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ABSTRACT 

The pavement community, including both agencies and industries, is moving toward more 

sustainable pavement designs and pavement network management. Increasing amounts of recycled 

materials, both reclaimed asphalt pavement (RAP) and recycled tire rubber, are expected to be 

used in new pavement construction projects in the future to reduce the use of virgin binder and 

aggregates. The main concern of using recycled materials in new asphalt pavement is the potential 

negative effect on the performance. Thus, the primary objective of this dissertation is to improve 

the current laboratory testing technologies and performance assessment approaches for 

characterizing the performance-related properties of asphalt mixes containing recycled materials 

and to improve understanding of how these properties affect the performance of asphalt pavements 

so that they can be designed and constructed better.  

A major challenge regarding the use of high RAP content mixes is the differences in the rheological 

properties of the virgin binder (mixes without RAP) and the blended binder (mixes with RAP). 

Traditionally, binder blending charts are used to determine the appropriate RAP content in asphalt 

mixes and the selection of virgin binder grade as part of the Superpave volumetric mix design 

procedures when RAP is incorporated in the mix. However, producing mixes based on blending 

charts that require testing of extracted and recovered RAP binders is expensive and hazardous. An 

alternative test approach for binder blending charts using fine aggregate matrix (FAM) mix testing 

is presented in this dissertation. The results demonstrated that the proposed approach could 

estimate the blended binder intermediate and low performance grading temperatures within 3C 
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of the measured blended binder performance grading temperatures. Even though the proposed 

approach is not as accurate as the blending chart method (within 2C), it provides both cost and 

environmental benefits. 

Currently, the Superpave Performance Grading (PG) system cannot not be used to evaluate the 

performance-related properties of asphalt rubber binders produced using larger crumb rubber 

particles (maximum particle size passing 2.36 mm sieve) due to the limitations of parallel plate 

geometry. With the consideration of more open-graded or gap-graded rubberized hot mix asphalt 

(RHMA-O and RHMA-G) projects in the future, it is important to be able to perform Superpave 

PG testing on asphalt rubber binder and to establish performance-based contract acceptance 

criteria for the production of asphalt rubber binders. The test results indicated that the concentric 

cylinder geometry is an appropriate alternative geometry to parallel plates for quantifying the 

properties of asphalt rubber binders and specifically for assessing the high-temperature 

performance properties of binders containing crumb rubber particles larger than 250 μm. 

Concerns have been raised with regard to incorporating reclaimed rubberized asphalt pavement 

(RRAP) into dense-graded new hot mix asphalt (HMA-DG) and RAP into new RHMA-G since 

the interactions between the virgin binder, age-hardened binder, and recycled tire rubber could 

considerably affect the rutting, fatigue cracking, and thermal cracking performances of new HMA-

DG and RHMA-G. The fundamental differences between RAP and RRAP were identified and the 

performance of new mixes that contain these recycled materials were evaluated in this study. The 

experimental results showed that adding RRAP to HMA-DG mixes is ideal to resist rutting and 

low-temperature cracking based on the changes in mix stiffness. The HMA-DG mixes containing 

RRAP are better at resisting high tensile strain loadings than mixes containing RAP. In addition, 

adding RAP to RHMA-G mixes improves the rutting performance but diminishes the cracking 
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performance, and potentially negating the benefits of selecting RHMA-G as an overlay to retard 

the rate of reflection cracking. 

Lastly, the effects of rest periods on asphalt fatigue performance considering asphalt thixotropy, 

non-linearity, self-heating, self-cooling, and steric hardening were also investigated in this 

research. The experimental test results showed that asphalt thixotropic softening and other biasing 

effects control the first 10 to 15 percent decrease in stiffness for unmodified binders and 15 to 35 

percent decrease in stiffness for modified binders under cyclic loading, and this decrease in 

stiffness can be recovered with the introduction of rest periods. This means that most of the 

repeated loadings applied to test specimens within the thixotropic softening range do not caused 

any fatigue damage but only softening of the materials. Thus, by providing sufficient rest periods 

within the thixotropic softening range can effectively improve asphalt fatigue performance. Both 

the thixotropic softening range and the required time for thixotropic recovery (i.e., rest periods) 

need to be considered in asphalt fatigue test and mechanistic-empirical (ME) design for better 

evaluation of the true fatigue performance.  
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1 INTRODUCTION 

1.1 Background 

Asphalt concrete or hot mix asphalt (HMA) is the most common type of pavement surfacing (more 

than 92 percent) in the United States (Roberts et al., 2002; Van Dam et al., 2015). The surfacing 

has multiple useful characteristics such as good friction, good constructability that can produce 

excellent smoothness, resistance to permanent deformation (rutting), and low noise. 

1.1.1 HMA Types 

Dense-graded HMA (HMA-DG) is a mix of well-graded aggregates and asphalt binder. HMA-DG 

can be modified with polymers or other materials that are dissolved completely in the asphalt and 

fit in the dense-graded gradation. In addition to HMA-DG, open-graded HMA (HMA-OG), gap-

graded rubberized hot mix asphalt (RHMA-G), and open-graded rubberized hot mix asphalt 

(RHMA-O) are all commonly used in California.  

HMA-OG is a mix of open-graded aggregates and asphalt binder, typically modified with polymer 

or tire rubber for better drain-down performance and durability. The open-graded aggregate blend 

typically has a large percentage of single size coarse angular aggregates and a small percent of fine 

aggregates. HMA-OG is a thin layer application that allows water to drop from the surface and 

flow below the surface through the open-graded asphalt layer, and it just has to be thick enough to 

get water off the surface. With less water on the surface, the visibility is improved due to the 

decrease of water splash under traffic, and the risk of hydroplaning is also reduced. Open-graded 

HMA has a high air-void content at least approximately 15 percent, which allows it to be extremely 

water permeable, and further reduces tire noise from highway vehicles. The cost per ton of open-

graded HMA is also higher than dense-graded HMA due to higher binder content and the use of 
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modified binders. However, the unit weight of open-graded HMA in-place is lower than dense-

graded HMA.  

RHMA-G is a mix of gap-graded aggregates with asphalt rubber binder, RHMA-O is a mix of 

open-graded aggregates with asphalt rubber binder. Both of RHMA-G and RHMA-O are nearly 

exclusively used a surface material not thicker than 60 mm. Asphalt rubber binder is produced by 

blending 18-22 percent (by weight) of crumb rubber from waste tires (steel is removed) with 

conventional asphalt and other additives. The crumb rubber used is typically passing a maximum 

sieve size of either 2.36 (#4) or 1.18 mm (#8). RHMA is mostly gap-graded or open-graded to 

provide enough space between aggregates for the relatively large crumb rubber particles in the 

asphalt rubber binder that are only partially digested in the field binder blending process used to 

produce it.  

1.1.2 Rubberized Asphalt Binder 

The method of producing rubberized asphalt binder by adding crumb rubber from scrap tires to 

asphalt binder is also known as the “wet-process,” and it was developed by Charles H. McDonald 

in the 1960s in Phoenix, Arizona. He regularly used the wet-process rubberized binder in surface 

treatments for maintenance for the city of Phoenix. It was under patent protection until the mid-

1980s. 

The wet-process rubberized binder can be produced either at an asphalt plant, a nearby distribution 

center (field blend), or a supplier’s terminal or a refinery (terminal blend). The production of field 

and terminal blending processes are named “asphalt rubber binder” and “tire rubber modified 

binder (TR),” respectively. The crumb rubber content, crumb rubber properties, types of extenders, 

and the digestion process differ significantly between the two processes. Consequently, the 
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properties of the rubberized binders produced by the two processes are also very different and 

therefore require different approaches to define the binder properties.  

Asphalt rubber binders are produced using larger crumb rubber particles (maximum particle size 

passing 2.36 mm sieve [mesh #8]), or the next size smaller as mentioned previously, and an 

optional asphalt modifier (i.e., extender oil). Caltrans specifications require the use of 25 percent 

natural rubber and extender oil to enhance the asphalt rubber interaction when producing asphalt 

rubber binder. The extender oil facilitates swelling of rubber particles during blending and reaction 

processes and decreases the viscosity of asphalt rubber binders to maintain workability. In this 

process, crumb rubber particles are mixed with conventional asphalt binder and held at an elevated 

temperature (typically 190°C to 215°C [375°F to 420°F]) for a minimum period of at least 45 

minutes to allow the rubber particles to swell. This swelling is caused through absorption by the 

rubber particles of light components from the asphalt binder and extender oil (State of California 

Department of Transportation, 2006). Asphalt rubber binders are not homogeneous blends since 

the rubber particles are not fully digested during production, so they cannot be characterized with 

the Superpave Performance Grading (PG) procedures, which were developed for binders without 

particulates.  

According to AASHTO T 315, the particulate material in the asphalt binder is limited to 250 m 

for both 25 mm and 8 mm diameter plates. The particle size requirement indicates that the gap size 

between the plates should be at least four times the maximum particle size to avoid the potential 

contacts between particles and to provide reliable results (i.e., an 8 mm gap would be required for 

2.0 mm [#10] crumb rubber particles). Increasing gap size between the plates, both 25 mm and 8 

mm, is a potential solution for overcoming this problem; however, the increase can introduce other 

problems such as poor repeatability, unacceptable temperature gradients, difficulty in trimming the 
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specimen, and uncontrollable edge effects at high testing temperatures. When testing with parallel 

plate geometry, the modulus of the asphalt binder is proportional to the sample radius to the power 

of four. Consequently, a two percent reduction in radius due to incorrect trimming implies a 

potential 16 percent reduction in the measured modulus. Thus, when asphalt rubber binder is tested 

using 1 mm or 2 mm gap parallel plates in the DSR, partially digested rubber particles can contact 

both the top and bottom plates and interfere with the torque and strain measurements, resulting in 

the rheology of the rubber particles dominating the measurement and potentially providing 

misleading information about the rheology of the asphalt rubber binder as a whole.  

Tire rubber modified binders are produced with relatively small rubber particles (maximum particle 

size passing 300 m sieve [mesh #50]). They require less time to digest and result in more 

homogeneous blends compared to asphalt rubber binder because of the smaller crumb rubber 

particle size. In addition, these smaller crumb rubber particles can be kept dispersed by regular 

circulation within the storage tank. Tire rubber modified binders generally have similar 

characteristics to polymer-modified binders, and they can be characterized using existing 

Superpave PG procedures1 (i.e., AASHTO T 315) with 1 mm gap parallel plates because of the 

smaller crumb rubber particle size. 

                                                 
1 The Superpave PG procedures were developed for asphalt binder selection with the consideration of traffic and 

climate as part of the Superpave mix design method, which was developed under the Strategic Highway Research 

Program (SHRP) in the late 1980s and early 1990s. The Superpave mix design method has been implemented by most 

highway agencies in the U.S. It is based on volumetric analysis similar to the Marshall and Hveem mix design methods, 

and it includes the following steps: aggregate selection, asphalt binder selection, sample preparation, density, air void 

content calculations, optimum asphalt binder content selection, moisture susceptibility evaluation, and performance 
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 Crumb Rubber Modifier (CRM) 

CRM is the general term for scrap tire in reduced size, and it is commonly used as a modifier in 

producing asphalt rubber binder. CRM is produced by grinding waste tires with either of the two 

methods: ambient grinding and cryogenic fracturing. In the ambient grinding process, the scrap 

tires are cut to small pieces and then shredded into relatively small size crumbs at ambient 

temperature. The ambient grinding method results in irregularly shaped rubber particles with rough 

surfaces. In the cryogenic fracturing process, the cut pieces of scrap tires are frozen using liquid 

nitrogen then fractured into small size crumbs. The cryogenic fracturing often results in cubic shape 

rubber particles with relatively smooth surfaces. Due to the differences in shape and texture, the 

ambient grinding method typically produces crumb rubber with a larger surface area than the 

cryogenic fracturing method. As a result, the properties of rubberized binders can be different 

depending on the production method used to produce CRM (West et al., 1998). Crumb rubber 

particles with higher surface area and more irregular shapes (i.e., those produced at ambient 

temperatures) tended to produce rubberized binders with higher viscosities since they absorb more 

light fractions from binders (West, et al., 1998; Kim et al., 2001; Lee et al., 2008; Shen et al., 2009).   

 Asphalt Rubber Binder Specifications 

In California, asphalt rubber binders are currently characterized based on their viscosity, 

penetration, resilient properties, and softening properties shown in Table 1.1. 

 

                                                 
tests. However, the performance testing part of the Superpave mix design has not been routinely implemented in 

standard practice. 
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Table 1.1  Caltrans Specifications for Asphalt Rubber Binder Quality Control and Acceptance 

Characteristic Test Purpose Test Method 
Value 

Minimum Maximum 

Cone penetration @77°F (0.10 mm) 

Resilience @ 77°F (% rebound) 

Field softening point (°F) 

Viscosity @ 375°F (centipoise) 

Acceptance 

Acceptance 

Acceptance 

Quality control 

ASTM D 217 

ASTM D 5329 

ASTM D 36 

LP-11 

25 

18 

125 

1,500 

70 

-- 

165 

4,000 

 

The cone penetration and resilience tests provide a means to evaluate the stiffness and resilience 

of asphalt rubber binders, but they are empirical tests that measure the viscous and elastic properties 

of the binder and do not necessarily correlate with field performance. These two tests are only 

performed at a single intermediate temperature, and do not measure the properties of the binder at 

high and low in-service temperatures for rutting or thermal cracking, respectively, or the 

temperature susceptibility (change of stiffness with change of temperature) of the binder, in 

contrast with the Superpave PG system which evaluates the asphalt binder properties at high, 

intermediate, and low in-service temperatures. Also, the cone penetration and resilience tests do 

not address the effect of short-term aging (during mixing and compaction), and long-term aging 

(during field performance) on the properties of asphalt rubber binder, which are considered in the 

Superpave PG system.  

The softening point generally indicates the phase change temperature of the binders and may not 

be sufficient for comprehensive performance-related rheological characterization. Viscosity is an 

important parameter for the workability of the binder and ultimately of the mix, but it does not 

directly relate to the in-service performance of the binder within an RHMA or a rubberized asphalt 

surface treatment such as are in the Superpave PG system.  

 Laboratory Aging Methods  

The Superpave PG system characterizes asphalt binders at three critical aging intervals. Unaged 

binders are tested to characterize the virgin binder properties prior to mixing with aggregates. 
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Rolling thin film oven (RTFO) aged binders, conditioned in a rolling thin film oven by following 

the AASHTO T 240 test method, are tested to characterize the binders that have been mixed with 

aggregates, transported to the field, and placed on the road. Pressure aging vessel (PAV) aged 

binders, prepared according to AASHTO R 28, are tested to characterize binders in a condition 

similar to being in-service for 5 to 10 years in the field.   

The high viscosities of asphalt rubber binders can cause problems when conducting these 

performance-grading tests. In the RTFO test, the high viscosities at high temperature may result in 

the binders not coating the entire bottle at the start of the test, not flowing in the bottles during the 

test period, or spilling out of the bottle instead of coating it. This coating issue defeats the original 

design purpose of the RTFO test, which requires that binders must evenly coat the RTFO bottle 

and keep moving in it to avoid skin formation so that there is exposure of unaged binder to hot air 

and to ensure uniform aging. High viscosity rubberized binders are also challenging to scrape out 

of the RTFO bottle after the test is completed. Given these issues, the thin film oven (TFO) test 

with slight modification could potentially be considered as an alternative to the RTFO test for 

asphalt rubber binders. 

The difference between the TFO test and the RTFO test was investigated by Zupanick (1994). He 

analyzed the AASHTO Materials Reference Laboratory (AMRL) database, which includes results 

from more than 2,000 TFO and RTFO tests completed in laboratories throughout the United States. 

Using viscosity, penetration, and weight change as the performance measures, Zupanick concluded 

that the TFO and RTFO tests are not interchangeable, contradicting earlier studies and industry 

practice. The data indicated that the RTFO test is more severe and precise than the TFO test 

regarding the increase in binder viscosity. However, these results were not consistent for all of the 

samples, with TFO-aged samples tending to have lower viscosities than RTFO-aged samples when 
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the original binders were softer. This was attributed to higher viscosities reducing natural 

convection in the TFO pan, and to skin formation on the binder during the TFO test. The study did 

not consider the dynamic shear modulus, phase angle, or low temperature cracking resistance 

properties that are part of the Superpave PG grading system. 

1.1.3 Distresses of Asphalt Mixes and Superpave Performance Grading 

HMA is typically used as a surface layer in a multiple-layer flexible pavement structure. There are 

three main types of distresses, i.e., rutting, fatigue cracking, and thermal cracking, affecting the 

performance of HMA. The performance of HMA, in terms of its resistance to distresses, is highly 

associated with its viscoelastic and rheological properties. These properties are highly dependent 

on the viscoelastic and rheological properties of the asphalt binder used in the mix. Superpave PG 

procedures were developed to evaluate the performance of asphalt binders by measuring its 

physical properties, and they have been widely accepted and used by agencies to grade asphalt 

binder in the United States.  

Rutting is permanent deformation, and it occurs at high in-service temperatures when the HMA 

cannot provide enough shear resistance to traffic loadings or the HMA layer is poorly compacted. 

A stiff binder is desired to resist HMA rutting due to its high elastic recovery. On the contrary, at 

below-freezing temperatures, thermal contraction occurs at the pavement surface, and it can result 

in low-temperature cracking when the asphalt binder is too stiff, or the asphalt binder is not able to 

relax the tensile stresses caused by thermal contraction fast enough. Under similar thermal 

contraction strain levels, softer mixes have lower tensile stresses than stiffer mixes. Therefore, a 

soft binder is desirable to resist low-temperature cracking.  

Fatigue cracking occurs under repeated traffic and environmental loadings at intermediate in-

service temperatures. For thin HMA overlays, mixes with a soft binder typically have better 
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resistance to fatigue and reflective cracking; however, for thick HMA overlays, mixes with a stiff 

binder typically have better fatigue performance due to the interactions between the HMA layer, 

the thickness of the HMA layer, and the underlying layers. As a result, the stiffness of the HMA is 

highly correlated to its performance, but the effect of stiffness depends on the application.   

In the Superpave PG system, the complex shear modulus (|G*|) and phase angle (δ) of the asphalt 

binder are measured with a dynamic shear rheometer (DSR) at high and intermediate in-service 

temperatures. The creep stiffness (S) and m-value (the slope of the stiffness curve) of the asphalt 

binder are measured with a bending beam rheometer (BBR) at low in-service temperatures. All of 

the above performance-related properties are used to evaluate and characterize asphalt binders, and 

the criteria are listed in the AASHTO M 320 specification as shown in Table 1.2. The performance 

grading is reported with two numbers. The first number represents the average seven-day maximum 

pavement temperature, and the second number represents the minimum pavement temperature that 

the pavement is likely to experience. For example, a PG 64-16 binder is designed to be used where 

the average seven-day maximum pavement temperature is 64C and the minimum pavement 

temperature is higher than -16C. The first number is determined based on the DSR testing at high 

in-service temperatures, and the second number is determined based on the BBR testing at low in-

service temperatures.  
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Table 1.2 Performance Related Specification for Asphalt Binder in AASHTO M 320 

Distress Mode Rutting Fatigue Cracking Thermal Cracking 

Test Temperature 
High in-service 

temperature 

Intermediate in-service 

temperature 

Low in-service 

temperature 

Physical Property 

Complex shear modulus 

(|G*|) 

Phase angle 

(δ) 

Complex shear modulus 

(|G*|) 

Phase angle 

(δ) 

Creep stiffness 

(S) 

Rate of stiffness 

relaxation 

(m-value) 

Test Equipment DSR DSR BBR 

Criteria 

Unaged binder: 

|G*|/sin δ ≥ 1.0 kPa 

at 10 rad/s 

RTFO-aged binder: 

|G*|/sin δ ≥ 2.2 kPa 

at 10 rad/s 

PAV-aged binder: 

|G*|sin δ ≤ 5000 kPa 

at 10 rad/s 

 

PAV-aged binder: 

S ≤ 300 MPa 

at 60 seconds 

m-value ≥ 0.3 

at 60 seconds 

 

Overall, the Superpave PG system can effectively characterize rutting and thermal cracking 

performance of conventional asphalt binders and provide good indications of the performance of 

HMA. 

1.2 Asphalt Mixes Containing Reclaimed Asphalt Pavement (RAP) and Tire Rubber 

The pavement community, including both agencies and industries, is moving toward more 

sustainable pavement designs and pavement network management, and increasing amounts of 

recycled materials are expected to be used in new pavement construction projects in the future to 

reduce the use of virgin binder and aggregates. The main issue with incorporating reclaimed asphalt 

pavement (RAP) into new HMA is the negative influence on cracking performance due to the 

introduction of the age-hardened binder from RAP, which considerably increases the stiffness of 

the new HMA. However, using appropriate designs, HMA containing RAP can have similar 

performance to mixes without RAP, and they are also cost-effective.  

When HMA reaches the end of its design life, it is often milled off and replaced with new HMA or 

RHMA. The millings are recycled as RAP, which is essentially an aged pavement in loose granular 
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form. RAP can be used in multiple ways, such as an addition to new HMA, as a granular base 

course, or as embankment material. Adding RAP into new HMA is commonly used due to the 

economic and environmental benefits in that the RAP aggregates and RAP binders can be used to 

replace a portion of the virgin materials. These benefits are primarily associated with replacing the 

virgin asphalt binder with the RAP binder in comparison with replacing the virgin aggregates with 

the RAP aggregates.  

1.2.1 The Use of Reclaimed Asphalt Pavement in New Hot Mix Asphalt 

Currently, the use of up to 25 percent RAP binder replacement is allowed in new HMA in 

California by the California Department of Transportation (Caltrans) with plans to increase this to 

40 percent or more as research findings on critical questions become available. The national 

practice on the use of RAP in new HMA and warm mix asphalt (WMA) is between 15 and 30 

percent by total weight of mix (TWM) in most states, with an average of 18 percent, according to 

an asphalt pavement industry survey conducted by the National Asphalt Pavement Association in 

2017 (Williams et al., 2018). RAP binder replacement is determined by the amount of aged binder 

from RAP that can be counted on to blend with the virgin binder and therefore count toward the 

total amount of binder by weight in the new mix. Although this policy has had some changes over 

the past several years, the overall trend is to try to increase RAP content in new mixes wherever 

possible because it can reduce the cost for Caltrans and the industry, provided performance is not 

compromised, and also reduce environmental impact. In fact, Caltrans was authorized to establish 

specifications for the use of up to 40 percent RAP in new HMA based on Assembly Bill 812 (2012) 

legislated by the State of California. 

With the growing interest in increasing the amount of RAP in new HMA/RHMA, there are 

concerns regarding the performance of high RAP content mixes considering the differences in the 
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rheological properties of the virgin binder (mixes without RAP) and the blended binder (mixes 

with RAP). Incorporating higher quantities of RAP into asphalt mixes means that higher amounts 

of oxidized and weathered (thus stiffer and more brittle) binder will interact with the virgin binder. 

Binder blending charts are often used to determine the appropriate RAP content in asphalt mixes 

and the selection of virgin binder grade as part of the Superpave volumetric mix design procedures 

when RAP is incorporated in the mix. They have been required by Caltrans for Superpave mix 

designs with over 25 percent RAP content by the dry weight of the mix (DWM) to monitor the 

changes in mix rheological properties. However, producing mixes based on blending charts that 

require testing of binders from the extraction and recovery of RAP binder is expensive and 

hazardous. The trichloroethylene (TCE) used in the extraction poses a potential human health 

hazard to the kidneys, liver, immune system, male reproductive system, and developing fetuses, 

and it is also characterized as carcinogenic to humans by the U.S. EPA.  In addition, TCE also 

contributes to the depletion of the earth’s ozone layer (EPA, 2011).  

1.2.2 Asphalt Rubber Binder and Rubberized Hot Mix Asphalt 

RHMA has been increasingly used over the past two decades in California for several reasons. 

RHMA has better resistance than HMA to reflective and fatigue cracking as a surface layer, and 

generally has good resistance to rutting (when designed and constructed correctly), which leads to 

longer service lives than conventional HMA (Raad et al., 1993; Harvey and Bejarano, 2001; Palit 

et al., 2004; Chiu and Lu, 2007; Xiao et al., 2007; Jones et al., 2008; Fontes et al., 2010; Xiao and 

Amirkhanian, 2010; Pasquini et al., 2011; Vahidi et al., 2014) when used in overlays on cracked 

asphalt pavement or cracked and jointed concrete pavement.  

Its cost-effectiveness in other applications, such as thicker surface layers or structural layers has 

not been explored much in the past because based on cost differences with HMA in the past and 
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concerns about rutting under slow, heavy loads, which are areas requiring research.  However, 

since most of the pavement rehabilitation and maintenance budgets for pavements in California 

during times of low highway maintenance funding consist of relatively thin asphalt overlays, there 

is a huge demand created by just the current application as a surfacing. Second, about four million 

waste tires, which is about 10 percent of the total amount of waste tires that are generated annually 

in the state, are diverted from landfill disposal annually in California (California Department of 

Resources Recycling and Recovery, 2014). Third, the use of RHMA in highway construction was 

legislated in Assembly Bill 338 (2005) by the State of California, which required Caltrans to use 

increasing amounts of RHMA on its highway construction and repair projects (20 percent of all 

asphalt placed by 2007, increasing to 25 percent by 2010, and 35 percent by 2013). 

The current Caltrans criteria for evaluating the quality of asphalt rubber binders are based on 

viscosity, penetration, resilient properties, and softening properties and not on properties more 

directly related to performance such as those in the Superpave PG system used for conventional 

and polymer modified binders. With the consideration of more RHMA projects in the future, and 

the need to have better control of the performance of RHMA, it is important to be able to perform 

Superpave PG testing on asphalt rubber binder as well, and then to establish performance-based 

contract acceptance criteria for the production of asphalt rubber binders, which will in turn lead to 

more reliable performance in the field. 

For RHMA that is in place on the road, the recycling approaches are similar to HMA; however, 

instead of recycling exclusively into new RHMA, the reclaimed rubberized asphalt pavement 

(RRAP) millings are typically added to generic RAP stockpiles, which are then processed with the 

resulting materials used in new asphalt mixes. Potential issues of mixing RAP and RRAP in 

inconsistent proportions are not considered. No research has been found in the literature 
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specifically addressing the effect of using RRAP in new HMA mixes, and only a limited number 

of studies have focused on using RAP from HMA in RHMA (Xiao, 2006; Xiao et al., 2007; Xiao 

et al., 2009; Vahidi et al., 2014).  

In these studies, the use of RAP in new RHMA was found to increase the stiffness, indirect tensile 

strength (ITS), rutting resistance, and workability, but to decrease the fatigue resistance 

significantly when used in thin surface layers. The main benefit of using RAP in new RHMA is to 

help reduce the cost of the mix because the RAP binder cost is lower than virgin binder. However, 

using RAP in new RHMA could theoretically also reduce the amount of recycled tire rubber used, 

given that the rubberized binder content in the mix will be lower than that in a mix that does not 

use RAP to reduce virgin binder content. This might negatively affect the anticipated performance 

of RHMA regarding cracking resistance. Currently, Caltrans does not permit the use of any RAP 

in gap- or open-graded RHMA because of the uncertainties mentioned above. 

Increasing amounts of RRAP are expected to be generated in the future, given the increasing use 

of RHMA in the last 20 years and that the use of RHMA is limited to the surface layers.  It is these 

layers that are milled off before placing a new overlay in order to maintain grade elevation. 

Therefore, identifying any potential differences between RAP and RRAP on HMA performance is 

important to understand any limitations and benefits, specifically whether any of the beneficial 

properties from the original asphalt rubber binder still exist in the RRAP or whether RRAP 

negatively impacts the performance of HMA.  Similarly, the increased use of RHMA will face 

pressures to include RAP and to count on the contribution of the binder in the RAP to reduce the 

rubberized binder content, and it is unknown how this will affect its performance. The cost of 

conventional binder is about 10 times that of the aggregates, and the cost of asphalt rubber binder 
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is about twice that of conventional binder, and the cost of RAP is about 10 to 20 percent higher 

than virgin aggregates. 

Concerns have been raised with regard to incorporating RRAP into new HMA and RAP into new 

RHMA since the interactions between the virgin binder, age-hardened binder, and recycled tire 

rubber could considerably affect the rutting, fatigue cracking, and thermal cracking performances 

of new HMA/RHMA. The oxidization level of the conventional and asphalt rubber binders over 

their service lives can be significantly different; thus, it is essential to identify the fundamental 

differences between RAP and RRAP and to evaluate the performance of new mixes that contain 

these recycled materials. Also, it is challenging to meet RHMA-G gradations and still meet 

specified volumetrics while incorporating RAP. 

Reflective cracking that occurs from the reflection of underlying cracks and joints is one of the 

major distresses affecting asphalt pavement performance due to repeated loadings from traffic and 

weather conditions. A number of laboratory test methods have been developed to characterize 

asphalt fatigue performance, with most applying continuous cyclic loadings without rest periods to 

an asphalt mix specimen while measuring the decrease in mix flexural modulus (stiffness) that 

results from the damage caused during the loading. However, in recent studies, researchers have 

found that there are other phenomena (nonlinearity, thixotropy, steric hardening, self-heating, and 

self-cooling) also affecting the stiffness of asphalt mixes when rest periods are introduced in the 

laboratory testing, and that the phenomena that contribute to perceived damage under continuous 

laboratory loadings are reversible during the rest periods. It is expected that the effects of rest 

periods, or lack thereof, on asphalt fatigue performance in the field will have a bigger influence 

when autonomous vehicles and resultant truck platooning technologies are introduced. Both 

technologies can potentially reduce the following distance between vehicles, and the pavements 



 

  16 

will be subjected to more intense repeated loadings compared to current traffic loading. The effects 

of shorter rest periods could be significant to the pavement fatigue performance. Thus, determining 

the impacts of rest periods are critical for improving pavement fatigue performance.  

1.3 Problem Statement 

The following issues have been identified for this study: 

1. Binder blending charts are commonly used to determine the effects of RAP on virgin binder 

performance grade used in new HMA. Caltrans currently requires its contractors to perform 

binder blending charts for a Superpave mix design with over 25 percent RAP content (by 

dry weight of the mix [DWM]) for its highway construction projects. This requirement was 

recently changed from 15 to 25 percent RAP content. Given the growing interest in 

increasing the amount of RAP in new HMA, significantly more binder extraction and 

recovery tests are being required. However, performing RAP binder extraction and 

recovery is expensive, hazardous, and time-consuming. There is no quick and easy way to 

look at binder blending. Also, there are questions about whether extraction and recovery 

change the properties of asphalt and force complete blending, which might not occur in 

practice.  

2. Current quality control and acceptance (QC/QA) criteria for asphalt rubber binders used by 

Caltrans and other agencies are based on viscosity, penetration, resilient properties, and 

softening properties, but not on properties more directly related to performance such as 

those used in the Superpave PG specification system. The main challenge of switching from 

the current criteria to the Superpave PG system is the presence of large, partially digested 

crumb rubber particles (up to 2.36 mm) in asphalt rubber binders. The standard Superpave 
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PG testing equipment geometry can only accommodate asphalt binder with particle sizes 

up to 250 microns (0.25 mm).  

3. A number of studies have evaluated the performance of RHMA with RAP, but a 

comprehensive understanding of the effects of adding RAP on the properties of new RHMA 

mixes is still lacking. In addition, no research has been undertaken specifically on the 

effects of RAP milled from rubberized asphalt pavements (RRAP) in new HMA. 

Identifying the differences between RAP and RRAP when using them in new HMA and 

evaluating the effects of these differences on performance (rutting, fatigue cracking 

resistance, and thermal cracking resistance) of new HMA are critical to the overall 

understanding of performance of new HMA and RHMA pavements. This needs to be 

considered within the constraints of continuously trying to improve or at least not harm 

pavement performance, and with cognizance of two goals of California policy governed by 

legislation, namely: increasing recycling of asphalt pavement and increasing the use of 

recycled tire rubber in asphalt pavement. 

4. The effects of rest periods on asphalt fatigue performance have been identified in many 

studies. However, there is still debate regarding the stiffness recovery mechanism during 

rest periods. Characterizing the effects of rest periods with nonlinearity, thixotropy, and 

self-heating on asphalt fatigue performance is essential to better relate the results of 

laboratory fatigue testing to fatigue performance in the field.  

1.4 Study Goal and Scope 

The main goal of this study is to improve the current laboratory testing technologies and 

performance assessment approaches for characterizing the performance-related properties of 

asphalt mixes containing recycled materials and to improve understanding of how these properties 

affect the performance of asphalt pavements so that they can be designed and constructed better.  
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To achieve this goal, the following objectives were set for this study:  

• Develop an alternative approach to using binder blending charts to estimate the 

performance grade of the extracted and recovered binder from asphalt mixes containing 

RAP, so that the use of TCE during the RAP binder extraction and recovery process can 

be reduced. 

• Evaluate the concentric cylinder geometry, originally proposed by Baumgardner and 

D’Angelo (2012), to determine whether it is an appropriate alternative testing setup to 

perform Superpave PG testing on asphalt rubber binders, and if yes, to establish test 

procedures.  

• Identify the differences between RAP and RRAP and evaluate the expected performance 

of HMA containing RRAP to provide a recommendation regarding the use of RRAP in 

HMA. 

• Evaluate the effects of RAP on the performances of RHMA with the proposed laboratory 

technology to provide a recommendation regarding the use of RAP in RHMA.  

• Investigate the effects of rest periods on asphalt fatigue performance with the consideration 

of asphalt thixotropy, proposed by di Benedetto et al. (2011), to provide recommendations 

considering thixotropy in asphalt pavement design. 

1.5 Organization of the Dissertation 

The subsequent chapters are structured as follows: 

• Chapter 2 presents the literature review of the status of current laboratory testing 

technologies and performance assessment approaches for asphalt mixes containing recycled 

tire materials. 
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• Chapter 3 presents the questions to be answered by the work of this dissertation study and 

the research methodology to achieve the research goal.  

• Chapter 4 presents the development of FAM mix testing as an alternative testing approach 

to binder blending charts.  

• Chapter 5 presents the findings from a comparison of concentric cylinder and parallel plate 

geometries in DSR testing using conventional, polymer modified, and tire rubber modified 

binders at high in-service temperatures.  

• Chapter 6 presents the findings of the investigation of using RRAP into new HMA, and 

includes mix design, specimen fabrication (for the FAM test, AMPT test and flexural beam 

test), performance testing, and data analysis.  

• Chapter 7 presents the findings of the investigation of using RAP in new RHMA. It follows 

similar procedures to those discussed in Chapter 6.  

• Chapter 8 presents the findings of the investigation of the effects of rest periods considering 

asphalt thixotropy and other biasing effects, and discusses the development of asphalt 

microstructure models.  

• Chapter 9 provides a dissertation summary, conclusions, and recommendations.   
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2 LITERATURE REVIEW 

2.1 Rubberized Hot Mix Asphalt 

The performance of RHMA has been evaluated and compared to HMA by researchers in numerous 

studies. First, RHMA can have better resistance to permanent deformation compared to 

conventional HMA due to its enhanced binder properties with less temperature susceptibility, if 

the mix design, binder content and compaction are appropriate (Palit et al., 2004; Chiu and Lu, 

2007; Xiao et al., 2007; Fontes et al., 2010; Pasquini et al., 2011; Vahidi et al., 2014). Second, 

RHMA has better resistance to reflective and fatigue cracking caused by traffic and exposure to 

temperature extremes compared to conventional HMA when used in thin layers (Raad et al., 1993; 

Raad and Saboundjian, 1998; Harvey and Bejarano, 2001; Palit et al., 2004; Jones et al., 2008;  

Jones and Harvey, 2009; Xiao and Amirkhanian, 2010; Pasquini et al., 2011). Third, in terms of 

ride quality, RHMA in open-graded asphalt mixes has better noise performance than open-graded 

HMA (Lu et al., 2011) over their life cycles. RHMA is smoother than HMA over their life cycles 

based on the comparison of the rate of increase in roughness which for RHMA is slower than for 

HMA (Lu et al., 2011). Last, using RHMA could potentially reduce construction cost and 

environmental impacts by providing similar performance to HMA with less required materials 

(Tsai et al., 2004; Wang et al., 2012). 

Fontes et al. (2010) compared the effects of two blending methods (field blend and terminal blend) 

of rubberized binder on rutting resistance with a wheel tracking test and the repeated simple shear 

test at constant height (RSST-CH). The test results showed that gap-graded mixes with field blend 

asphalt rubber binder had the best resistance to permanent deformation. Xiao et al. (2007) analyzed 

the effects of crumb rubber type (ambient and cryogenic grinding which changes the particle 

surface texture and shape) on rutting resistance with varied RAP contents, and they indicated that 
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RHMA with ambient rubber had higher rutting resistance by wheel tracking test, regardless of the 

RAP contents (0, 15, 25 and 30 percent by weight of aggregate).  

Palit et al. (2004) found that the fatigue resistance of RHMA was improved significantly (nearly 

double the fatigue life at a given tensile strain) compared to conventional HMA based on laboratory 

fatigue test results. Harvey (Harvey and Bejarano, 2001) and Jones (Jones et al.,2008; Jones and 

Harvey, 2009) indicated that half the thickness of RHMA typically provided the same reflective 

cracking life as full thickness HMA overlays on existing cracked pavement under accelerated 

pavement testing with a Heavy Vehicle Simulator (HVS). Xiao and Amirkhanian (2010) 

investigated the interactions between the RAP and rubber contents of RHMA, and their test results 

showed that fatigue lives of the mixes with crumb rubber were longer than mixes without crumb 

rubber at ambient temperatures. However, they found that adding crumb rubber did not provide 

any extra benefit in fatigue life when the RHMA contained high RAP contents (30 percent). 

Coleri et al. (2012a, 2012b) compared the rutting performance of polymer-modified dense-graded 

mixes (with 19 mm nominal maximum aggregate size [NMAS]) and rubberized gap-graded (with 

12.5 mm NMAS) mixes in a composite pavement with full-scale accelerated pavement test (HVS) 

results and laboratory test results. They found that polymer-modified dense-graded mixes 

outperformed RHMA-G under both HVS testing and laboratory testing, even though the resilient 

shear modulus (peak shear stress over elastic shear strain at 100th repetition in the RSST-CH test 

[AASHTO T 320]) of the RHMA-G was higher than the polymer-modified dense-graded mix. 

Rutting of the RHMA-G was mainly caused by shear-related deformation. The larger NMAS and 

denser gradation of the polymer-modified mix resulted in better permanent shear resistance due to 

more efficient shear stress dissipation.  
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2.1.1 Performance of Rubberized Hot Mix Asphalt Containing Reclaimed Asphalt Pavement  

Currently, the use of RAP is not allowed in any Caltrans RHMA projects, because the effects of 

RAP in RHMA have not been investigated in any detail. In particular, the benefits of including 

rubber in the binder, specifically to limit the rate of fatigue cracking, retard the rate of reflective 

cracking, and improve the ride quality (quieter and smoother), may be reduced by adding RAP.  

Xiao (2006) did some earlier research regarding the use of RAP in RHMA. He concluded that the 

stiffness of the rubber-modified binder is highly correlated to its rubber content and RAP content, 

and the use of crumb rubber is helpful in reducing the stiffness of the binder under long-term aging. 

Xiao et al. (2007) compared the stiffness and indirect tensile strength (ITS) of the mixes with 

varying percentages of crumb rubber (0, 5, 10, and 15 percent) and RAP (0, 15, 25, and 30 percent), 

and the test results indicated that the increase of RAP content increased the stiffness and ITS values 

of the rubberized mixes. Also, good workability was observed during mixing for rubberized mixes 

containing RAP, because the extra aged binder from RAP had relatively lower viscosity than 

asphalt rubber binder at mixing temperature. On the contrary, worse workability was typically 

observed when RAP was added to HMA at typical HMA mixing temperatures. Another study 

conducted by Xiao and Amirkhanian (2010) indicated that the fatigue life of rubberized mixes with 

30 percent RAP was much lower than the rubberized mixes with no RAP. The presence of RAP in 

rubberized mixes had a substantial impact on fatigue performance.  

Vahidi et al. (2014) investigated the effects of crumb rubber on high-RAP mixes, and they pointed 

out that RHMA with 40 percent RAP had better rutting resistance compared to RHMA without 

RAP under wheel tracking testing, and that mixes with 15 percent rubber content had better rutting 

resistance than mixes with 10 percent rubber content. In addition, the presence of crumb rubber in 

the mix without RAP was also found to improve the low temperature cracking resistance under the 
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thermal stress restrained specimen test (TSRST); however, with the addition of 40 percent RAP in 

the RHMA the benefit of adding crumb rubber was reduced. Ambaiowei and Tighe (2015) also 

investigated the low-temperature performance of mixes with crumb rubber (terminal blend and 

field blend) and RAP (15-20 percent). The experimental results showed that RHMA with RAP had 

lower fracture stress and fracture temperature, which resulted in better resistance to thermal 

cracking, compared to conventional mixes with RAP. Mixes incorporating RAP and crumb rubber 

were less temperature susceptible to fracture at low temperature over mixes incorporating RAP 

only since the crumb rubber in the mixes reduced brittleness and enhanced the flexibility of mixes 

under low-temperature conditions.  

2.2 Performance of Hot Mix Asphalt Containing Reclaimed Asphalt Pavement 

The asphalt binder in a pavement ages over time due to a combination of volatilization and 

oxidization. Volatilization is the evaporation of the light compounds of asphalt binder, such as 

aromatics and saturates, and it mainly occurs during the production of HMA. Oxidization is the 

reaction of oxygen with the aromatics and resins, with the concentration of heavier asphaltenes 

gradually increasing during the oxidization process (Lin et al., 1996). Oxidization occurs from the 

initial HMA production to the end of HMA service life. Asphalt binder consists of lighter maltenes, 

which include aromatics, saturates, and resins, and heavier asphaltenes. Maltenes are the liquid 

phase of asphalt binder that control the asphalt binder’s viscous properties, and asphaltenes are the 

solid particles dispersed in the maltenes, which control the asphalt binder’s elastic properties. 

Therefore, the viscosity or stiffness of the asphalt binder increases, and the binder becomes more 

elastic and less viscous with an increase of asphaltenes over time (Glover et al., 2009).  

The asphalt binder within RAP is normally aged and hardened. McDaniel et al. (2000) conducted 

the “black rock study” to investigate whether RAP is acting like a black rock or whether there are 
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any interactions between the aged and virgin binders in the new mix. They concluded that the aged 

and virgin binders were blending through significant diffusion in the mix, so using RAP in new 

mixes could reduce not only the demand for virgin aggregates but also for virgin binder.  

Diffusion between the aged and virgin binders at the molecular level was identified as the 

fundamental mechanism of binder blending by researchers (Oliver, 1974; Karlsson and Isacsson, 

2002, 2003a, 2003b; Philibert, 2006; Karlsson et al., 2007; Rad, 2013; Bowers et al., 2014; Rad et 

al., 2014). Diffusion is a two-way process where the aged binder molecules move from a region of 

high concentration (aged binder) to a region of low concentration (virgin binder), and the virgin 

binder molecules move from a region of high concentration (virgin binder) to a region of low 

concentration. Eventually, a new equilibrium between the aged and virgin binders is reached. Since 

the aged binder is stiffer than the virgin binder, the blended binder has a higher stiffness than the 

virgin binder. Consequently, the use of RAP increases the stiffness of the new mix due to the 

blending between the aged and virgin binders, and the stiffness of the new mix increases with the 

increase of RAP content. For asphalt mixes, the increase in stiffness is ideal to resist permanent 

deformation at high in-service temperatures but is negative for low-temperature cracking (Oliver, 

2000; Huang et al., 2004; Shu et al., 2008; McDaniel et al., 2012).  

Many studies have been conducted nationwide to investigate the effects of using various RAP 

contents on pavement performance. Stroup-Gardiner and Wagner (1999) found that the use of RAP 

in new HMA increased the mix stiffness almost two times at high temperatures but decreased the 

indirect tensile creep compliance at low temperatures. They concluded that the use of RAP 

decreased the rutting potential but increased the risk for thermal cracking, and that choosing a softer 

virgin binder grade (bumping down) was necessary to maintain the same overall performance grade 

for mixes containing as low as 15 percent RAP. Grade bumping is now commonly used to adjust 
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the virgin binder performance grade when RAP is added to the mix so that the blended binder 

performance grade will satisfy the binder performance grade requirements. Li et al. (2008) 

evaluated the effects of RAP proportions and sources on HMA with two different virgin binders 

(PG 58-28 and PG 58-34), and their experimental results showed that the dynamic moduli of the 

mixes increased with the increase of RAP content or using a stiffer RAP source. The increase in 

modulus was more significant at high temperatures than low temperatures. In addition, the fracture 

energy, obtained from the semi-circular bending (SCB) test, was used to evaluate the fracture 

resistance. Higher fracture energy represents better fracture resistance. The results indicated that 

the fracture energy decreased with increased RAP content, and that the RAP percentage in the new 

mix was critical to HMA fracture resistance.  

Zaghoul and Holland (2008) found that the expected structural, distresses, and roughness service 

lives of asphalt mixes with less than 15 percent RAP were comparable to those of mixes without 

RAP based on the field-observed conditions among 47 sections containing RAP located in the 

coast, mountain, and desert climate zones in California. McDaniel et al. (2012) compared the 

performance-related properties of plant-produced mixes from Indiana and southern Michigan with 

varying amounts of RAP content (0, 15, 25, and 40 percent). They concluded that virgin binder 

grade adjustment was not needed for mixes with up to 25 percent RAP based on their test results 

(true performance grade of the recovered binders, dynamic modulus of the mixes, and IDT stiffness 

and strength of the mixes at low temperatures). They also pointed out that these findings might not 

apply to other geographic regions due to the differences in materials, especially RAP properties. 

The Indiana DOT research also indicated that there was no concern with using up to 15 percent of 

RAP by binder replacement in the new mix on the friction performance and cracking performance 

(McDaniel et al., 2012). 
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Aurangzeb et al. (2012) investigated the impact of high RAP content (up to 50 percent) on asphalt 

mix performance, and they concluded that it was possible to design high quality HMA with high 

RAP content by performing a proper mix design, fractionating the RAP materials, and bumping 

the virgin binder grade. Fractionating is a process to screen or separate RAP into two to three sizes, 

and it provides more flexibility in meeting the aggregate gradation criteria in the mix design. By 

fractionating the RAP material in a similar manner to virgin aggregate, the mix containing high 

RAP content was able to achieve volumetric properties similar to those of the control mix. These 

high RAP content mixes were able to meet moisture susceptibility, dynamic modulus, beam 

fatigue, semi-circular bending, beam fatigue, and wheel tracking criteria. They recommended 

double bumping (both high and low temperature grades) for mixes with RAP contents higher than 

30 percent to reduce the risk of thermal cracking.  

Johnson et al. (2013) investigated laboratory asphalt mixes with up to 55 percent RAP, which met 

the Superpave mix design requirements for the Minnesota DOT, by performing indirect tensile 

(IDT) and semi-circular bend (SCB) testing at low in-service temperatures. The test results showed 

that creep stiffness, IDT critical temperature, and fracture toughness increased with the increase of 

RAP content, but the fracture energy decreased with an increase of RAP content. Both fracture 

energy and fracture toughness are used to characterize the fracture resistance of asphalt mixes. 

Fracture energy is defined as the amount of energy required to propagate a crack for a unit area, 

and fracture toughness is defined as the critical load required to fail. They concluded that the 

addition of RAP in the asphalt mixes reduced the cracking resistance and fracture performance.  

2.2.1 Asphalt Binder Blending 

When RAP is used in the mix, appreciable amounts of RAP binder blend with the virgin binder 

through exposure to elevated temperatures during mixing, transportation, construction, and 
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continues at in-service temperatures in the field. Ultimately, a blended binder and combined 

effective binder content will be achieved, and they both affect the performance of asphalt mixes.  

Liphardt et al. (2015) used a multistep extraction method to investigate binder blending of mixes 

containing RAP, and they indicated that there was no complete blending between the aged and 

virgin binder, but a significant amount of blending was observed based on the dynamic shear 

rheometer (DSR) test results. He et al. (2016) evaluated diffusion mechanisms between the aged 

and unaged binders with a two-layer binder testing method with a DSR, and the binder tests were 

conducted on binder samples with 50 percent aged binder and 50 percent unaged binder. They 

concluded that the diffusion mechanism was dependent on time and temperature. A typical HMA 

construction time-temperature path (150°C and 153 minutes) resulted in nearly full blending 

between the aged and virgin binder. However, a typical warm mix asphalt (WMA, technologies to 

reduce asphalt mixing temperatures) with a construction time-temperature path of 130°C and 153 

minutes only resulted in 50 percent blending based on the binder test results. 

Kriz et al. (2014) evaluated the blending and diffusion of RAP and virgin binder with asphalt 

testing and computer simulations, and they concluded that the degree of blending through diffusion 

was highly associated with the RAP-virgin binder film thickness. Full blending could be achieved 

for both HMA and WMA with a 20 µm film thickness during mixing in about 10 minutes, but only 

90 and 65 percent blending could be achieved for HMA and WMA with 100 µm film thickness 

after construction (3-4 hours), respectively. Additionally, they conducted Superpave performance 

grading on 15, 25, and 50 percent RAP/virgin binder blends and concluded that the binder selection 

guidelines in AASHTO M 323, which recommend using one performance grade softer for mixes 

containing more than 15 percent RAP (by dry weight of mix), were not applicable for any of the 
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RAP contents used in the study. One of their mixes could not meet the target binder requirement 

due to the use of one performance grade softer binder with a soft RAP. 

Superpave blending charts have been widely used by agencies to determine the appropriate RAP 

content in asphalt mixes and the selection of virgin binder grade as part of the Superpave volumetric 

mix design procedures when RAP is incorporated in the mix. There are two sets of blending charts, 

namely temperature sweep blending charts and specific grade blending charts. For the temperature 

sweep blending charts, the true high, intermediate, and low performance grading temperatures of 

the virgin binder and RAP binder are used to construct the charts, so as many as six blending charts 

(two charts for high temperature, one chart for intermediate temperature, and three charts for low 

temperature) are required to satisfy all the Superpave PG criteria for laboratory test values (Kandhal 

and Foo, 1997).  

An example of a high-temperature sweep blending chart is shown in Figure 2.1. An iso-stiffness 

( |𝐺∗| 𝑠𝑖𝑛𝛿⁄ = 1 kPa) line is drawn between the virgin binder (60.4°C) and the RAP binder 

(107.7°C), and the maximum RAP content can be determined based on the target high performance 

grading temperature for the blended binder and the specified limit for this test value. In the 

example, if the target high performance grading temperature is 64°C, the RAP binder content 

should be higher than 8 percent but lower than 20 percent. For the specific grade blending charts, 

the stiffness (|𝐺∗| 𝑠𝑖𝑛𝛿)⁄  of the virgin binder and RAP binder at the target performance grading 

temperature was used to construct the charts, and Figure 2.2 shows an example of the specific grade 

blending charts at 64°C. The stiffness of the virgin binder (PG 58-28) is 0.64 kPa, and the stiffness 

of the RAP binder is 269 kPa at 64°C in this example. In order to meet the target requirement 

(|𝐺∗| 𝑠𝑖𝑛𝛿⁄ ≥ 1 and |𝐺∗| 𝑠𝑖𝑛𝛿⁄ ≤ 2 kPa), the RAP binder content should be higher than 8 percent 

but lower than 19 percent. Based on the above examples, the recommended RAP binder contents 
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are reasonably close between the temperature sweep and specific grade blending charts. Caltrans 

has considered implementing the Superpave temperature sweep blending charts, which include 

only four blending charts, which are the RTFO-aged high temperature, intermediate temperature, 

and low temperature (in both m-value and creep stiffness) blending charts, to reduce the amount of 

testing. 

 

Figure 2.1 Example of Superpave temperature sweep blending charts. 
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Figure 2.2 Example of Superpave specific grade blending charts. 

 

There are two issues with using blending charts to determine the appropriate RAP content or virgin 

binder grade in the HMA. First, the RAP binder can only be obtained through solvent extraction 

and recovery. Asphalt hardening in solvent extraction was investigated by Burr et al. (1991) with 

a variety of solvents, and they found that asphalt hardening occurred when exposed to all solvents. 

Jemison et al. (1992) used attenuated total reflection (ATR) to analyze asphalt hardening through 

solvent extraction. Their testing results clearly showed that the increase in carbonyl absorbance 

caused asphalt hardening. The level of asphalt hardening was associated with exposure to light, 

oxygen, and temperature. Since asphalt hardening is inevitable with the current extraction method, 

the effects on the extracted and recovered RAP binder might cause undesired bias in blending 

charts.  

Second, blending charts assume full blending (100 percent) between the aged and virgin binders. 

As noted previously, to achieve fully blending depends on the film thickness and time-temperature 

path of asphalt mixes. Huang et al. (2005) conducted a study to investigate the blending between 
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RAP and virgin binder through staged extraction and recovery processes. They compared the |G*| 

of the blended binder at each extraction and recovery stage, and they found that only a small portion 

(outer layer) of RAP was blended with virgin binder by mechanical blending.  

Shirodkar et al. (2011) evaluated the degree of blending of high RAP HMA with a different 

approach. They first mixed coarse virgin aggregates (greater than 4.75mm), fine RAP (finer than 

2.36 mm), and virgin binder, and then separated them into two bins (coarse and fine) again. 

Afterward, they performed extraction and recovery on both bins to obtain the blended binders, 

followed by comparing the modulus between these two binders. Their test results showed that 70 

percent partial blending could be achieved for a PG 70-28 binder, and 96 percent partial blending 

could be achieved for a PG 58-28 binder. In general, blending charts can be effective if the RAP 

and virgin materials are well blended; otherwise, the effects of RAP could be overstated by 

blending charts, leading to faulty mix design and poor performance.  

Bonaquist (2007) developed an indirect method to evaluate the degree of blending of asphalt mixes 

containing RAP by comparing the dynamic moduli (|E*|) obtained from the asphalt mixture 

performance tester (AMPT) to the dynamic moduli predicted with the Hirsch model (Christensen 

et al., 2003), shown in Equation 2.1, with the extracted and recovered binder’s complex shear 

moduli (G*). If the measured moduli match the predicted moduli, good blending is assumed 

between the virgin and RAP binders. Bennert and Dongré (2010) proposed an extraction-less 

procedure to determine the blending level between RAP and virgin binder for asphalt mixes 

containing RAP based on Bonaquist’s (2005, 2007) indirect method. They used the indirect method 

to obtain the binder stiffness with the Hirsch model and then compared the backcalculated binder 

stiffness to the extracted and recovered binder stiffness. Their test results showed a good 
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comparison between the backcalculated binder stiffness and extracted and recovered binder 

stiffness from a mix without RAP.  

|𝐸∗|𝑚𝑖𝑥 = 𝑃𝐶 [29,400(1 −
𝑉𝑀𝐴

100
) + 3|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟 (

𝑉𝐹𝐴 × 𝑉𝑀𝐴

10,000
)]

+
1 − 𝑃𝐶

[
(1 −

𝑉𝑀𝐴
100 )

29,400 +
𝑉𝑀𝐴

3𝑉𝐹𝐴|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟
]

 

𝑃𝐶 =
(0.138 +

𝑉𝐹𝐴 × 3|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟
𝑉𝑀𝐴 )

0.58

36.2 + (
𝑉𝐹𝐴 × 3|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟

𝑉𝑀𝐴 )
0.58  

 

Equation 2.1 

where, 

 |E*|mix = mix dynamic modulus (MPa) 

 |G*|binder = complex shear modulus of asphalt binder (MPa) 

 VMA = voids in mineral aggregate (%) 

 VFA = voids filled with asphalt (%) 

 PC = contact factor 

 

Singh et al. (2011) evaluated four different predictive models (Witczak 1999, Witczak 2006, 

Hirsch, and Al-Khateeb) for estimating dynamic modulus of HMA in Oklahoma by comparing 

their measured and predicted values, goodness-of-fit statistics, and local bias statistics. Overall, 

their test results showed that the Witczak 1999 and Hirsch models were able to provide a better fit 

than the Witczak 2006 and Al-Khateeb models.  

In addition to the predictive models, the rheological models used to describe the asphalt viscoelastic 

behavior are also crucial to the stiffness estimation and backcalculation. Yusoff et al. (2010) 
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investigated the advantages and disadvantages of several viscoelastic rheological models including 

the Modified Sigmoidal model, the Generalized Logistic Sigmoidal model, the Christensen-

Anderson model (CA) (Christensen and Anderson, 1992), the Christensen-Anderson and 

Marasteanu model (CAM) (Marasteanu and Anderson, 1996), and the 2S2P1D model (Olard and 

di Benedetto, 2003). They concluded that all the models were capable of predicting the moduli of 

mixes with unaged and aged unmodified binders sufficiently, and the Modified Sigmoidal model 

and the Generalized Logistic Sigmoidal model were shown be the best models based on the 

statistical analysis results. 

2.3 Asphalt Fatigue Damage and Stiffness Recovery 

The evaluation of asphalt pavement fatigue life has been a popular research subject for many years, 

especially when RAP is incorporated into new HMA. Different laboratory test methods have been 

developed to evaluate the fatigue performance of asphalt mixes. Most of these methods conduct 

continuously cyclic loadings to an asphalt mix specimen and measure the change in complex 

modulus (stiffness) of the specimen over cycles, which is referred to as a “time sweep.” The 

flexural beam fatigue test has been widely used by researchers and agencies to evaluate the fatigue 

performance of asphalt mixes at intermediate in-service temperatures. The test is performed by 

placing an asphalt mix beam specimen under continuous cyclic loadings at a fixed strain or stress 

amplitude of around 10 Hz per second, which simulates a vehicle traveling at 100 km/h. During 

the test, the stiffness of the mix decreases with increasing number of cyclic loadings, and the 

number of cycles to failure gives an estimate fatigue life of the mix. However, continuous cyclic 

loadings do not necessarily represent the actual traffic loadings in the field, where there are rest 

periods between the axles on an individual vehicle and between the of two vehicles following each 

other. The use of continuous cyclic loadings instead of including rest periods in the laboratory 

fatigue tests is done to reduce the testing time.  
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To relate the laboratory fatigue test results and in-situ pavement fatigue performance, a shift or 

correction factor usually needs to be applied to the laboratory fatigue testing results in order to be 

able to match field performance for the same number of load cycles for a number of reasons, such 

as rest period, healing, aging of the asphalt binder, daily and seasonal temperature fluctuations, 

lateral wander of the traffic, densification under traffic, field compaction versus laboratory 

compaction, and moisture damage. Among these factors, Prowell et al. (2010) pointed out that rest 

periods and healing, which is the recovery in stiffness under rest, were the two primary factors 

among all other factors based on their literature survey. Lytton et al. (1993) included healing as 

one of the main shift factors in their performance prediction model to relate laboratory test results 

to field performance. To adequately predict the asphalt fatigue performance in the field with 

laboratory fatigue testing, it is critical to understand the effects of asphalt stiffness recovery during 

rest periods and to calibrate the shift factor accordingly.  

2.3.1 Healing 

Even though the asphalt stiffness recovery phenomenon during rest has been identified in numerous 

studies over the years, no consensus on the fundamental mechanism of this phenomenon has been 

reached by the researchers (Petersen, 1984; Kim and Little, 1988; Hsu and Tseng, 1996; Lee and 

Kim, 1998; Bahia et al., 1999; Little et al., 2001; Williams et al., 2001; Kim et al., 2003; Carpenter 

and Shen, 2006; Little and Bhasin, 2007; Shen et al., 2010; Shen and Sutharsan, 2011). Some 

researchers have referred to this phenomenon as “healing” without any further explanation on its 

mechanism; some researchers explained it with adhesive and cohesive bonding interactions of 

asphalt-aggregate systems based on the total surface energy; and other researchers explained it as 

the changes in asphalt’s microstructure due to the making and breaking of bonds between polar 

molecules. 
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Petersen (1984) indicated that association forces (secondary bond) in asphalt are critical to physical 

and viscoelastic properties, in terms of its viscosity. The changes in viscosity under traffic loads 

and temperature-induced stress result from the breaking and reforming of bonds between polar 

molecules. The degree of the polarity determines the association force of the asphalt and further 

affects its viscosity. For asphalt with a high amount of polar asphaltene, the asphalt was more 

viscous. Other types of secondary bonds, i.e., Van der Waals forces and London dispersion forces, 

were also identified to have an effect on healing.  

Little et al. (2001) conducted a comprehensive study to investigate the micro-damage and micro-

damage healing in asphalt binder and asphalt concrete occurring at the crack initiation stage. They 

indicated that asphalt healing is highly associated with its microstructure, which verified Petersen’s 

concept, and they proved the existence of micro-damage healing in both laboratory fatigue tests 

and field experiments. Their test results demonstrated the importance of micro-damage healing 

during rest periods on asphalt fatigue performance, and that asphalt fatigue life could be extended 

by maximizing the healing component. They further concluded that the viscoelastic continuum 

damage fatigue model could be used to predict the micro-damage growth and recovery, and that 

the mechanisms of fracture and healing could provide a good insight into micro-damage growth 

and recovery. The rates of fracture and healing were associated with the tensile and compressive 

compliances and the surface energy of the asphalt. Low total surface energy and a high polar 

component of surface energy indicated a good healing capability.  

Kim and Little (1988) proved the existence of chemical healing of asphalt binder and suggested 

that an appropriate healing model must include both surface penetration (or interpenetration) and 

the development of structural bonding. Interpenetration means that the interface between two 

asphalt surfaces disappears over time when they are brought together. The bonding energy between 
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asphalt surfaces increases over time, and the binder regains its structural capability. This concept 

was adapted from the polymer healing phenomenon identified by Wool and O’Connor (1981), and 

it was used later by Little and Bhasin (2007) to explain asphalt healing processes in two essential 

steps: wetting of the crack faces and inter-diffusion of molecules between the crack faces to gain 

strength. 

Williams et al. (2001) pointed out that the crack growth and healing of asphalt are associated with 

the breaking and reforming of an interfacial bond, and that the surface free energy is the work 

required to break or form the bond. There are two types of interfacial bonds, adhesive bond or 

cohesive bond. Adhesive bonds are between two materials, which are asphalt and aggregate, while 

cohesive bonds are between asphalt and ultra-fine aggregate, which is less than 0.09 mm in 

diameter. The two bonds are affected by Van der Waal forces and acid-base interactions, with the 

total surface energy of the asphalt determined from these two interactions. Shen and Sutharsan 

(2011) analyzed the effects of cohesive healing on asphalt binder, and they concluded that 

temperature, loading rates, loading amplitude, and the degree of aging had a significant influence 

on healing. The healing rate increased with an increase of asphalt temperature because there was 

more wetting and diffusion activity due to lower binder viscosity at increased temperatures.  The 

healing rate decreased with an increase in loading rates, loading amplitudes, and the degree of 

aging. They also concluded that healing resulting from rest periods effectively extended the binder 

fatigue life.  

2.3.2 Thixotropy 

di Benedetto (di Benedetto et al., 2004; di Benedetto, et al., 2011) and Soltani (Soltani and 

Anderson, 2005) indicated that the stiffness recovery of asphalt was due to its thixotropic behavior 

rather than healing. Thixotropy is where the viscosity of a fluid decreases when subjected to flow 
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or stress, and recovers when the flow or stress is discontinued. When flow is introduced to the fluid, 

thixotropic softening occurs causing the microstructure of the fluid to change to a new equilibrium 

during the finite time of flow. During flow, the shear stress and flow-induced collision break down 

the microstructure network, which causes the decrease in viscosity. When the flow is decreased or 

discontinued, the Brownian motion of the colloidal particles and the bulk fluid motion (contacts or 

collisions of colloidal particles) start to rebuild the microstructure network of the fluid, which 

reverses the viscosity entirely to the previous state. Generally, the breakdown process is much 

faster than the build-up process (Barnes, 1997; Mewis and Wagner, 2009).  

Since the stiffness of the asphalt binder is highly correlated to its viscosity, the change in binder 

viscosity can be directly interpreted as the change in binder stiffness. According to the definition, 

thixotropic softening is completely recoverable when the external load is removed. If the decrease 

in asphalt stiffness is caused by thixotropic softening, the decreased stiffness can be fully regained 

because of thixotropic recovery. 

In addition to the studies conducted by di Benedetto and Soltani, Shan (Shan et al., 2010; Shan et 

al., 2011), Pérez-Jiménez et al. (2012), and Nguyen et al. (Nguyen et al., 2013) all concluded that 

thixotropic behavior of asphalt influenced its fatigue performance. Moreover, Mateos et al. (2017) 

observed these biasing effects (self-heating and thixotropy) during the first phase of flexural beam 

fatigue testing.  

2.3.3 Other Biasing Effects 

Soltani and Anderson (2005), di Benedetto et al. (2011), and Mangiafico et al. (2015) explained 

stiffness reduction under cyclic loading (fatigue testing) by means of four phenomena in the fatigue 

crack initiation phase, namely nonlinearity, self-heating, thixotropy, and fatigue damage. 
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Mangiafico et al. (2015) referred to these phenomena other than the fatigue damage as biasing 

effects because these effects are reversible.  

Nonlinearity is a sharp decrease or increase in measured binder modulus when the loading 

amplitude increases or decreases significantly. The rheological properties of asphalt are typically 

characterized within the linear viscoelastic region for simplicity. The linear viscoelastic region of 

the asphalt binder is determined by performing an amplitude sweep test. During the test, applied 

cyclic stress or strain amplitude increases at a constant frequency, and the point where the measured 

complex shear modulus or viscosity deviates more than 10 percent from a plateau value is the 

turning point to the nonlinear viscoelastic region. In reality, the response of asphalt, in terms of its 

complex shear modulus and phase angle, to a sudden change in stress or strain is nonlinear.  

Bahia et al. (1999) investigated nonlinear viscoelastic properties of asphalt binders, and they 

concluded that asphalt binder could be subjected to a strain level significantly higher (10 times) 

than the bulk strain of the mix. The binder strain dependency of the nonlinear viscoelastic behavior 

was highly dependent on its chemical composition, microstructure, temperature, and loading time 

(frequency). Isailović et al. (2017) pointed out that the effect of nonlinearity on mix stiffness 

recovery was relatively small compared to other effects and not influenced by the length of rest 

periods.  

Asphalt binder modulus is highly associated with its temperature. An increase in temperature 

decreases its modulus, and a decrease in temperature increases its modulus. Local self-heating 

occurs at the beginning of the main loading stage due to high dissipated energy under high stress 

or strain amplitude; on the contrary, self-cooling occurs at the load is removed.  Babadopulos et al. 

(2017) indicated that an initial decrease in asphalt stiffness under cyclic loading could be explained 

with a simplified thermomechanical calculation, and that this decrease in stiffness caused by self-
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heating was completely reversible under certain strain levels. Isailović et al. (2017) also concluded 

that the effects of self-heating under cyclic loading and self-cooling during rest periods were 

significant to HMA recovery properties, and that the effect of temperature variation on mix 

stiffness was much faster compared to thixotropy, self-healing, and strain relaxation. Riahi et al. 

(2017) modeled self-heating and thixotropy phenomena of both asphalt binder and asphalt mixes 

under cyclic loading, and their results showed that the initial decrease in stiffness was mainly 

caused by self-heating and not thixotropy, which was consistent with the observations by Isailović 

et al. (2017). Also, the effect of self-heating on decreasing stiffness was weaker compared to 

thixotropy. However, Pérez-Jiménez et al. (2012) concluded that the initial decrease in stiffness 

and dissipated energy was governed by thixotropy and not damage or self-heating.  

Santagata et al. (2013) found that it was important to consider the effects of steric hardening on 

asphalt binder modulus when assessing increases in binder modulus under rest. Steric hardening of 

asphalt binder has been identified in many studies (Traxler, 1947; Brown et al., 1957; Masson et 

al., 2005), and is a time-dependent phenomenon that increases asphalt modulus due to molecular 

rearrangements at ambient temperature.  

The combination of asphalt thixotropy and other biasing effects were found to describe well the 

behavior of asphalt under cyclic loadings and rest. Understanding these effects during rest periods 

is essential for correlating laboratory asphalt fatigue test results with pavement fatigue performance 

in the field. Thus, by incorporating rest periods with the consideration of these effects, laboratory 

asphalt fatigue testing could better predict the pavement fatigue performance in the field.  As a 

result, better decisions can be made for design, material, and maintenance strategy selections. Also, 

the potential issues with truck platooning technology under conditions of communication between 

vehicles can also be analyzed and designed for accordingly. 
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2.4 Alternative Testing Methods 

2.4.1 Concentric Cylinder Geometry  

The DSR concentric cylinder measuring system proposed for the evaluation of asphalt rubber 

binders has two cylinders: the inner cylinder and the outer cylinder. 

 

Figure 2.3  Concentric cylinder geometry. 

 

This concentric cylinder geometry is commonly used to measure the viscosity of substances such 

as paints, adhesives, and various types of food that may not be homogeneous or that contain 

particulates. However, only limited research has been undertaken on the use of concentric cylinder 

geometry to measure the complex shear modulus and phase angle of asphalt binders, which are the 

main measurement parameters used in the Superpave PG system, to assess the rheological 

properties of conventional and polymer modified asphalt binders at high temperatures.  

The concentric cylinder geometry is capable of accommodating a much larger gap by varying the 

sizes of the outer cylinder and/or the inner cylinder. The gap size between the concentric cylinders 

 

(a) 

 

(b) 
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can be as wide as 6 mm (i.e. a 17 mm spindle in a 29 mm cup), rendering it more appropriate for 

testing wet-process rubberized binders which can contain constituent particles up to 2 mm in 

diameter. The shear stress and shear strain calculations used to interpret the data from the 

concentric cylinder geometry are shown in Equation 2.2 and Equation 2.3. 

𝜏 =
𝑇

2𝜋𝐿𝑅2
 

Equation 2.2 

𝛾 =
𝜃𝑅𝑒

(𝑅 − 𝑅𝑒)
 

Equation 2.3 

where, 

τ = shear stress 

γ = shear strain 

T = torque 

L = length of the inner cylinder 

Re = radius of the outer cylinder 

R = radius of the inner cylinder 

Ɵ = angular rotation of the inner cylinder 

 

The concentric cylinder geometry is controlled by the surface area and radius of the inner cylinder 

and the inside surface area and radius of the outer cylinder, in a similar way to the parallel plate 

geometry, which is controlled by the surfaces and outside edges of the two plates. Any binder that 

is at the bottom of the outer cylinder or which overtops the inner cylinder can be ignored. Unlike 

the parallel plate geometry, which requires trimming of the sample that can lead to operator error 

(depending on the operator’s skill level), the concentric cylinder geometry does not require 

trimming of the sample. 
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Baumgardner and D’Angelo (2012) evaluated the concentric cylinder approach using a DSR to 

compare the performance grading properties of conventional, polymer-modified, and wet-process 

asphalt rubber binders. They concluded that the concentric cylinder geometry could provide similar 

results (|G*|/sinδ) to those obtained using parallel plate geometry. Cheng et al. (2014) investigated 

the rheological properties of conventional binders with concentric cylinder geometry, and they 

indicated that a good correlation between the concentric cylinder and parallel plate geometries 

could be established. However, only a limited number of binders were evaluated in these previous 

studies. Results from Nill and Golalipour (2015) indicated that the gap size of the parallel plate 

system needs to be at least five-times greater than the largest particle size to obtain a reliable 

rheological measurement, which is even more strict than AASHTO T 315.  They concluded that 

the concentric cylinder geometry is reliable for the characterization of asphalt rubber binders with 

particulates up to 2 mm.  

2.4.2 Fine Aggregate Matrix (FAM) Mix Testing 

FAM is the fine aggregate matrix phase of a full graded mix, and consists of asphalt binder and 

fine aggregates passing the 4.75 mm, 2.36 mm, or 1.18 mm (#4, #8, or #16 mesh) sieve. FAM 

mixes are compacted with a Superpave Gyratory Compactor (SGC) by following the procedures 

first developed by Zollinger (2005). The cylindrical FAM specimens are cored from the compacted 

specimen and tested with solid torsion bar geometry in a DSR, which is also known as Dynamic 

Mechanical Analysis (DMA) testing. FAM mix testing is the application of DMA testing on asphalt 

FAM mix specimens to characterize the rheological properties and performance, and it is able to 

provide the following advantages over testing mixes with full gradations: (a) less time-consuming 

(b) less material-consuming (c) relatively even voids distribution due to the smaller form factor 

and nominal maximum aggregate size of the testing specimen (Kim et al., 2002). FAM mix testing 

has been used in a number of studies (Kim et al., 2002; Branco et al., 2008; Masad et al., 2008; De 
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Sousa, 2010; Izadi et al., 2011; Caro et al., 2012; Kanaan et al., 2014; Caro et al., 2015; Alavi et 

al., 2016; He et al., 2016) to characterize the viscoelastic/rheological properties, fatigue damage, 

and moisture susceptibility of a mix. In addition, He et al. (2016) indicated that FAM mix testing 

is sensitive enough to identify the differences in binder grade, RAP content, and the use of 

additives, because of the relatively higher binder content in FAM mixes and smaller nominal 

maximum aggregate size. They concluded that FAM mix testing could be a more effective 

alternative approach for characterizing the properties of asphalt mixes containing RAP than 

chemical extraction and recovery. 
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3  RESEARCH METHODOLOGY 

To address the knowledge gaps identified previously, this study focused on answering the 

following questions:  

1. How can the effects of RAP on virgin binder performance grading properties be 

characterized without extracting and recovering RAP binder from a mix?  

2. What is the feasibility of using concentric cylinder geometry instead of parallel plate 

geometry in a DSR to measure the rheological properties of an asphalt rubber binder given 

the limitations of current Superpave PG binder test methods for asphalt binder with particles 

larger than 250 microns? 

3. What are the changes in the rheological properties of conventional binders when blended 

with age-hardened asphalt rubber binders, what are the changes in the rheological properties 

of asphalt rubber binders when blended with age-hardened conventional binders, and what 

are the mechanical and chemical reasons that cause these changes? 

4. What are the changes in the performance-related properties of HMA when RRAP is used 

in the mix, and does HMA with RRAP perform better than HMA with RAP considering 

that the aged asphalt rubber binder in RRAP might have better performance than aged 

conventional binder from RAP? 

5. What are the challenges and uncertainties of using RAP in RHMA and specifically, does it 

have negative effects on fatigue and low-temperature cracking resistance due to the 

relatively high stiffness of the aged binder in RAP compared to that of the virgin asphalt 

rubber binder? 

6. How can the thixotropic softening and recovery of asphalt binder be appropriately 

characterized?  

a. What are the rates of asphalt microstructure breakdown and build-up? 
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b. How do the loading amplitude and the duration of rest period affect the rate of 

breakdown and build-up?  

7. How does asphalt thixotropy affect the fatigue performance of asphalt mixes?  

To address the above issues, the primary goal of this study is to improve current laboratory testing 

technologies and to initiate innovative performance assessment approaches for better 

characterizing the performance of asphalt mixes containing recycled materials. This will allow road 

owners (state DOTs and local governments) and contractors to make informed decisions when 

selecting the most appropriate pavement design that fits the needs of road users.  

3.1 Tasks 

The research methodology followed in this study included the following tasks to achieve the 

research goal: 

Task 1: Develop an Experimental Plan and Materials Sampling 

Develop an experimental plan to complete the goals of this study based on the collected 

information, and then sample materials needed to complete the plan from local asphalt mix plants 

and refineries, including virgin asphalt binders, crumb rubber modifiers, virgin aggregates, RAP, 

and RRAP.   

Task 2: Prepare HMA and RHMA Specimens 

Undertake HMA and RHMA mix designs based on Section 39 of the Caltrans specifications 

(Superpave Mix Design). Then fabricate specimens with a Superpave gyratory compactor and a 

rolling wheel compactor for testing in an Asphalt Mixture Performance Tester (AMPT) and four-

point bending beam tester, respectively.  



 

  46 

Fabricate FAM mix specimens from these mixes with a Superpave gyratory compactor for testing 

in a Dynamic Shear Rheometer (DSR) with a solid torsion bar.   

Task 3:  Develop a FAM Mix Testing Approach as an Alternative to Binder Blending Charts 

Develop a FAM mix testing approach that can be used to estimate the blended binder performance 

grade of HMA containing RAP. 

Task 4:  Evaluate the Concentric Cylinder Geometry and Develop Testing Procedures 

Evaluate the concentric cylinder geometry with selected performance graded conventional, 

polymer-modified, and tire rubber-modified asphalt binders.  Determine whether equivalent results 

to the parallel plate geometry can be obtained. Develop concentric cylinder geometry test 

procedures for asphalt rubber binder high temperature performance grading. 

Task 5: Investigate Use of RRAP on Performance-Related Properties of HMA and the Use of 

RAP on Performance-Related Properties of RHMA 

Evaluate the changes in mix volumetric, rheological, and performance-related properties when 

RRAP/RAP is used HMA/RHMA with asphalt binder testing, FAM mix testing, and full-graded 

mix testing. 

Task 6: Characterize the Effects of Rest Periods by Considering Asphalt Thixotropy and 

Other Biasing Effects 

Characterize asphalt thixotropy and other biasing effects by evaluating the rate of asphalt 

microstructure breakdown and build-up under various loading amplitudes and rest periods. 

Develop an asphalt microstructure model to predict the change in binder or mix modulus based on 

asphalt thixotropy and other biasing effects. 
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Task 7: Data Analysis and Reporting 

Analyze and compare all the test data and test results. Report the research findings, 

recommendations for implementation of the findings, and recommendations for future work. 
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4 DEVELOPMENT OF FINE AGGREGATE MATRIX MIX TESTING AS 

AN ALTERNATIVE APPROACH TO BINDER BLENDING CHARTS 

This chapter describes the development of an alternative test approach for binder blending charts 

using fine aggregate matrix (FAM) mix testing. FAM is the fine aggregate matrix phase of a full 

graded mix, and consists of asphalt binder and fine aggregates passing the 2.36 mm (#8 mesh) 

sieve.  The goal of this chapter is to answer the following question: 

1. How can the effects of RAP on virgin binder performance grading properties be 

characterized without extracting and recovering RAP binder from a mix?  

The development of this alternative approach included two parts. The first part covered asphalt 

binder testing with virgin binders, extracted and recovered RAP binders, and blended binders in 

two proportions (85:15 and 75:25 by total weight of the binder). The second part covered FAM 

mix testing with 0, 15, and 25 percent RAP content by binder replacement and using asphalt 

predictive models to predict the intermediate- and low-temperature performance grade of the 

asphalt binder blend within the asphalt mix containing RAP.  

4.1 Experimental Plan  

4.1.1 Materials 

As shown in Table 4.1, the materials used in this chapter included one PG 58-28 unmodified asphalt 

binder, one PG 64-16 unmodified binder, one virgin aggregate (crushed granite), and two RAP 

sources. All materials were provided by local suppliers in northern California.  

The extraction (AASHTO T 164) and recovery (ASTM D1856, by Abson Method) of asphalt 

binder and aggregates were conducted on both RAP materials. The true performance grade of the 

two virgin binders and two extracted RAP binders was determined per AASHTO T 313, AASHTO 

T 315, AASHTO M 320, and AASHTO M 323 as shown in Table 4.2. It is worth noting that the 
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high-temperature performance grade of the RAP-1 binder was about 13C higher than the RAP-2 

binder, which indicated that the RAP-1 binder was much stiffer than the RAP-2 binder. In the 

absence of the performance grade of the original unaged binders used to produce the two RAP 

materials, it is difficult to draw any conclusions regarding their rate of aging. Besides, there was a 

considerable difference between the unaged and RTFO-aged high performance grading 

temperatures of the RAP-2 binder, which could serve as an indication that the unaged high-

temperature performance grade of the RAP-2 binder was possibly affected by the solvent residual 

from the extraction process. 

Table 4.1 Summary of Materials Used in Chapter 4 

Virgin Binder Grade Aggregate RAP Source 

2 1 2 

PG 58-28 

PG 64-16 
Crushed granite aggregate 

RAP-1: Sacramento area (warmer climate region) 

RAP-2: Bay area (cooler climate region) 

 

Table 4.2 True Performance Grade of the Virgin Binders and Extracted and Recovered RAP Binders 

Binder 

True Performance Grade 

High (°C) 
Intermediate (°C) 

Low (°C) 

Unaged RTFO-Aged Creep Stiffness m-value 

PG 58-28 60.4 61.0 15.6 -31.1 -31.9 

PG 64-16 67.1 66.9 25.7 -22.5 -22.3 

RAP-1 Binder 107.2 109.2 48.6 -7.2 -2.4 

RAP-2 Binder 89.1 95.9 43.3 -7.9 -8.3 

 

4.1.2 Test Methods 

 Asphalt Binder Testing Approach 

The rheological properties of the virgin asphalt binders, extracted and recovered RAP binders, and 

the blended binders were tested with a dynamic shear rheometer (DSR) and a bending beam 

rheometer (BBR). Blended binders were prepared by uniformly hand-blending the unaged virgin 
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asphalt binder and the extracted and recovered RAP binder with a glass rod in two proportions 

(85:15 and 75:25 by total weight of the binder). These two RAP binder replacement percentages 

were selected based on the binder selection guidelines for RAP mixes in the appendix of AASHTO 

M 323 and the 2017 Caltrans requirements for HMA containing RAP. Higher RAP binder 

replacement ratios will be investigated in the future based on the results regarding the feasibility 

of the alternative method proposed in this study.  

The virgin binders and blended binders were performance graded following AASHTO M 320, and 

the extracted and recovered RAP binders were performance graded based on the procedures for 

developing blending charts in the appendix of AASHTO M 323. The test results were used to 

evaluate the changes in virgin binder rheological properties and binder performance grade by 

adding the extracted and recovered RAP binder. The binder test results were then used to develop 

binder blending charts to estimate the allowable RAP content in new HMA without adjusting the 

virgin binder grade.  

Frequency sweep tests were performed on the RTFO-aged samples with a DSR (8 mm parallel 

plate with a 2 mm gap setting) to measure the complex shear modulus (|G*|) for a range of 

frequencies (0.1 to 100 rad/s) at three different temperatures (4°C, 20°C, and 40°C). The measured 

complex shear moduli from frequency sweep tests were then used to construct asphalt binder 

master curves at the reference temperature (i.e., 20°C) by fitting the test data to a nonsymmetrical 

sigmoidal function (Equation 4.1) with the Williams-Landel-Ferry (WLF) shift factor equation 

(Equation 4.2) and time-temperature superposition principle (Equation 4.3). Additionally, the 

measured moduli of the high-temperature performance grade on RTFO-aged binder samples were 

used in the construction of master curves to improve the fitting at low frequencies (high 
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temperatures). The fitting parameters were obtained by performing least squares optimization with 

Microsoft Excel Solver©. 

𝑙𝑜𝑔|𝐺∗(𝑓𝑟)| = 𝛿 +
𝛼

[1 + 𝜆𝑒(𝛽+𝛾×log (𝑓𝑟)]
1

𝜆⁄
 

Equation 4.1 

where, 

 |G*| = complex shear modulus (kPa) 

 , , , , and  = nonsymmetric sigmoidal function parameters 

 fr = reduced frequency at the reference temperature Tr (°C) 

 

𝑙𝑜𝑔(𝑎𝑇) =
−𝐶1 (𝑇 − 𝑇𝑟)

𝐶2 + 𝑇 − 𝑇𝑟
 

Equation 4.2 

where, 

aT = shift factor at testing temperature T (°C) 

T = testing temperature (°C) 

Tr  = reference temperature Tr (°C) 

 

𝑙𝑜𝑔(𝑓𝑟) = 𝑙𝑜𝑔(𝑎𝑇(𝑇)) + 𝑙𝑜𝑔(𝑓) 

Equation 4.3 

where, 

 f = testing frequency at testing temperature T (°C) 

 Alternative Fine Aggregate Matrix Mix Testing Approach 

FAM mix testing was selected in this study for the following reasons. First, a relatively small 

amount of material is required for FAM mix testing compared to full-graded mix testing due to its 
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finer gradation and smaller form factor. Second, the change in FAM mix modulus from the addition 

of RAP is more pronounced than the full-graded mix dynamic modulus due to its higher binder 

content and finer gradation.  

The alternative FAM mix testing approach includes two phases. The first phase determines the 

predictive model fitting parameters, and the second phase estimates the performance grade of the 

blended binder in the FAM mixes containing RAP. Figure 4.1 shows a schematic of the proposed 

procedure to determine the binder performance grade in RAP mixes using FAM mix testing. In this 

research, the predicted performance grade using the proposed approach is compared with the 

performance grade obtained using the extraction and recovery process to verify the validity of the 

proposed approach.  

 

Figure 4.1 Flowchart of using the FAM mix testing approach to determine the blended binder performance 

grade of the asphalt mixes containing RAP. 
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4.1.2.2.1 Phase One: Determination of Predictive Model Fitting Parameters  

Two predictive models, namely the Hirsch model and Al-Khateeb model, were used in this study 

to correlate the binders’ complex shear modulus and the FAM mixes’ complex shear modulus at 

different temperatures and frequencies. The Hirsch model uses the fitting parameters shown in 

Equation 4.4 and the Al-Khateeb model uses those in Equation 4.5. For low-temperature 

performance grade calculation, the complex shear modulus is converted to the creep modulus using 

Equation 4.6.  

|𝐺∗|𝑚𝑖𝑥 = 𝑃𝐶 [𝐸𝑎 (1 −
𝑉𝑀𝐴

100
) + |𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟 (

𝑉𝐹𝐴 × 𝑉𝑀𝐴

10,000
)] +

1 − 𝑃𝐶

[
(1 −

𝑉𝑀𝐴
100 )

𝐸𝑎
+

𝑉𝑀𝐴
𝑉𝐹𝐴|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟

]

 

 

𝑃𝐶 =
(𝑃0 +

𝑉𝐹𝐴 × |𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟
𝑉𝑀𝐴

)
𝑃1

𝑃2 + (
𝑉𝐹𝐴 × |𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟

𝑉𝑀𝐴 )
𝑃1

 

Equation 4.4 

where, 

 |G*|mix = complex shear modulus of the FAM mix (MPa) 

 |G*|binder = complex shear modulus of the binder (MPa) 

 VFA = voids filled with asphalt (%) 

 VMA = voids in the mineral aggregate (%) 

PC = contact factor (aggregate contact volume) 

 Ea, P0, P1, and P2 = Hirsch model fitting parameters 
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|𝐺∗|𝑚𝑖𝑥 = (
100 − 𝑉𝑀𝐴

100
)

[
 
 
 
 
 
 
(𝐴1 + 𝐴2

|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟
𝑉𝑀𝐴
100

)

𝐴3

𝐴4 + (𝐴5
|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟

𝑉𝑀𝐴
100

)

𝐴3

]
 
 
 
 
 
 

|𝐺∗|𝑔 

Equation 4.5 

where, 

 |G*|mix = complex shear modulus of the FAM mix (Pa) 

 |G*|binder = complex shear modulus of the binder (Pa) 

 |G*|g = glassy modulus of the binder (Pa) 

 VMA = voids in the mineral aggregate (%) 

 A1, A2, A3, A4, and A5 = Al-Khateeb model fitting parameters 

 

|𝐺∗(𝑓)| ≈
𝑆(𝑡)

3
,          𝑓 ≈

1

2𝜋𝑡
 

Equation 4.6 

where,  

|G*| = complex shear modulus of the binder (MPa) 

S(t) = creep stiffness (MPa)  

f = testing frequency at testing temperature T (°C) 

 t = loading time (sec) 

 

For each model, a set of fitting parameters was previously suggested (Christensen et al., 2003; Al-

Khateeb et al., 2006). These generic fitting parameters were determined by testing hundreds of full-

graded asphalt mixes having different binder types, binder performance grades, aggregate type, 

and aggregate gradation. These generic fitting parameters can be useful; however, they do not 

accurately account for variations in binder type or other mix characteristics. In this study, FAM 

mixes were used instead of full-graded mixes, so the generic fitting parameters obtained using full-
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graded mixes were not considered valid for this study. Alternatively, specific model fitting 

parameters were determined to better represent the behavior of FAM mixes and to account for 

differences in the virgin binders among the mixes. Using specific fitting parameters should provide 

better accuracy, as compared to the generic fitting parameters, in backcalculating the binder 

modulus using the predictive models.  

Phase one of the proposed methodology entailed the determination of the specific model fitting 

parameters. The goal of this phase was to determine the predictive model fitting parameters by 

using least squares optimization to match the predicted FAM mix moduli with the measured FAM 

mix moduli. The steps to complete this phase were as follows: 

• Determine the moduli of the virgin FAM mixes and the virgin binders using frequency 

sweep testing. 

• Construct the virgin binder and virgin FAM mix master curves using the frequency sweep 

testing results.  

• Predict the virgin FAM mix master curves using the predictive models with the virgin 

binder master curves.  

• Determine the fitting parameters of the predictive models by performing least square 

optimizations with Microsoft Excel Solver© to coincide the predicted virgin FAM mix 

master curves with the measured FAM mix master curves. A set of model fitting parameters 

was determined for both PG 58-28 and PG 64-16 binders. 

Cylindrical FAM mix specimens were tested in a solid torsion bar setup mounted in a DSR. 

Frequency sweep tests were performed to measure the complex shear modulus (|G*|) for a range 

of frequencies (0.1 Hz to 25 Hz) at four different temperatures (4°C, 21°C, 37°C, and 54°C) based 

on the frequencies and temperatures used for determining the dynamic modulus of AMPT 
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specimens in AASHTO T 342. The strain amplitude of the frequency sweep tests was set at 

0.002%, based on the findings of previous UCPRC studies (Alavi et al., 2016; He et al., 2016), to 

ensure that the material was in the linear viscoelastic region. The measured complex shear moduli 

were then used to construct FAM mix complex shear modulus master curves at the reference 

temperature (i.e., 20°C) using the same method used for constructing asphalt binder master curves 

mentioned previously.  

4.1.2.2.2 Phase Two: Determination of Blended Binder Performance Grade 

This phase used the predictive models, with the specific fitting parameters obtained in Phase 1, to 

backcalculate the performance grade of the binder in the mixes containing RAP. The complex shear 

moduli of the binders were first backcalculated using the results of the mixes containing RAP. The 

backcalculated complex shear moduli were then used to calculate the phase angles using Equation 

4.7 (Rowe, 2009), which uses the log-log relationship between the derivative of the ratio between 

the complex shear modulus and frequency. 

𝛿(𝑓) = 90 ×
𝑑 log|𝐺∗|

𝑑 log (𝑓)
= −90𝛼𝛾

𝑒[𝛽+𝛾×log (𝑓)]

[1 + 𝜆𝑒[𝛽+𝛾×log(𝑓)]](1+1
𝜆⁄ )

 

Equation 4.7  

where, 

  = phase angle 

f = testing frequency in Hz at testing temperature T (°C) 

 |G*| = complex shear modulus of the binder (kPa) 

, , , and  = model fitting parameters 

 

Once the complex shear moduli and the phase angles of the binders were determined, their 

performance grades were estimated. To estimate the performance grade of the blended binder 
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within the RAP mixes, the complex shear moduli and phase angles corresponding to a frequency 

of 10 rad/s at two different temperatures first need to be determined. For this, the principle of time-

temperature superposition was used to determine the corresponding reduced frequencies at the 

reference temperature of 20°C. Since this procedure does not require extraction and recovery of 

the RAP binder, the master curves of the RAP/virgin binder blend are not available. Thus, the 

corresponding reduced frequencies from the virgin binder master curves were used instead to 

determine the complex shear moduli and phase angles of the RAP/virgin binder blends. Besides, 

the intermediate and low performance grades are typically determined with the PAV-aged binder 

samples but not with the RTFO-aged binder samples used to construct the virgin binder master 

curves. Therefore, an aging factor was applied to the complex shear moduli of the RTFO-aged 

virgin binders to reflect the complex shear moduli of the PAV-aged virgin binders. The aging 

factors were calculated by dividing the complex shear modulus of the PAV-aged virgin binder by 

the complex shear modulus of the RTFO-aged virgin binder, which was obtained from the RTFO-

aged binder master curve with given tested temperatures and frequencies. 

The procedure for estimating the performance grade of the blended binder in the mixes containing 

RAP is outlined as follows: 

• Frequency sweep testing is conducted on FAM mix specimens with 15 and 25 percent RAP 

content. 

• The measured complex shear moduli from the frequency sweep tests are used to construct 

the FAM mix (with RAP) master curves at the reference temperature using the same 

approach used for the virgin FAM mixes. 

• The complex shear moduli of the blended binders in the FAM mixes are predicted using 

the fitting parameters obtained in phase one. For this, the fitting parameters obtained using 
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the virgin PG 58-28 mixes are used for the RAP mixes containing the PG 58-28 binder 

whereas the fitting parameters obtained for the virgin PG 64-16 mixes are used for the RAP 

mixes made with the PG 64-16 binder. 

• Equation 4.7 is used to calculate the phase angles using the backcalculated binder modulus 

values. 

• The high-temperature performance grade of the binder is directly estimated using the 

complex shear modulus and phase angle values. 

• The complex shear modulus values are multiplied by an aging factor to reflect PAV-aging 

prior to estimating the low and intermediate temperature performance grade.  

4.2 Mix Design and Specimen Preparation 

4.2.1 FAM Mix Design and Specimen Preparation 

A Caltrans Superpave mix design for HMA-DG with a nominal maximum aggregate size (NMAS) 

of 19 mm was used for this study. The aggregate gradation and the optimum binder content of the 

HMA-DG are shown in Table 4.3, and the aggregate gradation curve is shown in Figure 4.2. It can 

be seen that the gradation is at the upper, fine limit of the gradation specification. By following the 

University of California Pavement Research Center (UCPRC) FAM mix specimen preparation 

approach, developed in previous UCPRC studies (Alavi et al., 2016; He et al., 2016), a dense 

graded FAM mix with an NMAS of 2.36 mm (passing #8) was obtained.  

Once the optimum binder content for the full-graded mix had been determined, the full mix was 

scalped on the 2.36 mm sieve and the aggregate gradation and resulting binder content of the FAM 

mix were determined by an ignition oven test (AASHTO T 308). The FAM gradation and binder 

content at the full-graded mix optimum binder content, also shown in  
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Table 4.4, were then used to prepare the FAM mixes for testing. The FAM mix aggregate gradation 

curve is shown in Figure 4.3. 

Table 4.3 Asphalt Content and Aggregate Gradation of the Selected HMA-DG 

Asphalt Content (%) 

 by Total Weight of mix (TWM) 

6.1 

Gradation 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

25.4 1" 100.0 

19.0 3/4" 97.9 

12.5 1/2" 88.9 

9.50 3/8" 79.1 

4.75 No. 4 55.8 

2.36 No. 8 38.5 

1.18 No. 16 26.9 

0.60 No. 30 18.1 

0.30 No. 50 10.4 

0.15 No. 100 4.5 

0.075 No. 200 2.2 

 

   

Figure 4.2 HMA-DG aggregate gradation curve. 
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Table 4.4 Asphalt Content and Aggregate Gradation of the FAM Mix 

Asphalt Content (%) 

by Total Weight of mix (TWM) 

8.6 

Gradation 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

2.36 No. 8 100.0 

1.18 No. 16 80.0 

0.60 No. 30 55.8 

0.30 No. 50 32.5 

0.15 No. 100 17.1 

0.075 No. 200 10.6 

 

   

Figure 4.3 FAM aggregate gradation curve. 
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detailed in AASHTO M 323. The aggregate gradation and optimum binder content for all FAM 

mixes were kept the same so that the difference in properties of the different mixes could primarily 

be attributed to the influence of the aged binders from the different RAP sources. Since only 

passing 2.36 mm aggregates (#8) were used for preparing FAM mixes, both RAP-1 and RAP-2 

were scalped to passing 2.36mm. The properties of the RAP materials are shown in Table 4.6, and 

the aggregate gradation curves are shown in Figure 4.4. 

Table 4.5 Factors and Factorial Levels of the FAM Mix Testing 

Factors Virgin Binder Grade RAP Source 
RAP Content (%) 

by Binder Replacement Rate 

Factorial levels 

2 2 3 

PG 58-28 

PG 64-16 

RAP-1 (Sacramento Area) 

RAP-2 (Bay Area) 

0% 

15% 

25% 

 

 
Table 4.6 Fine RAP Asphalt Content and Aggregate Gradation 

RAP Source 1 2 

Asphalt Content (%) by TWM 6.6 8.4 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

4.75 No. 4 100.0 100.0 

2.36 No. 8 100.0 99.9 

1.18 No. 16 80.0 74.7 

0.60 No. 30 55.8 53.8 

0.30 No. 50 32.5 36.7 

0.15 No. 100 17.1 22.1 

0.075 No. 200 10.6 14.5 
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Figure 4.4 Fine RAP aggregate gradation curves. 
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Figure 4.5 FAM mix testing: DSR with torsion-bar fixture. 

 

4.3 Test Results and Discussions 

4.3.1 Asphalt Binder Test Results 

 Superpave Performance Grading 

The test results are shown in Figure 4.6 through Figure 4.9 (the true performance grade of the virgin 

binder are the values with zero percent RAP content and the true performance grading temperatures 

of the extracted and recovered RAP binders are the values with 100 percent RAP content), and are 

listed in Table A.2 through Table A.4 in Appendix A. The following observations were made:  

• The true performance grading temperatures of the RAP-1 binder were higher than those of 

the RAP-2 binder at all (high, intermediate, and low) in-service temperatures.  These results 

indicate that the RAP-1 binder was stiffer than the RAP-2 binder based on their extracted 

and recovered binder performance grade.  

• The RTFO-aged performance grading temperature of the RAP-2 binder was 6.8°C higher 

than the unaged performance grading temperature, which was an indication of solvent 
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residuals from extraction in the RAP binder. A good extracted and recovered RAP binder 

should not have any solvent residuals, but it does occur occasionally. Since the solvent 

residuals evaporate during RTFO aging, they should have little effect on the RTFO-aged 

high performance grading temperature. The unaged high performance grading temperature 

of the extracted and recovered RAP binder should be interpreted with caution.  

• The incorporation of RAP binder into virgin binder increased the true performance grade 

of the blended binder at high, intermediate, and low in-service temperatures for all four 

combinations of the virgin and RAP binders used in this study.  

• The RTFO-aged high and intermediate performance grade temperatures of the blended 

binders with RAP-1 binder were higher than the blended binders with RAP-2 binder, as 

expected. However, the low performance grading temperature of the blended binders with 

RAP-1 binder were lower than the blended binders with RAP-2 binder, which was not 

expected. The reason for these opposite results was that the RAP-2 binder was more 

temperature susceptible than the RAP-1 binder, and the creep stiffness of the RAP-2 binder 

was probably lower than the RAP-1 binder below -6°C. 
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Figure 4.6 True performance grading temperatures of the PG 64-16 virgin and blended binders. 

 

  

Figure 4.7 True low performance grading temperatures of the PG 64-16 virgin and blended binders. 
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Figure 4.8 True performance grading temperatures of the PG 58-28 virgin and blended binders. 

 

   

Figure 4.9 True low performance grading temperatures of the PG 58-28 virgin and blended binders. 
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 Asphalt Binder Rheological Properties 

The complex shear modulus (|G*|) and phase angle () of the unaged and RTFO aged PG 64-16 

binder and PG 64-16 blended binders at 64C and 70C are shown in Figure 4.10 through Figure 

4.13. The |G*| and  of the unaged and RTFO aged PG 58-28 binder and PG 58-28 blended binders 

at 58C and 64C are shown in Figure 4.14 through Figure 4.17. The following observations were 

made: 

• The complex shear modulus of the extracted and recovered RAP-1 binder was substantially 

higher than that of the RAP-2 binder, and the corresponding phase angle of the RAP-1 

binder was significantly lower than the RAP-2 binder for both unaged and RTFO-aged 

samples under all three tested temperatures (58°C, 64°C, and 70°C). These results indicate 

that the RAP-1 binder was stiffer than the RAP-2 binder, which was consistent with their 

true high performance grading temperatures shown previously. 

• For all four blended binders, the complex shear modulus increased exponentially with the 

increase of RAP binder content regardless of their aging condition (unaged or RTFO-aged) 

or tested temperature (58°C, 64°C, or 70°C), and the R2 values of the regression analyses 

were all higher than 0.99. The phase angle decreased linearly with the increase of RAP 

binder content regardless of aging condition (unaged or RTFO-aged) or tested temperature 

(58°C, 64°C, or 70°C), and the R2 values of the regression analyses were all higher than 

0.97. With the same amount of RAP content, the complex shear modulus of the blended 

binder was greater with the stiffer RAP binder than with the softer RAP binder. On the 

contrary, the phase angle of the blended binder was smaller with the stiffer RAP binder 

than with the softer RAP binder. 

• The complex shear modulus and phase followed similar trends for both unaged and RTFO-

aged binders.  
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Figure 4.10 Complex shear modulus of the unaged PG 64-16 virgin and blended binders at 64C and 70C. 

 

 

Figure 4.11 Complex shear modulus of the RTFO-aged PG 64-16 virgin and blended binders at 64C and 

70C. 
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Figure 4.12 Phase angle of the unaged PG 64-16 virgin and blended binders at 64C and 70C. 

 

 

Figure 4.13 Phase angle of RTFO aged the PG 64-16 virgin and blended binders at 64C and 70C. 
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Figure 4.14 Complex shear modulus of the unaged PG 58-28 virgin and blended binders at 58C and 64C. 

 

 

Figure 4.15 Complex shear modulus of the RTFO-aged PG 58-28 virgin and blended binders at 58C and 

64C. 
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Figure 4.16 Phase angle of the unaged PG 58-28 virgin and blended binders at 58C and 64C. 

 

 

Figure 4.17 Phase angle of the RTFO aged PG 58-28 virgin and blended binders at 58C and 64C. 
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the PAV-aged virgin binders and blended binders at -6°C and -18°C are shown in Figure 4.20 and 

Figure 4.21. The following observations were made: 

• For all four blended binders, the |G*| increased exponentially with increasing RAP binder 

content, but the  decreased linearly with increasing RAP binder content at intermediate in-

service temperatures. The R2 values of both |G*| and  regression analyses were over 0.92.  

• At low in-service temperatures, the creep stiffness of the blended binders increased 

exponentially with increasing RAP binder content, but the m-value of the blended binders 

decreased linearly with increasing RAP binder content. The regression analysis results 

indicated that the fitting of creep stiffness was better than the m-value based on their R2 

values.  

• Overall, the binder stiffness (both complex shear modulus and creep stiffness) increased 

exponentially with the increase of RAP binder content at high, intermediate, and low in-

service temperatures regardless of the aging condition. The phase angle and m-value 

decreased linearly with the increase of RAP binder content. Also, the R2 values were higher 

for the unaged and RTFO-aged binder test results compared to the PAV-aged binder test 

results.  
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Figure 4.18 Complex shear modulus of the PAV-aged PG 64-16 virgin and blended binders at 28°C and the 

PAV-aged PG 58-28 virgin and blended binders at 19°C. 

 

 

Figure 4.19 Phase angle of the PAV-aged PG 64-16 virgin and blended binders at 28°C and the PAV-aged 

PG 58-28 virgin and blended binders at 19°C. 

 

y = 4582.8e0.0327x

R² = 0.9904
y = 4505.6e0.0295x

R² = 0.9999

y = 4119.9e0.046x

R² = 0.9915
y = 4108.6e0.0414x

R² = 0.9871

1E+3

1E+4

1E+5

1E+6

0 20 40 60 80 100

C
o

m
p

le
x 

Sh
e

ar
 M

o
d

u
lu

s 
(k

P
a)

RAP Binder Content (%)

PG 64-16 with RAP-1 PG 64-16 with RAP-2 PG 58-28 with RAP-1 PG 58-28 with RAP-2

y = -0.3494x + 52.338
R² = 0.9936

y = -0.1821x + 52.695
R² = 0.9668

y = -0.3687x + 48.816
R² = 0.9846

y = -0.2187x + 48.916
R² = 0.9226

0

15

30

45

60

75

90

0 20 40 60 80 100

P
h

as
e

 A
n

gl
e

 (
D

e
gr

e
e

)

RAP Binder Content (%)

PG 64-16 with RAP-1 PG 64-16 with RAP-2 PG 58-28 with RAP-1 PG 58-28 with RAP-2



 

  74 

 

Figure 4.20 Creep stiffness of the PAV-aged PG 64-16 virgin and blended binders at -6°C and the PAV-aged 

PG 58-28 virgin and blended binders at -18°C. 

 

 

Figure 4.21 m-value of the PAV aged PG 64-16 virgin and blended binders at -6°C and the PAV aged PG 

58-28 virgin and blended binders at -18°C. 
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Frequency sweep tests were conducted to evaluate the changes in binder rheological properties by 

adding RAP binder into the virgin binder. Master curves of the virgin binders and blended binders 

were constructed with the frequency sweep test results and the high-temperature performance 

grading (with RTFO samples) results. The fitting parameters of the master curves are shown in 

Table A.5 in Appendix A. The inclusion of the high-temperature performance grading results 

improved the master curve fitting at low frequencies (or high temperatures). The master curves of 

the PG 64-16 binder and PG 64-16 blended binders are shown in Figure 4.22, and the master curves 

of the PG 58-28 binder and PG 58-28 blended binders are shown in Figure 4.23. The master curves 

of the blended binders were normalized to their corresponding virgin binder master curve over a 

range of reduced frequencies at the reference temperature (20°C).  This simplified comparison of 

the changes in modulus when RAP binders are blended with virgin binders. The normalized master 

curves of the PG 64-16 blended binders and the PG 58-28 blended binders are shown in Figure 

4.24 and Figure 4.25, respectively. The following observations were made: 

• The incorporation of 25 percent RAP binder increased the complex shear modulus of the 

virgin binder by up to 10 times, depending on the RAP binder source, virgin binder grade, 

and testing frequency. The effects of RAP binder on the virgin binder modulus were more 

significant at low frequencies (high temperatures) than at high frequencies (low 

temperatures). 

• The RAP-1 binder had a stronger influence on the virgin binder modulus at low frequencies 

but had a weaker influence at high frequencies compared to the RAP-2 binder. The test 

results indicated that the RAP-2 binder was more temperature susceptible than the RAP-1 

binder. 

• The effects of RAP-1 and RAP-2 binder on virgin binder modulus were relatively similar 

at high frequencies compared to low frequencies.  
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• The effects, in terms of increasing virgin binder modulus, of adding either RAP-1 or RAP-2 

binder to the PG 58-28 binder at 25 percent RAP binder replacement were much stronger 

than adding them to the PG 64-16 binder. These results were as expected considering the 

differences in performance grading temperatures between the RAP binders and the PG 58-

28 binder were bigger than the PG 64-16 binder; however, these effects were less noticeable 

with only 15 percent RAP binder replacement. The increase in binder modulus was not 

proportional to the amount of RAP binder added. These findings indicate the importance of 

evaluating the blended binder for high RAP content mixes.  

• Generally, the incorporation of RAP binder into virgin binder increased the complex shear 

modulus of virgin binder over the range of testing reduced frequencies (10-5 to 105 Hz). 

Higher RAP binder content led to a greater increase in virgin binder modulus. 

 

 

Figure 4.22 Master curves of the PG 64-16 virgin and blended binders at 20°C. 
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Figure 4.23 Master curves of the PG 58-28 virgin and blended binders at 20°C. 

 

 

Figure 4.24 Normalized master curves of the PG 64-16 virgin and blended binders at 20°C. 
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Figure 4.25 Normalized master curves of the PG 58-28 virgin and blended binders at 20°C. 
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• The maximum and minimum difference between the predicted and measured true 

performance grading temperatures were 2.9°C and -1.6°C, respectively. The average 

difference between the predicted and measured true performance grading temperature was 

0.7°C.  The predicted true performance grading temperature from the binder blending charts 

was more accurate at high and intermediate temperatures than at low temperatures.  

• The linear trend line of the predicted and measured true performance grading temperature 

was close to overlapping the line of equity, which indicated that this method was reasonably 

accurate in predicting the blended binder true performance grading temperatures. 

• Overall, the blending chart method can effectively predict true performance grading 

temperatures of fully blended binders. 

 

Table 4.7 Predicted True Performance Grading Temperatures of the PG 64-16 Blended Binders with the 

Binder Blending Chart Method 

Binder PG 64-16 with 15% RAP-1 PG 64-16 with 25% RAP-1 

Critical  

Temperature 

(°C) 

Test Parameter Measured Predicted Difference Measured Predicted Difference 

High |G*|/sin() 73.2 73.2 0.0 77.3 77.5 0.2 

Intermediate |G*|sin() 29.0 29.1 0.1 30.9 31.4 0.5 

Low 
Creep Stiffness -21.2 -20.2 1.0 -20.1 -18.7 1.4 

m-value -21.0 -19.3 1.7 -20.2 -17.3 2.9 

Binder PG 64-16 with 15% RAP-2 PG 64-16 with 25% RAP-2 

Critical  

Temperature 

(°C) 

Test Parameter Measured Predicted Difference Measured Predicted Difference 

High |G*|/sin() 70.2 71.3 1.1 73.7 74.2 0.5 

Intermediate |G*|sin() 28.6 28.3 -0.3 30.6 30.1 -0.5 

Low 
Creep Stiffness -20.5 -20.3 0.2 -19.0 -18.9 0.1 

m-value -21.0 -20.2 0.8 -18.3 -18.8 -0.5 
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Table 4.8 Predicted True Performance Grading temperatures of the PG 58-28 Blended Binders with the 

Binder Blending Chart Method 

Binder PG 58-28 with 15% RAP-1 PG 58-28 with 25% RAP-1 

Critical 

Temperature 

(°C) 

Test Parameter Measured Predicted Difference Measured Predicted Difference 

High |G*|/sin() 66.3 68.2 1.9 72.7 73.1 0.3 

Intermediate |G*|sin() 19.6 20.6 0.9 23.9 23.9 0.0 

Low 
Creep Stiffness -29.3 -27.5 1.8 -27 -25.1 1.9 

m-value -29.9 -27.5 2.4 -25.2 -24.5 0.7 

Binder PG 58-28 with 15% RAP-2 PG 58-28 with 25% RAP-2 

Critical 

Temperature 

(°C) 

Test Parameter Measured Predicted Difference Measured Predicted Difference 

High |G*|/sin() 65.4 66.2 0.8 69.7 69.7 0.0 

Intermediate |G*|sin() 19.3 19.8 0.5 23.1 22.5 -0.6 

Low 
Creep Stiffness -28.8 -27.6 1.2 -25.9 -25.3 0.6 

m-value -29.7 -28.4 1.3 -24.4 -26.0 -1.6 

 

  

Figure 4.26 Predicted true performance grading temperatures from the binder blending chart method versus 

the measured true performance grading temperatures of blended binders. 
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The recommended RAP content limit of new asphalt mixes without adjusting the specified virgin 

binder performance grade were determined with the following five criteria: 

1. Maximum requirement on high performance grade with RTFO-aged binder samples. 

2. Minimum requirement on high performance grade with RTFO-aged binder samples.  

3. Maximum requirement on intermediate performance grade. 

4. Maximum requirement on low performance grade based on creep stiffness. 

5. Maximum requirement on low performance grade based on m-value.  

Note that the maximum requirement on high performance grade might not be necessary given that 

high asphalt stiffness at high in-service temperatures is desirable to resist rutting. Also, depending 

on the use of the asphalt mixes in pavement structures, the intermediate temperature requirement 

should be modified accordingly. The maximum requirement on intermediate temperature is 

appropriate for thin overlay applications but is not appropriate for thick overlay applications. Table 

4.9 shows the recommended RAP content limits for asphalt mixes with both the PG 64-16 and PG 

58-28 binders based on above five criteria. For example, only up to 5 percent RAP-1 could be used 

in new asphalt mixes containing PG 64-16 binder without adjusting their virgin binder grade. The 

following observations were made about the consideration of binder selection guidelines in 

AASHTO M 3232 for mixes containing RAP: 

                                                 
2 Based on the binder selection guidelines in AASHTO M 323 for mixes containing RAP, there is no need to adjust the 

virgin binder grade for mixes containing less than 15 percent RAP, and one grade softer binder is selected for mixes 

containing between 15 and 25 percent RAP. For mixes containing more than 25 percent RAP, the recommendations 

for using binder blending charts to determine virgin binder grade selection must be followed. 
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• The test results indicated that the recommended RAP content limits in new asphalt mixes 

were dominated by the high PG temperature requirement regardless of the virgin binder 

grade or RAP source. However, the maximum high performance grade requirement is not 

the main concern of using RAP in new HMA. The high performance grade requirement is 

meant to reduce the risk of rutting.  

• The recommended RAP content limits for low performance grade were the highest, but the 

effects of incorporating RAP into new HMA are most critical for the low-temperature 

properties of the HMA.  

• The blending chart results recommended selecting one grade softer binder for mixes with 

less than 15 percent RAP content, which is not consistent with the binder selection 

guidelines. For the mixes containing 15 to 25 percent RAP, selecting one grade softer binder 

than the specified binder performance grade will satisfy the intermediate and low 

performance grading temperature requirements.  

 

Table 4.9 Recommended RAP Content Limits of Asphalt Mixes without Adjusting the Virgin Binder Grade 

Project 

Specified 

Binder 

Performance 

Grade 

RAP 

Source 

Recommended RAP Content Limits by Binder Replacement (%) 

High Performance Grade 
Intermediate 

Performance Grade 

Low Performance Grade 

Minimum Maximum Creep Stiffness m-value 

PG 58-28 
RAP-1 0 4 10 13 13 

RAP-2 0 6 12 13 17 

PG 64-16 
RAP-1 0 5 10 42 32 

RAP-2 0 7 13 45 45 

 

4.3.2 Alternative Fine Aggregate Matrix Mix Approach Results 

 Determination of Predictive Model Fitting Parameters 

Using the approach described above, the model fitting parameters for both the Hirsch model and 

Al-Khateeb model were obtained as shown in Table 4.10. A set of model fitting parameters were 
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obtained for each of the virgin binders. These parameters were used to predict the moduli of the 

virgin mixes using the measured moduli of the virgin binders. In the same way, the moduli of the 

RAP mixes were predicted using the measured moduli of the virgin binder/RAP binder blends. The 

predicted moduli for the virgin binders and virgin/RAP binder blends were compared with the 

measured moduli.  

The predicted and measured mixture moduli for both the virgin and RAP mixes are shown in Figure 

4.27 and Figure 4.28, respectively. The following observations were made: 

• Using mix-specific fitting parameters, both predictive models accurately predicted the 

FAM mix moduli using the virgin binder moduli. For both models, the average percent 

difference between the predicted modulus and the measured modulus was between -5 and 

+5 percent. 

• The linear trend lines of the predicted modulus versus measured modulus of the control 

FAM mixes showed good correlations between these moduli (with R2 values all greater 

than 0.99). The values of the slope of the linear trend lines were between 0.9 and 1.0 

indicating that the predicted modulus was slightly smaller than the measured modulus.  

• The linear trend lines of the FAM mixes containing RAP showed good correlations between 

the model-predicted modulus and measured modulus (with R2 values all greater than 0.97). 

However, the values of the slope of the linear trend lines were about 0.8, which indicated 

that the model-predicted modulus was smaller than the measured modulus by around 15 to 

25%, especially when the complex shear modulus was less than 100 MPa. This was 

consistent with test results of full graded asphalt mixes reported in the literature (Bennert 

and Dongré, 2010). 
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• It was interesting to note that the predicted modulus values were consistently lower than 

the measured modulus values for the FAM mixes containing RAP. The predicted modulus 

was obtained using the measured binder modulus assuming full blending, so it was expected 

to be higher. During actual mixing, only a portion of the RAP binder is mobilized, so the 

overall modulus of the virgin/RAP binder should be lower than what would be obtained 

from testing fully blended virgin and RAP binders. Other studies ( Belagutti and Sholar, 

2010; Copeland et al., 2010; Foxlow et al., 2011) have also reported the similar results. 

However, no clear explanation as to the actual cause of this was provided. Based on the 

results of the current study, some factors, listed below, may have contributed to this finding: 

(1) The predictive models are not sensitive enough to changes in the mix volumetric 

properties, even though both models account for the volumetrics of the mix in their 

formulation. For example, the change in the measured modulus noted when changing 

the binder content by 0.5 percent does not appear to be truly reflected by the predicted 

modulus.  

(2) The actual degree of blending between the RAP and virgin binder is unknown, so the 

true effective binder content cannot be determined. As a result, the input VMA and 

VFA do not truly reflect the actual mix volumetric properties, and the predicted 

modulus was slightly underestimated.  

(3) The model fitting parameters change considerably based on the binder modulus, and 

these parameters have a substantial impact on the predicted mix modulus especially at 

high temperatures (or low frequencies). 
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Table 4.10 Predictive Model Fitting Parameters 

Binder PG 

Model Fitting Parameters 

Al-Khateeb Hirsch 

A1 A2 A3 A4 A5 P0 P1 P2 Ea 

PG64-16 27 0.0016 0.60 500 1e-6 0.010 0.60 154 35000 

PG58-28 29 0.0021 0.57 500 1e-6 0.008 0.57 163 35000 

 

  

Figure 4.27 Predicted FAM mix moduli versus measured FAM mix moduli for the control FAM mixes with 

both the Al-Khateeb and Hirsch models. 
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Figure 4.28 Predicted FAM mix moduli versus measured FAM mix moduli for the FAM mixes containing 

RAP with both the Al-Khateeb and Hirsch models. 
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• By applying the refined model fitting parameters, the predicted FAM mix moduli of the 

control mixes showed very good correlation to the measured FAM mix moduli with R2 

values higher than 0.99. The regression constants of the linear trend lines increased 

marginally to just over 1.0 indicating good prediction accuracy. The average percent 

difference between the predicted modulus and measured modulus was between -5 and +5 

percent, and the absolute average percent difference was less than 5 percent for both 

models.  

• By applying the refined model fitting parameters, the regression constants of the linear trend 

lines for mixes containing RAP for both models increased compared to the results with mix 

moduli less than 100 MPa. Improvement of the model prediction accuracy was shown with 

the refined model fitting parameters despite the predicted modulus being10 to 20 percent 

lower than the measured modulus. 

• Both the Al-Khateeb and Hirsch models can be used to estimate the FAM mix modulus 

within an acceptable range; however, the Al-Khateeb model gives more accurate results 

when predicting the modulus of FAM mixes containing RAP than the Hirsch model, for the 

materials used in this study. 

Table 4.11 Refined Predictive Model Fitting Parameters 

Binder PG  

Model Fitting Parameters 

Al-Khateeb Hirsch 

A1 A2 A3 A4 A5 P0 P1 P2 Ea 

PG64-16 30 0.0011 0.62 500 1e-6 0.009 0.64 178 35000 

PG58-28 30 0.0014 0.59 500 1e-6 0.009 0.59 175 35000 
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Figure 4.29 Refined predicted FAM mix moduli versus measured FAM mix moduli for the control mixes with 

both the Al-Khateeb model and Hirsch model. 

 

  

Figure 4.30 Refined predicted FAM mix moduli versus measured FAM mix moduli for mixes containing RAP 

with both the Al-Khateeb model and Hirsch model. 
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 Determination of Blended Binder Performance Grade 

The fitting parameters shown in Table 4.11 were used to backcalculate the moduli of the binder 

within the FAM mixes containing RAP. These moduli correspond to a reference temperature of 

20°C. Using the time-temperature superposition principle, the moduli at a frequency of 10 rad/s 

and temperatures of 28°C and 31°C were determined for mixes containing the PG 64-16 binder.  

The moduli at 10 rad/s and temperatures of 19°C and 22°C were determined for the mixes 

containing the PG 58-28 binder. The corresponding phase angles were calculated with Equation 

4.7. The intermediate performance grading temperatures were then estimated using the moduli and 

phase angles at the selected temperatures.  

To determine the true low performance grading temperatures, the complex shear moduli values at 

the reference temperature of 20°C were first converted into creep moduli using Equation 4.6. Time-

temperature superposition was then used to determine the moduli at -6°C and -12°C for the RAP 

mixes containing the PG 64-16 binder, and at -18°C and -24°C for the RAP mixes containing the 

PG 58-28 binder. The phase angles were then calculated using Equation 4.7, and the low 

performance grading temperature is estimated.  

Since the FAM mix specimens were only short-term aged, an aging shift factor was applied to the 

backcalculated blended binder moduli to simulate the effects of PAV aging. Based on the approach 

mentioned previously, the aging shift factors were determined to be 2.0 for mixes with PG 64-16 

binder and 1.5 for the PG 58-28 binder at intermediate performance grading temperatures. The 

aging shift factors were determined to be 1.0 for both mixes with PG 64-16 binder and PG 58-28 

binder at low performance grading temperatures.  

Table 4.12 and Table 4.13 show the test results of the FAM mix testing approach. Figure 4.31 

shows the comparison between the binder blending charts approach and the FAM mix testing 
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approach. Table 4.14 shows the statistics of the differences between the measured and predicted 

performance grading temperatures. The following observations were made based on these results: 

• The FAM mix testing approach with either the Al-Khateeb model or the Hirsch model can 

be used to estimate the intermediate and low performance grading temperatures of the 

mixes with a tolerable difference (≈ 3°C). 

• All approaches showed good correlations between the measured and predicted performance 

grading temperatures with R2 values all higher than 0.99. All the values of the slope of the 

linear trendlines are very close to 1.0 indicating good prediction accuracy. The variation of 

the Hirsch model predictions was slightly smaller than those of the Al-Khateeb model, but 

the variation of the FAM mix testing approach was greater than the binder blending charts 

approach. 

• Both the FAM mix testing and blending chart approaches showed better prediction 

accuracy for the mixes with the PG 64-16 binder compared to those with the PG 58-28 

binder. This could indicate that better prediction was obtained when the difference in 

stiffness between the virgin and RAP binders is smaller. 
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Table 4.12 Predicted True Performance Grading Temperatures of the Mixes with PG 64-16 Binder with the 

FAM Mix Testing Approach 

Predictive 

Model 

Binder PG 64-16 with 15% RAP-1 PG 64-16 with 25% RAP-1 

Critical 

Temperature 

(°C) 

Test 

Parameter 
Measured Predicted Diff. Measured Predicted Diff. 

Al-

Khateeb 

Intermediate |G*|sin() 29.0 27.5 -1.5 30.9 31.5 0.6 

Low 
Creep 

Stiffness 
-21.2 -20.7 0.5 -20.1 -19.7 0.4 

Hirsch 

Intermediate |G*|sin() 29.0 28.2 -0.8 30.9 32.0 1.1 

Low 
Creep 

Stiffness 
-21.2 -20.2 1.0 -20.1 -19.4 0.7 

Predictive 

Model 

Binder PG64-16 with 15% RAP-2 PG64-16 with 25% RAP-2 

Critical 

Temperature 

(°C) 

Test 

Parameter 
Measured Predicted Diff. Measured Predicted Diff. 

Al-

Khateeb 

Intermediate |G*|sin() 28.6 27.3 -1.3 30.6 32.0 1.4 

Low 
Creep 

Stiffness 
-20.5 -22.5 -2.0 -19.0 -20.4 -1.4 

Hirsch 

Intermediate |G*|sin() 28.6 30.0 1.4 30.6 33.5 2.9 

Low 
Creep 

Stiffness 
-20.5 -20.1 0.4 -19.0 -19.0 0.0 

 

 

Table 4.13 Predicted True Performance Grading Temperatures of the Mixes with PG 58-28 Binder with the 

FAM Mix Testing Approach 

Predictive 

Model 

Binder PG 58-28 with 15% RAP-1 PG 58-28 with 25% RAP-1 

Critical 

Temperature 

(°C) 

Test 

Parameter 
Measured Predicted Diff. Measured Predicted Diff. 

Al-

Khateeb 

Intermediate |G*|sin() 19.6 21.3 1.7 23.9 25.7 1.8 

Low 
Creep 

Stiffness 
-29.3 -29.1 0.2 -27 -26.7 0.3 

Hirsch 

Intermediate |G*|sin() 19.6 21.1 1.5 23.9 26.1 2.2 

Low 
Creep 

Stiffness 
-29.3 -29.2 0.1 -27 -26.8 0.2 

Predictive 

Model 

Binder PG 58-28 with 15% RAP-2 PG 58-28 with 25% RAP-2 

Critical 

Temperature 

(°C) 

Test 

Parameter 
Measured Predicted Diff. Measured Predicted Diff. 

Al-

Khateeb 

Intermediate |G*|sin() 19.3 20.9 1.6 23.1 23.9 0.8 

Low 
Creep 

Stiffness 
-28.8 -29.7 -0.9 -25.9 -29.2 -3.3 

Hirsch 

Intermediate |G*|sin() 19.3 21.4 2.1 23.1 24.4 1.3 

Low 
Creep 

Stiffness 
-28.8 -29.0 -0.2 -25.9 -28.2 -2.3 

 



 

  92 

  

Figure 4.31 Predicted true low and intermediate performance grading temperatures using the binder blending 

charts approach and FAM mix testing approach versus measured true performance grading temperatures 

with the blended binders. 

 

Table 4.14 Statistics of the Difference between the Measured and Predicted Low and Intermediate 

performance grading Temperatures (°C) 

Approach 

Mix 

Binder 

Performance 

Grade 

Blending 

Charts 

FAM Mix Testing  

Al-Khateeb Hirsch 

Range  

PG 64-16 -0.5 to 1.4 -2.0 to 1.4 -0.8 to 2.9 

PG 58-28 -0.6 to 1.9 -3.3 to 1.8 -2.3 to 2.2 

Combined -0.6 to 1.9 -3.3 to 1.8 -2.3 to 2.9 

Average 

PG 64-16 0.3 -0.4 0.8 

PG 58-28 0.8 0.3 0.6 

Combined 0.6 -0.1 0.7 

Standard Deviation 

PG 64-16 0.6 1.3 1.1 

PG 58-28 0.9 1.7 1.5 

Combined 0.8 1.5 1.3 

 

4.4 Conclusions and Recommendations 

This study evaluated the current binder selection guidelines for asphalt mixes containing RAP in 

AASHTO M 323 and developed an alternative test method for binder blending charts with FAM 

mix testing. The following conclusions were drawn to address the proposed questions: 
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Question: How can the effects of RAP on virgin binder performance grading properties be 

characterized without extracting and recovering RAP binder from a mix?  

• The FAM mix testing approach with asphalt predictive models can be used to estimate the 

intermediate and low performance grading temperatures of the blended binder within the 

asphalt mixes containing RAP with an acceptable accuracy compared to the blending chart 

approach. The predicted intermediate and low performance grading temperatures are 

slightly conservative compared to the measured performance grading temperatures with the 

RAP/virgin binder blend.  

• The variability of the predicted blended binder performance grading temperatures with the 

FAM mix testing approach is about 1.0°C greater than with the binder blending chart 

approach. This result is expected considering that the temperature measurement precision 

of asphalt binder testing is considerably higher than asphalt mix testing.  

• The degree of blending cannot be determined by the FAM mix testing approach due to the 

limitations of the predictive models.  

Additional conclusions were made based on the results presented in this chapter: 

• The recommended RAP content limits in new asphalt mixes based on the binder blending 

chart results were dominated by the high performance grading temperature criterion instead 

of the more critical low or intermediate performance grading temperature criteria. Given 

that the maximum high performance grading temperature criterion is not a concern of using 

RAP in new HMA, it should be eliminated. 

• Virgin binder grade bumping might be needed for mixes containing less than 15 percent 

RAP by binder replacement based on the binder blending chart result, which is not 
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consistent with the guidelines in AASHTO M 323. For mixes containing 15 to 25 percent 

RAP by binder replacement, selecting one grade softer binder is sufficient to reduce the 

mix stiffness to an appropriate level, and this result is consistent with the guidelines in 

ASHTO M 323. 

• The effects of adding RAP to the mix, in terms of increasing mix stiffness, are not 

necessarily equivalent to the effects of adding extracted and recovered RAP binder to the 

binder because full blending is not always achieved in the mix. This issue could be 

addressed by adjusting the blending time-temperature path based on the study conducted 

by He et al. (2016), but further investigation is required. Besides, adding more virgin binder 

to the mix could ensure that the mix will achieve the desired binder content, but it comes 

with the risk of rutting when too much binder is added.  

• Since the alternative test approach is translating mix stiffness to binder stiffness, a 

specification directly based on the mix stiffness should also be considered as part of the 

quality control criteria. 
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5 INVESTIGATION OF ASPHALT RUBBER BINDER TESTING WITH 

MODIFIED DYNAMIC SHEAR RHEOMETER EQUIPMENT 

This chapter describes the investigation of the modified dynamic shear rheometer (DSR) equipment 

using the concentric cylinder (CC) geometry as an alternative to conventional parallel plate (PP) 

geometry. The goal of this chapter is to answer the following question: 

1. What is the feasibility of using concentric cylinder geometry instead of parallel plate 

geometry in a DSR to measure the rheological properties of an asphalt rubber binder given 

the limitations of current Superpave PG binder test methods for asphalt binder with particles 

larger than 250 microns? 

To achieve this research goal, the investigation in this chapter included two phases. Phase one was 

to determine whether equivalent results could be obtained from both the concentric cylinder and 

parallel plate geometries with selected performance graded conventional, polymer-modified, and 

tire rubber-modified asphalt binders. 

Asphalt rubber binders are produced using larger crumb rubber particles (maximum particle size 

passing 2.36mm sieve [mesh #8]) 

Phase two was to evaluate the measurements (performance properties) of asphalt rubber binders 

produced using larger crumb rubber particles (maximum particle size passing 2.36 mm sieve) with 

both geometries, and whether these two configurations showed similar sensitivities to these 

variables. Three different particle size ranges were assessed, focusing on crumb rubber particles 

both smaller and larger than 250 μm (i.e., retained on the #60 sieve), which was identified as the 

critical size influencing the test results of the parallel plate geometry with 2 mm gap in AASHTO 

T 315.  
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5.1 Concentric Cylinder Geometry Evaluation  

The use of concentric cylinder geometry to evaluate asphalt rubber binder was first proposed by 

Baumgardner and D'Angelo (2012). However, only limited tests were performed in their study and 

no standard test procedures were established. Before the testing for asphalt rubber binders could 

be undertaken, the development of temperature and conversion factor calibrations were required to 

ensure that the test results were well correlated between the two geometries (CC and PP). 

5.1.1  Temperature Calibration and Thermal Equilibrium 

The performance of asphalt binder is very sensitive to its testing temperature. Accurate temperature 

control of each binder measuring system is critical for testing, and each system must be calibrated 

appropriately to ensure that temperature control is correct. 

Since the concentric cylinder and parallel plate geometries are different, each one requires a 

different temperature calibration process. Both systems are typically calibrated at three testing 

temperatures (40°C, 65°C, and 90°C) to ensure accuracy. In the concentric cylinder configuration, 

measurements are taken at the top of the outer cylinder, at the middle of the outer cylinder close to 

the inner cylinder, and at the bottom of the outer cylinder, to check the vertical temperature 

gradient. This temperature gradient should not differ by more than 0.1°C from top to bottom, a 

value comparable to the requirements of the parallel plate testing system. 

The concentric cylinder requires significantly more binder to perform a test than the parallel plate 

system does. As a result, testing with the concentric cylinder takes longer to reach temperature 

equilibrium than the parallel plate.  

5.1.2 Calibration of the Conversion Factor (Css) 

A conversion factor is used to convert the torque applied from the rheometer to the shear stress of 

the tested sample. A  series of laboratory tests were conducted in this part of the study to compare 
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the results obtained from the concentric cylinder and parallel plate testing geometries. The effects 

of different operators, different binder types (conventional, polymer-modified, or tire rubber-

modified), binder source, and aging condition (unaged, rolling thin film oven [RTFO], and in 

certain instances, thin film oven [TFO]-aged) on complex modulus and phase angle were all 

investigated.  

When using narrow gap (less than 2 mm) concentric cylinders, the change in shear stresses and 

shear rates between the inner and outer cylinders is very small (assumed linear) and thus, the 

representative shear stress and shear rate are the average shear stress and shear rate between the 

inner and outer cylinders. The small-gap concentric cylinder is classified as an “absolute” 

measuring system. However, the presence of relatively large rubber particles (up to 2 mm) in the 

asphalt rubber binder requires a correspondingly sized gap in the concentric cylinder geometry, 

just as the plate gap must be increased in the parallel plate system. Therefore, a modified concentric 

cylinder geometry (smaller inner cylinder) with a gap around 6 mm between the inner and outer 

cylinders was selected for evaluating the asphalt rubber binder in this study. With a parallel plate 

geometry with 2 mm gap, the ratio of particle size to least dimension in the test is about one, but 

with concentric cylinder geometry, the ratio is about three.  

On the other hand, when using larger-gap concentric cylinders, the shear stress and shear rate 

between the two cylinders is no linear, so the assumption of using the average shear stress and 

shear rate between the inner and outer cylinders is no longer appropriate.  The large gap concentric 

cylinder system can be calibrated by applying a conversion factor to relate its test results to the 

parallel plate geometry. The conversion factor for the large gap concentric cylinder can be 

calculated using Equation 5.1 (Anton Paar, personal communication), which provides comparable 

results between the concentric cylinder and parallel plate geometries in terms of complex shear 
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modulus (G*) and phase angle (δ). Calibration is required for each fluid with different complex 

viscosity or torque values. Therefore, the large gap concentric cylinder is a “relative” measuring 

system, and the conversion factor can be determined based on the complex viscosity, angular 

frequency, strain, and torque of each unaged or RTFO-aged asphalt binder (binder specific 

conversion factor), or with a certified standard fluid (fixed conversion factor). 

𝐶𝑠𝑠 =
𝜂[𝜔(𝛾/100)]

𝑇
 

Equation 5.1 

where, 

Css = conversion factor 

η = complex viscosity from parallel plate (PaS)  

ω = angular frequency (rad/s) 

ϒ = strain (%) 

T= torque from concentric cylinder (mNm) 

 

Testing with both binder specific conversion factors and a fixed conversion factor with the 

concentric cylinder geometry was performed to investigate the effects of different conversion 

factors and the possibility of using the concentric cylinder geometry as an alternative to the parallel 

plate geometry for asphalt rubber binder testing. All tests in Section 5.1 were performed using the 

6 mm gap concentric cylinder and the 1 mm parallel plate configurations.  

5.1.3 Testing Experiment to Determine Binder Specific Concentric Cylinder Conversion Factors 

Conventional and modified binders were tested with a DSR to investigate the effects of varying 

conversion factors on the measurements from the concentric cylinder geometry. In this phase, the 

experiment was separated into the following three tasks:  
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Task 1: Testing of three conventional PG 64-16 binders by three different operators with 

three replicates. Binders were obtained from three California-based oil refineries, namely 

refinery 1, 2, and 3.  

Task 2: Testing of one PG 64-28 PM polymer modified binder and one PG 64-28 TR tire 

rubber modified binder by three different operators and with three replicates.  

Task 3: Testing of two conventional PG 64-16 binders, one PG 64-28 PM polymer 

modified binder and one PG 64-28 TR tire rubber modified binder, all subjected to RTFO 

aging, by three different operators. No replicates were tested in this task. The conventional 

binders were sourced from Refinery 2 and Refinery 3.  

It should be noted that TR modified binders have much smaller rubber particles (maximum 

size of 300 μm [#50]) than asphalt rubber binders and due to their more complete digestion 

are not susceptible to the problems with RTFO aging discussed in the literature review; this 

permits direct comparison using the two DSR configurations. 

5.1.4 Testing Experiment Design with Fixed Conversion Factor 

Testing of a standard fluid with viscosity similar to an asphalt binder was identified as the most 

appropriate method for determining a representative fixed conversion factor to use for comparing 

the results obtained from the two testing geometries. Cannon certified viscosity reference standard 

S600 was selected to obtain this conversion factor (Anton Paar, personal communication). Based 

on the test results, a fixed conversion factor value of 72 was selected for the testing described in 

this study.  

Three conventional binders (PG 58-22, PG 64-16, and PG 70-10) were assessed to investigate the 

effects of this fixed conversion factor. Both unaged and short-term oven aged binders were tested. 
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Short-term aging was performed using both the RTFO and TFO in an attempt to address the issues 

with regard to aging rubberized binders. Only one operator conducted the experiments (with three 

replicates), given that the results obtained by the three different operators in Tasks 1 through 3 

were not significantly different.  

5.1.5 Test Results 

 Testing with Binder Specific Concentric Cylinder Conversion Factors 

Table 5.1 presents the conversion factors determined for the asphalt binders evaluated in Tasks 1 

through 3. The conversion factors were calculated from Equation 5.1 using complex viscosity 

measurements at 64°C tested with both parallel plate (1 mm gap) and concentric cylinder 

geometries. The conversion factors were found to be different for the various evaluated asphalt 

binders and changed considerably with short-term aging by RTFO in some cases (e.g., PG 64-16 

from refinery 3). The DSR test results are listed in Table B.1 through Table B.3 in Appendix B and 

summarized in the following sections.  

Table 5.1  Binder Specific CC Conversion Factors for the Evaluated Asphalt Binders 

Asphalt Binder Conversion Factor 

Source Grade Original RTFO aged 

Refinery 1 PG 64-16 70 64 

Refinery 2 PG 64-16 67 81 

Refinery 3 PG 64-16 71 50 

Refinery 1 PG 64-28 PM 80 78 

Refinery 1 PG 64-28 TR 91 81 

 

Task 1:  Conventional Binders 

The boxplots of complex shear modulus (G*), phase angle (δ), and G*/sin(δ) at 64°C for the three 

different conventional binders using the binder specific CC conversion factors  are shown in Figure 

5.1 through Figure 5.3. Based on these results, the complex shear moduli (G*) values appeared to 

be very similar between the two geometries, but with slightly different phase angles (less than 
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0.5°). The differences in G*/sin(δ) between the concentric cylinder and parallel plate geometries 

were therefore also very small. The differences in results for the three operators are shown in 

Figure 5.4. The results obtained by Operator #1 and Operator #2 are very close, but the results 

obtained by Operator #3 were slightly different for both geometries. The points in Figure 5.4 are 

scattered evenly for both concentric cylinder and parallel plate, indicating that the repeatability of 

results when using the concentric cylinder geometry is similar to that when testing with the parallel 

plate system. 

 

Figure 5.1 Conventional binders: G* with binder specific CC conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 
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Figure 5.2  Conventional binders: δ with binder specific CC conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 

 

Figure 5.3  Conventional binders: G*/sin(δ) with binder specific CC conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 
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Figure 5.4  Conventional binders:  G* against δ with binder specific CC conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 

An analysis of variance (ANOVA) was used to investigate the difference in results between the 

two testing geometries. G*/sin(δ) was the dependent variable, and geometry and binder source 

were the independent variables. The binder source was included as a factor to reduce the residual 

mean square and to improve the sensitivity of the tests for differences between two geometries. 

The analysis results are shown in Table 5.2, and indicate that the measurements of G*/sin(δ) 

between concentric cylinder and parallel plate were not significantly different at a 95 percent 

confidence interval. Binder source was statistically significant as expected, but it was not of 

primary interest in this analysis. With binder specific conversion factors, the results obtained when 

using the concentric cylinder geometry were not statistically significantly different from the results 

obtained when using the parallel plate geometry.  
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Table 5.2  Conventional Binders:  ANOVA Results of G*/sin(δ) with Varied Conversion Factor (α=0.05) 

Parameter Df Sum Sq Mean Sq F Value Pr (>F) 

Geometry 

Source 

Residuals 

1 

2 

50 

0.0006 

0.9808 

0.1019 

0.0006 

0.4904 

0.0020 

0.294 

240.582 

- 

0.59 

<2e-16 

- 

 

Task 2:  Modified Binders 

The boxplots of complex shear modulus (G*), phase angle (δ), and G*/sin(δ) at 64°C for testing 

using the binder specific CC conversion factors are shown in Figure 5.5 through Figure 5.7. Lower 

complex shear modulus was measured for the polymer-modified binder using the concentric 

cylinder geometry when compared to the parallel plate system, whereas the opposite trend was 

observed for the complex shear modulus of the tire rubber-modified binder. Higher phase angles 

were also recorded for both modified binders tested with the concentric cylinder geometry when 

compared to the parallel plate system. Trends similar to those recorded for the complex shear 

moduli were also recorded for G*/sin(δ) for both geometries. This was expected, given that 

differences in phase angle have less influence on the values of G*/sin(δ) than do differences in the 

complex shear modulus (G*).  

It is worth noting that the variability of the results for the modified binders was considerably higher 

than the conventional binders tested for both concentric cylinder and parallel plate geometries. 

Also, the test results were quite different between the two geometries, and these results were not 

expected. There should be little to no difference between the test results obtained when using the 

concentric cylinder and parallel plate geometries considering that binder specific conversion 

factors were used. This difference was probably due to the high variability of the results obtained 

with parallel plate geometry that affected the determination of binder specific conversion factors 

and further led to relatively different results for concentric cylinder geometry. Generally, it is 
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harder to perform tests with modified binders than conventional binders using the parallel plate 

geometry on a DSR.  

Results obtained by the three different operators are shown in Figure 5.8. The data points are 

scattered relatively evenly between the operators, with the phase angles measured with the 

concentric cylinder geometry slightly higher than those recorded using the parallel plate geometry.  

 

Figure 5.5  Modified binders:  G* with binder specific CC conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 
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Figure 5.6  Modified binders: δ with binder specific CC conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 

 

Figure 5.7  Modified binders:  G*/sin(δ) with binder specific CC conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 
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Figure 5.8  Modified binders:  G* against δ with binder specific CC conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 

 

The ANOVA results are shown in Table 5.3. G*/sin(δ) was the dependent variable, and geometry 

and binder source were the independent variables. The inclusion of binder source as a factor was 

to reduce the residual mean square and to improve the sensitivity of the tests for differences 

between two geometries. The ANOVA results indicate that the measurements of G*/sin(δ) using 

the concentric cylinder and parallel plate geometries were not significantly different at a 95 percent 

confidence interval. Binder source was statistically significant as expected, but it was not of 

primary interest in this analysis. When using binder specific conversion factors, the results obtained 

using the concentric cylinder geometry were not statistically significantly different than those 

obtained when using the parallel plate system.  
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Table 5.3  Modified Binders: ANOVA Results of G*/sin(δ) with Varied Conversion Factor (α=0.05) 

Parameter Df Sum Sq Mean Sq F Value Pr (>F) 

Geometry 

Source 

Residuals 

1 

1 

33 

0.106 

5.282 

4.643 

0.106 

5.282 

0.141 

0.751 

37.542 

- 

0.393 

6.6e-07 

- 

 

Task 3:  RTFO-Aged Binders 

The boxplots of complex shear modulus (G*), phase angle (δ), and G*/sin(δ) at 64°C for the RTFO-

aged binders using the aged binder specific CC conversion factors are shown in Figure 5.9 through 

Figure 5.11. The results appeared to be similar for both geometries. Both modified binders had a 

higher complex shear modulus than the conventional binders, as expected, despite their having the 

same high temperature ratings. Both modified binders also had lower phase angles compared to the 

conventional binders, which led to higher G*/sin(δ) values. When the results obtained by the three 

different operators (Figure 5.12) were compared, only one data point from Operator #1 was higher, 

with the rest of the data points similar among the operators. The ANOVA results are shown in  

(CC = concentric cylinder, PP = parallel plate) 

 

Table 5.4. G*/sin(δ) was the dependent variable, and geometry and binder type were the 

independent variables in the analysis. The inclusion of binder type as a factor was to reduce the 

residual mean square and to improve the sensitivity of the tests for differences between two the 

geometries. The statistical analysis indicated that G*/sin(δ) measured with the two geometries was 

not significantly different at a 95 percent confidence interval. Binder type was statistically 

significant as expected, but it was not of primary interest in this analysis. 
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Figure 5.9  RFTO-aged binders:  G* with binder specific CC conversion factor at 64°C.  

(CC = concentric cylinder, PP = parallel plate) 

 

Figure 5.10  RFTO-aged binders:  δ with binder specific CC conversion factor at 64°C.  

(CC = concentric cylinder, PP = parallel plate) 
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Figure 5.11  RFTO-aged binders:  G*/sin(δ) with binder specific CC conversion factor at 64°C.  

(CC = concentric cylinder, PP = parallel plate) 

 

Figure 5.12  RTFO-aged binders:  G* against δ with binder specific conversion factor at 64°C. 

(CC = concentric cylinder, PP = parallel plate) 

 



 

  111 

Table 5.4  RTFO-Aged Binders:  ANOVA Results of G*/sin(δ) with Varied Conversion Factor (α=0.05) 

Parameter Df Sum Sq Mean Sq F Value Pr (>F) 

Geometry 

Binder Type 

Residuals 

1 

2 

20 

0.013 

15.40 

3.924 

0.013 

7.701 

0.196 

0.064 

39.25 

- 

0.802 

1.19e-07 

- 

 

Table 5.5 and Table 5.6 show the average (Avg.) and stand deviation (Std.) of the test results for 

both concentric cylinder and parallel plate geometries with binder specific conversion factors. 

Overall, both geometries had similar variabilities regardless of binder type and aging condition. 

The only exception is the PG 64-16 binder from Refinery 3, and its high variability was probably 

due to operator error.  

Table 5.5 Analysis of the Variability of Complex Shear Modulus with Binder Specific Conversion Factor  

Physical Property 
Complex Shear Modulus (kPa) 

Binder Type 

Aging 

Condition/ 

Geometry 

PG 64-16  #1 PG 64-16  #2 PG 64-16  #3 PG 64-28 PM PG 64-28 TR 

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. 

Unaged 
CC 1.44 0.04 1.11 0.05 1.26 0.03 1.68 0.17 2.71 0.30 

PP 1.44 0.08 1.12 0.03 1.27 0.02 1.89 0.21 2.24 0.41 

RTFO-

aged 

CC N/A N/A 2.72 0.04 2.75 0.28 3.69 0.10 4.02 0.65 

PP N/A N/A 2.34 0.06 2.98 0.08 3.82 0.06 3.84 0.72 

 

Table 5.6 Analysis of the Variability of Phase Angle with Binder Specific Conversion Factor 

Physical Property 
 Phase Angle () 

Binder Type 

Aging 

Condition/ 

Geometry 

PG 64-16  #1 PG 64-16  #2 PG 64-16  #3 PG 64-28 PM PG 64-28 TR 

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. 

Unaged 
CC 87.6 0.05 89.4 0.05 87.5 0.05 69.1 0.98 67.3 0.72 

PP 87.7 0.12 89.5 0.07 87.7 0.07 66.7 1.08 66.0 0.53 

RTFO-

Aged 

CC N/A N/A 88.6 0.05 84.2 0.67 62.5 0.19 64.1 0.09 

PP N/A N/A 88.6 0.00 84.8 0.10 62.3 0.09 63.6 0.19 
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 Testing with Fixed Conversion Factor 

As discussed in Section 5.1.4, a fixed conversion factor of 72, determined by testing a Cannon 

certified viscosity reference standard material (S600) was used in this phase of the test. DSR test 

results using the parallel plate (PP) and the concentric cylinder systems are listed in Table B.4 in 

Appendix B and summarized below.  

Conventional Binders 

Test results for the unaged and short-term aged binders at their  high performance grading 

temperature (i.e., 58°C, 64°C, and 70°C) are shown in Figure 5.13 through Figure 5.15. The 

complex shear moduli and phase angles were similar between the two geometries. RTFO aging 

was found to be more severe than TFO aging on the selected binders. The test results are separated 

by performance grade in Figure 5.16. The measurements obtained from both geometries are close 

for all the tested binders.  

The ANOVA results are shown in Table 5.7. G*/sin(δ) was the dependent variable, and geometry 

and aging condition were the independent variables. The results indicate that testing geometry is 

not a significant factor on G*/sin(δ) since there are no statistically significant differences between 

the results obtained with concentric cylinder or parallel plate geometry at a 95 percent confidence 

interval. The ANOVA results also indicated that aging condition is a significant factor, but they 

did not indicate where the differences occurred between groups. Thus, a Tukey post hoc test was 

conducted to the ANOVA results. Significant differences were found between all three groups, 

which are unaged and RTFO-aged binders, unaged and TFO-aged binders, and RFTO-aged and 

TFO-aged binders, based on the Tukey Honest Significant Difference (HSD) parameter shown in 

Figure 5.17, with RTFO aging being more severe than TFO aging, as expected.  
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Table 5.8 shows the comparison between the G*/sin(δ) obtained with concentric cylinder geometry 

and parallel geometry, and the acceptable range of two test results based on the single-operator 

precision in AASHTO T 315. The results indicated that most of the G*/sin(δ) values obtained with 

concentric cylinder geometry were within the range except the unaged PG 70-10, which was 

0.01 kPa above the acceptable range. This comparison reconfirmed that the difference in measured 

G*/sin(δ) between concentric cylinder geometry and parallel geometry was not significant.  

 

Figure 5.13  Conventional binders, unaged and aged: G* with fixed conversion factor.  

(CC = concentric cylinder, PP = parallel plate) 
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Figure 5.14  Conventional binders, unaged and aged: δ with fixed conversion factor.  

(CC = concentric cylinder, PP = parallel plate) 

 

Figure 5.15  Conventional binders, unaged and aged: G*/sin(δ) with fixed conversion factor.  

(CC = concentric cylinder, PP = parallel plate) 
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Figure 5.16  Conventional binders, unaged and aged: G* against δ with fixed conversion factor.  

(CC = concentric cylinder, PP = parallel plate) 

 

Figure 5.17  Tukey HSD with varied aging condition (95% confidence interval). 
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Table 5.7  Conventional Binders:  ANOVA Results of G*/sin(δ) with Fixed Conversion Factor (α=0.05) 

Parameter Df Sum Sq Mean Sq F Value Pr (>F) 

Geometry 

Aging Condition 

Residuals 

1 

2 

20 

0.033 

17.15 

1.360 

0.033 

8.575 

0.027 

1.223 

315.28 

- 

0.274 

2e-16 

- 

 

Table 5.8 Comparison between the G*/sin (δ) Obtained by CC Geometry and the Acceptable Range of Two 

PP Geometry Test Results According to AASHTO T 315 

Physical Property G*/sin(δ) (kPa) 

Binder Performance Grade PG 58-22 PG 64-16 PG 70-10 

Geometry CC PP CC PP CC PP 

Aging 

Condition 

Unaged 1.31 1.28 1.28 1.21 1.40 1.22 

d2S%1 1.20 - 1.36 1.13 - 1.29 1.14 – 1.30 

RTFO aged 2.85 2.74 2.44 2.31 2.74 2.61 

d2S%1 2.49 – 2.99 2.10 – 2.52 2.37 – 2.84 
1 Acceptable range of two test results based the on single-operator precision in AASHTO T 

315. 

 

Table 5.9 and Table 5.10 show the average and stand deviation of the test results for both concentric 

cylinder and parallel plate geometries with fixed conversion factors. Overall, both geometries had 

similar variabilities regardless of binder grade and aging condition.  

Table 5.9 Analysis of the Variability of Complex Shear Modulus with Fixed Conversion Factor 

Physical 

Property 

Complex Shear Modulus (kPa) 

Binder Type 

Aging 

Condition/ 

Geometry 

PG 58-22 PG 64-16   PG 70-10 

Avg. Std. Avg. Std. Avg. Std. 

Unaged 
CC 1.31 0.02 1.28 0.02 1.40 0.01 

PP 1.28 0.03 1.21 0.01 1.30 0.03 

RTFO-

Aged 

CC 2.84 0.00 2.44 0.02 2.73 0.02 

PP 2.74 0.03 2.31 0.02 2.60 0.02 

TFO-

Aged 

CC 2.31 0.05 2.08 0.08 2.48 0.07 

PP 2.39 0.01 2.06 0.01 2.56 0.03 
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Table 5.10 Analysis of the Variability of Phase Angle with Fixed Conversion Factor 

Physical 

Property 

Phase Angle () 

Binder Type 

Aging 

Condition/ 

Geometry 

PG 58-22 PG 64-16   PG 70-10 

Avg. Std. Avg. Std. Avg. Std. 

Unaged 
CC 88.4 0.00 89.4 0.00 87.2 0.06 

PP 88.4 0.06 89.4 0.00 87.3 0.00 

RTFO-

Aged 

CC 86.4 0.00 88.5 0.00 85.1 0.00 

PP 86.6 0.00 88.6 0.00 85.3 0.00 

TFO-

Aged 

CC 87.0 0.00 88.8 0.06 85.1 0.12 

PP 87.0 0.00 88.8 0.00 85.1 0.00 

 

5.1.6 Testing Summary 

This phase of the study has indicated that the results obtained from testing the same conventional, 

polymer-modified, and tire rubber-modified binders containing crumb rubber particles smaller than 

250 μm (i.e., particles retained on the #60 sieve) with the large gap 6 mm concentric cylinder and 

1 mm parallel plate geometries in a DSR were not statistically different. Also, by comparing the 

concentric cylinder test results with the acceptable range of two parallel plate geometry test results 

(d2S%) with the single-operator precision in AASHTO T315, most of the measured G*/sin(δ) 

values with the concentric cylinder were within the range, except for the PG 70-10 binder. The 

acceptable range of two test results in AASHTO T 315 was determined based on the results from 

eight pairs of AMRL proficiency samples from about 200 laboratories. Thus, the test results 

obtained with concentric cylinder geometry within this range meant that they are within the 

precision criterion of the test results obtained with parallel plate geometry. Also, similar 

variabilities of the test results were observed with both geometries.  

Based on the test results in this phase of the study, the concentric cylinder geometry can be 

considered as a potentially appropriate alternative geometry to parallel plates for quantifying the 
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properties of asphalt rubber binders, and specifically for further comparative tests to assess the 

performance properties of binders containing crumb rubber particles larger than 250 μm.  

5.2 Testing Asphalt Rubber Binders (Large Particles) with Concentric Cylinder Geometry 

5.2.1 Experimental Plan 

An experimental testing plan was developed to assess three different crumb rubber particle size 

ranges in wet-process asphalt rubber binders in which the particles are only partially digested. 

Considering the potential trimming issue for asphalt rubber binder containing crumb rubber 

particles in the size range from 850 μm to 2 mm with parallel plate geometry testing with a 2 mm 

gap, only crumb rubber particle sizes up to 850 μm were selected and tested. In order to have full 

control over the different variables being assessed, all the asphalt rubber binders were produced in 

the laboratory. The variables considered for this testing included the following:  

• Binder source and grade: one PG 64-16 binder from Refinery 1   

• Rubber content: 20 percent (of which 25 percent is natural rubber) by weight of binder   

• Grinding type: ambient and cryogenic   

• Extender oil: none (Type I) and four percent by weight of binder (Type II)   

• Crumb rubber particle size ranges: 180 μm to 250 μm, 250 μm to 425 μm, and 425 μm to 

850 μm  (#40 to #20, #60 to #40, and #80 to #60, respectively)   

• Aging condition: unaged   

The gap used in the concentric cylinder geometry was fixed at 6 mm and was unaltered for the tests 

of the binders with different particle sizes. A fixed conversion factor was used for all testing with 

concentric cylinder geometry. For the parallel plate geometry testing (25 mm diameter plates) the 

following two different gap sizes, which were based on the crumb rubber particle sizes, were used:  

• Particle size larger than 250 μm (< #60 mesh): a 2 mm gap  

• Particle size smaller than 250 μm (> #60 mesh): a 1 mm gap  
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5.2.2 Binder Preparation 

The asphalt rubber binders were produced by blending the individual components in a high shear 

mixer for 60 minutes at a temperature of 190°C (374°F). This ensured that the crumb rubber 

particles were appropriately swelled and had sufficient interaction with the light compounds of the 

asphalt binder. Blending of the crumb rubber, asphalt modifier, and asphalt binder was completed 

at 5,000 revolutions per minute (RPM) for the first 30 minutes, and then at 2,500 RPM for the 

remaining 30 minutes. This mixing process was considered to be representative of plant production 

for the purposes of this study. During plant production, the crumb rubber, asphalt modifier, and 

base binder are first mixed at high revolutions to maximize dispersion of the rubber particles, 

followed by mixing at slower revolutions to ensure good interaction between the rubber and the 

asphalt binder. The different asphalt rubber binders were produced in batches, stored in quart-size 

containers, and then reheated just prior to testing. In this phase of testing, comparisons were not 

made with plant produced asphalt rubber binders; instead the focus was on ensuring that the 

preparation process was consistent for all binder samples.  

5.2.3 Test Results 

The test results are listed in Table B.5 in Appendix B and summarized in Table 5.11. Plots of 

complex shear modulus (G*), phase angle (δ), and G*/sin(δ) are shown in Figure 5.18, Figure 5.19, 

and Figure 5.20, respectively. The plots show each testing point and trend lines (linear regression 

analysis with an intercept at zero). In addition, Figure 5.21 shows the difference in measured 

G*/sin(δ) between concentric cylinder geometry and parallel geometry plotted against the 

measured G*/sin(δ) with parallel plate geometry.  
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Table 5.11  Summary of Statistical Comparisons between Testing Geometries 

Particle Size Range Regression Constant Coefficient of Determination (R2) 

µm #mesh G* (kPa) δ (°) 
G*/sin(δ) 

(kPa) 
G* (kPa) δ (°) 

G*/sin(δ) 

(kPa) 

180-250 

250-425 

425-850 

60-80 

40-60 

20-40 

0.9977 

0.9669 

0.9218 

0.9967 

1.0048 

1.0077 

0.9930 

0.9669 

0.9184 

0.9972 

0.9431 

0.9458 

0.9797 

0.8970 

0.9545 

0.9954 

0.9421 

0.9482 

 

The results obtained from testing the three asphalt rubber binders, each with different maximum 

and minimum crumb rubber particle sizes, showed a strong correlation between the two testing 

geometries, with coefficients of determination (R2) of 0.943 or greater for complex shear modulus, 

0.897 or greater for phase angle, and 0.942 or greater for G*/sin(δ). The regression constant 

decreased with the increase of rubber particle size for complex shear modulus and G*/sin(δ), but 

increased with the increase of rubber particle size for phase angle. It indicated that the 

measurements obtained from the concentric cylinder were almost identical to the measurements 

obtained from the parallel plate for asphalt rubber binder with crumb rubber particle size smaller 

than 250 µm, but the measurements from the two geometries started to diverge for asphalt rubber 

binder with crumb rubber particle sizes greater than 250 µm. These test results agreed with the 

AASHTO recommended maximum particle size 250 µm (one fourth of the gap size) for asphalt 

binder testing on parallel plate geometry.  

In addition, the regression constant showed that the measured complex shear moduli from the 

parallel plate increased with the increase of crumb rubber particle size, but the measured phase 

angles from the parallel plate decreased with the increase of crumb rubber particle size compared 

to the concentric cylinder. The combination of higher complex shear modulus and lower phase 

angle led to higher G*/sin(δ) for the parallel plate geometry compared with the concentric cylinder 

geometry. The higher G*/sin(δ) for the larger particle size ranges were attributed to increasing 

influence of the proximity of the larger rubber particles to the plates.  
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Based on these results, the concentric cylinder geometry is considered as a potentially appropriate 

alternative geometry to parallel plates for quantifying the properties of asphalt rubber binders, and 

specifically for further comparative tests to assess the performance properties of binders containing 

crumb rubber particles larger than 250 µm (i.e., particles retained on the #60 sieve). 

 

Figure 5.18 Comparison of G* results for concentric cylinder and parallel plate. 
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Figure 5.19 Comparison of phase angle results for concentric cylinder and parallel plate. 

 

  

Figure 5.20 Comparison of G*/sin(δ) results for concentric cylinder and parallel plate. 
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Figure 5.21 Difference in measured G*/sin(δ) between concentric cylinder geometry and parallel plate 

geometry. 

 

5.3 Conclusions and Recommendations 

The feasibility of measuring the performance properties of asphalt rubber binders produced using 

larger crumb rubber particles (maximum particle size passing 2.36 mm sieve [mesh #8]) with an 

alternative geometry, namely the concentric cylinder was evaluated through two phases of 

laboratory testing. The following conclusions were drawn to address the proposed question:  

1. Question: What is the feasibility of using concentric cylinder geometry instead of parallel 

plate geometry in a DSR to measure the rheological properties of an asphalt rubber binder 

given the limitations of current Superpave PG binder test methods for asphalt binder with 

particles larger than 250 microns? 
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tire rubber- modified binders with concentric cylinder and parallel plate geometries in a 

DSR. 

• The results obtained from testing asphalt rubber binders with three different crumb rubber 

particle size ranges (180 μm to 250 μm, 250 μm to 425 μm, and 425 μm to 850 μm [#40 to 

#20, #60 to #40, and #80 to #60, respectively]), showed a strong correlation between the 

two testing geometries, but the correlation weakened with increasing crumb rubber particle 

size. Additionally, the G*/sin(δ), obtained by the concentric cylinder decreased with the 

increase of rubber particle size compared to the parallel plate which was attributed to 

increasing influence of the proximity of the larger rubber particles to the parallel plate. 

• Based on the test results, the concentric cylinder geometry is considered to be a potentially 

appropriate alternative geometry to parallel plates for quantifying the properties of asphalt 

rubber binders produced using larger crumb particles, and specifically for assessing the 

high-temperature performance properties of binders containing crumb rubber particles 

larger than 250 μm (i.e., particles retained on the #60 sieve). It should be noted that the 

concentric cylinder geometry requires a larger binder sample for testing and takes longer to 

complete the tests than the parallel plate geometry. 

Additional testing of a larger number of binders (including field collected samples) is required to 

confirm the findings in this study. Also, the development of appropriate asphalt rubber binder aging 

protocols in laboratory, the development of suitable intermediate and low temperatures testing 

methods, development of repeatability and reproducibility values of any proposed test methods, 

and determining the applicability of the results to the actual performance properties of mixes 

produced with asphalt rubber binders are necessary to fully perform Superpave PG on asphalt 

rubber binder with large crumb particles.  
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6 INFLUENCE OF RECLAIMED RUBBERIZED ASPHALT PAVEMENT 

ON PERFORMANCE-RELATED PORPERTIES OF DENSE-GRADED 

HOT MIX ASPHALT   

This chapter describes the effects of adding reclaimed rubberized asphalt pavement (RRAP) to 

dense-graded hot mix asphalt (HMA-DG) on its performance-related properties. The goal of this 

chapter is to answer the following questions:  

1. What are the changes in the rheological properties of conventional binders when blended 

with age-hardened asphalt rubber binders? What are the mechanical and chemical reasons 

that cause these changes? 

2. What are the changes in the performance-related properties of HMA when RRAP is used 

in the mix? 

3. Does HMA with RRAP perform better than HMA with RAP considering that the aged 

asphalt rubber binder in RRAP might have better performance than aged conventional 

binder from RAP? 

Superpave mix design, asphalt binder testing, FAM mix testing, and full-graded mix testing were 

used to investigate all the changes in asphalt binder and mix properties to answer these questions. 

Asphalt binder tests were conducted with a dynamic shear rheometer (DSR) and a bending beam 

rheometer (BBR). FAM mix tests were also conducted with a DSR but with a solid torsion bar 

fixture. Full-graded mix tests were performed with an asphalt mixture performance tester (AMPT) 

and flexural fatigue machine.  
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6.1 Experimental Plan 

6.1.1 Materials 

The materials used in this chapter included a PG 64-16 unmodified asphalt binder, one virgin 

aggregate (crushed alluvial) from asphalt plant A, two RRAP sources (RRAP-1: pure RRAP; 

RRAP-2: a combination of RAP and RRAP) from the field, and one laboratory blended asphalt 

rubber binder. The PG 64-16 unmodified binder was used as the base binder for preparing the 

asphalt rubber binder and artificially age-hardened binder used in the evaluation of binders and 

FAM mixes. Both RRAP materials were separated into two bins, namely the coarse bin with the 

RRAP aggregates retained on the 2.36 mm [#8] sieve and the fine bin with the RRAP aggregates 

passing the 2.36 mm [#8] sieve based on Ghavibazoo et al.’s (2015) study. They investigated the 

effects of removing crumb rubber greater than 75 microns from asphalt rubber binder. Their results 

showed a considerable increase in binder modulus because the light fractions, such as saturates and 

aromatics, of the asphalt binder were absorbed by the crumb rubber during the digestion process. 

These results indicated a potential difference between the coarse and fine RRAP materials since 

most of the crumb rubber particles are in the coarse RRAP. Representative samples from each 

RRAP bin were sent to a contracting laboratory for extraction (AASHTO T 164) and recovery 

(ASTM D1856) of asphalt binder and aggregates. The binder content and performance grade of the 

RRAP materials are shown in Table 6.1, and these results were determined in accordance with the 

AASHTO T 313, AASHTO T 315, AASHTO M 320, and AASHTO M 323. 

The extracted and recovered RRAP binder performance grading temperatures indicated that 

RRAP-1 binder was considerably softer than RRAP-2 binder. According to the contractor, RRAP-

1 came from a project that did not meet the RHMA-G specification and was milled after a year of 

service. RRAP-1 was selected for use in the experiment because it was the only pure RRAP source 

available when the study was conducted.  Despite the fact that this is rare, RRAP-1 was still selected 
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as one of the RRAP sources to check that the findings are consistent between two RRAP materials. 

The differences between these RRAP materials were factored into the result analyses and 

conclusions.   

Table 6.1 RRAP Properties 

Mix 
Binder Content 

by TWM1 (%) 

Performance Grade 

High 

(°C) 

Intermediate 

(°C) 

Low 

(°C) 

RRAP-1: Ret #8 5.8 72 22 -26 

RRAP-1: Pass #8 9.0 78 24 -25 

RRAP-2: Ret #8 5.3 95 42 higher than -10 

RRAP-2: Pass #8 11.5 103 47 higher than -10 
1 Total weight of mix  

 

 Artificially Age-Hardened Binder and Simulated RAP/RRAP Preparation 

The extraction and recovery method is commonly used to obtain the age-hardened binder from 

RAP. However, age-hardened asphalt rubber binder cannot be satisfactorily extracted from RRAP 

because the chemicals and mechanical processes used during the extraction separate the rubber 

from the base binder and consequently the properties of this extracted binder will resemble the 

original base binder and not the asphalt rubber binder. 

Therefore, instead of using extracted and recovered RAP binder, artificially age-hardened asphalt 

binders were prepared in the laboratory by aging the PG 64-16 binder and laboratory blended 

asphalt rubber binder (Type II) in a pressure aging vessel (PAV) for 40 hours at 2.1 MPa pressure 

at 100°C. The simulated RRAP was prepared by mixing virgin aggregates with artificially age-

hardened asphalt rubber binder. The aggregate gradation and binder content of the simulated RRAP 

was the same as the control FAM HMA mix. The decision to use 2-cycle PAV aged binder to 

prepare simulated RAP was based on the recommendations in the study conducted by Bowers et 

al. (2014). 
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It is accepted that the simulated RAP does not truly represent the properties of field-collected RAP 

binder since the oxidation levels of the simulated RAP are more uniform than the field collected 

RAP. Also, the properties of RAP vary quite a bit between different RAP stockpiles. Considering 

that the goal of this part of the study was to understand how age-hardened asphalt rubber binder 

and RRAP affect new HMA performance, the use of artificially age-hardened asphalt rubber binder 

and simulated RRAP in asphalt binder and FAM mix testing can give a reasonable estimation of 

the changes in asphalt binder and mix properties.  

6.1.2 Test Methods 

 Asphalt Binder Testing Approach 

Figure 6.1 shows the binder testing experimental plan. All tests were conducted on the PG 64-16 

binder, artificially age-hardened asphalt rubber binder, and blended binders, which were prepared 

by uniformly hand-blending the unaged PG 64-16 binder and the artificially age-hardened asphalt 

rubber binder with a glass rod in three proportions (85:15, 75:25 and 60:40 by total weight of the 

binder). Currently, most state DOTs allow between 15 and 25 percent RAP in new HMA surface 

layer mixes without requiring a binder blending chart analysis. Therefore, both 15 and 25 percent 

of age-hardened binder contents were selected for binder testing. Additionally, 40 percent of age-

hardened binder content was also selected for testing considering growing interest in using more 

RAP in the mix. It should be noted that there no published information was found in the literature 

on the use of RRAP in new HMA-DG; thus, the selection of age-hardened binder proportions for 

RRAP was the same as for RAP.   



 

  129 

 

Figure 6.1 Binder testing experimental plan. 

 

Rotational viscosity tests, Superpave performance grade, frequency sweep tests, and multiple stress 

creep and recovery (MSCR) tests were performed to investigate the changes in the rheological and 

performance-related properties of the unmodified binder after adding artificially age-hardened 

asphalt rubber binder. The MSCR test characterizes the rutting resistance of asphalt binder by 

considering the non-recoverable compliance instead of binder modulus and phase angle; thus, it is 

ideal for evaluating the rutting performance of asphalt binders with high recoverability, such as 

polymer modified binders, tire-rubber modified binders, and asphalt rubber binders.  

The concentric cylinder geometry was used instead of the standard parallel plate geometry for 

asphalt rubber binder samples in line with the findings discussed in Chapter 5. In brief, according 

to AASHTO T 315, gap distance between parallel plates in the DSR should be at least four times 

that of the largest particle size in the binder. Practical gap distances (i.e., 1 mm, 2 mm, or 3 mm) 
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between parallel plates could result in misleading data since the results would be dominated by the 

properties of the large rubber particles that could potentially touch both plates.  

 Full-Graded Mix Testing Approach 

The changes in the viscoelastic and performance-related properties, such as mix stiffness, 

resistance to rutting and fatigue cracking, of HMA-DG containing RRAP were evaluated with the 

dynamic modulus test, repeated load triaxial test, and flexural beam fatigue test. Figure 6.2 shows 

the experimental plan for Full-graded mix testing. Full-graded mix specimens were prepared from 

five different FAM mixes, including a control mix (no RRAP), two mixes with 15 and 25 percent 

field-collected RRAP-1, and two mixes with 15 and 25 percent field-collected RRAP-2. Table 6.2 

shows the brief details of the test parameters used in the above mentioned performance-related 

tests. 

 

Figure 6.2 Full-graded mix testing experimental plan. 
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Table 6.2 Full-graded Mix Performance-Related Tests 

Test Rep. Air Voids (%) Test Variables 

Stiffness 

• Dynamic modulus 

- AASHTO TP 79 and 

AASHTO PP 61 

2 7.0  0.5 

• 1 temperature sequence (4, 

20, and 40°C) 

• 1 stress level1 

• No confining pressure 

Rutting Performance 

• Flow number from repeated 

load triaxial results 

- AASHTO TP 79 

2 7.0  0.5 

• 1 temperature (52°C) 

• 1 deviator stress (600 kPa) 

• 1 contact stress (30 kPa) 

• No confining pressure 

Cracking Performance 

• Beam fatigue 

- AASHTO T 321 
3 6.0  0.5 

• 1 temperature (20°C) 

• 3 strain ranges (high, 

medium, low)  

• 1 frequency (10 Hz) 
1 Deviator stress controlled by AMPT software to get 75 to 125 µstrain peak-to-peak axial strain 

 

The dynamic modulus and repeated load triaxial (RLT) tests were performed using an asphalt 

mixture performance tester (AMPT) following AASHTO TP 79 (now AASHTO T 378). The 

resulting dynamic moduli were used to construct full-graded HMA master curves following a 

similar approach to that shown in Section 4.1.2.1. The master curves were then used to evaluate 

the effects of adding RRAP on the viscoelastic properties of the HMA. The RLT test was used to 

evaluate the rutting performance of the HMA by determining the flow number with the Francken 

model, shown in Equation 6.1, and comparing the repetitions to one, three, and five percent 

permanent axial strain. 

𝜀𝑝 = 𝐴𝑛𝐵 + 𝐶(𝑒𝐷𝑛 − 1) 

Equation 6.1 

 where,  

  𝜀𝑝  = permanent axial strain 

  n = number of cycles 

  A, B, C, and D = fitting parameters 
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Flexural beam fatigue testing along with pavement fatigue mechanistic analysis was used to 

determine the fatigue performance of the HMA. The fatigue lives of the HMA were calculated with 

four different pavement structures, including a thin or thick overlay on top of a weak and strong 

base. As mentioned in the literature review, softer asphalt mixes usually have longer beam fatigue 

lives than stiffer mixes under a given strain level; however, a longer beam fatigue life does not 

always guarantee better field fatigue cracking performance. The HMA fatigue performance in the 

field is also highly dependent on the tensile strain level at the bottom of the asphalt concrete layer. 

This tensile strain level is affected by the interactions of mix stiffness and pavement structure. 

Thus, it is essential to include pavement structure and traffic load configuration in a realistic asphalt 

pavement fatigue performance analysis.  

The approach specified for beam fatigue testing in AASHTO T 321 was modified to optimize the 

quantity and quality of the data collected. Replicate specimens were first tested at high and medium 

strain levels to develop an initial regression relationship between fatigue life and strain (Equation 

6.2), with strain levels selected, based on experience, to achieve fatigue lives between 10,000 and 

100,000 load cycles and between 300,000 and 500,000 load cycles, respectively.  Additional 

specimens were then tested at lower strain levels selected based on the results of the initial linear 

regression relationship to achieve a fatigue life of about one million load repetitions. The regression 

relationship was then refined to accommodate the measured stiffness at the lower strain level. 

𝐿𝑛(𝑁𝑓) = 𝐴 + 𝐵 × 𝐿𝑛(𝜀) 

Equation 6.2 
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Where, 

 𝑁𝑓  = cycles to failure (the maximum of the product of the specimen stiffness and   

loading cycles) 

   𝜀 = the strain level  

   𝐴, 𝐵 = model parameters 

 

 FAM Mix Testing Approach 

Figure 6.3 shows the experimental plan for FAM mix testing. FAM mix specimens were prepared 

from seven different FAM mixes, including a control mix (no RRAP), two mixes with 15 and 25 

percent simulated RRAP, two mixes with 15 and 25 percent field-collected RRAP-1, and two mixes 

with 15 and 25 percent field-collected RRAP-2. Simulated RRAP was used to directly link the 

FAM mix test results to artificially age-hardened asphalt rubber binder test results. Considering 

that most state agencies currently limit the use of RAP to a maximum of 25 percent for the HMA 

surface layer at the moment, tests with 40 percent RRAP were not considered in the part of the 

testing. 

 

Figure 6.3 FAM mix testing experimental plan. 



 

  134 

Cylindrical FAM mix specimens were tested in a torsion-bar fixture mounted in a DSR. Frequency 

sweep tests were performed to measure the complex shear modulus (|G*|) for a range of frequencies 

(0.1 Hz to 25 Hz) at three different temperatures (4°C, 20°C, and 40°C). The strain amplitude was 

set at 0.002%, based on the findings of previous UCPRC studies (Alavi et al., 2014; Alavi et al., 

2015; Alavi et al., 2016), to ensure the material was in the linear viscoelastic region. The measured 

complex shear moduli were then used to construct FAM mix master curves with a sigmoidal 

function. The FAM mix master curves were constructed following a similar approach to that shown 

in Section 4.1.2.1. The influence of RRAP on HMA viscoelastic properties over a range of 

temperatures and frequencies was investigated by analyzing and comparing these FAM mix master 

curves. 

6.2 Mix Design and Specimen Preparation 

6.2.1 Full-Graded Mix Design and Specimen Preparation 

A Caltrans Superpave mix design for HMA-DG with a nominal maximum aggregate size (NMAS) 

of 19 mm and for traffic of 3 million to 30 million equivalent single axle loads was used. The 

optimum binder content and the aggregate gradation of the control HMA-DG is shown in Table 

6.3, and the aggregate gradation curve is shown in Figure 6.4. 

  



 

  135 

Table 6.3 Asphalt Content and Aggregate Gradation of the HMA-DG 

Asphalt Content (%) 

 by Total Weight of mix (TWM) 

5.0 

Gradation 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

25.4 1" 100 

19.0 3/4" 98 

12.5 1/2" 84 

9.50 3/8" 72 

4.75 No. 4 47 

2.36 No. 8 30 

1.18 No. 16 21 

0.60 No. 30 15 

0.30 No. 50 10 

0.15 No. 100 7 

0.075 No. 200 4 

 

  

Figure 6.4 Aggregate gradation curve of the HMA-DG.  

 

The total binder content of the HMA-DG containing RRAP, including virgin asphalt binder and 

reclaimed RRAP binder, was kept at 5 percent to facilitate comparison with the control mix. The 

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
t 

P
a

s
s
in

g
 (

%
)

Sieve Size (mm) Raised to the 0.45 Power

Target Value Max.
Target Value Min.
Max. Density Line
HMA-DG

0
.0

7
5

m
m

2
.3

6
m

m

0
.6

0
 m

m

4
.7

5
m

m

1
2

.5
 m

m

1
9

.0
 m

m

2
5

.4
 m

m

Nominal Maximum Aggregate Size = 19.0 mm



 

  136 

asphalt content and aggregate gradation of both RRAP materials are shown in  It should be noted 

that maintaining mix volumetric parameters constant to compare mixes is very important. 

However, because of time limitation to fine-tune mix designs, mixed with constant VMA could not 

be prepared.  

 

Table 6.4, and the aggregate gradation curves are shown in Figure 6.5. The measured volumetric 

properties for the control HMA-DG and HMA-DG containing different percentages of RRAP 

along with the Superpave volumetric requirements are shown in Table 6.5. For the mixes 

containing RRAP, low air voids could be achieved without adjusting the binder content; however, 

only the HMA-DG with 25 percent RRAP-2 met the specification limit, but the other three mixes 

containing RRAP had air-void contents lower than the specification limit. The low air-void 

contents further led to high percentage of voids filled with asphalt (VFA). It should be noted that 

maintaining mix volumetric parameters constant to compare mixes is very important. However, 

because of time limitation to fine-tune mix designs, mixed with constant VMA could not be 

prepared.  

 

Table 6.4 Asphalt Content and Aggregate Gradation of the RRAP materials 

RRAP Source 1 2 

Asphalt Content (%) by TWM 6.2 5.9 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

12.5 1/2" 100.0 100.0 

9.50 3/8" 93.8 93.2 

4.75 No. 4 54.1 52.3 

2.36 No. 8 30.1 26.7 

1.18 No. 16 21.3 19.1 

0.60 No. 30 14.8 15.5 

0.30 No. 50 11.2 12.0 
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0.15 No. 100 8.4 7.4 

0.075 No. 200 5.9 5.4 

 

  

Figure 6.5 Aggregate gradation curves of the RRAP materials. 

 

 

 
Table 6.5 Volumetric Properties of Control HMA-DG and Those Containing RRAP 

Mix 

Mix Volumetric Properties 

Air-Voids 

(%) 

VMA 

(%) 

VFA 

(%) 

Dust 

Proportion 

Caltrans specification limits 4 >13 65-75 0.6-1.2 

HMA-DG control 4.3 14.0 69.2 1.0 

HMA-DG with 15% RRAP-1 3.6 13.9 74.4 0.9 

HMA-DG with 25% RRAP-1 3.2 13.7 76.3 0.9 

HMA-DG with 15% RRAP-2 3.3 13.7 75.9 0.9 

HMA-DG with 15% RRAP-2 4.0 13.6 70.5 1.0 
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design samples and four hours at 135°C for the performance-related testing samples, as 

recommended in AASHTO R 30. 

The mix design specimens were prepared in a gyratory compactor with 85 gyrations at 600 kPa 

pressure and 1.16° internal gyration angle. Specimens were held under pressure in the compaction 

mold for 5 to 10 minutes after gyrations were completed to prevent expansion of the specimen due 

to the rubber in the RRAP material. The performance-related testing specimens were prepared by 

using a rolling-wheel compactor for fatigue beams and using a gyratory compactor for dynamic 

modulus and repeated load triaxial test specimens. The compaction pressure, gyration angle, and 

squaring time for gyratory compacted performance related testing specimens were the same as 

those used for mix design specimens, but the mixes were compacted to a height of 175 mm instead 

of to a fixed number of gyrations. Cylindrical specimens (100 mm in diameter and 150 mm high) 

were cored from the gyratory-compacted specimens and beams (380 mm long, 50 mm high and 

63 mm wide) were cut from ingots compacted with a steel-wheel roller.  

6.2.2 FAM Mix Design and Specimen Preparation 

A dense graded FAM mix with an NMAS of 4.75 mm (passing #4) was prepared based on the full-

graded HMA-DG mix design in Section 6.2.1.  Specimens were prepared following the UCPRC 

procedure (Alavi et al., 2014; Alavi et al., 2015; Alavi et al., 2016). Table 6.6 and Figure 6.6 show 

the binder content, determined with ignition oven test (AASHTO T 308), and aggregate gradation 

of the control FAM mix. 
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Table 6.6 Asphalt Content and Aggregate Gradation of the FAM Mix 

Asphalt Content (%) 

by TWM 

7.7 

Gradation 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

4.75 No. 4 100 

2.36 No. 8 64 

1.18 No. 16 45 

0.60 No. 30 32 

0.30 No. 50 21 

0.15 No. 100 15 

0.075 No. 200 9 

 

  

Figure 6.6 Aggregate gradation of the FAM mix. 
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Table 6.7 and Figure 6.7. For FAM mixes containing simulated RRAP, there was no need to adjust 

the virgin aggregate gradation since the simulated RRAP gradation was the same as the control 

mix; however, for FAM mixes with field-collected RRAP materials, the virgin aggregate gradation 

was adjusted to ensure that the aggregate gradation of the FAM mixes containing RRAP was the 

same as the control mix. 

Table 6.7 Asphalt Content and Aggregate Gradation of the Fine RRAP Materials 

RRAP Source 1 2 

Asphalt Content (%) by TWM 9.0 11.5 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

4.75 No. 4 100 100 

2.36 No. 8 99 99 

1.18 No. 16 69 71 

0.60 No. 30 50 53 

0.30 No. 50 37 39 

0.15 No. 100 25 23 

0.075 No. 200 16 17 

 

  

Figure 6.7 Aggregate gradation curves of the fine RRAP materials.  
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FAM mixes were compacted using a Superpave gyratory compactor to a constant height of 50 mm. 

Cylindrical FAM mix specimens, 12 mm in diameter and 50 mm in height, were cored from the 

gyratory-compacted mixes and used for the testing with air-void content 101.0 percent. The 

targeted air-void content of FAM mix specimens was selected based on the previous UCPRC 

studies (Alavi et al., 2016; He et al., 2016). Their test results indicated that the repeatability of the 

measured rheological properties was considered acceptable and was not influenced by the variation 

of air-void content within the targeted range. 

6.3 Test Results and Discussions 

The main goals of this study were to investigate the differences between RAP and RRAP on new 

HMA performance and to determine whether the new mixes with RRAP have better performance 

than with RAP, and whether RRAP can carry the benefits of rubber to new HMA.   

6.3.1 Asphalt Binder Test Results 

The DSR and BBR test results are listed in Table C.1 through Table C.6 in Appendix C and 

summarized in the following sections. The abbreviations used in the figures are as follows: 

+ Con = conventional unmodified PG 64-16 binder 

+ Con-AAH = artificially age-hardened conventional PG 64-16 binder 

+ AR-II = asphalt rubber binder (Type II) 

+ AR-II-AAH = artificially age-hardened asphalt rubber binder 

+ Con-C-15% = blended binder with 85 percent conventional PG 64-16 binder and 15 percent 

artificially age-hardened conventional PG 64-16 binder  

+ Con-C-25% = blended binder with 75 percent conventional PG 64-16 binder and 25 percent 

artificially age-hardened conventional PG 64-16 binder  

+ Con-C-40% = blended binder with 60 percent conventional PG 64-16 binder and 40 percent 

artificially age-hardened conventional PG 64-16 binder  

+ Con-R-15% = blended binder with 85 percent conventional PG 64-16 binder and 15 percent 

artificially age-hardened asphalt rubber binder  
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+ Con-R-25% = blended binder with 75 percent conventional PG 64-16 binder and 25 percent 

artificially age-hardened asphalt rubber binder  

+ Con-R-40% = blended binder with 60 percent conventional PG 64-16 binder and 40 percent 

artificially age-hardened asphalt rubber binder  

 

 Viscosity 

The viscosity of the unaged binders, age-hardened binders, and unaged binders containing different 

percentages of age-hardened conventional binder and asphalt rubber binder was measured at 135°C 

per AASHTO T 316 with the concentric cylinder on a DSR. The viscosity measurements are shown 

in Figure 6.8, and the following observations were made: 

• Replacing 15, 25, and 40 percent of the conventional binder with artificially age-hardened 

conventional binder increased the binder viscosity, by 22, 33, and 68 percent respectively, 

above that of the conventional binder with no age-hardened binder.  

• Replacing conventional binder with artificially age-hardened asphalt rubber binder greatly 

increased the conventional binder viscosity. The viscosities of blended binders containing 

15, 25, and 40 percent artificially age-hardened asphalt rubber binder were approximately 

1.5, 2.0, and 3.5 times the viscosity of the conventional binder with no age-hardened binder. 

These results were expected because the viscosity of asphalt rubber binder was substantially 

higher than conventional binder due to the presence of crumb rubber particles that create 

microstructures in the binder.  

• The increase in binder viscosity was much faster from adding age-hardened asphalt rubber 

binder than age-hardened conventional binder. This test result indicated a potential 

workability issue when incorporating RRAP into HMA.  

• The exponential trend lines could efficiently predict the changes in viscosity of unaged 

conventional binder by adding age-hardened binder as shown in Figure 6.8. 
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Figure 6.8 Viscosity of the unaged binders at 135°C. 

 

 Performance Related Properties at High In-Service Temperatures 

The high performance grade of the unaged binders and RTFO aged binders was measured at high 

in-service temperatures with concentric cylinder geometry on a DSR. The results are shown in 

Figure 6.9, and the following observations were made:  

• Replacing 15, 25, and 40 percent of the conventional binder with age-hardened 

conventional binder increased the high performance grade of the unaged binder from 69°C 
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high performance grading temperature of the age-hardened asphalt rubber binder was 

higher than the age-hardened conventional binder.  

• The test results of the RTFO-aged binders were consistent with the unaged binders. The 

high performance grading temperature increased with the increase of age-hardened binder 

content. Also, the high performance grading temperatures increased faster with age-

hardened asphalt rubber binder than t age-hardened conventional binder.  

 

Figure 6.9 High performance grade of the unaged and RTFO aged binders. 

 

The complex shear modulus (|G*|) and phase angle (δ) of unaged and RTFO-aged blended binders 

at 64°C are shown in Figure 6.10 and Figure 6.11, respectively. The following observations were 

made: 

• The complex shear modulus of the conventional binder increased exponentially with 

increasing amounts of artificially age-hardened conventional binder or asphalt rubber 

binder, and the increase in modulus was similar with either artificially age-hardened PG 

68.7 69.2

7
2

.1

7
2

.4

7
3

.5

7
4

.2 7
7

.5

7
6

.9

9
0

.4

7
1

.9

7
2

.6 7
4

.5

7
5

.4 7
9

.1

8
0

.3

1
0

5
.6

58

64

70

76

82

88

94

100

106

Original RTFO Original RTFO Original RTFO Original RTFO Original

0 15 25 40 100

H
ig

h
 P

e
rf

o
rm

an
ce

 G
ra

d
in

g 
Te

m
p

e
ra

tu
re

 (
°C

)

Age-Hardened Binder Content (%)

Con Con-C Con-R



 

  145 

64-16 binder or asphalt rubber binder. This result was expected considering that these two 

age-hardened binders had a similar binder modulus at 64°C. 

• The phase angle of the conventional binder decreased with increasing amounts of age-

hardened conventional binder or asphalt rubber binder, but the rate of decrease in phase 

angle was much faster for the binder containing artificially age-hardened asphalt rubber 

binder, attributed to the presence of the residual crumb rubber particles in the asphalt rubber 

binder. The rubber appeared to add some elasticity to the conventional binder. 

• The complex shear modulus and phase angle followed similar trends for both RTFO aged 

and unaged binders. 

 

Figure 6.10 Complex shear modulus of the unaged and RTFO aged binders at 64°C. 
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Figure 6.11 Phase angle of the unaged and RTFO aged binders at 64°C. 
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was attributed to the dominant elastic behavior of the rubber particles in the asphalt rubber 

binder.  

   

Figure 6.12 Frequency sweep test results of the unaged conventional binder with artificially age-hardened 

conventional binder at 64°C. 
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Figure 6.13 Frequency sweep test results of the unaged conventional binder with artificially age-hardened 

asphalt rubber binder at 64°C. 
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conventional binder due to the presence of rubber particles from the artificially age-

hardened asphalt rubber binder, which was more elastic than asphalt binder. 

• The APR and Jnr followed similar trends at both 0.1 and 3.2 kPa.  

 

Figure 6.14 MSCR test results of the RTFO aged binders at 64°C and 0.1 kPa. 
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Figure 6.15 MSCR test results of the RTFO aged binders at 64°C and 3.2 kPa. 

 

 Flexural Creep Stiffness at Low Temperature 

Blended binders with different quantities of artificially age-hardened conventional binders and 

asphalt rubber binders were aged in a PAV for 20 hours at 100°C and then tested with a bending 

beam rheometer (BBR) to determine the low-temperature properties per AASHTO T 313. The 

BBR tests were performed at -6°C since the low performance grade of the conventional binder was 

-16°C. Figure 6.16 shows the measured creep stiffnesses (S) and m-values. The following 

observations were made: 

• Replacing 15, 25, and 40 percent of the conventional binder with artificially age-hardened 

conventional binder increased the creep stiffness by about 15, 20, and 30 percent, 

respectively, and decreased the m-value by about 3 percent, 7 percent, and 8 percent, 

respectively. 

y = 2.1534e-0.03x

R² = 0.9998

y = 2.3291e-0.046x

R² = 0.989

y = 0.2127x + 0.7658
R² = 0.9799

y = 0.7955x - 1.2283
R² = 0.9589

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100

A
ve

ra
ge

 P
er

ce
n

t 
R

ec
o

ve
ry

 (
%

)

N
o

n
-R

ec
o

ve
ra

b
le

 C
re

ep
 C

o
m

p
li

an
ce

 (1
/k

P
a)

Age-Hardened Binder Content (%)

Con-C-Jnr Con-R-Jnr Con-C-APR Con-R-APR



 

  151 

• Incorporating up to 40 percent artificially age-hardened asphalt rubber binder into the 

conventional binder reduced the creep stiffness by about 10 percent and the m-value by 

about 5 percent.   

• Adding artificially age-hardened conventional binder to conventional binder increased the 

creep stiffness but decreased the m-value, both of which negatively affect low-temperature 

performance. However, adding artificially age-hardened asphalt rubber binder to 

conventional binder had little effect on the creep stiffness, but decreased the m-value, 

although the reduction was less than that caused by the artificially age-hardened 

conventional binder. 

• Overall, the creep stiffness and m-value for all blended binders with different percentages 

of artificially age-hardened conventional binder and asphalt rubber binder replacement 

were lower than 300 MPa and higher than 0.30, respectively, and therefore met the 

specification for the same low performance grade as the conventional binder. 

 

Figure 6.16 BBR test results of the PAV aged binders at -6ºC. 
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6.3.2 FAM Mix Test Results 

The FAM mix test results using the torsion bar system on a DSR are summarized in the following 

paragraphs. The abbreviations used in the figures are as follows: 

+ DG-C = dense-graded mix with no RRAP 

+ DG-S-15% = dense-graded mix with 15 percent simulated RRAP 

+ DG-S-25% = dense-graded mix with 25 percent simulated RRAP 

+ DG-F1-15% = dense-graded mix with 15 percent field-sampled RRAP-1 

+ DG-F1-25% = dense-graded mix with 25 percent field-sampled RRAP-1 

+ DG-F2-15% = dense-graded mix with 15 percent field-sampled RRAP-2 

+ DG-F2-25% = dense-graded mix with 25 percent field-sampled RRAP-2 

 

Figure 6.17 shows the complex shear modulus master curves for the FAM mixes, and Figure 6.18 

shows the normalized master curves, for better illustration of the effects of RRAP on FAM mix 

behavior. The normalized master curves were obtained by dividing the moduli of the FAM mixes 

containing RRAP by the corresponding moduli of the control mixes at each respective frequency. 

Figure 6.19 shows all the frequency test results of the FAM mixes in black space. The following 

observations were made:  

• The complex shear modulus of the control FAM mix increased considerably when RRAP 

was added, especially in the mixes containing 25 percent field-collected RRAP at low 

reduced frequencies (around 0.001 Hz).  Shear moduli of the RRAP-1 and RRAP-2 were 

respectively 8 and 14 times higher than the control mix.  

• The black space diagram shows that the FAM mix moduli increased and the phase angles 

decreased with an increase of RRAP content. It also showed that the FAM mixes containing 

RRAP-2 had higher phase angles than the FAM mixes containing RRAP-1 despite RRAP-

2 having higher moduli than RRAP-1.  
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• Given that the performance grading temperatures of the extracted and recovered RRAP-2 

binder were higher than the RRAP-1 binder, the FAM mixes containing RRAP-2 were 

expected to have higher moduli than the RRAP-1 mixes. However, similar moduli were 

recorded for the FAM mixes containing 15 percent RRAP-1 and RRAP-2. This was 

attributed to the incomplete blending between the RRAP and virgin binder. Since the degree 

of blending of the FAM mixes could not be determined, the results were interpreted with 

the consideration of possible incomplete blending.  

 

Figure 6.17 Master curves of the FAM mixes at 20°C. 
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Figure 6.18 Normalized master curves of the FAM mixes at 20°C. 

 

  

Figure 6.19 Black space diagram of the FAM mixes at 20°C. 
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6.3.3 Full-Graded Mix Test Results 

 Dynamic Modulus  

The AMPT dynamic modulus master curves of the HMA-DG are shown in Figure 6.20, and the 

normalized master curves, which were obtained by dividing the moduli of the corresponding 

control mixes are shown in Figure 6.21. Figure 6.22 shows the dynamic moduli and phase angles 

of the full-graded mixes in black space.  The following observations were made: 

• Adding RRAP to the HMA-DG to replace 25 percent of the required binder increased the 

stiffness of the mix by up to two times for RRAP-1 and two and half times of the control 

mix for RRAP-2 at the lower frequencies (i.e., warmer temperatures), respectively. 

However, this influence diminished with increasing frequency, and decreased the stiffness 

at the higher frequencies (i.e., colder temperatures). All four mixes containing RRAP have 

stiffnesses that are 10 to 15 percent lower than the control mix at the higher frequencies.  

• The black space diagram shows that adding RRAP increased the mix stiffness when the 

stiffnesses were below 10,000 MPa but decreased the mix stiffness when the stiffnesses 

were above 10,000 MPa. Overall, the incorporation of RRAP reduced the phase angle 

compared to the control mix.  

• The trends of the increase in stiffness were quite different between the full-graded and FAM 

mixes. FAM mix test results showed that adding 25 percent RRAP to the HMA-DG 

increased the stiffness by up to 14 times that of the control, but full-graded mix test results 

showed that adding 25 percent RRAP to the mix increased the stiffness by only up to 2.5 

times that of the control mix. These differences between FAM mixes and full-graded mixes 

was expected considering that the extracted and recovered coarse RRAP binders were softer 

than the fine RRAP binders. Also, there was no stiffness reduction at high frequencies for 
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the FAM mixes containing RRAP, but about 20 percent stiffness reduction could be found 

for the full-graded mixes.  

 

Figure 6.20 Master curves of the full-graded mixes at 20°C. 

 

 

Figure 6.21 Normalized master curves of the full-graded mixes at 20°C. 
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Figure 6.22 Black space diagram of the full-graded mixes.  

 

 Repeated Load Triaxial (Flow Number) Test 

Repeated load triaxial testing without confinement was used to assess the rutting performance of 

all rubberized mixes containing RRAP. The same AMPT specimens used for dynamic modulus 

testing were used for this testing to assess likely effects of RRAP addition on permanent 

deformation. The test results are shown in Figure 6.23 and Figure 6.24, and the following 

observations were made: 

• The addition of RRAP to the HMA had a strong influence on the flow number (at least 1.45 

times higher than the control mix), indicating a considerable improvement in expected 

rutting performance. Compared to the HMA stiffness at lower frequencies, the mixes with 

higher stiffness have better rutting performance.  

10

100

1000

10000

100000

0 10 20 30 40

D
yn

am
ic

 M
o

d
u

lu
s 

(M
P

a)

Phase Angle (°)

DG-C DG-F1-15%

DG-F1-25% DG-F2-15%

DG-F2-25%



 

  158 

• The RRAP mixes reached 1-percent strain faster than the control mix, but far more loading 

cycles were required to reach 3- and 5-percent compared to the control mix. 

 

Figure 6.23 Flow number and number of cycles to 1, 3, and 5 percent permanent strain. 

 

 

Figure 6.24 Normalized flow number and number of cycles to 1, 3, and 5 percent permanent strain. 
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 Flexural Beam Fatigue Test 

The flexural beam fatigue test results are shown in Figure 6.25, and the following observations 

were made: 

• The mostly high R-squared values of the flexural beam fatigue tests indicated that the 

fatigue models were appropriate for estimating the fatigue performance of the mixes tested. 

• The beam fatigue test results clearly showed that the increase of RRAP content from 15 to 

25 percent had a negative impact on fatigue performance under all strain levels regardless 

the source of RRAP.  

• The slopes of the fatigue models of mixes containing RRAP-1 were less steep than the 

control mix, but the slopes of the fatigue models of mixes containing RRAP-2 were steeper 

than the control mix. These results indicated that mixes containing RRAP are better at 

resisting high tensile strain loadings than mixes containing RAP.  

 

Figure 6.25 Laboratory beam fatigue at a given strain models. 
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 Mechanistic Analysis of Fatigue Performance 

Pavement fatigue mechanistic analysis was conducted based on the flexural beam fatigue test 

results to determine HMA fatigue lives with different layer thicknesses. Table 6.8 shows four 

different pavement structures that were selected for the fatigue analysis, including an HMA layer 

with four different thicknesses, an aggregate base layer, and subgrade. A single axle 80 kN load 

traveling at 96 km/hour (with 700 kPa tire pressure) was used for the analysis. The HMA stiffnesses 

were obtained from the dynamic modulus master curves. Mix stiffnesses for each pavement 

structure are shown in Table 6.9. Detailed calculations of the determination of HMA stiffness are 

shown in Appendix C. The mix stiffness was determined based on the frequency of load applied to 

the HMA, with frequency calculated from the vehicle speed and thickness of the HMA layer. The 

maximum tensile strain caused by the single axle load at the bottom of the HMA layer was obtained 

with Openpave software (Lea, 2014) based on multi-layer elastic theory. The maximum tensile 

strain is the principal tensile strain that located at a plane without shear stress. The results are shown 

in Table 6.10.  

Table 6.8 Pavement Structures for Asphalt Fatigue Analysis 

 

Layer 

Structure I Structure II 

Thickness 

(mm) 

Stiffness 

(MPa) 

Poisson's 

Ratio 

Thickness 

(mm) 

Stiffness 

(MPa) 

Poisson's 

Ratio 

HMA 50 * 0.35 100 * 0.35 

Base 300 250 0.35 300 250 0.35 

Subgrade Infinite 75 0.35 Infinite 75 0.35 

Layer 

Structure III Structure IV 

Thickness 

(mm) 

Stiffness 

(MPa) 

Poisson's 

Ratio 

Thickness 

(mm) 

Stiffness 

(MPa) 

Poisson's 

Ratio 

HMA 150 * 0.35 250 * 0.35 

Base 300 250 0.35 300 250 0.35 

Subgrade Infinite 75 0.35 Infinite 75 0.35 

*The HMA stiffnesses at 20C are shown in Table 6.9. Stiffnesses were obtained from dynamic 

modulus testing results.  
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Table 6.9 HMA Stiffness for Pavement Structures Used for Fatigue Analysis 

HMA Mix Type 
Mix Stiffness (MPa) 

Structure I Structure II Structure III Structure IV 

DG-C 9,742 9,199 8,783 8,234 

DG-F1-15% 9,193 8,752 8,412 7,960 

DG-F1-25% 10,159 9,694 9,334 8,854 

DG-F2-15% 10,414 9,939 9,573 9,085 

DG-F2-25% 10,618 10,156 9,799 9,323 

 

Table 6.10 Maximum Tensile Strain at the Bottom of HMA Surface Layer Under a Single Axle 80 kN Load 

Structure 
Maximum Microstrain 

I II III IV 

DG-C 275 175 116 60 

DG-F1-15% 281 180 119 61 

DG-F1-25% 270 170 111 57 

DG-F2-15% 268 167 109 56 

DG-F2-25% 266 165 108 55 

 

The fatigue mechanistic analysis results are shown in Figure 6.26 and Figure 6.27. The following 

observations were made: 

• Pavement fatigue lives increased with an increase in HMA thickness in the mechanistic 

analysis as expected. 

• The stiffnesses of the mixes under the same loading condition and pavement structure were 

all relatively similar with less than 15 percent difference at 20°C, and they resulted in 

similar maximum tensile strains at the bottom of HMA layer. After increasing the HMA 

layer thickness from 50 mm to 250 mm, the maximum tensile strains of the 250 mm HMA 

layer were about one-third of those in the 50 mm HMA layer for all tested mixes.  

• Based on the above observations, the differences in fatigue lives of these mixes were mainly 

dependent on the beam fatigue test results but not stiffness. The mix containing 15 percent 
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RRAP-1 was comparable to a mix with a softer binder, and the mix containing 15 percent 

RRAP-2 was comparable to a mix with a stiffer binder. 

• Overall, the use of RRAP can be beneficial to new HMA that are designed to withstand 

high tensile strain due to its relatively lower stiffnesses and smaller impact on the slope of 

fatigue model compared to RAP. 

 

 

Figure 6.26 Fatigue life of the HMA surface layer. 

 

1
.1

E+
0

6 1
.1

E+
0

7 9
.8

E+
0

7

3
.1

E+
0

9

6
.1

E+
0

5 4
.2

E+
0

6 2
.6

E+
0

7

4
.7

E+
0

8

4
.3

E+
0

5 2
.9

E+
0

6 1
.7

E+
0

7

2
.6

E+
0

8

1
.4

E+
0

6

2
.6

E+
0

7

3
.7

E+
0

8

2
.3

E+
1

0

4
.1

E+
0

5

7
.6

E+
0

6

1
.0

E+
0

8

6
.5

E+
0

9
1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

1E+11

I II III IV

Fa
ti

gu
e

 L
if

e
 (

N
f)

Pavement Structure

DG-C DG-F1-15% DG-F1-25% DG-F2-15% DG-F2-25%



 

  163 

 

Figure 6.27 Normalized fatigue life of the HMA surface layer.  
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• The binder test results indicated that adding age-hardened asphalt rubber binder to 

conventional binder improved the rutting performance due to a higher binder performance 

grade and lower non-recoverable creep compliance. It also considerably increased the 

binder viscosity at 135C, which might cause a potential workability issue. Lastly, it had 

little effect to the creep stiffness, but it decreased the m-value, which would be detrimental 

to low-temperature cracking performance. However, adding age-hardened asphalt rubber 

binder had less negative impact on low-temperature cracking performance than adding age-

hardened conventional binder.  

• For mix design experimentation, low air-void content could be achieved without adjusting 

the binder content for mixes containing RRAP, but only one mix met the specification limit, 

and the other three mixes had air-void contents lower than the specification limit. The low 

air-void contents further led to high percentage of VFA.  

• Adding RRAP to HMA-DG had similar effects to those observed in binder test results, with 

an apparent increase in the mix stiffness at low reduced frequencies (corresponding to high 

temperatures), but a decrease in the mix stiffness at high reduced frequencies 

(corresponding to low temperatures). Based on the changes in mix stiffness, adding RRAP 

to HMA-DG improves the rutting resistance and decreases the risk of low-temperature 

cracking. 

• The RLT test results indicated that adding RRAP to HMA-DG improves the rutting 

performance. 

• The flexural beam fatigue test results indicated that mixes containing RRAP are better at 

resisting high tensile strain loadings than mixes containing RAP. The pavement fatigue 

mechanistic analysis results confirmed the findings from the flexural beam fatigue test 

results.  
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Additional conclusions were made based on the results presented in this chapter: 

The FAM mix test results showed that adding 25 percent RRAP to the HMA-DG increased 

the stiffness by up to 14 times that of the control, but the full-graded mix test results with 

the same RRAP content showed an increase only up to 2.5 times that of the control mix. 

Also, the FAM mix test results did not show any stiffness reduction at high frequencies for 

the mixes containing RRAP as those showed in the full-graded mixes containing RRAP. 

These differences were expected considering that the extracted and recovered binder from 

the retained 2.36 mm sieve RRAP was softer than that the extracted and recovered binder 

from the passing 2.36 mm sieve RRAP. Based on these findings, FAM mix testing cannot 

be used for evaluating the rheological properties of full-graded asphalt mixes containing 

RRAP, because the fine and coarse portions of RRAP materials have very different 

rheological properties. This observation was consistent to the literature survey. 
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7 INFLUENCE OF RECLAIMED ASPHALT PAVEMENT ON 

PERFORMANCE-RELATED PROPERTIES OF GAP-GRADED 

RUBBERIZED HOT MIX ASPHALT 

This chapter describes the influence on performance-related properties of incorporating reclaimed 

asphalt pavement (RAP) into gap-graded rubberized hot mix asphalt (RHMA-G). The goal of this 

chapter is to answer the following questions:  

1. What are the changes in the rheological properties of asphalt rubber binders when blended 

with age-hardened conventional binders? 

2. What are the challenges and uncertainties of using RAP in RHMA-G and specifically, does 

it have negative effects on fatigue and low-temperature cracking resistance due to the 

relatively high stiffness of the aged binder in RAP compared to that of the virgin asphalt 

rubber binder? 

An RHMA-G Superpave mix design, asphalt binder testing, FAM mix testing, and full-graded 

RHMA-G mix testing were conducted to evaluate the changes in asphalt binder and asphalt mix 

properties to address the above questions. Asphalt binder testing was conducted with a dynamic 

shear rheometer (DSR) and a bending beam rheometer (BBR). Fine aggregate matrix (FAM) mix 

testing was conducted with a solid torsion bar in a DSR, and full-graded RHMA-G mix testing was 

conducted in an asphalt mixture performance tester (AMPT) and flexural fatigue machine. The test 

results were analyzed to determine the effects of adding RAP in RHMA-G.   

7.1 Experimental Plan 

7.1.1 Materials 

The materials used in the experiment described in this chapter included a PG 64-16 unmodified 

asphalt binder, one virgin aggregate (crushed alluvial), one RAP source, two sizes of crumb rubber 

crushed at ambient temperature (passing the 2.0 mm [#10] and 1.18mm [#16] sieves), and one type 
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of extender oil, which is used to promote the reaction of the asphalt binder and crumb rubber by 

supplying additional light aromatic fractions of asphalt.  

Both crumb rubber and extender oil are standard materials used by contractors to produce asphalt 

rubber binder. A conventional unmodified PG 64-16 binder was used as the base binder for 

preparing the asphalt rubber binder and artificially age-hardened binder used in the evaluation of 

binders and FAM mixes. Representative samples of RAP passing the 9.5 mm sieve were sent to a 

contracting laboratory for extraction (AASHTO T 164) and recovery (ASTM D1856) of the binder 

and aggregates. The binder content of the RAP was determined to be 4.5 percent by total weight 

of the mix. The high, intermediate, and low PG of the recovered binders were determined to be 

106°C, 42°C, and warmer than -10°C, respectively, according to AASHTO M 323.  

 Asphalt Rubber Binder Preparation 

The asphalt rubber binder was prepared in the laboratory according to Caltrans specifications. It 

contained 18 percent crumb rubber by weight of total binder and four percent extender oil by weight 

of the base binder. The crumb rubber with a maximum particle size of 2.0 mm was mixed into the 

base binder with the extender oil at a temperature of 195±3°C for one hour. Based on the Caltrans 

specifications, there is a minimum 25 percent high natural rubber content requirement for crumb 

rubber used in asphalt rubber binder. High natural rubber is a scrap tire rubber product with 40-48 

percent natural rubber and at 50 percent rubber hydrocarbon. The mixing speed was set at 

2,000 rpm for the first 30 minutes and then reduced to 1,000 rpm for a further 30 minutes. During 

mixing, the rubber particles swell due to absorption of light fractions from the asphalt binder and 

extender oil, causing smaller particles to break down and become digested in the binder phase. The 

mixing apparatus used for preparing the asphalt rubber binder is shown in Figure 7.1. 
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Figure 7.1 Mixing apparatus for asphalt rubber binder. 

 

7.1.2 Test Methods 

 Asphalt Binder Testing Approach 

Figure 7.2 shows the binder testing experimental plan. All tests were conducted on asphalt rubber 

binder, aged-hardened conventional binder, and blended binders, which were prepared by 

uniformly hand-blending the unaged asphalt rubber binder and the artificially age-hardened 

conventional binder with a glass rod in three proportions (85:15, 75:25 and 60:40 by total weight 

of the binder). These proportions were chosen based on the use of RAP in dense-graded HMA 

since there is limited information on the use of RAP in RHMA-G, and at the time of this dissertation 

work Caltrans does not allow any RAP in RHMA-G. Considering that the goal of this part of study 

was to evaluate the changes in the rheological properties of asphalt rubber binder with different 

age-hardened conventional binder contents. The test results of these three blended binders could 

provide the sufficient information for analysis.  
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In addition, the effects of extender oil on asphalt rubber binders were also investigated in study. 

Two types of asphalt rubber binders were tested in this study, and the main difference between 

these two types of asphalt rubber binders is the use of extender oil or not.  

 

Figure 7.2 Binder testing experimental plan. 

 

Rotational viscosity tests, Superpave performance grade determination, frequency sweep tests, and 

multiple stress creep and recovery (MSCR) tests were conducted to investigate the effects of age-

hardened conventional binder on the rheological and performance-related properties of asphalt 

rubber binder. These tests were performed on asphalt rubber binder, artificially age-hardened 

conventional binder, and blended binder samples with a dynamic shear rheometer (DSR) and a 

bending beam rheometer (BBR). The concentric cylinder geometry was used instead of the 

standard parallel plate geometry for asphalt rubber binder samples in line with the findings 

discussed in Chapter 5. 
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 Full-Graded Mix Testing Approach 

The changes in the viscoelastic and performance-related properties, such as mix stiffness, 

resistance to rutting and fatigue cracking of RHMA-G when RAP is added were evaluated with 

full-graded mix tests. Figure 7.3 shows the full-graded mix testing experimental plan. The 10 

percent RAP content was selected based on the RHMA-G mix design results. The test methods and 

brief details about the test parameters used to conduct performance-related testing on RHMA-G 

are listed in Table 7.1. 

 

Figure 7.3 Full-graded mix testing experimental plan. 
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Table 7.1 Full-graded Mix Performance-Related Tests 

Test Replicates 
Air Voids 

(%) 
Test Variables 

Stiffness 

• Dynamic modulus 

- AASHTO TP79 and 

AASHTO PP61 

2 7.0  0.5 

• 1 temperature sequence (4, 20, and 

45°C) 

• 1 stress level1 

• No confining pressure 

Stiffness 

• Beam flexural frequency sweep 

- AASHTO T321 

2 7.0  0.5 

• 3 temperatures (10, 20, 30°C) 

• 2 strain levels (100 µstrain at 10 

and 20°C; 200 µstrain at 30°C) 

Rutting Performance 

• Flow number from repeated load 

triaxial results 

- AASHTO TP79 

2 7.0  0.5 

• 1 temperature (52°C) 

• 1 deviator stress (600 kPa) 

• 1 contact stress (30 kPa) 

• No confining pressure 

Cracking Performance 

• Beam fatigue 

- AASHTO T321 

3 7.0  0.5 

• 1 temperature (20°C) 

• 3 strain ranges (high, medium, 

low) 

• 1 frequency (10 Hz) 
1  Deviator stress controlled by AMPT software to get 75 to 125 µstrain peak-to-peak axial strain 

 

The dynamic modulus and flexural stiffness of the control RHMA-G and RHMA-G with 10 percent 

RAP binder replacement were measured to determine the changes in the viscoelastic properties. 

The rutting resistance of the different RHMA-G was compared based on repeated load triaxial test 

results for the number of repetitions to a given permanent axial strain and flow number. The fatigue 

lives of the RHMA-G were calculated based on the flexural beam fatigue test results and 

mechanistic analyses, which analyzed the fatigue lives of the control RHMA-G and the RHMA-G 

with 10 percent RAP under four different pavement structure scenarios. 

 FAM Mix Testing Approach 

The changes in the rheological properties of FAM mixes when RAP is added were evaluated with 

FAM mix testing. Figure 7.4 shows the FAM mix testing experimental plan. Four types of FAM 

mixes were prepared and tested including a control mix without RAP, a mix with 10 percent field 

collected RAP (passing 2.36 mm), and two mixes with 10 and 15 percent simulated RAP. The 10 



 

  172 

percent RAP content was selected based on the RHMA-G mix design results. By testing the FAM 

mixes with simulated RAP, the test results could directly link to binder testing results with the 

artificially age-hardened binder. The FAM mix with 15 percent simulated RAP was also tested to 

investigate the effects of increasing RAP content on mix viscoelastic properties.    

 

Figure 7.4 FAM mix testing experimental plan. 

 

Rectangular FAM mix specimens were tested in a torsion-bar fixture mounted in a DSR. Frequency 

sweep tests were performed to measure the complex shear modulus (|G*|) for a range of frequencies 

(0.1 Hz to 25 Hz) at three different temperatures (4°C, 20°C, and 40°C). The measured shear 

moduli were then used to construct FAM mix complex shear modulus master curves, which were 

then used to characterize the linear viscoelastic properties of asphalt mixes over a range of 

temperatures and frequencies, with a sigmoidal function. These master curves were used to 

evaluate the effects of RAP on the viscoelastic properties of FAM mixes.   
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7.2 Mix Design and Specimen Preparation 

7.2.1 Full-Graded Mix Design and Specimen Preparation 

A Caltrans Superpave mix design for RHMA-G with a nominal maximum aggregate size (NMAS) 

of 12.5 mm and for traffic of 3 million to 30 million equivalent single axle loads was used. The 

aggregate gradation of the RHMA-G is shown in Table 7.2, and Figure 7.5. The optimum binder 

content of the control RHMA-G (without RAP) was determined to be 8.5 percent by total weight 

of the mix.  

 
Table 7.2  RHMA-G Aggregate Gradation 

Sieve Size (mm) Sieve Size (mesh) Passing (%) Target Limits 

19.0 3/4" 100 100 

12.5 1/2" 97 90 - 98 

9.50 3/8" 87 83 -87 

4.75 No. 4 42 28 - 42 

2.36 No. 8 19 14 - 22 

1.18 No. 16 12 No limit 

0.60 No. 30 9 No limit 

0.30 No. 50 6 No limit 

0.15 No. 100 4 No limit 

0.075 No. 200 3 0 - 6 
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Figure 7.5 RHMA-G aggregate gradation curve. 

 

The mix design experimentation indicated that only up to 10 percent RAP content by binder 

replacement could be added while still meeting the gap-graded aggregate gradation requirements3. 

It is worth noting that the asphalt content of RHMA-G is considerably higher than HMA-DG. 

Given that the design asphalt content of the RHMA-G was 8.5 percent, and that the asphalt content 

of the RAP was only 4.5 percent, the RAP content was actually about 20 percent by mass.  

The total binder content in the RHMA-G with RAP including virgin asphalt rubber binder and 

reclaimed RAP binder was kept at 8.5 percent to facilitate comparison with the control mix. Table 

7.3 and Figure 7.6 show the RAP properties and aggregate gradation curve. The measured 

                                                 
3  Currently, the processed RAP materials are likely reclaimed from dense-graded mixes, having relatively high 

percentages of finer aggregates (74 percent passing the 4.75 mm [#4] sieve), much of which is not permitted in a gap-

gradation. 
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volumetric properties for the control RHMA-G and RHMA-G with 10 percent RAP along with the 

Caltrans specified volumetric requirements are shown in Table 7.4. All volumetric properties 

except air-void content were met for the RHMA-G with 10 percent RAP. It should be noted that 

maintaining mix volumetric parameters constant to compare mixes is very important. However, 

because of time limitation to fine-tune mix designs, mixed with constant VMA could not be 

prepared.  

Table 7.3 RAP Properties 

Asphalt Content (%) 

by Total Weight of Mix (TWM) 

4.5 

Gradation 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

12.5 1/2" 100 

9.50 3/8" 96.4 

4.75 No. 4 74.1 

2.36 No. 8 55.7 

1.18 No. 16 43.0 

0.60 No. 30 32.7 

0.30 No. 50 21.6 

0.15 No. 100 12.7 

0.075 No. 200 7.7 
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Figure 7.6 RAP gradation curve. 

 
 

Table 7.4 Volumetric Properties of the RHMA-G 

Mix 

Mix Volumetric Properties 

Pass? 
Air-Voids 

(%) 

VMA 

 (%) 

VFA* 

 (%) 

Dust 

Proportion* 

Caltrans specification 

limits 
4 18 – 23 Report only Report only 

RHMA-G control 

3.9 

4.3 

Avg.: 4.1 

20.5 

20.8 

Avg.: 20.7 

81.1 

79.5 

Avg.: 80.3 

0.4 

0.4 

Avg.: 0.4 

Yes 

RHMA-G with 10% 

RAP by binder 

replacement (20% RAP 

by mass)  

6.6 

6.9 

Average: 

6.8 

20.7 

21.0 

Average: 20.9 

68.3 

67.3 

Average: 67.8 

0.46 

0.46 

Average: 

0.46 

No 

*Calculated considering both RAP and virgin binder 

 

Aggregates were heated to 170°C for two hours, asphalt rubber binder in quart size cans was heated 

to 163°C for one hour, and RAP was heated to 110°C for one hour before mixing. The loose mix 

was then short-term aged for two hours at the compaction temperature of 163°C for the volumetric 
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mix design samples and four hours at 135°C for the performance-related testing samples, as 

recommended in AASHTO R 30. 

The mix design specimens were prepared in a gyratory compactor with 150 gyrations at 825 kPa 

pressure and 1.16° internal gyration angle. Specimens were held under pressure in the compaction 

mold for 30 minutes after gyrations were completed to prevent expansion of the specimen due to 

the rubber in the asphalt rubber binder. The performance-related testing specimens were prepared 

by using a rolling-wheel compactor for flexural modulus and flexural beam fatigue test specimens 

and using a gyratory compactor for dynamic modulus and repeated load triaxial test specimens. 

The compaction pressure, gyration angle, and squaring time for gyratory compacted performance 

related testing specimens were the same as those used for mix design specimens, but the mixes 

were compacted to a height of 175 mm instead of to a fixed number of gyrations. Cylindrical 

specimens (100 mm in diameter and 150 mm high) were cored from the gyratory-compacted 

specimens and beams (380 mm long, 50 mm high and 63 mm wide) were cut from ingots 

compacted with a steel-wheel roller.  

7.2.2 FAM Mix Design and Specimen Preparation 

The FAM mix design and FAM mix specimen preparation procedures were similar to those 

discussed in Section 6.2.2 with some modifications on the NMAS and specimen geometry. The 

FAM mix properties and gradation curve are shown in Table 7.5 and Figure 7.7. For the FAM 

mixes containing RAP, the aggregate gradation and binder content were kept the same as the 

control mix. Thus, the difference in properties of FAM mixes would be attributed only to the 

influence of the aged binder.  
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Table 7.5 FAM Mix Properties 

Asphalt Content (%) 

by Total Weight of mix (TWM) 

11.6 

Gradation 

Sieve Size (mm) Sieve Size (mesh) Passing (%) 

4.75 No. 4 100 

2.36 No. 8 45 

1.18 No. 16 29 

0.60 No. 30 21 

0.30 No. 50 14 

0.15 No. 100 10 

0.075 No. 200 7 

 

 

Figure 7.7 FAM mix aggregate gradation curve. 
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maximum aggregate size in the mix (i.e., 2.36 mm) could potentially impact the variability of test 

results. Based on these limitations, the restriction on NMAS of the material for the FAM mix 

specimen production was relaxed to the 4.75 mm sieve from the 2.36 mm sieve. The larger size 

was, however, expected to introduce more variability into the test results. 

A specific approach was developed to determine the optimum binder content of FAM mixes of 

RHMA-G because the initial trials found that the fine particles could not be effectively separated 

from the mix since they agglomerate due to the increased adhesiveness of the asphalt rubber binder. 

Consequently, a surrogate mix was prepared using the base binder plus extender oil, but without 

the addition of any rubber particles. The optimum binder content of this mix was recalculated to 

be 7.0 percent using Equation 7.1.  

𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑏𝑖𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑚𝑖𝑥

= 𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑎𝑠𝑝𝑎ℎ𝑙𝑡 𝑟𝑢𝑏𝑏𝑒𝑟 𝑏𝑖𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 × (100– 𝑟𝑢𝑏𝑏𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡) 

Equation 7.1 

 

The mixing temperature for the surrogate mix was the same as that used for full-graded RHMA-G 

(170°C). The surrogate mix was short-term aged for two hours at the compaction temperature 

(163°C) and then riced and sieved to obtain representative samples passing the 4.75 mm sieve. The 

binder content of this sieved material was determined using an ignition oven test (AASHTO T 308) 

as it was considered to provide a more accurate indication of the total binder content than solvent 

extraction. The required amount of asphalt rubber binder for the FAM mix was calculated to be 

11.6 percent by total weight of the mix using Equation 7.2.  
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𝐵𝑖𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝐹𝐴𝑀 𝑚𝑖𝑥 =  
𝐵𝑎𝑠𝑒 𝑏𝑖𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 #4 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑚𝑖𝑥 

(100– 𝑟𝑢𝑏𝑏𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)
 

Equation 7.2 

 

Rectangular FAM specimens (10 mm × 10 mm × 50 mm), cut from the larger gyratory-compacted 

specimen were used in this study instead of the more commonly used cylindrical cored specimens. 

Coring was not an option for the rubberized mixes, given the excessive rubber build-up on the core 

bit as a result of induced heat caused by friction during coring. The FAM mix specimen preparation 

and testing setup are shown in Figure 7.8 through Figure 7.10. 

 

 

Figure 7.8 FAM specimen preparation: cutting. 
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Figure 7.9 FAM specimen preparation: gluing studs (left side shows standard cylindrical FAM specimen, 

right show rectangular FAM specimen). 

 

 

Figure 7.10 FAM mix testing: mounting specimen. 
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7.3 Test Results and Discussions 

7.3.1 Asphalt Binder Test Results 

The DSR test results using the concentric cylinder system and the BBR test results are listed in 

Table D.1 through Table D.6 in Appendix D and summarized in the following sections. The 

abbreviations used in the figures and tables are as follows: 

+ AR-I = asphalt rubber binder type I (AR-I consists of only asphalt and crumb rubber) 

+ AR-I-AAH = artificially age-hardened AR-I 

+ AR-II = asphalt rubber binder type II (AR-II consists of asphalt, crumb rubber, and extender oil) 

+ AR-II-AAH = artificially age-hardened AR-II 

+ AR-II-15% = blended binder with 85 percent asphalt rubber binder and 15 percent artificially age-

hardened conventional PG 64-16 binder 

+ AR-II-25% = blended binder with 75 percent asphalt rubber binder and 25 percent artificially age-

hardened conventional PG 64-16 binder 

+ AR-II-40% = blended binder with 60 percent asphalt rubber binder and 40 percent artificially age-

hardened conventional PG 64-16 binder 

+ Ext = Extender Oil 

+ Con = conventional unmodified PG 64-16 binder 

+ Con-AAH = artificially age-hardened conventional PG 64-16 binder 

+ Con-Ext = conventional unmodified PG 64-16 binder with 4 percent extender oil by weight of 

binder  

+ Con-Ext-AAH = artificially age-hardened conventional unmodified PG 64-16 binder with 4 

percent extender oil by weight of binder  

 

 

 Viscosity 

The viscosities of unaged conventional binders, unaged asphalt rubber binders, age-hardened 

conventional binders, age-hardened asphalt rubber binders, unaged asphalt rubber binders 

containing different percentages of age-hardened conventional binders, and extender oil were 

measured at 135°C. The viscosity measurements are shown in Figure 7.11 and Figure 7.12.  The 

following observations were made: 
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• Modification of asphalt binder with crumb rubber significantly increased the viscosity of 

the binder (i.e., about 24 times for the asphalt rubber binder and about 35 times for the 

asphalt rubber binder without extender oil), as expected.  

• 40 hours aging in a PAV at 100°C increased the viscosities of the conventional binder, the 

conventional binder with 4 percent extender oil, and the asphalt rubber binder (AR-II) by 

about 3.8, 3.3 and 1.5 times respectively, compared to the unaged binders. This observation 

revealed the positive effect of extender oil and crumb rubber in reducing the aging potential 

of the binder since the same conventional PG 64-16 binder was used as the base for the 

asphalt rubber binder. 

• Replacing 15, 25, and 40 percent of the asphalt rubber binder with age-hardened 

conventional binder decreased the viscosity of the asphalt rubber binder by approximately 

27, 40, and 56 percent, respectively. These results indicated that the adding RAP in new 

RHMA-G can potentially improve the workability. 

• The change in viscosity of unaged asphalt rubber binder by adding age-hardened 

conventional binder can be modeled using decreasing exponential functions as shown in 

Figure 7.12. 
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Figure 7.11 Viscosity of all binders at 135°C. 

 

 

Figure 7.12 Viscosity of unaged blended binders at 135°C. 
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 Performance Related Properties at High In-Service Temperatures 

The high performance grading temperature of unaged binders and RTFO aged binders was 

measured at high in-service temperatures with concentric cylinder geometry on a DSR. The results 

are shown in Figure 7.13 and Figure 7.14. The following observations were made:  

• Replacing 15, 25, and 40 percent of the asphalt rubber binder with age-hardened 

conventional binder caused little change for the high performance grading temperature. 

These results were expected given that the unaged asphalt rubber binder and the artificially 

age-hardened conventional binders coincidentally had similar high performance grade. 

Overall, the effects of age-hardened binder on the high performance grade of asphalt rubber 

binder should be minor if these two binders have similar high performance grade. 

• The rubber modification process increased the high performance grading temperature of 

the conventional binder from 68.7ºC to 98.3ºC for AR-I binder and 92.3ºC for AR-II binder. 

The high performance grading temperature of the AR-II binder was 6ºC lower than the AR-

I, and this difference was mainly caused by the extender oil that was added in the AR-II 

binder. 

• Consistent results were obtained for both the unaged and RTFO aged binders. 
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Figure 7.13 High performance grade of all unaged binders. 

 

 

Figure 7.14 High performance grade of unaged and RTFO-aged blended binders. 
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• The complex shear modulus of the blended binder increased exponentially with increasing 

age-hardened conventional binder content. The phase angle of the asphalt rubber binder 

also increased with increasing age-hardened conventional binder content, but at a much 

slower rate (linearly). The complex shear modulus of the asphalt rubber binder was only 

one-third of the age-hardened conventional binder even though they had similar high 

performance grade.  This indicates that the age-hardened conventional binder would be less 

susceptible to rutting than the asphalt rubber binder.  

• The use of extender oil reduced the complex shear modulus of the unaged asphalt rubber 

binder and conventional binder by 39 percent, and it reduced the complex shear modulus 

of the age-hardened asphalt rubber binder and conventional binder by 32 and 46 percent, 

respectively. It also increased the phase angle of the unaged asphalt rubber binder and 

conventional binder by seven and one percent, respectively and it increased the phase angle 

of the age-hardened asphalt rubber binder and conventional binder by eight and six percent, 

respectively. These trends were as expected considering that the extender oil is mainly the 

light fractions that have little viscosity. 

• The complex shear modulus and phase angle of the RTFO-aged binder specimens followed 

similar trends to those recorded for the unaged binders. 
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Figure 7.15 Complex shear modulus of all unaged binders at 64ºC. 

 

 

Figure 7.16 Phase angle of all unaged binders at 64ºC. 
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Figure 7.17 Complex shear modulus of blended binders at 64ºC. 

 

 

Figure 7.18 Phase angle of blended binders at 64ºC. 
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Frequency sweep tests were conducted to understand the linear viscoelastic behavior of blended 

binders. Tests were performed over a range of frequencies from 0.1 to 100 rad/sec at 64°C. The 

relationship between complex shear modulus and phase angle (i.e., black space diagram) for the 

unaged and RTFO aged blended binders are shown in a black space diagram in Figure 7.19 and 

Figure 7.20. The following observations were made: 

• The bell-shaped curve for the AR-II binder (Figure 7.19) in a black space diagram clearly 

shows the viscoelastic solid behavior influenced by the presence of the rubber particles. 

However, when the stiffer RAP binder was added, its properties dominated those of the 

rubber, resulting in the blended binder tending to behave more toward a viscoelastic liquid 

material, with the curve shifting to the right and gradually removing the bell-shape trend. 

• After RTFO aging, all the curve shifted toward the up-left corner in a black space diagram. 

The stiffness of the blended binders increased, and the phase angle of the blended binders 

decreased. The bell-shaped curve for the asphalt rubber binder disappeared due to the 

increase in binder stiffness. The results indicated that adding age-hardened conventional 

binder to asphalt rubber binder increased the modulus but decreased the phase angle of 

asphalt rubber binder. The increase in modulus is positive to resist rutting at high in-service 

temperatures. 



 

  191 

  

Figure 7.19 Frequency sweep test results of unaged composite binders at 64 ºC. 

 

 

Figure 7.20 Frequency sweep test results of RTFO aged composite binder 64 ºC. 
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MSCR tests were conducted on the RTFO-aged binders to evaluate rutting resistance properties 

based on AASHTO T 350. The test results are shown in Figure 7.21 and Figure 7.22 and indicate 

the following: 

• The average percent recovery (APR) of the asphalt rubber binder decreased slightly with 

increasing age-hardened conventional binder content under both stress levels, and the rate 

of decrease was faster at the 0.1 kPa stress level. 

• The non-recoverable creep compliance (Jnr) of the asphalt rubber binder increased slightly 

with increasing age-hardened conventional binder content at 0.1 kPa stress levels but 

decreased slightly with increasing age-hardened binder content at 3.2 kPa stress levels. It 

should be noted that the absolute values of Jnr barely changed under both stress levels and 

that the coefficient of determination (R2) was less than 0.5 under both stress levels.   

• The addition of the age-hardened conventional binder to the asphalt rubber binder did not 

appear to cause any significant changes to rutting behavior. This result was consistent to 

the result of high performance grading temperature but was contradicted to the result of 

measured binder moduli at 64ºC.  
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Figure 7.21  Non-recoverable creep compliance and average percent recovery of blended binders at 64ºC and 

0.1 kPa. 

 

 

Figure 7.22 Non-recoverable creep compliance and average percent recovery of blended binders at 64ºC and 

3.2 kPa. 
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 Flexural Creep Stiffness at Low Temperature 

Blended binders with different quantities of age-hardened conventional binders were aged in a 

PAV for 20 hours at 100°C and then tested with a bending beam rheometer (BBR) to determine 

the low-temperature properties per AASHTO T 313. The BBR tests were performed at -6°C since 

the low performance grade of the base binder was -16°C. The measured creep stiffness (S) and m-

value are shown in Figure 7.23. However, the creep stiffness and m-value of the asphalt rubber 

binder could not be measured at -6°C since the binder was too soft at this temperature and the creep 

deflection was beyond the acceptable limit that could be measured and recorded by the test setup. 

The following observations were made: 

• The creep stiffness and m-value of the asphalt rubber binder could not be measured at -6°C 

since the binder was too soft at this temperature and the creep deflection was beyond the 

acceptable limit that could be measured and recorded by the test setup.  

• The rubber modification process significantly lowered the creep stiffness of the base binder 

(i.e., 99 MPa) at -6°C.  

• The blended binder creep stiffness increased, and the m-value decreased with increasing 

age-hardened conventional binder content.   

• In general, the test results indicated that adding age-hardened conventional binder is 

negative to low-temperature cracking performance.  
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Figure 7.23 Creep stiffness and m-value at -6ºC. 

 

7.3.2 FAM Mix Test Results 

Figure 7.24 and Figure 7.25 show the complex shear modulus master curves and the normalized 

modulus curves for the FAM mixes. The normalized modulus curves provide a better illustration 

of the effect of RAP on FAM mix behavior. The normalized curves were obtained by dividing the 

moduli of the FAM mixes containing RAP by the corresponding moduli of the control mixes at 

each respective frequency. The abbreviations used in the figures and tables are as follows: 

+ GG-C = rubberized gap-graded mix with no RAP 

+ GG-S-10% = rubberized gap-graded mix with 10 percent simulated RAP 

+ GG-S-15% = rubberized gap-graded mix with 15 percent simulated RAP 

+ GG-F-10% = rubberized gap-graded mix with 10 percent field-collected RAP 

 

The FAM test results are listed in Table D.7 and Table D.8 in Appendix D. The following 

observations were made: 

y = 1.0563x + 21.632
R² = 0.99537

y = -0.0009x + 0.3833
R² = 0.74579

0.3

0.32

0.34

0.36

0.38

0.4

0.0

20.0

40.0

60.0

80.0

100.0

0 20 40 60 80 100

m
-v

al
u

e

C
re

e
p

 S
ti

ff
n

e
ss

 (
M

P
a)

Age-Hardened Conventional Binder Content (%)

Creep Stiffness m-value



 

  196 

• The mix containing 10 percent simulated RAP had a similar stiffness to the control mix at 

low frequencies but had lower stiffness at high frequencies. However, when the simulated 

RAP content increased to 15 percent, the stiffness of the mix increased at least 1.5 times 

that of the control mix at low frequencies (less than 1 Hz) with the highest stiffness of 1.8 

times that of the control mix recorded at around 0.001 Hz. 

• Adding 10 percent field-collected RAP to the mix increased the stiffness at all frequencies.  

The effects were stronger at low frequencies, by up to twice that of the control mix 

(recorded at about 0.001 Hz), than at high frequencies.  

• The FAM mix with 10 percent field collected RAP was stiffer than with 10 percent 

simulated RAP. This outcome was expected because the extracted and recovered RAP 

binder was graded at PG 106+2, but the artificially age-hardened binder was only graded 

at PG 88-16. However, by increasing the RAP content, the FAM mix with 15 percent 

simulated RAP became as stiff as the RHMA-G with 10 percent field collected RAP. 

• Overall, similar trends were observed between binder test results and FAM mix test results 

on the changes in the rheological properties of asphalt rubber binders and FAM mixes. The 

modulus increased with the increase of RAP content, and the use of RAP increased the 

modulus of asphalt rubber binders and FAM mixes at all temperatures. 
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Figure 7.24 FAM mixes complex shear modulus master curves at 20ºC. 

 

 

Figure 7.25 FAM mixes normalized complex shear modulus master curves at 20ºC. 
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7.3.3 Full-Graded Mix Test Results 

 Dynamic and Flexural Modulus  

Figure 7.26 shows the AMPT dynamic modulus and beam fatigue flexural modulus master curves 

for the RHMA-G, and Figure 7.27  shows the modulus curves normalized to the respective control 

mixes. The full-graded mix test results are listed in Table D.9 through Table D.12 in Appendix D. 

The following observations were made: 

• Adding RAP to the RHMA-G to replace 10 percent of the required binder increased the 

stiffness of the mix in both tests by up to twice that of the control mix at the lower frequencies 

(i.e., warmer temperatures), but the effect diminished with increasing frequency. 

• The increase in stiffness with addition of RAP followed similar trends to those observed in 

the FAM mix tests, with higher increases at lower frequencies (i.e., corresponding to higher 

temperatures). For both FAM and full-graded mixes, the addition of RAP increased the mix 

stiffnesses by approximately twice that of the control at 0.0001 Hz. 

• The AMPT-determined dynamic modulus was higher than the flexural modulus for both the 

control and RAP binder mixes, but the ratio of dynamic modulus to the flexural modulus for 

the control and RAP mixes was similar. Both the dynamic modulus and the flexural modulus 

master curves merged at very high and very low frequencies. The dynamic modulus was 

between 60 and 70 percent higher than the flexural modulus at the frequencies between 

1.0 Hz and 10 Hz, for both mixes. This result was expected considering the different modes 

of loading in the AMPT and four-point beam equipment. The AMPT dynamic modulus test 

is performed under compressive and shear loading, while the flexural modulus test is 

performed under tensile and compressive loading. Since asphalt is stiffer in compression than 

in tension, the dynamic modulus is expected to be higher than the flexural modulus (Harvey 

et al., 2014).  
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Figure 7.26 Full-graded mixes dynamic modulus and flexural modulus master curves at 20ºC. 

 

 

Figure 7.27 Full-graded mixes normalized dynamic modulus and flexural modulus master curves at 20ºC. 
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 Repeated Load Triaxial (Flow Number) Test 

Repeated load testing without confinement was used to assess the rutting resistance of the two 

rubberized mixes. The same AMPT specimens used for dynamic modulus testing were used for 

this testing to assess likely effects of RAP addition on permanent deformation. The test results are 

shown in Figure 7.28 and Figure 7.29. The following observations were made: 

• The RAP mix showed better rutting resistance at all three strain levels assessed, and it could 

withstand at least three times of repetitions to the given strain levels. 

• The incorporation of RAP to RHMA-G had a significant effect on the flow number (3-times 

higher than the control), indicating a considerable potential improvement in expected rutting 

performance 

• The evolution rate of cumulative permanent deformation with increasing loading cycles was 

fastest for the control mix. The rate decreased in the RAP mix, indicating a likely 

improvement in rutting performance. 

• Overall, rutting performance is highly correlated to the binder, FAM mix, or full-graded mix 

stiffnesses at high in-service temperatures. The binder modulus, FAM mix modulus, or 

dynamic modulus can all provide a good indication of the effects of RAP on rutting 

performance. However, the MCSR test results and the high temperature performance grade 

did not indicate any improvement on rutting performance by incorporating RAP in RHMA-

G.  Therefore, it is necessary to measure the binder or mix modulus at high in-service 

temperatures when evaluating the rutting performance of HMA/RHMA. 
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Figure 7.28 Flow number and number of cycles to 1, 3, and 5 percent permanent strain. 

 

 

Figure 7.29 Normalized flow number and number of cycles to 1, 3, and 5 percent permanent strain. 
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 Flexural Beam Fatigue Test 

The flexural beam fatigue test results are shown in Figure 7.30, and the following observations 

were made: 

• Beam fatigue models were considered to be appropriate based on the mostly high r-squared 

values of the model fitting and repeatability of the test results at each strain level. 

• The beam fatigue test results clearly showed that the use of RAP had a negative impact on 

fatigue performance when the cyclic loadings were smaller than 900 micro strain.  

 

Figure 7.30 Laboratory beam fatigue at a given strain models. 
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load traveling at 96 km/hour (with 700 kPa tire pressure) was used for the analysis. The RHMA-G 

mix stiffnesses were obtained from dynamic modulus master curves, and the mix stiffnesses for 

each pavement structure are shown in Table 7.7. Detailed calculations of the determination of 

RHMA-G mix stiffness are shown in Appendix D. The RHMA-G mix stiffness was determined 

based on the frequency of load applied to the HMA, with frequency calculated from the vehicle 

speed and thickness of the HMA layer.  The maximum tensile strain at the bottom of the RHMA-

G layer under the single axle load was obtained with Openpave software (Lea, 2014) based on 

multi-layer elastic theory, and the results are shown in Table 7.8. 

Table 7.6 Pavement Structures for Asphalt Fatigue Analysis 

 

Table 7.7 RHMA-G Mix Stiffness for Pavement Structures Used for Fatigue Analysis 

HMA Mix Type 
Mix Stiffness (MPa) 

GG-C GG-F-10% 

Structure I 5,151 6,511 

Structure II 4,893 6,228 

Structure III 4,695 6,011 

Structure IV 4,435 5,723 

 

Layer 

Structure I Structure II 

Thickness 

(mm) 

Stiffness 

(MPa) 

Poisson's 

Ratio 

Thickness 

(mm) 

Stiffness 

(MPa) 

Poisson's 

Ratio 

RHMA-G 50 * 0.35 100 * 0.35 

Base 300 250 0.35 300 250 0.35 

Subgrade Infinite 75 0.35 Infinite 75 0.35 

Layer 

Structure III Structure IV 

Thickness 

(mm) 

Stiffness 

(MPa) 

Poisson's 

Ratio 

Thickness 

(mm) 

Stiffness 

(MPa) 

Poisson's 

Ratio 

RHMA-G 200 * 0.35 300 * 0.35 

Base 300 250 0.35 300 250 0.35 

Subgrade Infinite 75 0.35 Infinite 75 0.35 

*The RHMA-G mix stiffnesses at 20C are shown in Table 7.7. Stiffnesses were obtained from 

dynamic modulus testing results.  
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Table 7.8 Maximum Tensile Strain at the Bottom of HMA Surface Layer Under a Single Axle 80 kN Load 

Structure 
Maximum Microstrain 

GG-C GG-F-10% 

I 335 315 

II 248 219 

III 173 149 

IV 92 78 

 

The mechanistic analysis results are shown in Figure 7.31 and Figure 7.32. The following 

observations were made: 

• Adding 10 percent RAP by binder replacement (20 percent RAP by mass) to the mix 

significantly reduced the fatigue life of the mix in all four pavement structures, thereby 

potentially negating the benefits of selecting RHMA-G as an overlay or surface layer to retard 

the rate of reflection cracking.  

 

 

Figure 7.31 Fatigue life of the RHMA-G surface layer. 
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Figure 7.32 Normalized fatigue life of RHMA-G surface layer. 
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• The binder test results indicated that adding age-hardened binder to asphalt rubber binder 

(Type II) increased the binder modulus at both high and low in-service temperatures. The 

increase in modulus improves the rutting resistance but decreases the low-temperature 

cracking resistance.  

• The mix design experimentation indicated that only up to 10 percent RAP content by binder 

replacement could be added while still meeting the gap-graded aggregate gradation 

requirements.  

• Similar to binder test results, adding RAP to RHMA-G appears to increase the stiffness at all 

reduced frequencies (corresponding to all temperatures), and the influence of adding RAP to 

RHMA-G on increasing mix stiffness is stronger at high temperatures than at low 

temperatures.  

• Based on the repeated load test results and flexural beam test results, adding RAP to RHMA-

G mixes improves rutting performance but diminishes cracking performance, thereby 

potentially reducing the benefits of selecting RHMA-G as an overlay to retard the rate of 

reflection cracking. About 90 percent reduction in fatigue lives was observed in the fatigue 

analyses when adding 10 percent RAP by binder replacement (20 percent by weight of mix) 

in RHMA-G.  

Additional conclusions were made based on the results presented in this chapter: 

• Rubber modification reduced the aging susceptibility of asphalt binders. After extended 

PAV aging for 40 hours at 100°C, smaller changes were observed in the rheological 

properties of asphalt rubber binders than conventional binders.  

• Adding artificially age-hardened conventional binder to asphalt rubber binder barely 

changed the high performance grading temperature, indicating little impact to rutting 

performance. This result was expected considering that the high PG temperatures of the 
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age-hardened conventional binder and asphalt rubber were similar. MSCR test results also 

indicated that adding age-hardened conventional binder had little effect to rutting 

performance. However, these two results were not consistent with the binder modulus 

measured at 64°C, FAM mix test results, and full-graded mix test results, which were all 

indicated that adding RAP to RHMA-G could improve rutting performance. The RLT test 

results also indicated a significant improvement on rutting performance. Therefore, 

determining the rutting performance only based on the high performance grade or MSCR 

test results is not sufficient. It is necessary to include other performance-related testing 

results.  
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8 EFFECTS OF REST PERIODS ON ASPHALT FATIGUE 

PERFORMANCE CONSIDERING ASPHALT THIXOTROPY AND 

OTHER BIASING EFFECTS 

This chapter describes the investigation of non-linearity, asphalt thixotropy, self-heating, self-

cooling, and steric hardening under continuously cyclic loadings and rest periods on asphalt binder 

specimens and asphalt fine aggregate matrix (FAM) mix specimens with a dynamic shear 

rheometer (DSR). The goal of this chapter is to answer the following proposed questions: 

1. How should the thixotropic softening and recovery of asphalt binder be characterized?  

2. What are the rates of asphalt microstructure breakdown and buildup? 

3. How do the loading amplitude and the duration of the rest period affect the rate of 

breakdown and buildup?  

4. Is it possible to verify the thixotropic phenomenon in asphalt mixes? 

5. What are the correlations between asphalt binder thixotropy and asphalt mix thixotropy? 

6. How does asphalt thixotropy affect the fatigue performance of asphalt mixes when rest 

periods are introduced?  

The investigation of rest periods on asphalt fatigue performance included two phases. Phase one 

was to characterize asphalt thixotropic softening and recovery under continuous cyclic loadings 

and alternatively with rest periods on asphalt binder specimens and to identify the parameters that 

affect the rate of microstructure breakdown and buildup. An asphalt microstructure model was 

developed based on the literature survey and experimental results. Phase two was to verify the 

existence of the thixotropic phenomenon in asphalt mixes and to establish correlations between 

asphalt binder thixotropy and asphalt mix thixotropy.  
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8.1 Experimental Plan 

8.1.1 Materials  

Table 8.1 lists the materials tested in this chapter, which included two PG 64-16 unmodified asphalt 

binders, one PG 64-28 polymer modified binder, one PG 64-28 tire rubber modified binder, and 

one virgin aggregate source. All materials were provided from local suppliers in northern 

California.  

The polymer-modified and tire rubber-modified binders were selected to investigate the effects of 

polymer modification or tire rubber modification on asphalt thixotropy. Two same performance 

grade unmodified binders from two different refineries were selected to investigate the effects of 

binder chemical composition on asphalt thixotropy.  

It should be noted that only the unmodified binders were used to prepare FAM mix specimens 

since the main objective of this chapter was to verify the existence of thixotropic behavior in asphalt 

mixes. This objective could be achieved with testing the mixes with unmodified binders.  

Table 8.1 Summary of the Materials Used in Chapter 8  

Virgin Binder Grade Aggregate 

4 1 

Two PG 64-16 binders 

One PG 64-28 PM 

One PG 64-28 TR  

 Crushed alluvial aggregate 

 

8.1.2 Test Methods 

 Asphalt Binder Testing Approach 

All thixotropy testing was conducted on RTFO-aged asphalt binder samples. Rheological 

properties were determined in a DSR with 8 mm parallel plate geometry with a 2 mm gap between 

the plates. The results presented in this study were the average of two replicates. 
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The thixotropic characteristics of asphalt binder are often characterized by conducting a three-stage 

strain-controlled laboratory thixotropy test. The initial stage is to obtain the rheological properties 

of the binder sample under small strain amplitude loadings that are within the fatigue endurance 

limit. The fatigue endurance limit is defined as the maximum strain level that does not cause fatigue 

damage. The second stage is the main loading stage where large strain amplitude loadings are 

applied to breakdown the microstructure4 of the binder sample. In the third stage, the same small 

strain amplitude loadings used in the first stage, are applied again to monitor the changes in the 

microstructure of the binder sample.  

The breakdown of asphalt microstructure decreases the modulus of the binder sample and the build-

up of asphalt microstructure increases the modulus of the binder sample. Fatigue damage also 

decreases the modulus of the binder sample, but it cannot be reversed. Fatigue damage is the 

formation of microcracking under repeatedly applied loads.  

The testing frequency was selected as 10 Hz for all asphalt binder tests conducted in this chapter 

since this frequency is commonly used in flexural beam fatigue test. Temperature sweep tests were 

conducted on asphalt binder samples to determine the testing temperatures for all four binders to 

achieve the desired initial moduli.  

Table 8.2 shows the binder thixotropy testing factors and factorial levels. The binder thixotropy 

tests were conducted under two initial moduli of 35 and 50 MPa to avoid the potential experimental 

                                                 
4 The chemical composition of asphalt includes a variety of molecules in different sizes, and this complex chemistry 

at the molecular level cause a considerable amount of the intermolecular associations which further lead to its 

microstructure.  
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artifact discovered by Anderson et al. (2001). They pointed out an issue while evaluating the fatigue 

performance of asphalt binder with the 8 mm parallel plate geometry setup. They observed two 

mechanisms that decreased the testing binder sample modulus under repeated shear loadings. The 

first mechanism is fatigue damage, which is associated with internal microdamage, and the second 

mechanism is edge fracture (or instability flow), which is an experimental artifact. Their test results 

indicated that the instability flow dominated the decrease in modulus when the binder modulus was 

between 5 and 15 MPa, but the fatigue mechanism dominated the decrease in modulus when the 

binder modulus was higher than 15 MPa. The trial thixotropy test results of this study indicated 

that edge fracture was still observed even with an initial modulus of 25 MPa; therefore, higher 

initial moduli were chosen for testing.  

Two loading durations (5,000 and 10,000 cycles) were selected to evaluate the effects of loading 

cycles on thixotropic recoverability. Two loading amplitude levels were selected for each initial 

modulus to evaluate the effects of loading strain level on the breakdown and buildup rates of the 

asphalt microstructure. The loading amplitude level was selected based on the amplitude sweep 

test results and trial test results.  

Lastly, rest periods were introduced into binder thixotropy tests with three different load-to-rest 

ratios. Figure 8.1 shows an example a loading scenario for binder thixotropy tests with rest periods. 

At the beginning, similar to regular thixotropy tests, small strain (0.1 percent) amplitude cyclic 

loadings are applied to the tested binder sample to obtain its initial rheological properties. The main 

loading stage includes ten 1,000-cycle sets of high strain amplitude cyclic loadings at 1.2 percent 

strain for an initial modulus of 50 MPa and 1.4 percent strain for an initial modulus of 35 MPa, 

followed by a 2,000-cycle set of small strain amplitude cyclic loadings at 0.1 percent strain. The 

strain amplitudes were chosen based on amplitude sweep test results. Small amplitude loadings are 
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used instead of real rest (i.e., no loading at all) to be able to track the stiffness recovery over the 

rest period.  The last stage is similar to the first stage, where small strain (0.1 percent) amplitude 

cyclic loadings are applied to the tested binder sample to monitor changes in rheological properties. 

Table 8.2 Factors and Factorial Levels Considered for Asphalt Binder Thixotropy Tests 

Factor Binder Type 

Initial 

Modulus 

(MPa) 

Loading 

Amplitude 

(% strain) 

Loading 

Duration 

(Cycles) 

Load-to-

Rest 

Ratio 

Factorial Level 

4 2 2 2 3 

PG 64-16 (A&B) 

PG 64-28PM 

PG 64-28TR 

35 

50 

1.0 and 1.2 

1.2 and 1.4  

5,000 

10,000 

1:2 

1:5 

1:8 

Note: The testing temperatures that resulted in the same initial modulus are shown in Table 

8.4. 

 

 

Figure 8.1 Example of a thixotropy test with 1:2 load-to-rest ratio. 
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 Fine Aggregate Matrix Mix Testing Approach 

Cylindrical FAM mix specimens were tested in a dynamic mechanical analyzer (DMA) mounted 

in a DSR. Thixotropy tests were performed on these specimens to measure the complex shear 

modulus and phase angle.  

The FAM mix thixotropy test is similar to the binder thixotropy test with a three-stage loading 

scenario. Small strain amplitude cyclic loadings strain (less than 0.01 percent) are applied to the 

FAM specimens at the first stage to obtain the rheological properties of the FAM mix specimen. 

The second stage is the main loading stage with large strain amplitude cyclic loadings applying to 

the FAM mix specimens for 10,000 cycles. The last stage is similar to the first stage with small 

strain amplitude loadings to keep monitoring the changes in the rheological properties of the FAM 

mix specimen. For FAM mix thixotropy test with rest periods, the test setup is similar to the binder 

thixotropy test with rest periods but with different loading amplitude.  

Table 8.3 shows the factors and factorials of FAM mix thixotropy testing. A partial factorial testing 

plan was developed for the FAM mixes since the objective of this part of the study was to verify 

the existence of thixotropic behavior in asphalt mixes and to identify if there is any correlation 

between the asphalt binder and mix thixotropic behavior. Since there is no concern about edge 

fracture for FAM specimens, the FAM thixotropy testing was conducted at 20C, which is 

commonly used in other asphalt fatigue tests, and the loading amplitude strain levels were selected 

based on the trial test results. The testing frequency of 10 Hz was also used for all FAM mix 

thixotropy testing.  
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Table 8.3 Factors and Factorial Levels Considered for FAM Mix Thixotropy Testing 

Factor Mix Type 

Test 

Temperature 

(Degree C) 

Loading 

Amplitude 

(% strain) 

Loading 

Duration 

(Cycles) 

Load-to-

Rest 

Ratio 

Factorial Level 

2 1 2 1 3 

PG64-16 A 

PG64-16 B 
20 

0.020 & 

0.025 

0.025 & 

0.032 

10,000 
1:5 

1:8 

 

 Asphalt Microstructure Model 

The binder test results and FAM mix test results were used to develop the asphalt microstructure 

model for asphalt thixotropy and other biasing effects. The decrease in asphalt binder and FAM 

mix modulus under loading was modeled with Equation 8.1, based on the asphalt thixotropy 

equation proposed by Shan et al. (88). Two modifications to their equation were made for better 

model fitting results based on the experimental test results in this study; namely inclusion of the 

loading strain amplitude and a model fitting parameter for the initial modulus. With Equation 8.1, 

the decrease in modulus due to microstructure breakdown can be predicted with a given loading 

strain amplitude and initial modulus, which is associated with the testing temperature and 

frequency. The fitting parameters of the asphalt microstructure models were obtained by 

performing least squares optimization with Microsoft Excel Solver©. 

𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑏𝑟𝑒𝑎𝑘 − 𝑑𝑜𝑤𝑛       = |𝐺0
∗| − 𝛾𝛼1𝑒𝛼2𝑛𝐿

𝛼3
|𝐺0

∗|𝛼4 

Equation 8.1 

 where, 

  |𝐺0
∗| = initial modulus before loading  

  𝛾 = loading strain amplitude  

  𝑛𝐿 = number of loading cycles (10 cycles per second) 
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  𝛼1, 𝛼2, 𝛼3, 𝑎𝑛𝑑 𝛼4 = model fitting parameters 

 

The increase in asphalt binder and FAM mix modulus during rest periods was modeled with 

Equation 8.2 for asphalt thixotropy and other biasing effects, based on Equation 8.1 and the 

experimental observations in this study. An exponential equation with a maximum value was 

selected to model the increase in modulus during rest periods. The loading strain amplitude during 

the microstructure breakdown stage and the initial modulus before loading, and the modulus of the 

tested samples or specimens before resting were all selected as the input parameters to the 

microstructure build-up model. Note that small strain amplitude loadings were applied during the 

rest periods to monitor the changes in modulus.  

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑏𝑢𝑖𝑙𝑑 − 𝑢𝑝 

= 𝛽1𝛾
𝛽2|𝐺0

∗|𝛽3|𝐺1
∗|𝛽4(1 − 𝑒𝛽5𝑛𝑅

𝛽6) 

Equation 8.2 

where, 

  |𝐺0
∗| = initial modulus before loading 

  |𝐺1
∗| = modulus before resting 

  𝛾 = loading strain amplitude during the microstructure breakdown stage 

  𝑛𝐿 = number of resting cycles (10 cycles per second) 

  𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝑎𝑛𝑑 𝛽6 = model fitting parameters 

8.2 Mix Design and Specimen Preparation 

8.2.1 FAM Mix Design and Specimen Preparation 

A dense-graded FAM mix with an NMAS of 2.36 mm was used in this chapter, which is the same 

as the FAM mix design with no RAP used in Chapter 6.2.2. The optimum binder content and 

aggregate gradation of the FAM mix is shown in Table 6.6, and the aggregate gradation curve is 
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shown in Figure 6.6. The binder content of the FAM mixes was kept the same to facilitate 

comparison between two mixes. The FAM specimen preparation followed the UCPRC FAM mix 

specimen preparation approach in previous studies (Alavi et al., 2014; Alavi et al., 2015; Alavi et 

al., 2016). 

8.3 Test Results and Discussions 

8.3.1 Asphalt Binder Test Results 

 Temperature and Amplitude Sweep Test Results  

Temperature sweep tests were conducted to determine the test temperatures for all tested binders.  

The test results are shown in Figure 8.2 and indicate that the binder stiffness increases substantially 

with a decrease in test temperature. The R-squared values of the trend lines were over 0.99, which 

showed an excellent correlation between the binder temperature and stiffness. Table 8.4 shows the 

test temperatures of each binder with initial moduli of 35 and 50 MPa, which were estimated with 

the obtained trend line equations. Note that the test temperatures of the PM and TR binders were 

extrapolated. Even though all the tested binders had the same high performance grade (64C), there 

were considerable differences between the modified and unmodified binders with regard to the test 

temperatures to produce the same initial moduli of 35 or 50 MPa. For example, the difference 

between the test temperatures of the PG 64-28 TR binder and the PG 64-16 A binder was about 

18C.  
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Figure 8.2 Temperature sweep test results of all tested binders.  

 

Table 8.4 Estimated Test Temperature for all Tested Binder 

Binder / Temperature (C) 
Initial Modulus (MPa) 

35 50 

PG 64-16 A 18.2 15.2 

PG 64-16 B 15.2 12.2 

PG 64-28 PM 8.2 5.4 

PG 64-28 TR -0.1 -3.5 
Note: The temperatures of the PM and TR binders were extrapolated. 

 

Amplitude sweep tests were conducted to determine the loading strain amplitude for asphalt 

thixotropy tests. The binder moduli were normalized to 35 and 50 MPa to facilitate the comparison 

between the tested binders. The test results are shown in Figure 8.3 and Figure 8.4 and indicated 

that the decrease in modulus for PG 64-28 TR binder was the greatest compared to other binders 

with increasing loading strain amplitude. The decreases in modulus for both PG 64-16 binders were 

similar with increasing loading strain amplitude. Overall the decrease in binder modulus was higher 

for materials with higher initial modulus under the same strain level regardless of binder type. 
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Table 8.5 shows the energy levels and strain levels at 10 percent reduction in binder modulus. As 

expected, the results indicated that the dissipated energy was much higher with higher initial binder 

modulus. It should be noted that the strain levels at 10 percent reduction in binder modulus of the 

PG 64-28 TR binder were smaller than the other three binders. This result showed that tire rubber 

modification significantly changed asphalt binder microstructure. 

 

Figure 8.3 Amplitude sweep test results with an initial modulus of 35 MPa. 
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Figure 8.4 Amplitude sweep test results with an initial modulus of 50 MPa. 

 

Table 8.5 Strain Levels and Dissipated Energy at 10 Percent Reduction in Binder Modulus 

Binder Type 

Initial Modulus 

35 MPa 50 MPa 

Strain (%) Dissipated Energy (kPa) Strain (%) Dissipated Energy (kPa) 

PG 64-16 A 1.09 94 1.24 157 

PG 64-16 B 0.96 66 1.24 149 

PG 64-28 PM 0.85 53 1.24 147 

PG 64-28 TR 0.75 36 0.96 80 

 

 Thixotropy Test Results 

The binder thixotropy test results are shown in Figure 8.5 to Figure 8.6. The binder complex shear 

modulus (|G*|) was measured every 10 seconds throughout the test. The normalized complex shear 

moduli of the tested binders were obtained by dividing the moduli of the tested binder samples by 

the corresponding initial moduli of the tested binder samples and scaling to 35 MPa at the beginning 

of the main loading stage to facilitate the comparison between different binders.  

10

20

30

40

50

60

0.01 0.10 1.00 10.00

|G
*|

 (
M

P
a)

Strain (%)

PG 64-16 A PG 64-16 B PG 64-28 PM PG 64-28 TR



 

  220 

The following observations were made based on the changes in binder modulus over the full 

thixotropy test: 

• During the first stage, the binder modulus of most of the tested binders increased slightly 

under small strain amplitude regardless of the initial modulus. The increase in modulus was 

mainly caused by steric hardening. 

• During the second stage, the binder modulus decreased sharply at the beginning, but rate of 

decrease reduced with increasing cycles. Given that the loading strain was 10 to 14 times 

higher in the second stage than in the first stage, the sudden change in modulus was 

expected due to the effects of nonlinearity. Meanwhile, the high strain amplitude also 

increased the dissipated energy of the tested binder sample considerably, which likely 

raised the internal temperature of the tested binder sample. Both nonlinearity and self-

heating would contribute to the sharp decrease in binder modulus at the beginning of the 

main loading stage.  However, the effects of nonlinearity and self-heating could not be 

separated since the binder sample was too small to measure its internal temperature 

accurately. After the sudden drop at the beginning, the binder modulus decreased 

continuously under high strain loadings, caused by thixotropic softening, damage, or a 

combination of both. If the decrease in modulus can fully recover under rest periods, no 

damage is introduced into the tested sample, and the decrease in modulus is only caused by 

thixotropic softening. If not, the decrease in modulus is caused by both thixotropic softening 

and damage.  

• During the last stage, the binder modulus increased sharply in the beginning, but the rate of 

increase in modulus slowed down over cycles, which is almost the opposite image of the 

second stage. The sudden increase in modulus was caused by both nonlinearity and self-



 

  221 

cooling, and the continuous increase in modulus was caused by thixotropic recovery and 

steric hardening.  

 

Figure 8.5 Binder thixotropy test results with an initial modulus of 35 MPa.  

 

 

Figure 8.6 Binder thixotropy test results with an initial modulus of 50 MPa.  
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Figure 8.7 through Figure 8.10 show the decrease in modulus of all tested binders during the main 

loading stage. The following observations were made: 

• A sharp initial drop in modulus after the first 100 cycles was found in all tested samples 

regardless of its initial modulus or loading strain amplitude. Depending on the initial 

modulus, loading strain amplitude, and binder type, the decrease in modulus of the initial 

drop ranged from 3 to 7 MPa (8 to 14 percent of its initial modulus).  

• After the initial drop in modulus, the binder modulus kept decreasing by another 2 to 8 MPa 

(6 to 16 percent of its initial modulus) over the remaining loading cycles at a much slower 

rate. The rate of decrease was dependent on the initial modulus, loading strain amplitude, 

loading duration, and binder type.  

• Both initial modulus and loading strain amplitude affected the rate of decrease in modulus. 

Higher initial modulus or strain amplitude caused a faster rate of decrease in modulus as 

expected. Generally, the decrease in modulus curves were similar in shape across the 

different binders, but the rate of decrease differed.  

• The rate of decrease in modulus was the fastest for the PG 64-28 TR binder and the slowest 

for the PG 64-16 A binder. Both PG 64-16 binders had relatively similar rates of decrease 

in modulus, and they are quite different compared to the polymer and tire rubber modified 

binders.  
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Figure 8.7 Binder thixotropy test results during the main loading stage with an initial modulus of 35 MPa. 

 

 

Figure 8.8 Binder thixotropy test results during the main loading stage with an initial modulus of 50 MPa. 
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Figure 8.9 Binder thixotropy test results during the main loading stage with 1.2 percent strain and with total 

of 5,000 loading cycles. 

 

 

Figure 8.10 Binder thixotropy test results during the main loading stage with 1.2 percent strain and with total 

of 10,000 loading cycles. 
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Figure 8.11 to Figure 8.14 show the decrease in modulus of asphalt binder samples during the main 

loading stage without the first 100 loading cycles. The purpose of removing the first 100 cycles 

was to eliminate the effects of nonlinearity and self-heating, so the effects of thixotropic softening 

on decreasing binder modulus could be directly compared between the different binders. The 

following observations were made: 

• After removing the first 100 loading cycles during the main loading stage, there was no 

more sharp drop in modulus. The binder modulus continued to decrease another 2 to 8 MPa 

after the first 100 load cycles due to thixotropic softening or the combination of thixotropic 

softening and damage.  

• Both initial modulus and loading strain amplitude were found to affect the rate of decrease 

in modulus. Higher initial modulus or higher strain amplitude caused a faster decrease in 

modulus. 

• The rates of decrease in modulus of the PG 64-16 A, PG 64-16 B, and PG 64-28 PM binders 

are relatively slow compared to the PG 64-28 TR binder, which could be caused by the 

softer crumb rubber particles.  

• The PG 64-16 A binder with an initial modulus of 50 MPa showed an inflection point at 

around 4,500 cycles. The rate of decrease in modulus of the PG 64-16 A binder was initially 

slower between 100 to 4,500 cycles than the PG 64-16 B binder, but it accelerated at around 

4,500 cycles. This inflection point indicates the introduction of fatigue damage to the tested 

binder sample.  
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Figure 8.11 Binder thixotropy test results during the main loading stage without the first one hundred loading 

cycles with an initial modulus of 35 MPa. 

 

 

Figure 8.12 Binder thixotropy test results during the main loading stage without the first one hundred loading 

cycles with an initial modulus of 50 MPa. 
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Figure 8.13 Binder thixotropy test results during the main loading stage without the first one hundred cycles 

with 1.2 percent strain with total of 5,000 loading cycles. 

 

 

Figure 8.14 Binder thixotropy test results during the main loading stage without the first one hundred cycles 

with 1.2 percent strain with total of 10,000 loading cycles. 

 

0

4

8

12

16

0 1000 2000 3000 4000 5000

D
e

cr
e

as
e

 in
 |

G
*|

 (
M

P
a)

Number of Cycles

PG 64-16 A (50MPa) PG 64-16 B (50MPa) PG 64-28 PM (50MPa) PG 64-28 TR (50MPa)

PG 64-16 A (35MPa) PG 64-16 B (35MPa) PG 64-28 PM (35MPa) PG 64-28 TR (35MPa)

0

4

8

12

16

0 2000 4000 6000 8000 10000

D
e

cr
e

as
e

 in
 |

G
*|

 (
M

P
a)

Number of Cycles

PG 64-16 A (50MPa) PG 64-16 B (50MPa) PG 64-28 PM (50MPa) PG 64-28 TR (50MPa)

PG 64-16 A (35MPa) PG 64-16 B (35MPa) PG 64-28 PM (35MPa) PG 64-28 TR (35MPa)



 

  228 

Figure 8.15 to Figure 8.18 show the increase in binder modulus during the last stage with small 

strain loading.  The following observations were made: 

• A sharp increase in modulus (between 3 and 7 MPa) was observed in the first 100 cycles 

for all tested binder samples regardless of testing conditions. After this increase, the binder 

modulus kept increasing for another 2 to 9 MPa in the remaining cycles at a much slower 

rate.  

• The increase in modulus was dependent on the initial modulus, loading strain amplitude, 

loading duration, and binder type. Higher initial modulus, loading strain amplitude, and 

longer loading duration led to a faster increase in modulus. 

• The PG 64-28 TR binder had the fastest rate of increase in modulus during the rest periods 

followed by the PG 64-28 PM binder, PG 64-16 B binder, and lastly the PG 64-16 A binder, 

and these results were the opposite image of the main loading stage. The PG 64-28 TR 

binder had the fastest rates of increase and decrease in modulus, and these results were 

probably caused by the softer and more elastic crumb rubber particles. 

• Wobbly lines were observed during the last stage compared to the main loading stage, and 

these were probably due to the maximum resolution of the test equipment under small strain 

loadings being reached.  
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Figure 8.15 Binder thixotropy test results during the recovery stage with an initial modulus of 35 MPa at the 

beginning of the main loading stage. 

 

 

Figure 8.16 Binder thixotropy test results during the recovery stage with an initial modulus of 50 MPa at the 

beginning of the main loading stage. 
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Figure 8.17 Binder thixotropy test results during the recovery stage with 1.2 percent strain and the total of 

5,000 loading cycles during the main loading stage. 

 

 

Figure 8.18 Binder thixotropy test results during the recovery stage with 1.2 percent strain and the total of 

10,000 loading cycles during the main loading stage. 
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Figure 8.19 to Figure 8.22 show the increase in binder modulus during the last stage after the first 

100 cycles. The purpose of not including the measurement from the first 100 cycles was to 

eliminate the effects of nonlinearity and self-cooling, so the effects of thixotropic recovery and 

steric-hardening on increasing binder modulus could be directly characterized. The following 

observations were made: 

• Binder modulus kept increasing for another 2 to 9 MPa from the 100th loading cycle to the 

25,000th loading cycle. The rate of increase in modulus was dependent on the initial 

modulus, loading strain amplitude, loading duration, and binder type. Higher initial 

modulus, higher loading strain amplitude, and longer loading duration contributed to a 

faster increase in modulus. 

• These test results indicate that the increase and decrease in binder modulus during loading 

and unloading were affected by the effects of nonlinearity, thixotropy, self- heating and 

cooling, and steric hardening.  

• The PG 64-28 TR binder had the fastest rate of increase in binder modulus during the rest 

period compared to the other binders, and the PG 64-28 PM binder had the second fastest 

rate of increase in modulus followed by the PG 64-16 B binder.  The PG 64-16 A binder 

had the slowest rate of increase in modulus.  
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Figure 8.19 Binder thixotropy test results during the recovery stage without the first one hundred cycles with 

an initial modulus of 35 MPa at the beginning of the main loading stage. 

 

 

Figure 8.20 Binder thixotropy test results during the recovery stage without the first one hundred cycles with 

an initial modulus of 50 MPa at the beginning of the main loading stage. 
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Figure 8.21 Binder thixotropy test results during the recovery stage without the first one hundred cycles with 

1.2 percent strain and the total of 5,000 loading cycles during the main loading stage. 

 

 

Figure 8.22 Binder thixotropy test results during the recovery stage without the first one hundred cycles with 

1.2 percent strain and the total of 10,000 loading cycles during the main loading stage. 
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Figure 8.23 shows the binder thixotropy test results with no rest, 1:2, 1:5, and 1:10 load-to-rest ratios.  It is 

difficult to compare the test results with this plot since all the lines are overlapping each other.  

Figure 8.24 demonstrates the concept of plotting with only thixotropic softening. First, construct a 

decrease in modulus envelope (green dash line) with all the measurements of the first high strain 

amplitude loading stage and the last measurements of the remaining high strain amplitude loading 

stages. Second, remove all the small strain amplitude cycles. By doing so, the binder thixotropy 

test results with different load-to-rest ratios can be compared directly.  

 

Figure 8.23 Example of binder thixotropy test results with different load-to-rest ratios. 
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Figure 8.24 Concept of plotting thixotropic softening without recovery.  

 

Figure 8.31 to Figure 8.28 show the binder thixotropy test results with different load-to-rest ratios. 

All four binders were tested with initial moduli of 35 and 50 MPa, and the strain amplitude was 

1.4 percent for the tested binder samples with an initial modulus of 35 MPa and 1.2 percent for the 

tested binder samples with an initial modulus of 50 MPa. The following observations were made: 

• The introduction of rest periods to thixotropy tests reduced the rate of decrease in modulus 

under high strain amplitude loadings. More extended rest periods generally led to a smaller 

decrease in modulus. However, the effects of load-to-rest ratio on modulus decreasing rate 

were dependent on initial modulus and binder type. Rest period had stronger impacts on the 

modified binders that the changes on the rates of decrease in modulus were more obvious 

than unmodified binders. This result was expected given that polymers and rubber have 

good recoverability under relatively higher strain levels.  
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• The application of rest period to binder thixotropy tests indicated a 20 to 40 percent 

recovery in binder modulus over the 10,000 cycle high strain amplitude loadings. 

 

Figure 8.25 Thixotropy test results of PG 64-16 A binder with different load-to-rest ratios with an initial 

modulus of 35 MPa. 

 

 

Figure 8.26 Thixotropy test results of PG 64-16 A binder with different load-to-rest ratios with an initial 

modulus of 50 MPa. 
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Figure 8.27 Thixotropy test results of PG 64-16 B binder with different load-to-rest ratios with an initial 

modulus of 35 MPa. 

 

 

Figure 8.28 Thixotropy test results of PG 64-16 B binder with different load-to-rest ratios with an initial 

modulus of 50 MPa. 
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Figure 8.29 Thixotropy test results of PG 64-28 PM binder with different load-to-rest ratios with an initial 

modulus of 35 MPa. 

 

 

Figure 8.30 Thixotropy test results of PG 64-28 PM binder with different load-to-rest ratios with an initial 

modulus of 50 MPa. 
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Figure 8.31 Thixotropy test results of PG 64-28 TR binder with different load-to-rest ratios with an initial 

modulus of 35 MPa. 

 

 

Figure 8.32 Thixotropy test results of PG 64-28 TR binder with different load-to-rest ratios with an initial 

modulus of 50 MPa. 
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8.3.2 FAM Mix Test Results 

The FAM mix thixotropy test results at 20C are shown in Figure 8.33. The complex shear modulus 

and phase angle of the FAM mixes were measured every 10 seconds throughout the test. It should 

be noted that the initial modulus for these two types of FAM mixes was quite different at 20C for 

both mixes since the modulus of the PG 64-16 A binder was about 40 percent higher than the 

modulus of the PG 64-16 B binder. The initial modulus of the mix with PG 64-16 A binder was 

about 2,600 MPa, and the initial modulus of the mix with PG 64-16 B binder was about 1,700 MPa 

tested at the same frequency (10 Hz) and temperature. This observation was consistent with the 

binder test results. The complex shear moduli of the FAM mixes were normalized to their 

corresponding moduli at the beginning of the second stage for better comparison between these 

two mixes. The following observations were made based on the changes in FAM mix modulus 

over the whole thixotropy test: 

• During the first stage with low strain loading, a two to three percent decrease in modulus 

was observed due to thixotropic softening. This observation was different from the binder 

test results since binder steric hardening increased the binder modulus during the first stage. 

• During the second stage with high strain loading, a sharp decrease in mix modulus was 

observed in the first one hundred cycles, and then the rate of decrease in mix modulus 

slowed down over the remaining high strain amplitude loading cycles.  

• During the last stage with low strain loading, a sharp increase in mix modulus was observed 

in the first one hundred cycles, and then the rate of decrease in mix modulus slowed down 

over the remaining small strain amplitude loading cycles.  

• Overall, the changes in modulus over the full thixotropy test were similar to the binder 

thixotropy test results.  
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Figure 8.33 FAM mix thixotropy test results at 20C. 
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• Similar to binder test results, the decrease in modulus caused by nonlinearity and self-

heating was more instantaneous compared to the decrease in modulus caused by thixotropic 

softening and damage.  

• The effects of nonlinearity, self-heating, thixotropic softening, and damage were all 

dependent on the loading strain amplitude and binder type. Higher loading strain amplitude 

led to faster mix modulus decreasing rate. The decrease in mix modulus was higher for 

mixes containing PG 64-16 A binder than mixes containing PG 64-16 B binder; however, 

the initial moduli of mixes containing PG 64-16 A binder were about 900 MPa higher than 

mixes containing PG 64-16 B binder. The big difference between the initial modulus of 

these two binders was expected considering that the modulus of the PG 64-16 A binder was 

about 40 percent higher than the PG 64-16 B binder at 20C. This test result also indicated 

that the decrease in mix modulus was dependent on initial modulus.  

  

Figure 8.34 FAM mix thixotropy test results during the loading stage at 20C.  
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Figure 8.35 Normalized FAM mix thixotropy test results during the loading stage at 20C.  

 

  

Figure 8.36 FAM mix thixotropy test results during the loading stage without the first 100 loading cycles at 

20C. 
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Figure 8.37 Normalized FAM mix thixotropy test results during the loading stage without the first 100 loading 

cycles at 20C. 
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modulus (100 to 150 MPa), and thixotropic recovery contribute to another 50 percent of 

total increase in mix modulus (100 to 150 MPa). 

• The decrease in FAM mix modulus caused by nonlinearity and self-heating did not fully 

recover; however, the decrease in binder modulus caused by nonlinearity and self-heating 

completely recovered.  

• The rate of increase in mix modulus caused by nonlinearity and self-cooling was faster than 

the rate of increase in mix modulus caused by thixotropic recovery. 

• The effects of nonlinearity, self-cooling, and thixotropic recovery were all dependent on 

loading strain amplitude and binder type. Higher loading strain amplitude led to faster rate 

of increase in mix modulus.  

  

Figure 8.38 FAM mix thixotropy test results during the recovery stage at 20C. 
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Figure 8.39 Normalized FAM mix thixotropy test results during the recovery stage at 20C. 

 

  

Figure 8.40 FAM mix thixotropy test results during the recovery stage without the first 100 cycles at 20C. 
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Figure 8.41 Normalized FAM mix thixotropy test results during the recovery stage without the first 100 cycles 

at 20C. 
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Figure 8.42 Normalized PG 64-16 A mix test results with different load-to-rest ratios during loading cycles at 

20C.   

 

 

Figure 8.43 Normalized PG 64-16 B mix test results with different load-to-rest ratios during loading cycles at 

20C.   
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Based on above test results, the following conclusions were made: 

• The effect of rest periods on asphalt fatigue performance are mainly due to thixotropic 

softening and recovery but not other biasing effects. Therefore, the thixotropic softening 

range and the required time for thixotropic recovery are the main parameters that need to 

be considered while determining the fatigue performance of asphalt mixes. 

• The presence of polymer or tire rubber in asphalt binder changes its microstructure. The 

rates of increase and decrease in modulus of modified binders are faster than conventional 

binders. This result indicated that the asphalt mixes with modified binders might have 

faster recovery under more intense traffic loading, which are ideal to use in high traffic 

roads.  

• Currently, a shift factor is applied to flexural beam fatigue test results to somewhat 

compensate the effects of rest periods. By incorporating rest periods in the flexural beam 

fatigue test or calibrating the shift factor based on asphalt thixotropic characteristics, the 

asphalt fatigue performance can be better estimated.  

8.3.3 Asphalt Microstructure Modeling Results 

The asphalt binder microstructure breakdown and build-up modeling results are shown in Figure 

8.44 through Figure 8.51. Table 8.6 and Table 8.7 show the fitting parameters of each binder of 

Equation 8.1 and Equation 8.2, respectively. The following observations were made: 

• Both the proposed asphalt microstructure breakdown and build-up models reasonably 

predicted the change in binder modulus due to asphalt thixotropy and other biasing effects, 

such as nonlinearity, self-heating and -cooling, and steric hardening with a given loading 

strain amplitude, initial binder modulus before loading, and binder modulus after loading. 
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• The decrease in modulus caused by fatigue damage could not be predicted with the asphalt 

microstructure breakdown model based on the modeling results of the PG 64-16 A binder. 

• The 3 values indicated that the breakdown rates of the polymer-modified and tire rubber-

modified binders under cyclic loadings were faster than the unmodified PG 64-16 binders, 

which could be caused by the polymers and tire rubbers affecting the binder microstructure.  

• The modeling results indicated that both increase or decrease in binder modulus due to 

asphalt thixotropy and other biasing effects would eventually reach a plateau value, and this 

value is dependent on loading strain amplitude, initial binder modulus before loading, 

binder modulus after loading, and binder type.  

 

 

Figure 8.44 Asphalt binder microstructure breakdown modeling results with an initial modulus of 50 MPa 

under 1.0 percent loading strain amplitude. 
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Figure 8.45 Asphalt binder microstructure breakdown modeling results with an initial modulus of 50 MPa 

under 1.2 percent loading strain amplitude. 

 

 

Figure 8.46 Asphalt binder microstructure breakdown modeling results with an initial modulus of 35 MPa 

under 1.2 percent loading strain amplitude. 
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Figure 8.47 Asphalt binder microstructure breakdown modeling results with an initial modulus of 35 MPa 

under 1.4 percent loading strain amplitude. 

 

 

Figure 8.48 Asphalt binder microstructure build-up modeling results with an initial modulus of 50 MPa under 

1.0 percent loading strain amplitude. 
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Figure 8.49 Asphalt binder microstructure build-up modeling results with an initial modulus of 50 MPa under 

1.2 percent loading strain amplitude. 

 

 

Figure 8.50 Asphalt binder microstructure build-up modeling results with an initial modulus of 35 MPa under 

1.2 percent loading strain amplitude. 
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Figure 8.51 Asphalt binder microstructure build-up modeling results with an initial modulus of 35 MPa under 

1.4 percent loading strain amplitude. 

 

Table 8.6 Asphalt Binder Microstructure Breakdown Model Fitting Parameters 

Binder  
Model Fitting Parameters 

1 2 3 4 

PG 64-16 A -0.295 -0.908 0.015 0.889 

PG 64-16 B -0.226 -0.803 0.017 0.941 

PG 64-28 PM -0.261 -0.796 0.026 0.909 

PG 64-28 TR -0.433 -1.191 0.029 0.816 

 

Table 8.7 Asphalt Binder Microstructure Build-up Model Fitting Parameters 
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The asphalt FAM mix microstructure breakdown and build-up modeling results are shown in 

Figure 8.52 and Figure 8.53, respectively. Table 8.8 and Table 8.9 show the fitting parameters of 

both mixes of the microstructure models. The following observations were made: 

• Both the proposed asphalt microstructure breakdown model and build-up model could 

reasonably predict the change in FAM mix modulus caused by nonlinearity, self-heating, 

self-cooling, and thixotropy with a given loading strain amplitude and initial modulus 

before loading. It should be noted that the 4 and 3 model fitting parameters, were set to 

one since the FAM mix tests were conducted at a constant temperature of 20C. Also, 4 

was set to zero since there was only one loading duration for FAM mix tests. 

• Similar to the binder microstructure modeling results, the change in FAM mix modulus 

caused by nonlinearity, self-heating, self-cooling, thixotropic softening, and thixotropic 

recovery would reach a plateau value depending on the loading strain amplitude and binder 

type.  

  

Figure 8.52 Asphalt FAM mix microstructure breakdown modeling results at 20C. 
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Figure 8.53 Asphalt FAM mix microstructure build-up modeling results at 20C. 

 

Table 8.8 Asphalt FAM Mix Microstructure Breakdown Model Fitting Parameters at 20C 

Mix 
Model Fitting Parameters 

1 2 3 4 

Mix with PG 64-16 A -0.433 -3.606 0.007 1 

Mix with PG 64-16 B -0.226 -1.803 0.015 1 
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8.4 Conclusions and Recommendations 

The effects of rest periods on asphalt fatigue performance with the consideration of asphalt 

thixotropy and other biasing effects were evaluated with asphalt binder and FAM mix tests. The 

following conclusions were drawn to address the proposed questions:  

Questions: 

1. How should the thixotropic softening and recovery of asphalt binder be characterized?  

2. What are the rates of asphalt microstructure breakdown and buildup? 

3. How do the loading amplitude and the duration of the rest period affect the rate of 

breakdown and buildup?  

4. Is it possible to verify the thixotropic phenomenon in asphalt mixes? 

5. What are the correlations between asphalt binder thixotropy and asphalt mix thixotropy? 

6. How does asphalt thixotropy affect the fatigue performance of asphalt mixes when rest 

periods are introduced?  

 

• The effects of nonlinearity, self-heating, self-cooling, and thixotropic softening and 

recovery were observed in the three-stage thixotropy tests for both asphalt binders and FAM 

mixes. The three-stage thixotropy test can be used to characterize the thixotropic softening 

and recovery of asphalt.  

• Higher loading amplitude and initial modulus lead to faster breakdown and buildup of the 

asphalt microstructure.  

• The introduction of rest periods had positive effects on asphalt fatigue performance, by 

slowing down the rate of decrease in modulus. Overall, the influence of rest periods was 

dependent on the initial modulus (or temperature), loading amplitude, binder type, and load-

to-rest ratio.  
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• The developed asphalt microstructure models could reasonably predict the change in both 

asphalt binder, and FAM mix modulus caused by asphalt thixotropy and other biasing 

effects.  

• The developed asphalt binder microstructure model could be directly used to model FAM 

mixes test results indicated that there is a strong correlation between asphalt binder 

thixotropy and FAM mix thixotropy. This finding further verified the existence of 

thixotropic phenomenon in asphalt mixes. 

• Asphalt thixotropic softening and other biasing effects control the first 10 to 15 percent 

decrease in stiffness for unmodified binders and 15 to 35 percent decrease in stiffness for 

modified binders under cyclic loadings, and this decrease in stiffness can be recovered with 

the introduction of rest periods. This means that most of the repeatedly loadings applied to 

test specimens within the thixotropic softening range do not caused any fatigue damage but 

only softening the materials. Thus, by providing sufficient rest periods within the 

thixotropic softening range can effectively improve asphalt fatigue performance. 

Additional conclusions were made based on the results presented in this chapter: 

• The increases or decreases in both binder and mix modulus caused by nonlinearity, self-

heating, and self-cooling were more spontaneous than those caused by thixotropy.  

• The improvement in asphalt fatigue performance from rest periods was mainly due to the 

effects of thixotropy and not other biasing effects. Therefore, asphalt thixotropy is the main 

parameter that needs to be considered while determining the fatigue performance of asphalt 

mixes. 
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• Both the thixotropic softening range and the required time for thixotropic recovery (i.e., 

rest periods) are needed to be considered in asphalt fatigue test and Mechanistic-Empirical 

(ME) design. 

• The autonomous vehicles and resultant truck platooning technologies can potentially 

reduce the following distance between vehicles, and the pavements will be subjected to 

more intense repeated loadings compared to current traffic loading. By selecting a binder 

with proper thixotropic characteristics, the impacts of shorter rest periods on asphalt fatigue 

performance can be potentially mitigated. 
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9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

9.1 Summary of Completed Tasks 

The following tasks were completed in this study: 

1. An alternative approach of binder blending charts with asphalt FAM mix testing was 

introduced at this point and partially validated.  

2. The binder selection guidelines for asphalt mixes containing RAP in AASHTO M 323 were 

evaluated. 

3. A modified testing geometry, concentric cylinder, on a dynamic shear rheometer (DSR) for 

evaluating asphalt rubber binder with rubber particles up to 2 mm in diameter was assessed.  

4. An asphalt rubber binder testing procedure with concentric cylinder geometry on a DSR 

for high-temperature performance grading was developed. 

5. The effects of incorporating RRAP to new HMA and RAP to new RHMA on mix design 

and performance-related properties were evaluated and characterized through laboratory 

binder tests, FAM mix tests, and full-graded mix tests.  

6. The effects of rest periods on asphalt fatigue performance were evaluated with the 

consideration of asphalt thixotropy and other biasing effects. An asphalt microstructure 

model was developed based on the experimental results.  

7. Conclusions and recommendations were provided, and future research needs were 

identified.  

9.2 Conclusions Regarding Questions to be Answered 

Question 1: How can the effects of RAP on virgin binder performance grading properties be 

characterized without extracting and recovering RAP binder from a mix?  
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Answer: An alternative test approach to binder blending charts was developed to characterize these 

effects. This approach predicts the performance grade of the blended binder within HMA 

containing RAP by backcalculating the blended binder moduli from measured FAM mix moduli 

with predictive models. The experimental results indicated that the proposed approach could 

estimate the blended binder intermediate and low performance grading temperatures within 3C 

of the measured blended binder performance grading temperatures. Even though the proposed 

approach is not as accurate as the blending chart method (within 2C), it is less time consuming, 

and it does not require to perform RAP binder extraction and recovery. Overall, the proposed 

approach provides both cost and environmental benefits.  

One issue with the alternative approach is that it cannot predict the high performance grade of the 

blended binder due to poor accuracy of the predictive models when predicting with low mix 

stiffness. However, considering that the high performance grade criterion is related to pavement 

rutting performance, which is not the main concern of adding RAP in new HMA, no further 

experiments were conducted to address this issue, and this issue should not be a problem for 

implementation of this approach.  

Question 2: What is the feasibility of using concentric cylinder geometry instead of parallel plate 

geometry in a DSR to measure the rheological properties of an asphalt rubber binder given the 

limitations of current Superpave PG binder test methods for asphalt binder with particles larger 

than 250 microns? 

Answers: The experimental results indicated that statistically similar test results could be obtained 

from testing the same conventional, polymer-modified, and tire rubber- modified binders with the 

concentric cylinder and parallel plate geometries in a DSR. Also, the test results obtained from 

testing asphalt rubber binders with three different crumb rubber particle size ranges (180 μm to 
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250 μm, 250 μm to 425 μm, and 425 μm to 850 μm), showed a strong correlation between the two 

testing geometries, but the correlation is continuously weakening with the increase of crumb rubber 

particle size among these three size ranges.  

Based on these test results, the concentric cylinder geometry is considered to be an appropriate 

alternative geometry to parallel plates for quantifying the properties of asphalt rubber binders and 

specifically for assessing the high-temperature performance properties of binders containing crumb 

rubber particles larger than 250 μm. The test results obtained with concentric cylinder geometry 

had similar variabilities as those obtained with parallel plate geometry regardless of binder type 

and aging condition. Also, the G*/sin(δ) values obtained with concentric cylinder geometry had 

similar precision as those obtained with parallel plate geometry according to AASHTO T 315. It 

should be noted that the concentric cylinder geometry requires a larger binder sample for testing 

and takes longer to complete the tests than parallel plate geometry. 

Question 3: What are the changes in the rheological properties of conventional binders when 

blended with age-hardened asphalt rubber binders, what are the changes in the rheological 

properties of asphalt rubber binders when blended with age-hardened conventional binders, and 

what are the mechanical and chemical reasons that cause these changes? 

Answers: The test results of adding age-hardened asphalt rubber binder to conventional binder 

indicated that the rutting performance was improved due to the increase in binder modulus at high 

temperatures and reduction in the non-recoverable creep compliance. However, it also increased 

the viscosity considerably at 135C, and it could cause a potential workability issue. Besides, it 

had little to no effect on creep stiffness due to softer crumb rubber particles, but it decreased the 

m-value, which is harmful to the low-temperature cracking performance. Overall, the binder test 
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results showed that adding age-hardened asphalt rubber binder is better than adding age-hardened 

conventional binder due to its advantages on low-temperature cracking performance.  

The test results from adding age-hardened binder to asphalt rubber binder indicated that the 

modulus of asphalt rubber binder increased at both high and low in-service temperatures. The 

increase in modulus at high in-service temperatures improves the rutting resistance, but the increase 

in modulus at low in-service temperatures decreases the low-temperature cracking resistance.   

Question 4: What are the changes in the performance-related properties of HMA when RRAP is 

used in the mix, and does HMA with RRAP perform better than HMA with RAP considering that 

the aged asphalt rubber binder in RRAP might have better performance than aged conventional 

binder from RAP? 

Answers: Adding RRAP to HMA-DG appears to increase the mix stiffness at low reduced 

frequencies but decrease the mix stiffness at high reduced frequencies, and these changes are ideal 

to resist rutting at high in-service temperatures and low-temperature cracking at low in-service 

temperatures. The RLT test results indicated that adding RRAP to HMA improved the rutting 

performance, which is consistent with the observations in binder test results. The flexural beam 

fatigue test results and the pavement fatigue mechanistic analysis indicated that mixes containing 

RRAP are better at resisting high tensile strain loadings than mixes containing RAP. Overall, HMA 

with RRAP does perform better than HMA with RAP.  

Question 5: What are the challenges and uncertainties of using RAP in RHMA and specifically, 

does it have negative effects on fatigue and low-temperature cracking resistance due to the 

relatively high stiffness of the aged binder in RAP compared to that of the virgin asphalt rubber 

binder? 
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Answers: Adding RAP to RHMA-G appears to increase the stiffness at all reduced frequencies 

(corresponding to all temperatures), and the increase in stiffness is higher at high temperatures than 

at low temperatures. The increase in stiffness at high in-service temperatures improves the rutting 

resistance, but the increase in stiffness at low in-service temperatures hurts the low-temperature 

cracking performance. The RLT results confirmed the benefits of adding RAP to RHMA-G on 

rutting performance; however, the flexural beam fatigue test results and the pavement fatigue 

mechanistic analysis showed that adding RAP to RHMA-G diminished the cracking performance, 

thereby potentially negating the benefits of selecting RHMA-G as an overlay to retard the rate of 

reflective cracking. About 90 percent reduction in fatigue lives was observed in the fatigue analyses 

when adding 10 percent RAP by binder replacement (20 percent by weight of mix) in RHMA-G.  

Question 6: How can the thixotropic softening and recovery of asphalt binder be appropriately 

characterized?  

Answers: The experimental test results indicated that asphalt thixotropic softening and recovery 

could be characterized with a three-stage thixotropy test. Asphalt microstructure breakdown is 

affected by nonlinearity, self-heating, thixotropic softening, and damage. Asphalt microstructure 

build-up is affected by nonlinearity, self-cooling, thixotropic recovery, and steric hardening. The 

rates of asphalt microstructure breakdown and build-up are dependent on the applied loading strain 

amplitude, initial modulus (or temperature), and binder type. Also, the rates of asphalt 

microstructure build-up are also dependent on the duration of rest periods. The developed asphalt 

microstructure models can be used to predict the change in both asphalt binder and FAM mix 

modulus. Generally, higher loading strain amplitude or initial modulus leads to faster modulus 

increasing and decreasing rates. Longer rest period also leads to faster modulus recovering rate. 

Question 7: How does asphalt thixotropy affect the fatigue performance of asphalt mixes?  
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Answers: Asphalt thixotropic softening and other biasing effects control the first 10 to 15 percent 

decrease in stiffness for unmodified binders and 15 to 35 percent decrease in stiffness for modified 

binders under cyclic loadings, and this decrease in stiffness can be recovered with the introduction 

of rest periods. This means that most of the repeated loadings applied to test specimens within the 

thixotropic softening range do not cause any fatigue damage but only cause softening of the 

materials. Thus, providing sufficient rest periods within the thixotropic softening range can 

effectively improve asphalt fatigue performance. The binder thixotropy test results showed that the 

rate of modulus decrease slows down when the rest periods are introduced to the tests. Longer rest 

periods typically leads to longer fatigue lives. The FAM mix thixotropy test results also indicated 

a positive effect of the rest periods on asphalt fatigue performance; however, the effects of rest 

periods on mixes are less pronounced than on binders. Lastly, both the thixotropic softening range 

and the required time for thixotropic recovery (i.e., rest periods) need to be considered in asphalt 

fatigue testing and Mechanistic-Empirical (ME) design.  

9.3 Recommended Future Work  

Any future study on these topics should include but not be limited to: 

1. Additional research on the alternative tests to the binder blending charts approach is 

required as follows: 

- Perform frequency sweep tests on PAV-aged binder samples and PAV-aged FAM 

mix specimens when estimating the intermediate and low PG temperatures.  This 

will eliminate the need for a PAV-aging shift factor.  

- Develop an alternative method for estimating high PG temperature and low PG 

temperature (with m-value).  
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2. Implement the alternative FAM testing approach as a QC/QA tool to evaluate the 

performance grade of the blended binder within asphalt mixes containing RAP in small 

projects.  

3. Investigate the effects of high RRAP content (40 percent binder replacement or higher) on 

the performance-related properties of new HMA.   

4. Additional research on the investigation of rest periods on asphalt fatigue performance is 

required as follows: 

- Investigate the effects of aging on asphalt thixotropy 

- Conduct FAM mix testing with more extended testing factors and factorial levels to 

further verify the asphalt microstructure model. 

- Incorporate rest periods in the flexural beam fatigue test or calibrate the fatigue shift 

factor based on asphalt thixotropic characteristics to better estimate the asphalt 

fatigue performance.  

- Develop implementation of the rest period findings in ME design. 
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APPENDIX A: DATA FROM CHAPTER 4  

Test results from the different tests are summarized in the following tables: 

• Table A.1: Volumetric Properties of the FAM Mixes 

• Table A.2: Superpave Performance Grade Results of the RAP Binders 

• Table A.3: Superpave Performance Grade Results of the PG 64-16 Virgin and Blended Binders 

• Table A.4: Superpave Performance Grade Results of the PG 58-28 Virgin and Blended Binders 

• Table A.5: Master Curve Fitting Parameters for the RTFO Aged Virgin and Blended Binders 

• Table A.6: Master Curve Fitting Parameters for the FAM Mixes 

 

Table A.1 Volumetric Properties of the FAM Mixes 

Mix 
RAP Content by 

Binder Replacement (%) 

Mix Volumetric Properties 

Air-Voids (%) VMA (%) VMA (%) 

PG 64-16 Control 0 

15 

25 

15 

25 

10.8 25.2 57.3 

PG 64-16 RAP-1-15% 11.1 25.3 56.3 

PG 64-16 RAP-1-25% 11.0 26.0 57.7 

PG 64-16 RAP-2-15% 11.8 20.0 41.1 

PG 64-16 RAP-2-25% 11.0 21.9 49.7 

PG 58-28 Control 0 

15 

25 

15 

25 

11.0 25.2 56.3 

PG 58-28 RAP-1-15% 11.1 26.4 58.0 

PG 58-28 RAP-1-25% 11.0 26.3 58.2 

PG 58-28 RAP-2-15% 10.6 21.2 50.0 

PG 58-28 RAP-2-25% 10.7 22.1 51.6 

 

 

Table A.2 Superpave Performance Grade Results of the RAP Binders 

Critical 

Temperature

(°C) 

Aging 

Condition 
Test Parameter RAP1 RAP2 

High 
Unaged 

RTFO-aged 

|G*|/sin()  1.00 kPa 

|G*|/sin()  2.20 kPa 

107.1 89.1 

109.2 95.9 

Intermediate 

RTFO- aged 

|G*|sin()  5000 kPa 48.6 43.3 

Low 
S(60)  300 MPa 

m-value  0.300 

-7.2 -7.9 

-2.4 -8.3 
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Table A.3 Superpave Performance Grade Results of the PG 64-16 Virgin and Blended Binders 

Binder PG 64-16 

Critical 

Temperature 

(°C) 

Aging 

Condition 

Test 

Parameter 
Virgin 

with 

15% 

RAP1 

Binder 

with 

25% 

RAP1 

Binder 

with 

15% 

RAP2 

Binder 

with 

25% 

RAP2 

Binder 

High 
Unaged 

RTFO-aged 

|G*|/sin()  

1.00 kPa 

|G*|/sin()  

2.20 kPa 

67.1 72.7 76.0 69.2 71.8 

66.9 73.2 77.3 70.2 73.7 

Intermediate 

RTFO- and 

PAV- aged 

|G*|sin()  

5000 kPa 
25.7 29.0 30.9 28.6 30.6 

Low 

S(60)  300 

MPa 

m-value  

0.300 

-22.5 -21.2 -20.1 -20.5 -19.0 

-22.3 -21.0 -20.2 -21.0 -18.3 

 

Table A.4 Superpave Performance Grade Results of the PG58-28 Virgin and Blended Binders 

Binder PG58-28 

Critical 

Temperature 

(°C) 

Aging 

Condition 

Test 

Parameter 
Virgin 

with 

15% 

RAP1 

Binder 

with 

25% 

RAP1 

Binder 

with 

15% 

RAP2 

Binder 

with 

25% 

RAP2 

Binder 

High 
Unaged 

RTFO-aged 

|G*|/sin()  

1.00 kPa 

|G*|/sin()  

2.20 kPa 

60.4 65.6 71.0 65.0 67.2 

61.0 66.3 72.7 65.4 69.7 

Intermediate 

RTFO- and 

PAV- aged 

|G*|sin()  

5000 kPa 
15.6 19.6 23.9 19.3 23.1 

Low 

S(60)  300 

MPa 

m-value  

0.300 

-31.1 -29.3 -27.0 -28.8 -25.9 

-31.9 -29.9 -25.2 -29.7 -24.4 
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Table A.5 Master Curve Fitting Parameters for the RTFO Aged Virgin and Blended Binders 

Binder 

Replacement 

(%) 

Binder ID 

Master Curve Fitting Parameters 

     C1 C2 

0 
PG 64-16 

PG 58-28 

-1.60 

-2.49 

7.66 

8.84 

-0.98 

-0.75 

-0.34 

-0.29 

0.18 

0.19 

18 

22 

147 

200 

15 

PG 64-16 with 15% RAP-1 

PG 64-16 with 15% RAP-2 

PG 58-28 with 15% RAP-1 

PG 58-28 with 15% RAP-2 

-1.87 

-1.59 

-2.75 

-2.68 

7.77 

7.69 

9.04 

8.94 

-1.20 

-1.10 

-0.88 

-0.85 

-0.37 

-0.34 

-0.29 

-0.31 

0.59 

0.17 

0.36 

0.43 

21 

19 

23 

23 

165 

147 

200 

200 

25 

PG 64-16 with 25% RAP-1 

PG 64-16 with 25% RAP-2 

PG 58-28 with 25% RAP-1 

PG 58-28 with 25% RAP-2 

-1.81 

-1.57 

-2.49 

-2.68 

7.83 

7.59 

8.58 

8.86 

-1.24 

-1.21 

-1.04 

-0.99 

-0.33 

-0.35 

-0.31 

-0.31 

0.44 

0.32 

0.49 

0.53 

21 

20 

24 

23 

165 

147 

200 

199 

 

Table A.6 Master Curve Fitting Parameters for the FAM Mixes 

Mix 
Master Curve Fitting Parameters 

     C1 C2 

PG 64-16 Control 3.90 

4.01 

4.23 

4.10 

4.21 

3.18 

3.24 

2.99 

3.20 

3.07 

-0.68 

-0.69 

-0.79 

-0.76 

-0.91 

-0.44 

-0.39 

-0.35 

-0.34 

-0.31 

0.20 

0.19 

-0.02 

-0.11 

-0.33 

16 

18 

20 

20 

19 

116 

127 

133 

137 

128 

PG 64-16 RAP-1-15% 

PG 64-16 RAP-1-25% 

PG 64-16 RAP-2-15% 

PG 64-16 RAP-2-25% 

PG 58-28 Control 3.92 

4.05 

4.20 

4.06 

4.09 

3.09 

3.27 

3.23 

3.17 

3.05 

-0.28 

-0.55 

-0.6 

-0.59 

-0.73 

-0.42 

-0.28 

-0.24 

-0.32 

-0.32 

0.2 

-0.37 

-0.51 

-0.27 

-0.25 

16 

20 

25 

19 

20 

137 

156 

194 

148 

154 

PG 58-28 RAP-1-15% 

PG 58-28 RAP-1-25% 

PG 58-28 RAP-2-15% 

PG 58-28 RAP-2-25% 
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APPENDIX B: DATA FROM CHAPTER 5 

Test results from the different tests are summarized in the following tables: 

• Table B.1: Test Results for Binder-Specific Conversion Factor:  Operator and Binder Source 

• Table B.2: Test Results for Binder-Specific Conversion Factor:  Operator and Binder Type 

• Table B.3: Test Results for Binder-Specific Conversion Factor:  Operator and Binder Source, Type 

and Grade 

• Table B.4: Test Results for Fixed Conversion Factor 

• Table B.5: Rubberized Binder:  Comparison of Concentric Cylinder and Parallel Plate 

 

Abbreviations in the tables are as follows: 

• Binder type 

+ Con = conventional 

+ PM = polymer-modified 

+ TR = tire rubber-modified 

• Aging condition 

+ Unaged 

+ RTFO = Rolling thin film oven-aged 

• Grinding method 

+ Amb = ambient 

+ Cryo = Cryogenic 

• DSR geometry 

+ CC = concentric cylinder 

+ PP-1= parallel plate with 1 mm gap 

+ PP-2 = parallel plate with 2 mm gap 

• Test parameter 

+ G* = Complex shear modulus 

+ δ = Phase angle 
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Table B.1 Test Results for Binder-Specific Conversion Factor:  Operator and Binder Source 

Operator 
Binder 

Type 

PG 

Grade 
Aging Condition 

Binder 

Source 
Geometry 

G* 

(kPa) 

δ 

(Degrees) 

G*/sin(δ) 

(kPa) 

1 Con 64-16 Unaged 

REF #1 

CC 

1.40 

1.41 

1.43 

87.6 

87.7 

87.6 

1.41 

1.41 

1.43 

PP-1 

1.46 

1.35 

1.37 

87.7 

87.8 

87.8 

1.46 

1.35 

1.37 

REF #2 

CC 

1.12 

1.07 

1.07 

89.4 

89.5 

89.4 

1.12 

1.07 

1.07 

PP-1 

1.15 

1.09 

1.10 

89.4 

89.6 

89.5 

1.15 

1.09 

1.10 

REF #3 

CC 

1.25 

1.22 

1.23 

87.4 

87.5 

87.5 

1.25 

1.22 

1.23 

PP-1 

1.24 

1.26 

1.24 

87.8 

87.7 

87.7 

1.24 

1.26 

1.24 

2 Con 64-16 Unaged 

REF #1 

CC 

1.42 

1.43 

1.41 

87.6 

87.6 

87.6 

1.42 

1.43 

1.41 

PP-1 

1.38 

1.45 

1.47 

87.8 

87.7 

87.7 

1.38 

1.45 

1.47 

REF #2 

CC 

1.08 

1.09 

1.03 

89.4 

89.4 

89.5 

1.08 

1.09 

1.03 

PP-1 

1.09 

1.09 

1.09 

89.5 

89.5 

89.5 

1.09 

1.09 

1.09 

REF #3 

CC 

1.28 

1.28 

1.27 

87.4 

87.5 

87.5 

1.28 

1.28 

1.27 

PP-1 

1.29 

1.25 

1.28 

87.7 

87.7 

87.7 

1.29 

1.25 

1.28 

3 Con 64-16 Unaged 

REF #1 

CC 

1.51 

1.46 

1.49 

87.5 

87.6 

87.6 

1.51 

1.46 

1.49 

PP-1 

1.42 

1.59 

1.51 

87.5 

87.5 

87.6 

1.42 

1.59 

1.51 

REF #2 

CC 

1.17 

1.14 

1.19 

89.5 

89.5 

89.4 

1.17 

1.14 

1.19 

PP-1 

1.18 

1.12 

1.15 

89.4 

89.5 

89.4 

1.19 

1.12 

1.15 

REF #3 

CC 

1.31 

1.30 

1.27 

87.4 

87.4 

87.5 

1.31 

1.30 

1.27 

PP-1 

1.30 

1.30 

1.28 

87.6 

87.6 

87.6 

1.30 

1.31 

1.28 
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Table B.2 Test Results for Binder-Specific Conversion Factor:  Operator and Binder Type 

Operator 
Binder 

Source 

PG 

Grade 

Aging 

Condition 

Binder 

Type 
Geometry 

G* 

(kPa) 

δ 

(Degrees) 

G*/sin(δ) 

(kPa) 

1 REF #1 64-28 Unaged 

PM 

CC 

1.47 

1.84 

1.81 

70.6 

68.8 

68.5 

1.56 

1.98 

1.94 

PP-1 

1.69 

2.12 

1.97 

67.6 

66.1 

65.8 

1.82 

2.32 

2.16 

TR 

CC 

2.80 

2.97 

2.22 

67.1 

66.8 

68.5 

3.03 

3.23 

2.38 

PP-1 

2.78 

2.11 

1.78 

66.0 

65.6 

66.3 

3.04 

2.32 

1.95 

2 REF #1 64-28 Unaged 

PM 

CC 

1.47 

1.83 

1.89 

70.7 

68.7 

68.4 

1.55 

1.96 

2.04 

PP-1 

1.55 

1.91 

1.98 

68.4 

66.1 

66.3 

1.67 

2.09 

2.17 

TR 

CC 

2.81 

2.37 

2.38 

67.0 

68.3 

68.0 

3.06 

2.55 

2.57 

PP-1 

2.25 

2.05 

2.02 

66.3 

66.0 

65.7 

2.45 

2.25 

2.22 

3 REF #1 64-28 Unaged 

PM 

CC 

1.58 

1.61 

1.59 

67.9 

69.6 

68.8 

1.71 

1.72 

1.70 

PP-1 

1.65 

2.05 

2.11 

68.1 

65.4 

66.2 

1.78 

2.25 

2.31 

TR 

CC 

2.86 

2.98 

3.00 

67.0 

66.7 

66.7 

3.11 

3.24 

3.27 

PP-1 

3.06 

2.11 

1.98 

65.2 

65.6 

67.0 

3.38 

2.31 

2.16 
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Table B.3 Test Results for Binder-Specific Conversion Factor:  Operator and Binder Source, Type and Grade 

Operator 
Aging 

Condition 

PG 

Grade 

Binder 

Source 

Binder 

Type 
Geometry 

G* 

(kPa) 

δ 

(Degrees) 

G*/sin(δ) 

(kPa) 

1 RTFO 

64-28 

REF #1 PM 
CC 3.77 62.4 4.26 

PP-1 3.75 62.4 4.23 

REF #1 TR 
CC 4.86 64.0 5.40 

PP-1 4.76 63.5 5.32 

64-16 

REF #2 Con 
CC 2.69 88.6 2.69 

PP-1 2.34 88.6 2.34 

REF #3 Con 
CC 3.01 83.5 3.03 

PP-1 2.97 84.8 2.99 

2 RTFO 

64-28 

REF #1 PM 
CC 3.56 62.7 4.01 

PP-1 3.88 62.3 4.38 

REF #1 TR 
CC 3.61 64.2 4.01 

PP-1 3.25 63.8 3.62 

64-16 

REF #2 Con 
CC 2.76 88.5 2.76 

PP-1 2.28 88.6 2.28 

REF #3 Con 
CC 2.8 84.4 2.81 

PP-1 3.07 84.7 3.09 

3 RTFO 

64-28 

REF #1 PM 
CC 3.74 62.3 4.23 

PP-1 3.82 62.2 4.31 

REF #1 TR 
CC 3.59 64.1 3.99 

PP-1 3.5 63.4 3.92 

64-16 

REF #2 Con 
CC 2.71 88.6 2.71 

PP-1 2.4 88.6 2.41 

REF #3 Con 
CC 2.45 84.8 2.46 

PP-1 2.91 84.9 2.92 
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Table B.4 Test Results for Fixed Conversion Factor 

Operator 
Binder 

Source 
PG Grade 

Test 

Temp.(°C) 

Aging 

Condition 
Geometry 

G* 

(kPa) 

δ 

(Degrees) 

G*/sin(δ) 

(kPa) 

1 

REF #3 70-10 70 

Original 

CC 

1.40 

1.39 

1.41 

87.2 

87.2 

87.1 

1.40 

1.39 

1.41 

PP-1 

1.32 

1.27 

1.32 

87.3 

87.3 

87.3 

1.32 

1.27 

1.32 

TFO 

CC 

2.43 

2.46 

2.56 

85.2 

85.2 

85.0 

2.44 

2.47 

2.57 

PP-1 

2.53 

2.58 

2.57 

85.1 

85.1 

85.1 

2.54 

2.59 

2.58 

RTFO 

CC 

2.74 

2.73 

2.71 

85.1 

85.1 

85.1 

2.75 

2.74 

2.72 

PP-1 

2.58 

2.60 

2.61 

85.3 

85.3 

85.3 

2.59 

2.61 

2.62 

REF #2 64-16 64 

Original 

CC 

1.28 

1.30 

1.27 

89.4 

89.4 

89.4 

1.28 

1.30 

1.27 

PP-1 

1.20 

1.22 

1.20 

89.4 

89.4 

89.4 

1.20 

1.22 

1.20 

TFO 

CC 

2.02 

2.17 

2.06 

88.8 

88.7 

88.8 

2.02 

2.17 

2.06 

PP-1 

2.07 

2.05 

2.06 

88.8 

88.8 

88.8 

2.07 

2.05 

2.06 

RTFO 

CC 

2.42 

2.46 

2.43 

88.5 

88.5 

88.5 

2.42 

2.46 

2.43 

PP-1 

2.32 

2.31 

2.29 

88.6 

88.6 

88.6 

2.32 

2.31 

2.29 

REF #3 58-22 58 

Original 

CC 

1.30 

1.30 

1.33 

88.4 

88.4 

88.4 

1.30 

1.30 

1.33 

PP-1 

1.31 

1.27 

1.26 

88.5 

88.4 

88.4 

1.31 

1.27 

1.26 

TFO 

CC 

2.32 

2.26 

2.36 

87.0 

87.0 

87.0 

2.32 

2.26 

2.36 

PP-1 

2.39 

2.38 

2.40 

87.0 

87.0 

87.0 

2.39 

2.38 

2.40 

RTFO 

CC 

2.84 

2.84 

2.84 

86.4 

86.4 

86.4 

2.85 

2.85 

2.85 

PP-1 

2.74 

2.76 

2.71 

86.6 

86.6 

86.6 

2.74 

2.76 

2.71 
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Table B.5 Rubberized Binder:  Comparison of Concentric Cylinder and Parallel Plate 

Geometry 

Particle 

Size 

(µm) 

Particle 

Size 

(# mesh) 

Grind 

Method 

Test 

Temp. 

(°C) 

Binder 

Type 

G* 

(kPa) 

δ 

(Degrees) 

G*/sin(δ) 

(kPa) 

CC 

180-250 60-80 

Amb 

76 
I 

II 

1.81 

1.93 

82.7 

81.2 

1.82 

1.95 

82 
I 

II 

0.96 

1.05 

85.6 

84.1 

0.97 

1.05 

Cryo 

76 
I 

II 

2.73 

2.65 

78.2 

81.1 

2.69 

2.68 

82 
I 

II 

1.42 

1.39 

82.3 

84.6 

1.43 

1.40 

250-425 40-60 

Amb 

76 
I 

II 

1.81 

1.17 

82.3 

84.5 

1.83 

1.17 

82 
I 

II 

1.00 

0.64 

84.7 

86.4 

1.00 

0.64 

Cryo 

76 
I 

II 

3.15 

2.39 

76.7 

82.7 

3.24 

2.41 

82 
I 

II 

1.66 

1.25 

81.2 

85.5 

1.68 

1.25 

425-850 20-40 

Amb 

76 
I 

II 

2.39 

1.24 

77.5 

81.9 

2.45 

1.25 

82 
I 

II 

1.29 

0.69 

81.3 

84.3 

1.30 

0.67 

Cryo 

76 
I 

II 

3.24 

1.65 

75.8 

83.3 

3.34 

1.66 

82 
I 

II 

1.71 

0.88 

80.6 

85.7 

1.73 

0.88 

PP-1 180-250 60-80 

Amb 

76 
I 

II 

1.76 

1.91 

83.3 

81.8 

1.77 

1.93 

82 
I 

II 

0.95 

1.03 

85.9 

84.6 

0.95 

1.03 

Cryo 

76 
I 

II 

2.73 

2.69 

77.9 

81.5 

2.79 

2.72 

82 
I 

II 

1.48 

1.41 

82.1 

84.8 

1.49 

1.41 

PP-2 

250-425 40-60 

Amb 

76 
I 

II 

2.27 

1.24 

80.0 

84.3 

2.30 

1.24 

82 
I 

II 

1.21 

0.69 

83.8 

85.9 

1.21 

0.69 

Cryo 

76 
I 

II 

2.99 

2.35 

77.8 

82.8 

3.05 

2.37 

82 
I 

II 

1.67 

1.30 

81.4 

84.9 

1.69 

1.30 

425-850 20-40 

Amb 

76 
I 

II 

2.49 

1.60 

77.0 

80.5 

2.56 

1.62 

82 
I 

II 

1.42 

0.90 

80.0 

83.2 

1.45 

0.90 

Cryo 

76 
I 

II 

3.57 

1.38 

75.2 

83.9 

3.69 

1.39 

82 
I 

II 

1.96 

0.76 

79.7 

85.9 

2.00 

0.76 
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APPENDIX C: DATA FROM CHAPTER 6 

Test results from the different tests are summarized in the following tables: 

• Table C.1: Rheological Properties of the Unaged Binders 

• Table C.2: Rheological Properties of the RTFO-Aged Binders 

• Table C.3: MSCR Test Results of the RTFO-Aged Binders 

• Table C.4: BBR Test Results of the PAV-Aged Binders 

• Table C.5: Frequency Sweep Test Results (|G*|) for the Unaged and RTFO-Aged Binders 

• Table C.6: Frequency Sweep Test Results (δ) for the Unaged and RTFO-Aged Binders 

• Table C.7: Master Curve Fitting Parameters of the FAM Mixes 

• Table C.8: Master Curve Fitting Parameters of the Full-Graded Mixes 

 

Abbreviations in the tables are as follows: 

• Binder type 

+ Con = conventional unmodified PG 64-16 binder 

+ Con-AAH = artificially age-hardened conventional PG 64-16 binder 

+ AR-II = asphalt rubber binder (Type II) 

+ AR-II-AAH = artificially age-hardened asphalt rubber binder 

+ Con-C-15% = blended binder with 85 percent conventional PG64-16 binder and 15 percent artificially 

age-hardened conventional PG64-16 binder  

+ Con-C-25% = blended binder with 75 percent conventional PG64-16 binder and 25 percent artificially 

age-hardened conventional PG64-16 binder  

+ Con-C-40% = blended binder with 60 percent conventional PG64-16 binder and 40 percent artificially 

age-hardened conventional PG64-16 binder  

+ Con-R-15% = blended binder with 85 percent conventional PG64-16 binder and 15 percent artificially 

age-hardened asphalt rubber binder  

+ Con-R-25% = blended binder with 75 percent conventional PG64-16 binder and 25 percent artificially 

age-hardened asphalt rubber binder  

+ Con-R-40% = blended binder with 60 percent conventional PG64-16 binder and 40 percent artificially 

age-hardened asphalt rubber binder  

• FAM mix and full-gradation mix 

+ DG-C = dense-graded mix with no RRAP 

+ DG-S-15% = dense-graded mix with 15 percent simulated RRAP 

+ DG-S-25% = dense-graded mix with 25 percent simulated RRAP 
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+ DG-F1-15% = dense-graded mix with 15 percent field-sampled RRAP-1 

+ DG-F1-25% = dense-graded mix with 25 percent field-sampled RRAP-1 

+ DG-F2-15% = dense-graded mix with 15 percent field-sampled RRAP-2 

+ DG-F2-25% = dense-graded mix with 25 percent field-sampled RRAP-2 

• Test parameter 

+ G* = complex shear modulus 

+ δ = phase angle 

+ Jnr = recoverable creep compliance 

+ APR = average percent recovery 

 

Table C.1 Rheological Properties of Unaged Binders 

Binder 

True  

PG  

(°C) 

|G*|  

@ 64°C  

(kPa) 

δ  

@ 64°C 

(degree) 

|G*|/sinδ  

@ 64°C 

(kPa) 

Viscosity 

 @ 135°C  

(Pa.s) 

Con 68.7 68.7 1.8 87.2 1.8 

Con-AAH 90.4 90.4 29.9 73.1 31.3 

AR-II 92.3 92.3 10.8 61.4 12.3 

AR-II-AAH 105.6 105.6 31.9 52.7 40.1 

Con-C-15% 72.1 72.1 2.8 85.6 2.78 

Con-C-25% 73.5 73.5 3.3 84.9 3.335 

Con-C-40% 77.5 77.45 5.6 82.6 5.605 

Con-R-15% 71.9 71.85 2.6 84.6 2.6 

Con-R-25% 74.5 74.45 3.4 81.7 3.425 

Con-R-40% 79.1 79.1 5.2 76.6 5.345 
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Table C.2 Rheological Properties of RTFO-Aged Binders 

Binder 

True 

PG 

(°C) 

|G*| 

@ 64°C 

(kPa) 

δ 

@ 64°C 

(degree) 

|G*|/sinδ 

@ 64°C 

(kPa) 

Viscosity 

 @ 135°C  

(Pa.s) 

Con 69.2 4.3 83.6 4.365 0.8 

AR-II 90.7 18.5 54.3 22.8 19.5 

Con-C-15% 72.35 6.5 81.5 6.6 0.9 

Con-C-25% 74.2 8.3 80.2 8.42 1.0 

Con-C-40% 76.9 11.9 78.0 12.15 1.2 

Con-R-15% 72.55 6.2 78.7 6.345 1.1 

Con-R-25% 75.4 8.4 74.9 8.65 1.6 

Con-R-40% 80.3 12.7 68.6 13.65 2.8 

 
 

Table C.3 MSCR Test Results of RTFO-Aged Binders 

Binder Type 

APR 

@ 0.1 kPa 

(%) 

APR  

@ 3.2 kPa 

(%) 

Percent 

Diff. of APR 

(%) 

Jnr 

@ 0.1 kPa 

(1/kPa) 

Jnr 

@ 3.2 kPa 

(1/kPa) 

Percent 

Diff. of Jnr 

(%) 

Con 3.470 1.209 65.2 2.039 2.167 6.2 

AR-II 72.021 61.531 14.5 0.072 0.101 41.3 

Con-C-15% 6.793 3.515 48.3 1.264 1.351 6.9 

Con-C-25% 9.268 5.637 39.1 0.945 1.010 6.9 

Con-C-40% 13.171 9.718 26.2 0.605 0.641 6.0 

Con-R-15% 14.511 8.154 43.8 1.145 1.276 11.5 

Con-R-25% 24.230 16.411 32.3 0.698 0.790 13.3 

Con-R-40% 39.804 32.954 17.2 0.314 0.353 12.3 

 

Table C.4 BBR Test Results of PAV-Aged Binders 

Binder 

Test 

Temperature 

(C) 

Creep  

Stiffness 

 (MPa) 

m-value 

Con -6 60 99.0 

Con-C-15% -6 60 114.5 

Con-C-25% -6 60 121.5 

Con-C-40% -6 60 131.5 

Con-R-15% -6 60 89.2 

Con-R-25% -6 60 88.8 

Con-R-40% -6 60 91.3 
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Table C.5 Frequency Sweep Test Results (|G*|) for Unaged and RTFO-Aged Binders 

Binder Type /  

G* (Pa) 

Angular Frequency (1/s) 

100 63.1 39.8 25.1 15.8 10 6.31 3.98 2.51 1.58 1 0.63 0.40 0.25 0.16 0.1 

U
n

a
g
ed

 

Con 
1.7E

+04 

1.1E

+04 

7.0E

+03 

4.5E

+03 

2.9E

+03 

1.9E

+03 

1.2E

+03 

7.7E

+02 

4.9E

+02 

3.1E

+02 

2.0E

+02 

1.2E

+02 

7.8E

+01 

4.9E

+01 

3.1E

+01 

2.0E

+01 

Con-C-15% 
2.4E

+04 

1.5E

+04 

1.0E

+04 

6.6E

+03 

4.3E

+03 

2.8E

+03 

1.8E

+03 

1.1E

+03 

7.3E

+02 

4.7E

+02 

3.0E

+02 

1.9E

+02 

1.2E

+02 

7.5E

+01 

4.7E

+01 

3.0E

+01 

Con-C-25% 
2.8E

+04 

1.8E

+04 

1.2E

+04 

7.9E

+03 

5.1E

+03 

3.3E

+03 

2.2E

+03 

1.4E

+03 

8.9E

+02 

5.7E

+02 

3.6E

+02 

2.3E

+02 

1.4E

+02 

9.1E

+01 

5.8E

+01 

3.6E

+01 

Con-C-40% 
4.3E

+04 

2.9E

+04 

1.9E

+04 

1.3E

+04 

8.5E

+03 

5.6E

+03 

3.6E

+03 

2.4E

+03 

1.5E

+03 

9.9E

+02 

6.3E

+02 

4.1E

+02 

2.6E

+02 

1.6E

+02 

1.0E

+02 

6.5E

+01 

Con-AAH 
1.6E

+05 

1.2E

+05 

8.1E

+04 

5.6E

+04 

3.9E

+04 

2.7E

+04 

1.8E

+04 

1.2E

+04 

8.4E

+03 

5.6E

+03 

3.7E

+03 

2.5E

+03 

1.6E

+03 

1.0E

+03 

6.8E

+02 

4.3E

+02 

Con 
1.7E

+04 

1.1E

+04 

7.0E

+03 

4.5E

+03 

2.9E

+03 

1.9E

+03 

1.2E

+03 

7.7E

+02 

4.9E

+02 

3.1E

+02 

2.0E

+02 

1.2E

+02 

7.8E

+01 

4.9E

+01 

3.1E

+01 

2.0E

+01 

Con-R-15% 
2.1E

+04 

1.4E

+04 

9.3E

+03 

6.1E

+03 

4.0E

+03 

2.6E

+03 

1.7E

+03 

1.1E

+03 

7.0E

+02 

4.5E

+02 

2.8E

+02 

1.8E

+02 

1.1E

+02 

7.3E

+01 

4.6E

+01 

2.9E

+01 

Con-R-25% 
2.6E

+04 

1.7E

+04 

1.2E

+04 

7.7E

+03 

5.1E

+03 

3.4E

+03 

2.2E

+03 

1.5E

+03 

9.5E

+02 

6.1E

+02 

4.0E

+02 

2.5E

+02 

1.6E

+02 

1.0E

+02 

6.6E

+01 

4.2E

+01 

Con-R-40% 
3.4E

+04 

2.4E

+04 

1.6E

+04 

1.1E

+04 

7.7E

+03 

5.2E

+03 

3.5E

+03 

2.4E

+03 

1.6E

+03 

1.0E

+03 

6.9E

+02 

4.5E

+02 

2.9E

+02 

1.9E

+02 

1.2E

+02 

7.9E

+01 

AR-II-AAH 
1.2E

+05 

9.2E

+04 

7.1E

+04 

5.4E

+04 

4.2E

+04 

3.2E

+04 

2.4E

+04 

1.9E

+04 

1.4E

+04 

1.1E

+04 

8.1E

+03 

6.1E

+03 

4.5E

+03 

3.3E

+03 

2.4E

+03 

1.8E

+03 

R
T

F
O

-a
g
ed

 

Con 
3.5E

+04 

2.3E

+04 

1.5E

+04 

1.0E

+04 

6.7E

+03 

4.3E

+03 

2.8E

+03 

1.8E

+03 

1.2E

+03 

7.6E

+02 

4.8E

+02 

3.1E

+02 

1.9E

+02 

1.2E

+02 

7.8E

+01 

4.9E

+01 

Con-C-15% 
4.9E

+04 

3.3E

+04 

2.2E

+04 

1.5E

+04 

9.9E

+03 

6.6E

+03 

4.3E

+03 

2.8E

+03 

1.8E

+03 

1.2E

+03 

7.6E

+02 

4.9E

+02 

3.1E

+02 

2.0E

+02 

1.3E

+02 

7.9E

+01 

Con-C-25% 
6.0E

+04 

4.1E

+04 

2.8E

+04 

1.9E

+04 

1.3E

+04 

8.3E

+03 

5.5E

+03 

3.6E

+03 

2.4E

+03 

1.5E

+03 

1.0E

+03 

6.4E

+02 

4.1E

+02 

2.6E

+02 

1.7E

+02 

1.1E

+02 

Con-C-40% 
8.1E

+04 

5.6E

+04 

3.8E

+04 

2.6E

+04 

1.8E

+04 

1.2E

+04 

8.0E

+03 

5.3E

+03 

3.5E

+03 

2.3E

+03 

1.5E

+03 

9.8E

+02 

6.3E

+02 

4.0E

+02 

2.6E

+02 

1.6E

+02 

Con-R-15% 
4.4E

+04 

3.0E

+04 

2.0E

+04 

1.4E

+04 

9.3E

+03 

6.2E

+03 

4.2E

+03 

2.8E

+03 

1.8E

+03 

1.2E

+03 

7.8E

+02 

5.1E

+02 

3.3E

+02 

2.1E

+02 

1.3E

+02 

8.5E

+01 

Con-R-25% 
5.3E

+04 

3.7E

+04 

2.6E

+04 

1.8E

+04 

1.2E

+04 

8.4E

+03 

5.7E

+03 

3.9E

+03 

2.6E

+03 

1.7E

+03 

1.2E

+03 

7.6E

+02 

5.0E

+02 

3.2E

+02 

2.1E

+02 

1.4E

+02 

Con-R-40% 
7.0E

+04 

5.0E

+04 

3.6E

+04 

2.5E

+04 

1.8E

+04 

1.3E

+04 

9.0E

+03 

6.3E

+03 

4.4E

+03 

3.0E

+03 

2.1E

+03 

1.4E

+03 

9.6E

+02 

6.4E

+02 

4.2E

+02 

2.8E

+02 
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Table C.6 Frequency Sweep Test Results (δ) for Unaged and RTFO-Aged Binders 

Binder Type / 

δ (Degree) 

Angular Frequency (1/s) 

100 63.1 39.8 25.1 15.8 10 6.31 3.98 2.51 1.58 1 0.63 0.40 0.25 0.16 0.1 

U
n

a
g
ed

 

Con 83.8 84.5 85.2 85.8 86.4 87.1 87.7 88.2 88.7 89.1 89.3 89.5 89.6 89.6 89.9 89.9 

Con-C-15% 81.7 82.5 83.3 84.0 84.8 85.6 86.4 87.1 87.8 88.3 88.7 89.1 89.3 89.5 89.8 89.9 

Con-C-25% 80.6 81.5 82.4 83.2 84.0 84.9 85.7 86.5 87.2 87.9 88.5 88.9 89.3 89.5 89.6 89.7 

Con-C-40% 77.5 78.5 79.6 80.6 81.6 82.6 83.6 84.6 85.4 86.4 87.2 87.9 88.5 89.0 89.2 89.5 

Con-AAH 67.2 68.6 70.0 71.3 72.6 73.9 75.3 76.7 78.2 79.6 81.0 82.3 83.5 84.6 85.7 86.5 

Con 83.8 84.5 85.2 85.8 86.4 87.1 87.7 88.2 88.7 89.1 89.3 89.5 89.6 89.6 89.9 89.9 

Con-R-15% 80.7 81.5 82.3 83.0 83.8 84.6 85.4 86.2 86.9 87.5 87.9 88.4 88.7 89.0 89.1 89.1 

Con-R-25% 77.5 78.3 79.4 79.9 80.8 81.7 82.7 83.6 84.5 85.2 85.9 86.5 87.1 87.4 87.6 87.9 

Con-R-40% 71.9 72.8 73.7 74.4 75.5 76.6 77.7 78.9 80.0 81.1 82.0 82.9 83.7 84.4 84.9 85.4 

AR-II-AAH 52.2 52.2 52.1 52.2 52.4 52.7 53.2 53.9 54.6 55.7 56.9 58.2 59.6 61.1 62.5 63.9 

R
T

F
O

-a
g
ed

 

Con 78.9 79.9 80.8 81.7 82.7 83.6 84.5 85.4 86.2 87.1 87.8 88.5 89.0 89.3 89.5 89.6 

Con-C-15% 76.3 77.3 78.3 79.4 80.4 81.5 82.5 83.6 84.6 85.5 86.4 87.2 87.9 88.5 89.0 89.2 

Con-C-25% 74.6 75.7 76.8 77.9 79.0 80.1 81.3 82.4 83.4 84.5 85.5 86.4 87.3 88.0 88.5 88.8 

Con-C-40% 72.2 73.3 74.4 75.6 76.7 78.0 79.2 80.4 81.6 82.8 84.0 85.0 86.0 86.8 87.5 88.4 

Con-R-15% 74.1 74.9 75.9 76.7 77.7 78.7 79.8 80.8 81.9 83.0 84.0 85.0 85.9 86.6 87.2 87.8 

Con-R-25% 70.6 71.4 72.5 72.9 73.8 74.8 75.9 77.1 78.3 79.5 80.7 81.8 82.9 84.0 84.8 85.7 

Con-R-40% 65.3 65.8 66.6 66.9 67.7 68.5 69.6 70.7 72.0 73.3 74.6 76.0 77.4 78.8 80.3 81.5 

 

Table C.7 Master Curve Fitting Parameters of the FAM Mixes 

FAM Mix 
Mix Fitting Parameters 

δ α β γ C1 C2 

DG-C 0 3.632 -0.541 -0.562 16.031 120.549 

DG-S-15% 0 4.060 -0.674 -0.457 25.677 200.386 

DG-S-25% 0 3.875 -0.834 -0.469 27.194 201.326 

DG-F1-15% 0 3.962 -0.837 -0.454 22.601 169.681 

DG-F1-25% 0 3.991 -1.038 -0.416 57.827 403.341 

DG-F2-15% 0 4.273 -0.550 -0.420 26.842 201.300 

DG-F2-25% 0 4.431 -0.753 -0.324 27.317 204.801 
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Table C.8 Master Curve Fitting Parameters of the Full-Graded Mixes 

FAM Mix 
Mix Fitting Parameters 

δ α β γ C1 C2 

DG-C 1.000 3.420 -1.341 -0.576 20.924 178.883 

DG-F1-15% 1.000 3.371 -1.435 -0.518 24.434 200.904 

DG-F1-25% 1.000 3.396 -1.501 -0.514 18.382 200.313 

DG-F2-15% 1.000 3.424 -1.485 -0.493 21.682 200.445 

DG-F2-25% 1.000 3.415 -1.535 -0.488 26.201 200.469 

 

Mechanistic Analysis of HMA Fatigue Performance 

 

Load 

Single axle load = 80 kN 

Tire pressure = 700 kPa 

Traveling speed = 60 mph 

 

Calculations 

1. Obtain the tire contact area at the surface: 

 𝑟 = √
𝑃

𝜋𝜎
= √

40

𝜋 × 700
= 0.135 𝑚 

where, 

 r = contact area radius (m)  

 P = load per tire (kN) 

 𝜎 = tire pressure (kPa) 

 

2. Assume the stress distribution angle is 45 degree, the contact area at the bottom of the HMA layer is 

shown in below: 

 

 𝐷 + 2𝐻 = 2(𝑟 + 𝐻) = 0.37 𝑚 (50 𝑚𝑚), 0.47 (100 𝑚𝑚), 0.57 (150 𝑚𝑚), 𝑎𝑛𝑑 0.77 (250 𝑚𝑚) 
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where,  

 D = diameter of the contact area at surface (m) 

 H = HMA layer thickness (m) 

 

3. Obtain the time of loading at the bottom of HMA layer: 

 

𝑡 =  
𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑓 𝐻𝑀𝐴 𝑙𝑎𝑦𝑒𝑟

𝑣
 

= 0.014 𝑠 (50 𝑚𝑚), 0.018 𝑠 (100 𝑚𝑚), 0.022 𝑠 (150 𝑚𝑚), 𝑎𝑛𝑑 0.029 𝑠 (250 𝑚𝑚) 

 

 

where,  

 t = time of loading (second) 

 v = traveling speed (m/s) 

 

4. Obtain the loading frequency  

 

𝑓 =
1

2𝜋𝑡
= 11.4 𝐻𝑧 (50 𝑚𝑚), 8.8 𝐻𝑧 (100 𝑚𝑚), 7.2 𝐻𝑧 (150 𝑚𝑚), 𝑎𝑛𝑑 5.5 𝐻𝑧 (250 𝑚𝑚) 

 

where,  

f = loading frequency (Hz) 

t = time of loading (second) 

 

5. Both of the frequencies were used to determine the HHMA mix stiffness from their DM master 

curves at 20°C. 
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APPENDIX D: DATA FROM CHAPTER 7 

Test results from the different tests are summarized in the following tables: 

• Table D.1: Rheological Properties of the Unaged Binders  

• Table D.2:  Rheological Properties of the RTFO-Aged Binders 

• Table D.3: MSCR Test Results for the RTFO-Aged Binders 

• Table D.4: BBR Test Results for the PAV-Aged Binders 

• Table D.5: Frequency Sweep Test Results (G*) for the Unaged and RTFO-Aged Binders  

• Table D.6: Frequency Sweep Test Results (δ) for Unaged and RTFO-Aged Binders 

• Table D.7: Master Curve Fitting Parameters of the FAM Mixes  

• Table D.8: Master Curve Fitting Parameters of the Full-Graded Mixes 

 

Abbreviations in the tables are as follows: 

• Binder type 

+ Con = conventional PG 64-16 binder 

+ Con-AAH = artificially age-hardened conventional PG 64-16 binder 

+ AR-I = asphalt rubber binder without extender oil 

+ AR-I-AAH = artificially age-hardened asphalt rubber binder without extender oil 

+ AR-II = asphalt rubber binder 

+ AR-II-AAH = artificially age-hardened asphalt rubber binder 

+ AR-II-15% = composite binder with 85 percent asphalt rubber binder and 15 percent artificially age-

hardened conventional PG 64-16 binder 

+ AR-II-25% = composite binder with 75 percent asphalt rubber binder and 25 percent artificially age-

hardened conventional PG 64-16 binder 

+ AR-II-40% = composite binder with 60 percent asphalt rubber binder and 40 percent artificially age-

hardened conventional PG 64-16 binder 

+ Ext = extender Oil 

+ Con-Ext = conventional PG 64-16 binder with 4 percent extender oil by weight of binder  

+ Con-Ext-AAH = artificially age-hardened conventional PG 64-16 binder with 4 percent extender oil by 

weight of binder  

• Test parameter 

+ G* = complex shear modulus 

+ δ = phase angle 

+ Jnr = recoverable creep compliance 
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+ APR = average percent recovery 

 

• FAM mix and full-gradation mix 

+ GG-C = gap-graded mix with no RAP 

+ GG-S-10% = gap-graded mix with 10 percent simulated RAP 

+ GG-S-15% = gap-graded mix with 15 percent simulated RAP 

+ GG-F-10% = gap-graded mix with 10 percent field collected RAP 

 

Table D.1 Rheological Properties of the Unaged Binders 

Binder 

True  

PG  

(°C) 

G*  

@ 64°C  

(kPa) 

δ  

@ 64°C 

(degree) 

G*/sinδ  

@ 64°C 

(kPa) 

Viscosity 

 @ 135°C  

(Pa.s) 

AR-I 98.3 17.6 57.2 20.9 17.3 

AR-I_AAH 111.6 47.2 49.0 62.6 30.5 

AR-II 92.3 10.8 61.4 12.3 12.1 

AR-II-AAH 105.6 31.9 52.7 40.1 18.0 

AR-II-15% 92.0 12.9 62.0 14.5 8.8 

AR-II-25% 92.0 14.8 62.6 16.7 7.3 

AR-II-40% 91.8 17.3 64.4 19.2 5.3 

Ext 14.9 0.0 90.0 0.0 0.0 

Con 68.7 1.8 87.2 1.8 0.5 

Con-AAH 90.4 29.9 73.1 31.3 1.9 

Con-Ext 65.1 1.1 88.0 1.1 0.4 

Con-Ext-AAH 85.4 16.2 77.1 16.6 1.3 

 

 

Table D.2 Rheological Properties of the RTFO-Aged Binders 

Binder 

True 

PG 

(°C) 

G* 

@ 64°C 

(kPa) 

δ 

@ 64°C 

(degree) 

G*/sinδ 

@ 64°C 

(kPa) 

Viscosity 

@ 135°C 

(Pa.s) 

AR-II 90.7 18.5   54.3 22.8 19.5 

AR-II-15% 89.4 20.4 56.6 24.5 12.9 

AR-II-25% 89.6 22.7 57.3 26.9 11.1 

AR-II-40% 89.4 27.4 59.4 31.8 7.6 
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Table D.3 MSCR Test Results for the RTFO-Aged Binders 

Binder Type 

APR 

@ 0.1 kPa 

(%) 

APR  

@ 3.2 kPa 

(%) 

Percent 

Diff. of APR 

(%) 

Jnr 

@ 0.1 kPa 

(1/kPa) 

Jnr 

@ 3.2 kPa 

(1/kPa) 

Percent 

Diff. of Jnr 

(%) 

AR-II 72.021 61.531 14.538 0.072 0.101 41.335 

AR-II-15% 64.119 57.146 10.875 0.089 0.108 21.403 

AR-II-25% 62.019 56.978 8.126 0.086 0.098 14.548 

AR-II-40% 56.501 53.639 5.056 0.085 0.091 6.805 

 

Table D.4 BBR Test Results for the PAV-Aged Binders 

Binder 

Test 

Temperature 

(C) 

Creep  

Stiffness 

 (MPa) 

m-value 

AR-II -6 N/A N/A 

AR-II-15% -6 38.1 0.374 

AR-II-25% -6 47.0 0.352 

AR-II-40% -6 64.3 0.349 

Con -6 99.0 0.394 

AR-II -12 55.1 0.359 

 

  



 

  294 

Table D.5 Frequency Sweep Test Results (G*) for the Unaged and RTFO-Aged Binders  

Binder Type 

/ G* (Pa) 

Angular Frequency (1/s) 

100 63.1 39.8 25.1 15.8 10 6.31 3.98 2.51 1.58 1 0.63 0.40 0.25 0.16 0.1 

U
n

a
g

ed
 

AR-II 
4.4E

+04 

3.4E

+04 

2.6E

+04 

1.9E

+04 

1.4E

+04 

1.1E

+04 

7.9E

+03 

5.8E

+03 

4.2E

+03 

3.0E

+03 

2.1E

+03 

1.5E

+03 

1.1E

+03 

7.7E

+02 

5.5E

+02 

4.1E

+02 

AR-II-

15% 

5.4E

+04 

4.0E

+04 

3.0E

+04 

2.3E

+04 

1.7E

+04 

1.2E

+04 

9.0E

+03 

6.5E

+03 

4.6E

+03 

3.3E

+03 

2.3E

+03 

1.6E

+03 

1.1E

+03 

7.3E

+02 

5.0E

+02 

3.3E

+02 

AR-II-

25% 

6.5E

+04 

4.9E

+04 

3.6E

+04 

2.7E

+04 

2.0E

+04 

1.4E

+04 

1.0E

+04 

7.5E

+03 

5.4E

+03 

3.8E

+03 

2.6E

+03 

1.8E

+03 

1.2E

+03 

8.3E

+02 

5.6E

+02 

3.7E

+02 

AR-II-

40% 

7.8E

+04 

5.8E

+04 

4.3E

+04 

3.1E

+04 

2.3E

+04 

1.6E

+04 

1.2E

+04 

8.4E

+03 

6.0E

+03 

4.2E

+03 

2.9E

+03 

2.0E

+03 

1.3E

+03 

8.9E

+02 

5.9E

+02 

3.9E

+02 

Con-

AAH 

1.6E

+05 

1.2E

+05 

8.1E

+04 

5.6E

+04 

3.9E

+04 

2.7E

+04 

1.8E

+04 

1.2E

+04 

8.4E

+03 

5.6E

+03 

3.7E

+03 

2.5E

+03 

1.6E

+03 

1.0E

+03 

6.8E

+02 

4.3E

+02 

R
T

F
O

-a
g
ed

 

AR-II 
7.0E

+04 

5.4E

+04 

4.2E

+04 

3.2E

+04 

2.5E

+04 

1.9E

+04 

1.4E

+04 

1.1E

+04 

8.0E

+03 

6.0E

+03 

4.4E

+03 

3.2E

+03 

2.3E

+03 

1.6E

+03 

1.2E

+03 

8.1E

+02 

AR-II-

15% 

8.2E

+04 

6.2E

+04 

4.7E

+04 

3.6E

+04 

2.7E

+04 

2.1E

+04 

1.5E

+04 

1.2E

+04 

8.5E

+03 

6.2E

+03 

4.5E

+03 

3.3E

+03 

2.3E

+03 

1.6E

+03 

1.1E

+03 

7.8E

+02 

AR-II-

25% 

9.3E

+04 

7.0E

+04 

5.3E

+04 

4.1E

+04 

3.0E

+04 

2.3E

+04 

1.7E

+04 

1.3E

+04 

9.4E

+03 

6.9E

+03 

5.0E

+03 

3.6E

+03 

2.5E

+03 

1.8E

+03 

1.2E

+03 

8.5E

+02 

AR-II-

40% 

1.2E

+05 

8.9E

+04 

6.7E

+04 

5.0E

+04 

3.7E

+04 

2.8E

+04 

2.0E

+04 

1.5E

+04 

1.1E

+04 

7.9E

+03 

5.7E

+03 

4.1E

+03 

2.8E

+03 

2.0E

+03 

1.4E

+03 

9.2E

+02 

 

Table D.6 Frequency Sweep Test Results (δ) for the Unaged and RTFO-Aged Binders 

Binder Type / 

δ (Degree) 

Angular Frequency (1/s) 

100 63.1 39.8 25.1 15.8 10 6.31 3.98 2.51 1.58 1 0.63 0.40 0.25 0.16 0.1 

U
n

a
g

ed
 

AR-II 54.9 55.2 55.9 56.7 57.7 59.0 60.4 61.9 63.1 64.3 65.0 65.3 64.8 63.6 61.5 58.7 

AR-II-

15% 
56.7 57.2 58.1 58.9 60.1 61.6 63.3 65.1 67.1 68.9 70.7 72.3 73.7 74.7 75.4 75.3 

AR-II-

25% 
58.3 59.6 59.7 60.3 61.3 62.7 64.2 66.0 67.8 69.7 71.5 73.3 74.9 76.3 77.5 78.3 

AR-II-

40% 
60.2 60.8 61.5 62.1 63.2 64.5 66.0 67.7 69.5 71.4 73.4 75.2 77.1 78.9 80.4 81.7 

Con-

AAH 
67.2 68.6 70.0 71.3 72.6 73.9 75.3 76.7 78.2 79.6 81.0 82.3 83.5 84.6 85.7 86.5 

R
T

F
O

-a
g
ed

 

AR-II 51.8 52.6 52.3 52.5 53.1 54.0 55.1 56.5 58.0 59.6 61.3 63.0 64.6 66.0 67.2 67.9 

AR-II-

15% 
54.0 54.2 54.4 54.8 55.5 56.4 57.6 58.9 60.5 62.2 64.0 65.8 67.6 69.3 71.0 72.2 

AR-II-

25% 
54.8 55.0 55.2 55.7 56.2 57.1 58.2 59.5 60.9 62.6 64.4 66.2 68.1 69.8 71.4 73.2 

AR-II-

40% 
56.8 57.0 57.3 57.8 58.5 59.3 60.4 61.6 63.0 64.7 66.5 68.3 70.3 72.1 73.9 75.5 
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Table D.7 Master Curve Fitting Parameters of the FAM Mixes 

Fitting Parameters 
FAM Mix 

FAM-GG-C FAM-GG-S-10% FAM-GG-S-15% FAM-GG-F-10% 

δ 0 0 0 0 

α 3.6998 3.5108 3.7247 3.7978 

β -0.8180 -0.9690 -1.0110 -0.9251 

γ -0.4618 -0.4811 -0.43683 -0.4033 

C1 25.4065 25.2433 27.6014 26.6198 

C2 200.4316 200.4253 203.5961 201.2221 

 

Table D.8 Master Curve Fitting Parameters of the Full-Graded Mixes 

Fitting Parameters 
Mix 

AMPT-GG-C AMPT-GG-F-10% BF-GG-C BF-GG-F-10% 

δ 0.8333 0.9223 0.7951 1.0588 

α 3.3817 3.3426 3.2798 3.0978 

β -1.2628 -1.4013 -1.0712 -1.0821 

γ -0.4556 -0.4315 -0.4730 -0.4668 

C1 24.1561 24.9568 25.8246 29.3536 

C2 199.6024 199.5247 199.3825 199.0405 

 

 

Mechanistic Analysis of RHMA-G Fatigue Performance 

Load 

Single axle load = 80 kN 

Tire pressure = 700 kPa 

Traveling speed = 60 mph 

 

Calculations 

6. Obtain the tire contact area at the surface: 

 𝑟 = √
𝑃

𝜋𝜎
= √

40

𝜋 × 700
= 0.135 𝑚 
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where, 

 r = contact area radius (m)  

 P = load per tire (kN) 

 𝜎 = tire pressure (kPa) 

 

7. Assume the stress distribution angle is 45 degree, the contact area at the bottom of the RHMA layer 

is shown in below: 

 

 𝐷 + 2𝐻 = 2(𝑟 + 𝐻) = 0.37 𝑚 (50 𝑚𝑚), 0.47 (100 𝑚𝑚), 0.57 (150 𝑚𝑚), 𝑎𝑛𝑑 0.77 (250 𝑚𝑚) 

 

where,  

 D = diameter of the contact area at surface (m) 

 H = RHMA layer thickness (m) 

 

8. Obtain the time of loading at the bottom of RHMA layer: 

 

𝑡 =  
𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑓 𝑅𝐻𝑀𝐴 𝑙𝑎𝑦𝑒𝑟

𝑣

= 0.014 𝑠 (50 𝑚𝑚), 0.018 𝑠 (100 𝑚𝑚), 0.022 (150 𝑚𝑚), 𝑎𝑛𝑑 0.029 (250 𝑚𝑚) 

 

 

where,  

 t = time of loading (second) 

 v = traveling speed (m/s) 

 

9. Obtain the loading frequency  

 

𝑓 =
1

2𝜋𝑡
= 11.4 𝐻𝑧 (50 𝑚𝑚), 8.8 𝐻𝑧 (100 𝑚𝑚), 7.2 𝐻𝑧 (150 𝑚𝑚), 𝑎𝑛𝑑 5.5 𝐻𝑧 (250 𝑚𝑚) 

 

where,  

f = loading frequency (Hz) 
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t = time of loading (second) 

 

10. Both of the frequencies were used to determine the RHMA mix stiffness from their DM master 

curves at 20°C. 
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