the camera trajectories.

Object Detection. The performance of object detection algorithms have greatly im-

proved in recent years with the appearance and development of region-based convolutional

neural networks. We apply the Faster R-CNN Model [RHG15] to detect objects. We again

need to rearrange and reduce the number of classes for evaluation. Figure 2.20 summarizes

our qualitative results with a bedroom scene. Note that a change of material can adversely

affect the output of the model—when the material of objects is changed to metal, the bed

is detected as a “car”.

2.8 Discussion

Complexity of synthesis. The time complexity is hard to measure since MCMC sam-

pling is adopted. Empirically, it takes about 20-40 minutes to sample an interior layout

(20000 iterations of MCMC), and roughly 12-20 minutes to render a 640×480 image on a

normal PC. The rendering speed depends on settings related to illumination, environments,

and the size of the scene, etc..

Configurable scene synthesis: The most significant distinction between the our work

and prior work reported in the literature is our ability to generate large-scale configurable

3D scenes. But why is configurable generation desirable, given the fact that SUNCG [SYZ17a]
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.20: Benchmark results. (a) Given a set of generated RGB images rendered with

different illuminations and object material properties (top to bottom: original settings,

with high illumination, with blue illumination, and with metallic material properties), we

evaluate (b)–(d) three depth prediction algorithms, (e)–(f) two surface normal estimation

algorithms, (g) a semantic segmentation algorithm, and (h) an object detection algorithm.

already provided a large dataset of manually created 3D scenes?

A direct and obvious benefit is the potential to generate unlimited training data. As

shown in a recent report by Sun et al. [SSS17], after introducing a dataset with 300 times of

the size of ImageNet [DDS09], the performance of supervised learning appears to continue

to increase linearly in proportion to the increased volume of labeled data. Such results

indicate the usefulness of labeled datasets on a scale even larger than SUNCG. Although

the SUNCG dataset is large by today’s standards, it is still a dataset limited by the manual

specification of scene layouts.

A benefit of using configurable scene synthesis is to diagnose AI systems. Some pre-
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liminary results were reported in this paper. In the future, we hope such methods can assist

in building explainable AI. For instance, in the field of causal reasoning [Pea09], causal

induction usually requires turning on and off specific conditions in order to draw a conclu-

sion regarding whether or not a causal relation exists. Generating a scene in a controllable

manner could provide a useful tool for studying these problems.

Furthermore, a configurable pipeline could be used to generate various virtual envi-

ronment in a controllable manner in order to train virtual agents situated in virtual envi-

ronments in order to learn task planning [LGS16, ZMK17] and control policy [HSL17,

WMR17].

The importance of the different energy terms: In our experiments, the learned weights

of the different energy terms indicate the importance of the terms. Based on the ranking

from the largest weight to the smallest, the energy terms are 1) distances between furniture

and the nearest wall, 2) relative orientations of furniture and the nearest wall, 3) supporting

relations, 4) functional group relations, and 5) occlusions of the accessible space of furni-

ture by other furniture. We can regard such rankings learned from training data as human

preferences of various factors in indoor layout designs, which is important for sampling

and generating realistic scenes. For example, one can imagine that it is more important to

have a desk aligned with a wall (relative distance and orientation), than it is to have a chair

close to a desk (functional group relations).

Balancing rendering time and quality: The advantage of physically accurate represen-

tation of shadows, colors, and reflections comes at the cost of computation. High quality

rendering (e.g., rendering for movies) requires tremendous amounts of CPU time and com-

puter memory that is practical only with distributed render farms. Low quality settings are
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prone to granular render noise due to stochastic sampling. Our comparisons between ren-

dering time and rendering quality serve as a basic guideline for choosing the values of

the rendering parameters. In practice, depending on the complexity of the scene (such

as the number of light sources and reflective objects), manual adjustment is often needed

in large-scale rendering (e.g., an overview of a city) in order to achieve the best trade-

off between rendering time and quality. Switching to GPU-based ray tracing engines is a

promising alternative. This direction is especially useful for scenes with a small number

of polygons and textures, which can fit into a modern GPU memory.

The speed of the sampling process: It takes roughly 3–5 minutes to render a 640×480-

pixel image, depending on settings related to illumination, environments, and the size of

the scene. By comparison, the sampling process consumes approximately 3 minutes with

the current setup. Although the convergence speed of the Monte Carlo Markov chain is fast

enough relative to photorealistic rendering, it is still desirable to accelerate the sampling

process. In practice, to speed up the sampling and improve the synthesis quality, we split

the sampling process into five stages: (i) Sample the objects on the wall, e.g., windows,

switches, paints and lights, (ii) sample the core functional objects in functional groups

(e.g., desks and beds), (iii) sample the objects that are associated with the core functional

objects (e.g., chairs and nightstands), (iv) sample the objects that are not paired with other

objects (e.g., wardrobes and bookshelves), and (v) Sample small objects that are supported

by furniture (e.g., laptops and books). By splitting the sampling process using functional

groups, we effectively reduce the computational complexity, and different types of objects

quickly converge to their final positions.
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2.9 Conclusion and Future Work

Our proposed learning-based pipeline for generating and rendering configurable room lay-

outs can synthesize massive quantities of images with detailed, per-pixel ground truth in-

formation for supervised training. We believe that the ability to generate room layouts in

a controllable manner can benefit various vision areas, including but not limited to depth

prediction [EPF14, EF15, LSL15, LRB16], surface normal prediction [WFG15, EF15,

BRG16], semantic segmentation [LSD15, NHH15, CPK16], reasoning about object-supporting

relations [FSH11, SHK12, ZZY15, LZZ16], material recognition [BUS13, BBS14, BUS15,

WYL15], recovery of illumination conditions [NZI01, SSI03, KN09, ON14, BM15, HN05,

ZDN15, ON16, LN16], inference of room layout and scene parsing [HEH05, HHF09,

LHK09, GHK10, DBF12, XRT12, ZZ13, ML15, CCP15], determination of object func-

tionality and affordance [SB91, BR06, GGV11, HRB11, ZZ13, GSE11, JKS13, ZFF14,

MKF14, KS14, YDY15, KS16, RT16], and physical reasoning [ZZY13, ZZY15, ZZZ15,

WYL15, ZJZ16, Wu16]. In additional, we believe that research on 3D reconstruction in

robotics and on the psychophysics of human perception can also benefit from our work.

Our current approach has several limitations that we plan to address in future research.

First, the scene generation process can be improved using a multi-stage sampling process;

i.e., sampling large furniture objects first and smaller objects later, which can potentially

improve the scene layout. Second, we will consider modeling human activity inside the

generated scenes, especially with regard to functionality and affordance. Third, we will

consider the incorporation of moving virtual humans into the scenes, which can provide

additional ground truth for human pose recognition, human tracking, and other human-

related tasks. To model dynamic interactions, a Spatio-Temporal AOG (ST-AOG) repre-

sentation is needed to extend the current spatial representation into the temporal domain.
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Such an extension would unlock the potential to further synthesize outdoor environments,

although a large-scale, structured training dataset would be needed for learning-based ap-

proaches. Finally, domain adaptation has been shown to be important in learning from

synthetic data [RSM16, LXG17, TE11]; hence, we plan to apply domain adaptation tech-

niques to our synthetic dataset.
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2.10 More Results
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CHAPTER 3

Human Activity Prediction Using Stochastic Grammar

Consider the image from a video shown in Figure 3.1(a). A modern computer vision

algorithm might reliably detect a human pose and some key objects in the scene: a chair,

a monitor, a cup, a microwave and a water cooler. However, we as observers are able to

reason beyond the current situation. We can predict what the possible future states are

to some extent, and we can even evaluate how strong that belief is – a human can easily

predict which state is the most likely future state from Figure 3.1(c).

We consider the task of understanding complex human activities from (partially-observed)

videos from two important aspects: activity recognition and prediction. This is a ubiqui-

tous problem driven by a wide range of applications in many perceptual tasks. Some sce-

narios further require the algorithm to have both recognition and prediction capabilities,

e.g., assistive robots need to recognize the current human activity and provide future-aware

assistance.

Besides applications, a joint solution of recognition and prediction is also motivated

from a modeling perspective. Activity prediction needs the observer to reason beyond

appearance to find out many underlying factors: what happened, what is happening, what

the goal of the agent is, what will happen/how the agent will perform the task. Activity

recognition can benefit from answers to these questions. Attempts have been made to

address activity prediction in both the computer vision [LF14, KZB12, WGH14, AGR16,
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JZS16, PJZ11, Ryo11] and the robotics community [ZRG09, KKS12, WDA12, KS16,

HZG16].

To find a good solution, we need to consider two questions: 1) what is a good represen-

tation for the structure of human activities/tasks, and 2) what is a good inference algorithm

to cope with such a representation. A popular family of representations for events is the

Markov models (e.g., hidden Markov Model). However, Markov models are not expres-

sive enough since human tasks often exhibit non-Markovian and compositional properties.

Hence we argue that 1) a representation should reflect the hierarchical/compositional task

structure of human activities, and 2) an inference algorithm should recover the hierarchi-

cal structure given the past observations, and be able to predict the future based on the

understanding.

To choose a model to capture the hierarchical structure of the entire history, we refer to

the Chomsky hierarchy, which is a containment hierarchy of classes of formal grammars

in the formal languages of computer science and linguistics. The reason is that activities

are analogous to languages: actions are like words and activities are like languages. The

Chomsky hierarchy categorizes language models into four levels: 1) Turing machines, 2)

context-sensitive grammars, 3) context-free grammars, and 4) regular grammars. Higher-

level models contain lower-level models, and Markov models belongs to the lowest level

(regular grammars). In this work, we propose to use context-free grammars to parse and

predict human activities. In the definition of formal language theory, a grammar is a set of

production rules for sentences in a formal language. In our case, the rules describe how to

form sentences (activities) from the language’s alphabet (actions) that are valid.

However, it has not been possible to directly use symbolic grammars to parse and

label sequence data (e.g., videos). Traditional grammar parsers take symbolic sentences
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(a) RGB input (b) Depth input

 

(c) Activity prediction

Use computer

Get water

Use microwave

Figure 3.1: What is he going to do? (a)(b) Input RGB-D video frames. (c) Activity

prediction: human action with interacting objects (how the agent will perform the task).

The red skeleton is the current observation. The magenta, green and blue skeletons and

interacting objects are possible future states.

as inputs instead of noisy sequence data. The data has to be i) segmented and ii) labeled

to be parsed by existing grammar parsers. One naive solution is to first segment and label
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the data using a detector and thus generating a label sentence. Then grammar parsers can

be applied on top of it for parsing prediction. But this is apparently non-optimal, since the

grammar rules are not considered in the detection/classification process. It may not even

be possible to parse this label sentence, because the output from detectors are very often

grammatically incorrect.

In this work, we design a grammar-based parsing algorithm that directly operates on

sequence input data, which goes beyond the scope of symbolic string inputs. Specifically,

we propose a generalized Earley parser to take probabilistic sequence inputs instead of

deterministic symbolic inputs, based on the classic Earley parser [Ear70]. The algorithm

finds the optimal segmentation and label sentence according to both a symbolic grammar

and a classifier output of probabilities of labels for each frame as shown in Figure 3.2.

Optimality here means maximizing the probability of the label sentence according to the

classifier output while being grammatically correct.

The difficulty of achieving this optimality lies in the joint optimization of both the

grammatical structure and the parsing likelihood of the output label sentence. For example,

an expectation-maximization-type of algorithm will not work well since i) there is no

guarantee for optimality, and ii) any grammatically incorrect sentence has a grammar prior

of probability 0. The algorithm can easily get stuck in local minimums and fail to find the

optimal solution that is grammatically correct.

The core idea of our algorithm is to directly and efficiently search for the optimal la-

bel sentence in the language defined by the grammar. The constraint of the search space

ensures that the sentence is grammatically correct. Specifically, a heuristic search is per-

formed on the prefix tree expanded according to the grammar, where the path from the

root to a node represents a partial sentence (prefix). We search through the prefices to find
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the best sentence according to a heuristic. By carefully defining the heuristic as a prefix

probability computed based on the classifier output, we can efficiently search through the

tree to find the optimal label sentence.

The generalized Earley parser has four major advantages. i) The inference process

highly integrates a high-level grammar with an underlying classifier; the grammar gives

guidance for segmenting and labeling the sequence data and future predictions. ii) The

only requirement for the underlying classifier is that the classifier should give probabilisitc

outputs. This made the algorithm widely applicable, since almost all statistical learning

classifiers are probabilistic. iii) It generates semantically meaningful results (a grammar

parse tree) for data sequence, and the process is highly explainable. iv) It is principled and

generic, as it applies to most sequence data parsing and prediction problems (the data does

not have to be videos).

We evaluate the proposed approach on three datasets of human activities in the com-

puter vision domain. The first dataset CAD-120 [KGS13] consists of daily activities and

most activity prediction methods are based on this dataset. Comparisons show that our

method significantly outperforms state-of-the-art methods on future activity prediction.

The second dataset Watch-n-Patch [WZS15] is designed for “action patching”, which

includes daily activities that have action forgotten by people. Experiments on the sec-

ond dataset show the robustness of our method on noisy data. The third dataset Break-

fast [KAS14] consists of long videos of daily cooking activities. Results on this dataset

show comparisons between our method and other structured modeling and language-

inspired modeling methods. All experiments show that the generalized Earley parser per-

forms well on both activity parsing and prediction tasks.

This work makes three major contributions.
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•We design a parsing algorithm for symbolic context-free grammars that directly op-

erates on sequence data. It can obtain the optimal segmentation and labels.

• We propose a prediction algorithm that naturally integrates with this parsing algo-

rithm.

•We formulate an objective for future prediction for both grammar induction and clas-

sifier training. The generalized Earley parser serves as a concrete example for combining

symbolic reasoning methods and connectionist approaches.

3.1 Related Work

Activity recognition refers to recognition of long-term and complicated activities from

videos, whereas action recognition corresponds to short-term actions. They are two exten-

sively studied topics in computer vision and we refer the readers to a survey [KF18] for

a more comprehensive treatment. The main stream of work on activity recognition is to

extend mid-level representations to high-level representations.

These extensions are designed in several different ways to model the complex activity

structures. A number of methods have been proposed to model the high-level temporal

structure of low-level features extracted from video [LLK07, LMS08, NCF10, GHS11,

TFK12, JGR13]. Some other approaches represent complex activities as collections of

attributes [LKS11, SC12, RRA12, FHX12]. Another important type of methods builds

compositional/hierarchical models on actions [GSS09, WM10, SC12, SMD13, ZWY13,

LZR15, HZG16]. [KGS13] proposed a model incorporating object affordances that detects

and predicts human activities. [WZZ16] proposed a 4D human-object interaction model

for event recognition. In some recent works, structural models are implicitly learned by

76



...

...
reaching box pouring cereal reaching milk

Parse Tree

Prediction

...
Sequence

input data

Classifier

raw output

Final output

Grammar

Generalized Earley parser

Figure 3.2: The input of the generalized Earley parser is a matrix of probabilities of each

label for each frame, given by an arbitrary classifier. The parser segments and labels the

sequence data into a label sentence in the language of a given grammar. Future predictions

can be made based on the grammar.

neural networks [WFG16, CZ17, IM18, CSG18, ZTS19].

Grammar models falls into the category of compositional models for temporal struc-

tures. They have been applied to multiple other domains as well [RZ11, ZZ11, PZ15],

here we focus methods for activity recognition. [IB00] proposed to first generate a discrete

symbol stream from continuous low-level detectors, and then applied stochastic context-

free parsing to incorporate prior knowledge of the temporal structure. [PJZ11] detects

atomic actions and uses a stochastic context sensitive grammar for video parsing and intent

prediction. [KAS14] models action units by hiddem Markov models (HMMs), and mod-
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els the higher-level action sequence by context-free grammars. [PR14] proposes segmen-

tal grammar for video parsing, which extends regular grammars to allow non-terminals

to generate a segment of termianls of certain lenghts. [VB14] generates a Bayes network,

termed Sequential Interval Network (SIN), where the variable nodes correspond to the start

and end times of component actions. This network then makes inference about start and

end times for detected action primitives. [QHW17] proposed to integrate spatial-temporal

attributes to terminal nodes of a context-free grammar. Based on Earley parser, an activ-

ity parsing and prediction algorithm is proposed. Overall, grammar-based methods have

shown effectiveness on tasks that have compositional structures.

However, the above grammar-based algorithms (except [PR14]) take symbolic inputs

like the traditional language parsers. They require the action primitives/atomic actions to

be first detected, then a grammar is used for high-level parsing. This limits the applicability

of these algorithms. Additionally, the parser does not provide guidance for either training

the classifiers or segmenting the sequences. They also lack a good approach to handle

grammatically incorrect label sentences. For example, [QHW17] finds in the training

corpus the closest sentence to the recognized sentence and applies the language parser

afterward. [PR14] ensures the results are grammatically correct, but it makes the grammar

unnecessarily redundant (each possible segment length will make a new copy for each

original grammar rule).

In our case, the proposed parsing algorithm takes sequence data of raw signals and a

typical context-free grammar as input. It then generates the label sentence as well as the

parse tree. All parsed label sentences are grammatically correct, and a learning objective

is formulated for the classifier. Our work also serves as a bridge between connectionist

and symbolic approaches, and it does not have any constraint on the low-level classifier.
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Future activity prediction is a relatively new domain in computer vision. [ZRG09,

YT10, Ryo11, KZB12, KKS12, WDA12, PSY13, WGH14, VOL14, LF14, WZZ16, HZG16,

AGR16, XST18, EGX17, RK17, MHL17, QZ18, QWJ18, QJZ18] predict human trajec-

tories/actions in various settings including complex indoor/outdoor scenes and crowded

spaces. [LF14] builds a probabilistic suffix tree to model the Markov dependencies be-

tween action units and thus predict future events using a compositional model. [WGH14]

predicted not only the future motions in the scene but also the visual appearances. In some

recent work, [KS16] used an anticipatory temporal conditional random field to model the

spatial-temporal relations through object affordances. [JZS16] proposed structural-RNN

as a generic method to combine high-level spatial-temporal graphs and recurrent neural

networks, which is a typical example that takes advantage of both graphical models and

deep learning. [QHW17] proposed a spatial-temporal And-Or graph (ST-AOG) for activ-

ity prediction. In this work, we present a prediction algorithm based on the generalized

Earley parser in which recognition and prediction are naturally and tightly integrated.

3.2 Representation: Probabilistic Context-Free Grammars

We model complex activities by grammars, where low-level actions are terminal symbols,

i.e., words in a language. In formal language theory, a context-free grammar (CFG) is a

type of formal grammar, which contains a set of production rules that describe all possible

sentences in a given formal language. In Chomsky Normal Form, a context-free grammar

G is defined by a 4-tuple G = (V,Σ, R,Γ) where

• V is a finite set of non-terminal symbols that can be replaced by/expanded to a sequence

of symbols.
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• Σ is a finite set of terminal symbols that represent actual words in a language, which

cannot be further expanded.

• R is a finite set of production rules describing the replacement of symbols, typically of

the form A → BC or A → α for A,B,C ∈ V and α ∈ Σ. A production rule replaces

the left-hand side non-terminal symbol by the right-hand side expression. For example,

A→ BC|α means that A can be replaced by either BC or α.

• Γ ∈ V is the start symbol (root of the grammar).

Probabilistic Context-Free Grammars (PCFGs) augments CFGs by associating each

production rule with a probability. Formally, it is defined by a 5-tuple G = (V,Σ, R,Γ),

where P is the set of probabilities on production rules. Figure 3.3 shows an example

probabilistic temporal grammar of the activity “making cereal”.

Given a formal grammar, parsing is the process of analyzing a string of symbols, con-

forming to the production rules and generating a parse tree. A parse tree represents the

syntactic structure of a string according to some context-free grammar. The root node

of the tree is the grammar root. Other non-leaf nodes correspond to non-terminals in the

grammar, expanded according to grammar production rules (could be expanding a combi-

nation or choosing alternatives). The leaf nodes are terminal symbols. All the leaf nodes

together form a sentence in the language space described by the grammar.

3.3 Earley Parser

In this section, we briefly review the original Earley parser [Ear70], a classic grammar

parsing algorithm with useful concepts that will be extended in the generalized Earley

parser. An illustrative example is shown in Figure 3.5 to run through the algorithm. We
80



A3

A5

②

A6

③

standing

①

placing

④

A2

② ④①

walking

③ ⑤

A1

③②① ④

A4

④②① ③ ⑤

O1

①

pouring_milk

②

O2

①

pouring_cereal

②

reaching_milk

0.68

reaching_bottle

0.32

S

0.210.210.42 0.16

reaching_bag

0.26

reaching_box

0.74

Figure 3.3: An example of a temporal grammar representing the activity “making cereal”.

The green and yellow nodes are And-nodes (i.e., production rules that represents combina-

tions) and Or-nodes (i.e., productions rules that represents alternatives), respectively. The

numbers on branching edges of Or-nodes represent the branching probability. The circled

numbers on edges of And-nodes indicates the temporal order of expansion.

then discuss how the original Earley parser can be applied to event parsing and its draw-

backs.

Earley parser is an algorithm for parsing sentences of a given context-free language.

In the following descriptions, α, β, and γ represent any string of terminals/nonterminals

(including the empty string ε), A and B represent single nonterminals, and a represents a
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Figure 3.4: A simplified example illustrating the symbolic parsing and prediction process

based on the Earley parser and detected actions. In the first two figures, the red edges and

blue edges indicates two different parse graphs for the past observations. The purple edges

indicate the overlap of the two possible explanations. The red parse graph is eliminated

from the third figure. For the terminal nodes, yellow indicates the current observation and

green indicates the next possible state(s).

terminal symbol. We adopt Earley’s dot notation: for production rule of form A → αβ,

the notation A→ α · β means α has been parsed and β is expected.

Input position n is defined as the position after accepting the nth token, and input

position 0 is the position prior to input. At each input position m, the parser generates a

state set S(m). Each state is a tuple (A→ α · β, i), consisting of

• The production currently being matched (A→ αβ).

• The dot: the current position in that production.

• The position i in the input at which the matching of this production began: the position

of origin.

Seeded with S(0) containing only the top-level rule, the parser then repeatedly exe-
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cutes three operations: prediction, scanning and completion:

• Prediction: for every state in S(m) of the form (A → α · Bβ, i), where i is the origin

position as above, add (B → ·γ,m) to S(m) for every production in the grammar with

B on the left-hand side (i.e., B → γ).

• Scanning: if a is the next symbol in the input stream, for every state in S(m) of the

form (A→ α · aβ, i), add (A→ αa · β, i) to S(m+ 1).

• Completion: for every state in S(m) of the form (A→ γ·, j), find states in S(j) of the

form (B → α · Aβ, i) and add (B → αA · β, i) to S(m).

In this process, duplicate states are not added to the state set. These three operations are

repeated until no new states can be added to the set. The Earley parser executes in O(n2)

for unambiguous grammars regarding the string length n, and O(n) for almost all LR(k)

grammars.

The original Earley parser inspires a way to do event parsing and prediction from

videos [QHW17]. The video can be first processed by a classifier to be segmented and

labeled by actions, thus generating a label sentence. We can apply the Earley parser to

parse the sentence to get a partial parse tree. The tree can be partial, since the sentence

representing the activity might not be complete. Then action prediction can naturally

be accomplished by looking that the open Earley states generated by the “prediction”

operation. An example is shown in Figure 3.4.

However, this process can be problematic. Since the Earley parser takes symbols as

input, it has little guidance to help the segmentation process that happens in the frame

level. A more severe problem is that the segmentation and labeling process often gener-

ates sentences that are grammatically incorrect, i.e., not in the language space described
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Γ→ R 1.0 N → “0” 0.3

R→ N 0.4 N → “1” 0.7

R→ N“ + ”N 0.6

(a) The input grammar. It contains a root symbol Γ, two non-terminal symbols R and N , three

terminal symbols 0, 1 and +. The number to the right of each production rule is the corresponding

probability.

state rule comment

S(0)

(0) Γ→ ·R start rule

(1) R→ ·N predict: (0)

(2) R→ ·N +N predict: (0)

(3) N → ·0 predict: (1)

(4) N → ·1 predict: (1)

S(1)

(0) N → 0· scan: S(0)(3)

(1) R→ N · complete: (0) and S(0)(1)

(2) R→ N · +N complete: (0) and S(0)(2)

(3) Γ→ R· complete: (1) and S(0)(0)

S(2)

(0) R→ N + ·N scan: S(1)(2)

(1) N → ·0 predict: (0)

(2) N → ·1 predict: (0)

S(3)

(0) N → 1· scan: S(2)(2)

(1) R→ N +N · complete: (0) and S(2)(0)

(2) Γ→ R· complete: (1) and S(0)(0)

(b) A run-through for input string “0 + 1”.

Figure 3.5: An illustrative example of the original Earley parser.
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by the grammar. Thus the sentence cannot be parsed by the parser. In such cases, ex-

tra efforts are needed to modify the label sentence. One way to address that is sampling

sentences from the language and find the closest alternatives [QHW17]. There also ex-

ist work in computational linguistics [Par11, Wag12, WF09] that address the problem of

parsing grammatically incorrect sentences. However, these methods still operates in the

symbolic space and does not provide much guidance for frame-level inference. To solve

these problems, we propose the generalized Earley parser (detailed in Section 3.4) that

directly takes sequence data as input and generates symbolic parse trees and predictions.

3.4 Generalized Earley Parser

In this section, we introduce the proposed generalized Earley parser. Instead of taking

symbolic sentences as input, we aim to design an algorithm that can parse raw sequence

data x of length T (e.g., videos or audios) into a sentence l of labels (e.g., actions or

words) of length |l| ≤ T , where each label k ∈ {0, 1, · · · , K} corresponds to a segment

of a sequence.

To achieve that, a classifier (e.g., a neural network) is first applied to each sequence x to

get a T ×K probability matrix y (e.g., softmax activations of the neural network), with ykt

representing the probability of frame t being labeled as k. The proposed generalized Earley

parser takes y as input and outputs the sentence l∗ that best explains the data according to

a grammar G of Chomsky normal form.

Now we discuss how we generalize the Earley parser to run on the output of a classifier,

i.e., the probability matrix. The core idea is to use the original Earley parser to help

construct a prefix tree according to the grammar. The best solution is found be performing

a heuristic search in this tree, where the heuristic is computed based on the probability
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matrix given by the classifier.

Figure 3.6 and Figure 3.7c shows example prefix trees for the grammar in Figure 3.5. A

prefix tree is composed of three types of nodes. 1) The root node of the “empty” symbol ε

represents the start of a sentence. 2) The non-leaf nodes (except the root node) correspond

to terminal symbols in the grammar. A path from the root node to any non-leaf node

represents a partial sentence (prefix). 3) The leaf nodes e are terminations that represent

ends of sentences.

To find the best label sentence for a probability matrix, we perform a heuristic search

in the prefix expanded according to the grammar: each node in the tree is associated with

a probability, and the probabilities prioritize the nodes to be expanded in the prefix tree.

The parser finds the best solution when it expands a termination node in the tree. It then

returns the current prefix string as the best solution.

We compute two different heuristic probabilities for non-leaf nodes and leaf nodes.

For non-leaf nodes, the heuristic is a prefix probability p(l···|x0:T ): the probability that the

current path is the prefix for the label sentence. In other words, it measures the probability

that ∃t ∈ [0, T ], the current path l is the label for frame x0:t. For leaf nodes e, the heuristic

p(l|x0:T ) is a parsing probability: the probability that the current path l is the label sentence

for x0:T . The computation for p(l|x0:T ) and p(l···|x0:T ) are based on the input probability

matrix y. The formulation is derived in details in Section 3.4.2.

This heuristic search generalizes the Earley parser to parse the probability matrix.

Specifically, the scan operation in the Earley parser essentially expands a new node in

the grammar prefix tree. We organize the states into state sets by the partial sentence (pre-

fix) each state represents. Instead of matching the sentence to the symbolic input, we now

process state sets according to their prefix probabilities.
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Algorithm 2: Generalized Earley Parser
Input : Grammar G, probability matrix y

Output: Best label string l∗

/* For brevity, we denote p(·; y) as p(·) */

/* Initialization */

1 S(0, 0) = {(Γ→ ·R, 0, 0, ε, 1.0)}

2 q = priorityQueue()

3 q.push(1.0, (0, 0, ε, S(0, 0)))

4 while (m,n, l−, currentSet) = q.pop() do

5 for s = (r, i, j, l, p(l···)) ∈ currentSet do

6 if p(l) > p(l∗): l∗ = l then l∗ = l

7 if r is (A→ α ·Bβ) then // predict

8 for each (B → Γ) in G do

9 r′ = (B → ·Γ)

10 s′ = (r′,m, n, l, p(l···))

11 S(m,n).add(s′)

12 end

13 end

14 else if r is (A→ α · aβ) then // scan

15 r′ = (A→ αa · β)

16 m′ = m+ 1, n′ = |S(m+ 1)|

17 s′ = (r′, i, j, l + a, p((l + a)···))

18 S(m′, n′).add(s′)

19 q.push(p((l + a)···), (m
′, n′, S(m′, n′)))

20 end

21 else if r is (B → Γ·) then // complete

22 for each ((A→ α ·Bβ), i′, j′) in S(i, j) do

23 r′ = (A→ αB · β)

24 s′ = (r′, i′, j′, l, p(l···))

25 S(m,n).add(s′)

26 end

27 end

28 if p(l−) > p(l), ∀ un-expanded l then return l∗

29 end

30 end

31 return l∗
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3.4.1 Parsing Operations

We now describe the details of the parsing operations. Each scan operation will create a

new state set S(m,n) ∈ S(m), where m is the length of the scanned string, n is the total

number of the terminals that have been scanned at position m. This can be thought of as

creating a new node in the prefix tree, and S(m) is the set of all created nodes at level m.

A priority queue q is kept for state sets for prefix search. Scan operations will push the

newly created set into the queue with priority p(l···), where l is the parsed string of the state

being scanned. For brevity, we use p(l···) as a shorthand for p(l···|x0:t) when describing the

algorithm.

Each state is a tuple (A → α · β, i, j, l, p(l···)) augmented from the original Earley

parser by adding j, l, p(l···). Here l is the parsed string of the state, and i, j are the indices

of the set that this rule originated. The parser then repeatedly executes three operations:

prediction, scanning, and completion modified from Earley parser:

• Prediction: for every state in S(m,n) of the form (A → α · Bβ, i, j, l, p(l···)), add

(B → ·Γ,m, n, l, p(l···)) to S(m,n) for every production in the grammar with B on the

left-hand side.

• Scanning: for every state in S(m,n) of the form (A→ α ·aβ, i, j, l, p(l···)), append the

new terminal a to l and compute the probability p((l + a)···). Create a new set S(m +

1, n′) where n′ is the current size of S(m+1). Add (A→ αa ·β, i, j, l+a, p((l+a)···))

to S(m+ 1, n′). Push S(m+ 1, n′) into q with priority p((l + a)···).

• Completion: for every state in S(m,n) of the form (A → Γ·, i, j, l, p(l···)), find states

in S(i, j) of the form (B → α ·Aβ, i′, j′, l′, p(l′···)) and add (B → αA ·β, i′, j′, l, p(l···))

to S(m,n).
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This parsing process is efficient since we do not need to search through the entire tree.

As shown in Figure 3.7 and Algorithm 2, the best label sentence l is returned when the

probability of termination is larger than any other prefix probabilities. As long as the

parsing and prefix probabilities are computed correctly, it is guaranteed to return the best

solution.

The original Earley parser is a special case of the generalized Earley parser. Intuitively,

for any input sentence to Earley parser, we can always convert it to one-hot vectors and

apply the proposed algorithm. On the other hand, the original Earley parser cannot be

applied to segmented one-hot vectors since the labels are often grammatically incorrect.

Hence we have the following proposition.

Proposition 1. Earley parser is a special case of the generalized Earley parser.

Proof. Let L(G) denote the language of grammar G, h(·) denote a one-to-one mapping

from a label to a one-hot vector. L(G) is the input space for Earley parser. ∀ l ∈ L(G), the

generalized Earley parser accepts h(l) as input. Therefore the proposition follows.

Here we emphasize two important distinctions of our method to traditional probabilis-

tic parsers with prefix probabilities. i) In traditional parsers, the prefix probability is the

probability of a string being a prefix of some strings generated by a grammar (top-down

grammar prior). In our case, the parser computes the bottom-up data likelihood. We fur-

ther extend this to a posterior that integrates these two in Section 3.4.3. ii) Traditional

parsers only maintain a parse tree, while our algorithm maintains both a parse tree and

a prefix tree. The introduction of the prefix tree into the parser enables us to efficiently

search in the grammar according to a desired heuristic.
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Table 3.1: Summary of notations used for parsing & prefix probability formulation.

x0:t input frames from time 0 to t

l a label sentence

k the last label in l

l− the label sentence obtained by removing the

last label k from the label sentence l

ykt the probability for frame t to be labelled as k

p(l|x0:t) parsing probability of l for x0:t

p(l···|x0:t) prefix probability of l for x0:t

3.4.2 Parsing & Prefix Probability Formulation

The parsing probability p(l|x0:T ) is computed in a dynamic programming fashion. Let k

be the last label in l. For t = 0, the probability is initialized by:

p(l|x0) =


yk0 l contains only k,

0 otherwise.
(3.1)

Let l− be the label sentence obtained by removing the last label k from the label sentence

l. For t > 0, the last frame t must be classified as k. The previous frames can be labeled

as either l or l−. Then we have:

p(l|x0:t) = ykt (p(l|x0:t−1) + p(l−|x0:t−1)), (3.2)

where p(l|x0:t−1) corresponds to the possibility that frame t − 1 is also labelled as k,

and p(l−|x0:t−1) accounts for the possibility that label k starts from frame t. It is worth

mentioning that when ykt is wrongly given as 0, the dynamic programming process will

have trouble correcting the mistake. Even if p(l−|x0:t−1) is high, the probability p(l|x0:t)
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will be 0. Fortunately, since the softmax function is usually adopted to compute y, ykt will

not be 0 and the solution will be kept for further consideration.

Then we compute the prefix probability p(l···|x0:T ) based on p(l−|x0:t). For l to be the

prefix, the transition from l− to l can happen at any frame t ∈ {0, · · · , T}. Once the label

k is observed (the transition happens), l becomes the prefix and the rest frames can be

labeled arbitrarily. Hence the probability of l being the prefix is:

p(l···|x0:T ) = p(l|x0) +
T∑
t=1

ykt p(l
−|x0:t−1). (3.3)

In practice, the probability p(l|x0:t) decreases exponentially as t increases and will

soon lead to numeric underflow. To avoid this, the probabilities need to be computed in

log space:

logp(l|x0:t)) = log(ykt ) + d+

log(exp(log p(l|x0:t−1)− d) + exp(log p(l−|x0:t−1)− d)),
(3.4)

where d is a constant number and is usually set to be max(log(ykt ), log p(l|x0:t−1), log p(l−|x0:t−1)).

The time complexity of computing the probabilities is O(T ) for each sentence l because

p(l−|x0:t) are cached. The worst case complexity of the entire parsing is O(T |G|).

3.4.3 Incorporating Grammar Prior

For PCFGs, we can integrate the grammar prior of the sentence l into the above formu-

lation to obtain a posterior parsing probability. The basic idea is that we can compute a

“transition probability” of appending a new symbol to the current sentence. This proba-

bility will be multiplied to the parsing probability when we append a new symbol.

To compute a transition probability p(k|l−, G), we can first compute the prefix proba-

bilities p(l−···|G) and p(l···|G) according to the grammar. Then the transition probability is
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Figure 3.6: Grammar prefix probabilities computed according to the grammar in Fig-

ure 3.5. The numbers next to the tree nodes are prefix probabilities according to the

grammar. The transition probabilities can be easily computed from this tree, e.g.,

p(“1”|“0 + ”, G) = p(“0 + 1”···|G)/p(“0 + ”···|G) = 0.126/0.18 = 0.7.
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Γ→ R 1.0

R→ N 0.4

R→ N“ + ”N 0.6

N → “0” 0.3

N → “1” 0.7

frame “0” “1” “+”

0 0.8 0.1 0.1

1 0.8 0.1 0.1

2 0.1 0.1 0.8

3 0.1 0.8 0.1

4 0.1 0.8 0.1

(a) Left: input grammar. Right: input

probability matrix.

Frame ε 0 1 0 + 1 + 0 + 0 0 + 1

0 0.000 0.240 0.070 0.000 0.000 0.000 0.000

1 0.000 0.192 0.007 0.014 0.004 0.000 0.000

2 0.000 0.019 7.0e-04 0.104 0.007 4.3e-04 0.001

3 0.000 0.002 5.6e-04 0.012 7.1e-04 0.003 0.059

4 0.000 1.9e-04 4.5e-04 0.001 1.1e-04 6.6e-04 0.054

prefix 1.000 0.240 0.070 0.108 0.008 0.004 0.066

(b) Cached probabilities

e

1.0

0.24 0.07 0.0

0.108 1.9e-4

0.004 0.066 0.001

0.054

e

e

e

e0.008 4.5e-4

e 6.6e-4

(c) Prefix tree

state # rule µ ν prefix comment

S(0, 0) : l = “ε”, p(l|G) = 1.000, p(l|x,G) = 0.000, p(l···|x,G) = 1.000

(0) Γ→ ·R 1.000 1.000 “ε” start rule

(1) R→ ·N 0.400 0.400 “ε” predict: (0)

(2) R→ ·N +N 0.600 0.600 “ε” predict: (0)

(3) N → ·0 0.300 0.300 “ε” predict: (1),(2)

(4) N → ·1 0.700 0.700 “ε” predict: (1),(2)

S(1, 0) : l = “0”, p(l|G) = 0.300, p(l|x,G) = 1.9e− 04, p(l···|x,G) = 0.240

(0) N → 0· 0.300 0.300 “0” scan: S(0, 0)(3)

(1) R→ N · 0.120 0.120 “0” complete: (0) and S(0, 0)(1)

(2) R→ N · +N 0.180 0.180 “0” complete: (0) and S(0, 0)(2)

(3) Γ→ R· 0.120 0.120 “0” complete: (1) and S(0, 0)(0)

S(1, 1) : l = “1”, p(l|G) = 0.700, p(l|x,G) = 4.5e− 04, p(l···|x,G) = 0.070

(0) N → 1· 0.700 0.700 “1” scan: S(0, 0)(4)

(1) R→ N · 0.280 0.280 “1” complete: (0) and S(0, 0)(1)

(2) R→ N · +N 0.420 0.420 “1” complete: (0) and S(0, 0)(2)

(3) Γ→ R· 0.280 0.280 “1” complete: (1) and S(0, 0)(0)

S(2, 0) : l = “0 + ”, p(l|G) = 0.180, p(l|x,G) = 0.001, p(l···|x,G) = 0.108

(0) R→ N + ·N 0.180 0.180 “0+” scan: S(1, 0)(2)

(1) N → ·0 0.054 0.300 “0+” predict: (0)

(2) N → ·1 0.126 0.700 “0+” predict: (0)

S(2, 1) : l = “1 + ”, p(l|G) = 0.420, p(l|x,G) = 1.1e− 04, p(l···|x,G) = 0.008

(0) R→ N + ·N 0.420 0.420 “1+” scan: S(1, 1)(2)

S(3, 0) : l = “0 + 0”, p(l|G) = 0.054, p(l|x,G) = 6.6e− 04, p(l···|x,G) = 0.004

(0) N → 0· 0.054 0.300 “0 + 0” scan: S(2, 0)(1)

S(3, 1) : l = “0 + 1”, p(l|G) = 0.126, p(l|x,G) = 0.054, p(l···|x,G) = 0.066

(0) N → 1· 0.126 0.700 “0 + 1” scan: S(2, 0)(2)

(1) R→ N +N · 0.126 0.126 “0 + 1” complete: (0) and S(2, 0)(0)

(2) Γ→ R· 0.126 0.126 “0 + 1” complete: (1) and S(0, 0)(0)

Final output: l∗ = “0 + 1” with probability 0.054

(d) A run-through of the algorithm

Figure 3.7: An example of the generalized Earley parser. A classifier is applied to a

5-frame signal and outputs a probability matrix (a) as the input to our algorithm. The

proposed algorithm expands a grammar prefix tree (c), where “e” represents termination.

It finally outputs the best label “0+1” with probability 0.054. The probabilities of children

nodes do not sum to 1 since the grammatically incorrect nodes are eliminated.
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given by:

p(k|l−, G) =
p(l···|G)

p(l−···|G)
. (3.5)

An example is shown in Figure 3.6 for a better intuition. The computation of this

grammar prefix probability will be detailed in subsubsection 3.4.3.1. There are two im-

portant remarks to make here. 1) This prior prefix probability is different from the prefix

probability based on the likelihood. The prior is the probability that a string is the prefix

of a sentence in the language defined by the grammar, without seeing any data; the likeli-

hood is the probability that a string is the prefix of a video’s label. 2) This grammar-based

transition probability is non-Markovian, since the new symbol is conditioned on the entire

history string that has a variable length.

Now, incorporating the grammar transition probability, for t = 0, the probability is

initialized by:

p(l|x0, G) ∝


p(k|ε, G) yk0 l contains only k,

0 otherwise,
(3.6)

where p(k|ε, G) is the probability of appending k to the empty string ε, which is equivalent

to p(k···|G) or p(l···|G). Notice that the equal sign is replaced by ∝ since the right hand

side should be normalized by the prior p(x0) to get the correct posterior.

Whenever we append a new symbol to our sentence, we multiply the probability by

the transition probability. Hence for t > 0 we have:

p(l|x0:t, G) ∝ ykt (p(l|x0:t−1, G) + p(k|l−, G)p(l−|x0:t−1, G)). (3.7)

Comparing to Eq. 3.2, we multiply the second term by p(k|l−, G) to account for the tran-

sition to symbol k.
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Finally the posterior probability of l being the prefix of the label sentence for data x is:

p(l···|x0:T , G) = p(l|x0, G) +
T∑
t=1

p(k|l−, G)ykt p(l
−|x0:t−1, G). (3.8)

3.4.3.1 Grammar Prefix Probability

The derivation of the grammar prefix probability with Earley parser [Sto95] can be achieved

by augmenting the Earley states with two additional variables: forward probability µ and

inner probability ν. For a state S, the forward probability µ is the probability of all parses

that lead to S, the inner probability ν is the probability of all parses expanded from S. In

other words, µ is the probability of the prefix before S, and ν is the probability of the par-

tial string parsed by S. Assuming that the grammar is not left-recursive, these two terms

can be computed effiently during the Earley parsing process:

• Prediction. For (A → α · Bβ, i, [µ, ν]) ⇒ (B → ·γ,m, [µ′, ν ′]), the new probabilities

are given by

µ′+ = α · P (B → γ), ν ′ = P (B → γ).

• Scanning. For (A→ α · aβ, i, [µ, ν])⇒ (A→ αa · β, i, [µ′, ν ′]), we have

µ′ = µ, ν ′ = ν.

• Completion. For (A → γ·, j, [µ′′, ν ′′]) and (B → α · Aβ, i, [µ, ν]) ⇒ (B → αA ·

β, i, [µ′, ν ′]), we have

µ′+ = µ · ν ′′, ν ′ = ν · ν ′′.

Finally, the prefix probability of a string is given by the sum of forward probabilities over

all scanned states. A run-through example of the generalized Earley parser with grammar

prior is shown in Figure 3.7.
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3.4.4 Segmentation and Labeling

The generalized Earley parser gives us the best grammatically correct label sentence l

to explain the sequence data, which takes all possible segmentations into consideration.

Therefore the probability p(l|x0:T ) is the summation of probabilities of all possible seg-

mentations. Let p(l|y0:e) be the probability of the best segmentation based on the classifier

output y for sentence l. We perform a maximization over different segmentations by dy-

namic programming to find the best segmentation:

p(l|y0:e) = max
b<e

p(l−|y0:b)
e∏
t=b

ykt , (3.9)

where e is the time frame that l ends and b is the time frame that l− ends. The best seg-

mentation can be obtained by backtracing the above probability. Similar to the previous

probabilities, this probability needs to be computed in log space as well. The time com-

plexity of the segmentation and labeling is O(T 2).

3.4.5 Future Label Prediction

We consider two types of future label predictions: 1) segment-wise prediction that predicts

the next segment label at each time t, and 2) frame-wise prediction that predicts the labels

for the future δt frames.

3.4.5.1 Segment-wise Prediction

Given the parsing result l, we can make grammar-based top-down predictions for the next

label z to be observed. The predictions are naturally obtained by the predict operation in

the generalized Earley parser, and it is inherently an online prediction algorithm.
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To predict the next possible symbols at current position (m,n), we search through the

states S(m,n) of the form (X → α · zβ, i, j, l, p(l···)), where the first symbol z after the

current position is a terminal node. The predictions Σ are then given by the set of all

possible z:

Σ = {z : ∃s ∈ S(m,n), s = (X → α · zβ, i, j, l, p(l···))}. (3.10)

The probability of each prediction is then given by the parsing likelihood of the sentence

constructed by appending the predicted label z to the current sentence l. Assuming that the

best prediction corresponds to the best parsing result, the goal is to find the best prediction

z∗ that maximizes the following conditional probability as parsing likelihood:

z∗ = argmax
z∈Σ

p(z, l|G). (3.11)

For a grammatically complete sentence u, the parsing likelihood is simply the Viterbi

likelihood [Vit67] given by the probabilistic context-free grammar. For an incomplete

sentence l of length |l|, the parsing likelihood is given by the grammar prefix probability.

Hence they are both the forward probability computed in subsubsection 3.4.3.1. We can

also integrate top-down and bottom-up inference for segment-wise prediction. A classifier

can be trained to predict the next segment label, and it can be combined with the grammar

prior probability for better predictions.

3.4.5.2 Frame-wise Prediction

Frame-wise future label prediction is rather straightforward using the generalized Earley

parser. We first run activity detection on the input videos, and we sample the duration

of the current action. Based on the segment-wise prediction, we can further sample the

duration for future segments, thus obtaining frame-wise future predictions according to

the prediction range.
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Another way to do frame-wise prediction is treating the problem as a parsing problem.

Besides the classifier for detection, we train another classifier for prediction, i.e., for each

frame xt the classifier predicts the label for frame xt+δt. By concatenating the output from

detection classifier and the prediction classifier, we can obtain a n× (T + δt) probability

matrix. Then the prediction can be obtained by running the generalized Earley parser on

the concatenated probability matrix.

3.4.5.3 Maximum Likelihood Estimation for Prediction

We are interested in finding the best grammar and classifier that give us the most accurate

segment-wise predictions based on the generalized Earley parser. Let G be the grammar,

f be the classifier, and D be the set of training examples. The training set consists of pairs

of complete or partial data sequence x and the corresponding label sequence for all the

frames in x. By merging consecutive labels that are the same, we can obtain partial label

sentences l and predicted labels z. Hence we have D = {(x, l, z)}. The best grammar G∗

and the best classifier f ∗ together minimizes the prediction loss:

G∗, f ∗ = argmin
G,f

Lpred(G, f), (3.12)

where the prediction loss is given by the negative log likelihood of the predictions over the

entire training set:

Lpred(G, f) = −
∑

(x,l,z)∈D

log(p(z|x))

= −
∑

(x,l,z)∈D

(log(p(z|l, G))︸ ︷︷ ︸
grammar

+ log(p(l|x))︸ ︷︷ ︸
classifier

).
(3.13)

Given the intermediate variable l, the loss is decomposed into two parts that correspond to

the induced grammar and the trained classifier, respectively. Let u ∈ {l} be the complete
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label sentences in the training set (i.e., the label sentence for a complete sequence x). The

best grammar maximizes the following probability:∏
(z,l)∈D

p(z|l, G) =
∏

(z,l)∈D

p(z, l|G)

p(l|G)
=
∏
u∈D

p(u|G), (3.14)

where denominators p(l|G) are canceled by the previous numerator p(z, l−|G), and only

the likelihood of the complete sentences remain. Therefore inducing the best grammar

that gives us the most accurate future prediction is equivalent to the maximum likelihood

estimation (MLE) of the grammar for complete sentences in the dataset. This finding lets

us to turn the problem (induce the grammar that gives the best future prediction) into a

standard grammar induction problem, which can be solved by existing algorithms, e.g.,

[SHR05] and [TPZ13].

The best classifier minimizes the second term of Eq. 3.13:

f ∗ = argmin
f
−

∑
(x,l,z)∈D

log(p(l|x)

≈ argmin
f
−

∑
(x,y)∈D

∑
k

yk log(ŷk),
(3.15)

where p(l|x) can be maximized by the CTC loss [GFG06]. In practice, it can be substituted

by the commonly adopted cross entropy loss for efficiency. Therefore we can directly

apply generalized Earley parser to outputs of general detectors/classifiers for parsing and

prediction.

3.5 Human Activity Parsing and Prediction

We evaluate our method on the task of human activity detection and prediction. We

present and discuss our experiment results on three datasets, CAD-120 [KGS13], Watch-

n-Patch [WZS15], and Breakfast [KAS14], for comparisons with state-of-the-art methods
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and evaluation of the robustness of our approach. CAD-120 is the dataset that most exist-

ing prediction algorithms are evaluated on. It contains videos of daily activities that are

long sequences of sub-activities. Watch-n-Patch is a daily activity dataset that features

forgotten actions. Breakfast is a dataset that contains long videos of daily cooking activ-

ities. Results show that our method performs well on both activity detection and activity

prediction.

3.5.1 Grammar Induction

In both experiments, we used a modified version of the ADIOS (automatic distillation of

structure) [SHR05] grammar induction algorithm to learn the event grammar. The algo-

rithm learns the production rules by generating significant patterns and equivalent classes.

The significant patterns are selected according to a context-sensitive criterion defined re-

garding local flow quantities in the graph: two probabilities are defined over a search path.

One is the right-moving ratio of fan-through (through-going flux of path) to fan-in (incom-

ing flux of paths). The other one, similarly, is the left-going ratio of fan-through to fan-in.

The criterion is described in detail in [SHR05].

The algorithm starts by loading the corpus of activity onto a graph whose vertices are

sub-activities, augmented by two special symbols, begin and end. Each event sample is

represented by a separate path over the graph. Then it generates candidate patterns by

traversing a different search path. At each iteration, it tests the statistical significance of

each subpath to find significant patterns. The algorithm then finds the equivalent classes

that are interchangeable. At the end of the iteration, the significant pattern is added to the

graph as a new node, replacing the subpaths it subsumes. We favor shorter patterns in our

implementation.
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3.5.2 Experiment on CAD-120 Dataset

Dataset The CAD-120 dataset [KGS13] is a standard dataset for human activity predic-

tion. It contains 120 RGB-D videos of four different subjects performing 10 high-level

activities, where each high-level activity was performed three times with different objects.

It includes a total of 61,585 total video frames. Each video is a sequence of sub-activities

involving 10 different sub-activity labels. The videos vary from subject to subject regard-

ing the lengths and orders of the sub-activities as well as the way they executed the task.

Evaluation metrics We use the following metrics to evaluate and compare the algo-

rithms. 1) Frame-wise detection accuracy of sub-activity labels for all frames. 2) Frame-

wise (future 3s) online prediction accuracy. We compute the frame-wise accuracy of pre-

diction of the sub-activity labels of the future 3s (using the frame rate of 14Hz as reported

in [KGS13]). The predictions are made online at each frame t, i.e., the algorithms only

sees frame 0 to t and predicts the labels of frame t + 1 to t + δt. 3) Segment-wise online

prediction accuracy. At each frame t, the algorithm predicts the sub-activity label of the

next video segment.

We consider the overall micro accuracy (P/R), macro precision, macro recall and macro

F1 score for all evaluation metrics. Micro accuracy is the percentage of correctly classified

labels. Macro precision and recall are the average of precision and recall respectively for

all classes.

Comparative methods We compare our method with four state-of-the-art methods for

activity prediction:

1. KGS [KGS13]: a Markov random field model where the nodes represent objects

and sub-activities, and the edges represent the spatial-temporal relationships. Future frames
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are predicted based on the transition probabilities given the inferred label of the last frame.

2. Anticipatory temporal CRF (ATCRF) [KS16]: an anticipatory temporal conditional

random field that models the spatial-temporal relations through object affordances. Future

frames are predicting by sampling a spatial-temporal graph.

3. ST-AOG [QHW17]: a spatial-temporal And-Or graph (ST-AOG) that uses a sym-

bolic context-free grammar to model activity sequences. This sets up a comparison be-

tween our proposed method and methods that use traditional probabilistic parsers. Since

traditional parsers operate on symbolic data, extra efforts need to be done first to extract

symbols from sequence data. In this comparative method, the videos are first segmented

and labeled by classifiers; the predictions are then made by the original Earley parser.

4. Bidirectional LSTM (Bi-LSTM): a two-layer Bi-LSTM with a hidden size of 256.

For the detection task, the output for each frame input is the sub-activity label. For the

future 3s prediction, the LSTM is trained to output the label for frame t + 3s for an input

frame at time t. For future segment prediction, it outputs the label of the next segment for

an input frame. All three tasks use the same training schemes.

5. Bi-LSTM + generalized Earley parser: the proposed generalized Earley parser ap-

plied to the classifier output of the above detection Bi-LSTM. The predictions for the next

segments are made according to Section 3.4.5. The lengths of unobserved segments are

sampled from a log-normal distribution for the future 3s prediction.

Feature extraction All methods in the experiment use the same publicly available fea-

tures from KGS [KGS13]. These features include the human skeleton features and human-

object interaction features for each frame. The human skeleton features are location and

distance features (relative to the subjects head location) for all upper-skeleton joints of a
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Figure 3.8: Confusion matrices for prediction results on CAD-120.

subject. The human-object features are spatial-temporal, containing the distances between

object centroids and skeleton joint locations as well as the temporal changes.

Experiment results We follow the convention in KGS [KGS13] to train on three sub-

jects and test on a new subject with a 4-fold validation. The results for the three evaluation

metrics are summarized in Table 3.2, Table 3.3 and Table 3.4, respectively. Our method

outperforms the comparative methods on all three tasks. Specifically, the generalized Ear-

ley parser on top of a Bi-LSTM performs better than ST-AOG, while ST-AOG outperforms

the Bi-LSTM. More discussions are highlighted in Section 3.5.5.

3.5.3 Experiment on Watch-n-Patch Dataset

Dataset Watch-n-Patch [WZS15] is an RGB-D dataset that features forgotten actions. For

example, a subject might fetch milk from a fridge, pour milk, and leave. The typical action
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Table 3.2: Detection results on CAD-120.

Method
Micro Macro

P/R Prec. Recall F1-score

KGS [KGS13] 68.2 71.1 62.2 66.4

ATCRF [KS16] 70.3 74.8 66.2 70.2

Bi-LSTM 76.2 78.5 74.5 74.9

ST-AOG + Earley [QHW17] 76.5 77.0 75.2 76.1

Bi-LSTM + Generalized Earley 79.4 87.4 77.0 79.7

Table 3.3: Future 3s prediction results on CAD-120.

Method
Micro Macro

P/R Prec. Recall F1-score

KGS [KGS13] 28.6 – – 11.1

LSTM 49.4 40.9 37.3 37.8

ATCRF [KS16] 49.6 – – 40.6

ST-AOG + Earley [QHW17] 55.2 56.5 56.6 56.6

Bi-LSTM + Generalized Earley 57.1 52.3 54.1 52.3

“putting the milk back into the fridge” is forgotten. The dataset contains 458 videos with

a total length of about 230 minutes, in which people forgot actions in 222 videos. Each

video in the dataset contains 2-7 actions interacted with different objects. 7 subjects are

asked to perform daily activities in 8 offices and 5 kitchens with complex backgrounds. It

consists of 21 types of fully annotated actions (10 in the office, 11 in the kitchen) interacted

with 23 types of objects.

Feature extraction We extract the same features as described in [WZS15] for all
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Table 3.4: Segment prediction results on CAD-120.

Method
Micro Macro

P/R Prec. Recall F1-score

LSTM 52.8 52.5 52.8 47.6

ST-AOG + Earley [QHW17] 54.3 61.4 39.2 45.4

Bi-LSTM + Generalized Earley 70.6 72.1 70.6 70.1

methods. Similar to the previous experiment, the features are composed of skeleton fea-

tures and human-object interaction features extracted from RGB-D images. The skeleton

features include angles between connected parts, the change of joint positions and an-

gles from previous frames. Each frame is segmented into super-pixels, and foreground

masks are detected. We extract features from the image segments with more than 50%

in the foreground mask and within a distance to the human hand joints in both 3D points

and 2D pixels. Six kernel descriptors [WLS14] are extracted from these image segments:

gradient, color, local binary pattern, depth gradient, spin, surface normals, and KPCA/self-

similarity.

Experiment results We use the same evaluation metrics as the previous experiment

and compare our method to ST-AOG [QHW17] and Bi-LSTM. We use the train/test split

in [WZS15]. The results for the three evaluation metrics are summarized in Table 3.5,

Table 3.6 and Table 3.7, respectively. Our method slightly improves the detection results

over the Bi-LSTM outputs, and outperforms the other methods on both prediction tasks. In

general, the algorithms make better predictions on CAD-120, since Watch-n-Patch features

forgotten actions and the behaviors are more unpredictable. More details are discussed in

Section 3.5.5.
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Table 3.5: Detection results on Watch-n-Patch.

Method
Micro Macro

P/R Prec. Recall F1-score

ST-AOG + Earley [QHW17] 79.3 71.5 73.5 71.9

Bi-LSTM 84.0 79.7 82.2 80.3

Bi-LSTM + Generalized Earley 84.8 80.7 83.4 81.5

Table 3.6: Future 3s prediction results on Watch-n-Patch.

Method
Micro Macro

P/R Prec. Recall F1-score

LSTM 43.9 28.3 26.6 24.9

ST-AOG + Earley [QHW17] 48.9 43.1 39.3 39.3

Bi-LSTM + Generalized Earley 58.7 50.5 49.9 49.4

Table 3.7: Segment prediction results on Watch-n-Patch.

Method
Micro Macro

P/R Prec. Recall F1-score

ST-AOG + Earley [QHW17] 29.4 28.5 18.9 19.9

LSTM 44.6 43.6 44.6 40.4

Bi-LSTM + Generalized Earley 49.5 50.1 49.4 45.5

3.5.4 Experiment on Breakfast Dataset

Dataset Breakfast [KAS14] is a dataset of daily cooking activities. The dataset includes 52

unique participants, each conducting 10 distinct cooking activities captured in 18 different
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Table 3.8: Detection results on Breakfast.

Method
Micro Macro

P/R Prec. Recall F1-score

HOGHOF+HTK [KAS14] 28.8 – – –

ED-TCN [LFV17]∗ 43.3 – – –

Bi-LSTM 45.6 29.2 25.4 25.6

TCFPN [DX18] 52.0 – – –

Fisher+HTK [KGS16] 56.3 38.1 – –

Bi-LSTM + Generalized Earley 59.7 45.8 36.3 38.5
*The results for [LFV17] is obtained from [DX18].

kitchens, It has ∼77 hours of video footage containing different camera views (3 to 5

depending on the location). For data annotations, 48 different coarse action units are

identified with 11,267 samples (segments) in total including ∼3,600 silence samples.

Comparative methods Besides Bi-LSTM, we compare Bi-LSM + Generalized Earley

with state-of-art methods for activity detection on the Breakfast dataset:

1. HOGHOF+HTK [KAS14]: a action-grammar-based method. The authors proposed

to use the hidden Markov model (HMM) for modeling individual action units in the se-

quence recognition problem. These action units then form the building blocks to model

complex human activities as sentences using an action grammar. A speech recognition en-

gine (the HTK toolkit [YEG02]) is used for recognition on top of the extracted HOGHOF

features [LMS08].

2. ED-TCN [LFV17]: an end-to-end method. Encoder-Decoder Temporal Convolu-

tional Network is proposed to tackle the action classification problem. Under the model’s
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setting, predictions at each frame are a function of a fixed-length period of time, which is

referred to by the authors as the receptive field.

3. TCFPN [DX18]: one of the end-to-end state-of-the-art methods. The Temporal

Convolutional Feature Pyramid retains the the encoder-decoder architecture and adapt the

lateral connection mechanism proposed in Feature Pyramid networks to the task of action

segmentation.

4. Fisher+HTK [KGS16]: one of the grammar-based state-of-the-art methods. Similar

to [KAS14], the action units are modeled by HMM, and high-level activities are modeled

by action grammars. The main difference is that a different type of feature (Fisher ker-

nels [JH99]) is proposed for action recognition.

Experiment results To eliminate the factors of feature extraction for fair comparison,

we use the pre-computed feature provided by [KGS16] to train the underlying Bi-LSTM

classifier. The results (Table 3.8) show that even though a simple Bi-LSTM is far from

state-of-the-art methods (an absolute difference of 10.7%), our full algorithm Bi-LSTM

+ Genearlized Earley still outperforms the state-of-the-art by 3.6%. This shows that our

explicit grammar regularization is effective in correcting the mistakes of the underlying

classifier.

3.5.5 Discussion

How different are the classifier outputs and the final outputs for detection? Figure 3.9

shows some qualitative examples of the ground truth segmentations and results given by

different methods. The segmentation results show that the refined outputs are similar with

the classifier outputs since the confidence given by the classifiers are often very high.
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(a) Correction

(b) Insertion

Figure 3.9: Qualitative results of segmentation results. In each group of four segmenta-

tions, the rows from the top to the bottom show the results of: 1) ground-truth, 2) ST-AOG

+ Earley, 3) Bi-LSTM, and 4) Bi-LSTM + generalized Earley parser. The results show (a)

corrections and (b) insertions by our algorithm on the initial segment-wise labels given by

the classifier (Bi-LSTM).

How does the generalized Earley parser refine the classifier detection outputs?

When the classifier outputs violate the grammar, two types of refinements occur: i) cor-
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rection and deletion of wrong labels as shown in Figure 3.9a; ii) insertion of new labels as

shown in Figure 3.9b. The inserted segments are usually very short to accommodate both

the grammar and the classifier outputs. Most boundaries of the refined results are well

aligned with the classifier outputs.

Why do we use two metrics for future prediction? The future 3s prediction is a

standard evaluation criterion set up by KGS and ATCRF. However, this criterion does not

tell how well the algorithm predicts the next segment label. i) At any time frame, part of the

future 3s involves the current sub-activity for most of the times. ii) If the predicted length

of the current sub-activity is inaccurate, the frame-wise inaccuracy drops proportionally,

even when the future segment label prediction is accurate. Therefore we also compare

against the future segment label prediction because it is invariant to variations in activity

lengths.

How well does the generalized Earley parser perform for activity detection and

prediction? From the results we can see that it slightly improves over the classifier outputs

for detection, but significantly outperforms the classifier for predictions. The modifications

on classifier outputs (corrections and insertions in Figure 3.9) are minor but important to

make the sentences grammatically correct, thus high-quality predictions can be made.

How useful is the grammar for activity modeling? From Table 3.3, Table 3.4, Ta-

ble 3.6 and Table 3.7 we can see that both ST-AOG and generalized Earley parser out-

performs Bi-LSTM for prediction. Prediction algorithms need to give different outputs

for similar inputs based on the observation history. Hence the non-Markovian property of

grammars is useful for activity modeling, especially for future prediction.

How robust is the generalized Earley parser? Comparing Table 3.4 and Table 3.7 we

can see that there is a performance drop when the action sequences are more unpredictable
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(in the Watch-n-Patch dataset). But it is capable of improving over the noisy classifier

inputs and significantly outperforms the other methods. It is also robust in the sense that

it can always find the best sentence in a given language that best explains the classifier

outputs.

3.6 Conclusion

We proposed a generalized Earley parser for parsing sequence data according to symbolic

grammars. Detections and predictions are made by the parser given the probabilistic out-

puts from any classifier. We are optimistic about and interested in further applications of

the generalized Earley parser. In general, we believe this is a step towards the goal of

integrating the connectionist and symbolic approaches.
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CHAPTER 4

Conclusion

In this thesis, I developed task-oriented frameworks for visual understanding of scenes

and events. Incorporating object affordances, I synthesized realistic indoor scenes that are

both useful for back inference of 3D scenes from images and generating data for training

of vision algorithms. For event understanding, I introduce a framework to interpret videos

from the perspective of task planning, in which the tasks are represented by stochastic

context-free grammars. To achieve this, I propose the generalized Earley parser to bridge

the raw sequence data and symbolic grammar. Hence we are able to do event parsing,

event prediction, and task planning via the combination of top-down plans and bottom-up

sensor inputs.

This thesis has made progress in both the spatial and temporal aspects of task-oriented

visual understanding. However, there are still unexplored aspects. Both aforementioned

aspects do not involve actual interaction with the environment, in the sense of either phys-

ical or social interactions.

In particular, for individual agents to maximize their values in such environments, they

must learn to interact with and against others, as well as understand the consequences of

their actions. To learn to interact with other agents, it is essential to reason about their

behaviors. This motivates an interactive task-oriented framework to perceive both the

environment (spatially and temporally) and the other agents.
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To develop a truly comprehensive task-oriented representation, these need to be incor-

porated in the future to account for not only the physical tasks, but also the mental states

of other agents (beliefs, desires, and intentions). On top of that, a perception and task

planning system could possibly be built to learn and survive in this world.
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