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Abstract 

 

Application of Resampling Statistics in Diffusion Tensor MRI Analysis 

by 

Chris SungWon Chung 

 

Diffusion Tensor MRI (DTI) is an imaging technique that can probe the properties 

of microstructures in the brain tissue. DTI has proved to be useful in detecting 

brain pathologies invisible by other techniques and in delineating specific white 

matter pathways. Analyzing DTI data from a single subject at multiple time points 

is desirable when the disease of interest presents with large inter-subject 

variability. However no such analysis framework exists due to the lack of proper 

tools to accurately estimate uncertainties of DTI derived parameters in a single 

subject. 

 

In this dissertation, novel DTI resampling statistical analysis frameworks were 

developed. Bootstrap algorithms were investigated by Monte Carlo simulation in 

order to better understand the properties of bootstrap and determine the optimal 

bootstrap algorithm for DTI. Then, DTI bootstrap was used to compare the 

uncertainties of DTI derived parameters with or without cardiac gating in order to 

determine the necessity of cardiac gating for DTI with single-shot EPI 

acquisitions. Bootstrap was also used to perform voxel-wise T-testing between 
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DTI data from two time points of a single subject, a technique called BLADE 

(Bootstrap-based Longitudinal Analysis of Diffusion Estimates). An alternative 

analysis framework based on permutation testing, another resampling technique, 

was developed as well. This framework called PERVADE (Permutation Voxel-

wise Analysis of Diffusion Estimates) was designed to overcome some of the 

limitations of BLADE. 

 

Monte Carlo simulation studies of bootstrap algorithms showed that the residual 

bootstrap algorithm developed in this work can estimate the uncertainties of DTI 

derived parameters with the highest accuracy. A cardiac gating scheme with 

minor increase in the scan time turned out to reduce the bootstrap-estimated 

uncertainties enough to justify the longer scan time, making cardiac gating 

necessary with partial Fourier acquisition. BLADE and PERVADE were able to 

detect FA changes in the normal appearing white matter as well as lesions of 

patients with traumatic brain injury and multiple sclerosis. Resampling techniques 

have shown great potential in subject-specific DTI analyses and quantification of 

artifacts, and are anticipated to play even bigger roles in the next generation 

diffusion MRI studies. 
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Chapter 1: Introduction 

 

Diffusion tensor MRI (DTI) is a diffusion MRI technique with modeling of water 

self diffusion characteristics in each voxel using a 3x3 2nd rank diffusion tensor. 

DTI has been proved to be useful in investigating the integrity of brain tissue 

microstructure, such as axonal membranes and myelin. It has also become an 

indispensable tool in delineating axonal bundles that connect different parts of 

the brain through techniques collectively called DTI fiber tracking or tractography. 

 

Most reported DTI studies so far were designed as group comparisons for 

regions of interests. This does not necessarily imply that DTI lacks the statistical 

power to draw meaningful conclusion from an individual subject data. Rather, it is 

simply a consequence of absence of proper analysis technique that takes into 

consideration the uncertainties of DTI derived parameters in any dataset, 

including one from a single subject. It would be extremely useful to be able to 

carry out statistical inference on single subject DTI data as is done for group 

studies. This is especially true when diseases of interest present with large inter-

subject variability, such as multiple sclerosis (MS) and traumatic brain injury (TBI). 

In addition to the regional variability in the pathologies of these disorders, there is 

also strong regional variability in some diffusion parameters like fractional 

anisotropy (FA). 
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In this bioengineering PhD dissertation project, new statistical frameworks were 

developed that can measure DTI uncertainties with high accuracy and precision 

and that can make statistical inferences in the DTI dataset from a single subject. 

Resampling statistics, a group of non-parametric statistical techniques based on 

data-driven simulation, form the basis of developed analyses. Modeling error 

propagation and probability distributions of DTI parameters in analytic forms are 

unknown, limited or difficult, and resampling statistics can replace analytical 

methods by non-parametric, empirical approaches. This project involved 

implementing diffusion tensor estimation, fiber tracking and resampling statistics 

algorithms, evaluating different algorithms by Monte Carlo simulation, and 

applying resampling statistics algorithms to healthy subjects and patients with 

multiple sclerosis and traumatic brain injury. 

 

Chapter 2 describes the biomedical and technical background behind this project. 

Multiple sclerosis and traumatic brain injury are briefly reviewed with the focus on 

the pathological and radiological aspects. The concepts and mathematics of DTI 

and its derived parameters are presented, and the uncertainty estimation 

problem in DTI is summarized with the emphasis on the rationales of utilizing 

resampling techniques. 

 

In chapter 3, I propose new DTI bootstrap algorithms that can overcome the 

limitations of previously proposed DTI bootstrap methods. Monte Carlo 

simulation experiments prove that repetition bootknife corrects the under-
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estimation bias present in the previously proposed repetition bootstrap, and that 

model-based resampling, especially residual bootstrap, can estimate the 

uncertainties of DTI metrics with the best accuracy and precision. Based on the 

results from this chapter, I use residual bootstrap whenever the bootstrap 

technique is required. 

 

Chapter 4 is the first demonstration of the utility of DTI bootstrap. The necessity 

of cardiac gating in DTI studies with single-shot EPI sequences has been 

controversial. In this chapter, I provide evidence that cardiac gating is beneficial 

and actually more efficient in terms of achieved level of uncertainties per unit 

time. The residual bootstrap algorithm makes it possible to accurately quantify 

the effect of cardiac gating on DTI derived parameters. The possibility that full 

Fourier acquisition can be a better choice compared to partial Fourier acquisition 

when cardiac artifact is taken into consideration is presented as well. 

 

In chapter 5, I use residual bootstrap to propose a new voxel-wise statistical 

testing method in the serial DTI study of a single subject called BLADE 

(Bootstrap-based Longitudinal Analysis of Diffusion Estimates). BLADE is 

essentially a voxel-wise T-testing method where pooled standard error values are 

provided by bootstrap. BLADE is performed on patients with TBI in order to 

detect local pathological changes with statistical confidence. BLADE provides 

evidence that while lesions visible in the conventional MRI techniques get better 

with increasing FA, white matter regions near the lesion (possibly connected to 



 4

the lesion) get worse over time in terms of microstructure integrity with 

decreasing FA.  

 

Chapter 6 describes an alternative approach to voxel-wise serial DTI analysis 

using permutation testing, another resampling technique. This approach called 

PERVADE (Permutation Voxel-wise Analysis of Diffusion Estimates), has 

advantages over BLADE in that PERVADE includes a multiple comparison 

correction scheme and that permutation testing is a truly non-parametric 

statistical inference while BLADE relies on an assumed T distribution for testing. I 

describe how permutation testing can be applied in the statistical testing of DTI 

data and present results of PERVADE detecting possible Wallerian degeneration 

in MS patients. 

 

Chapter 7 summarizes my major contributions and possible future directions. DTI 

and next-generation diffusion MRI collectively called HARDI (High Angular 

Resolution Diffusion Imaging) enjoys rich information expressed through diverse 

scalar or vector metrics and fiber tracking, and it is expected that the need for 

more sophisticated statistical analyses will only increase. 
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Chapter 2: Background 

 

2.1 Disease Populations Investigated 

In this dissertation, I applied resampling statistical techniques to two major 

clinical conditions in the central nervous system (CNS), multiple sclerosis and 

traumatic brain injury. While these two conditions might seem very different at 

first glance, they share a few features that make them suitable for my 

investigation. 

 

First, both include non-diffuse multi-focal brain lesions with the large inter-subject 

variability. Since each patient presents with a unique temporal and spatial 

distribution of pathologies in the brain, patients with these conditions make good 

candidates for single-subject serial voxel-wise analysis, less so for multiple-

subject (group-wise) and / or whole-brain analysis. 

 

Second, conventional (three-direction) diffusion weighted MRI (DWI) and DTI is 

more sensitive than conventional MRI in detecting brain pathologies invisible to 

conventional MRI techniques. There are numerous studies reported to have DWI 

or DTI abnormalities in the normal appearing white matter (NAWM), which is a 

white matter region with no visible lesions by conventional MRI [1, 2]. 
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Lastly, patients with both conditions can suffer from irreversible deterioration of 

brain functions due to axonal transection followed by Wallerian degeneration 

(WD). While other pathologies in these diseases, such as hematoma / 

hemorrhage in TBI and inflammation in MS, usually subside over time leaving 

little or no sequela if patients can recover, regeneration of transected axons in 

the CNS is rare and slow if not altogether absent. Detection and quantification of 

axonal transection / WD is important in clinical assessment and prognosis, yet it 

is a challenging task since conventional MRI techniques rarely reveal the 

ongoing degeneration process directly. 

 

DTI has a potential to directly assess WD.  It is sensitive to changes in the white 

matter microstructure and it can reconstruct white matter tracts along which the 

degeneration is likely to happen. The ability of DTI to detect abnormalities in 

NAWM may partially be explained by its sensitivity to Wallerian degeneration, 

though this was not obvious in previous studies since other pathologies can 

coincide. I attempted to increase the confidence in the detection of Wallerian 

degeneration via incorporating both temporal (serial study) and spatial (voxel-

wise study with fiber tracking) information. 
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2.1.1 Multiple Sclerosis 

2.1.1.1 Overview 

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the 

central nervous system (CNS).  It is estimated that around 350,000 people in the 

United States are affected by MS, and more than 2.5 million in the world. Though 

survival of MS patients is only slightly below normal, MS causes considerable 

neurological disability in the working age group. Patients typically present with 

CNS lesions (or plaques) that appear as indurated (hardened) areas in 

pathologic specimens, after which the disease was named (sclerosis is a medical 

term for hardening). These lesions, characterized by combinations of 

inflammation, demyelination, gliosis (scarring of CNS), and axonal injury and 

transection [3], are readily seen in MRI, and our ability to diagnose and monitor 

MS has improved dramatically with the advent of MRI. MR techniques also have 

a huge role in monitoring the disease’s natural course as well as its modification 

by treatment. 

 

MS patients can suffer from a wide variety of clinical features [4]. Symptoms can 

arise from spinal cord (muscle weakness and painful spasm, bladder 

dysfunction), brain stem (double vision, dizziness), cerebellum (tremor, 

clumsiness), optic nerve (unilateral painful loss of vision), or cerebrum (cognitive 

impairment, depression). General symptoms are also common, such as pain, 

fatigue, and intolerance to hot temperature. These symptoms are not only 

diverse, but they also follow a somewhat unpredictable course, often with certain 
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recurring pattern. This variety of symptoms and time courses reflects the diverse 

spatial and temporal evolutions of MS, and the diagnosis of MS can be 

challenging due to the resemblance to many other neurological disorders. 

 

Several subtypes based on the patterns of progressions has been described in 

order to better predict the prognosis and make therapeutic decisions in each 

patient. Eighty percent of MS patients are initially diagnosed with the relapsing-

remitting subtype (RRMS), characterized by unpredictable attacks (sudden onset 

of symptoms, relapse), which may or may not leave permanent deficits after 

remission. The remaining 20% can be described as primary progressive subtype 

(PPMS), having no remission after their initial MS symptoms. Around 80% of 

RRMS patients later become secondary progressive subtype (SPMS), 

experiencing continuous decline in the neurologic functions between attacks and 

ultimately suffering from severe disability such as inability to walk. While not 

fulfilling the diagnostic criteria for MS, the earliest clinical presentation of RRMS 

is in the form of patients with clinically isolated syndromes (CIS) [5]. Individuals 

with CIS suffer from an attack suggestive of CNS demyelination, often in the form 

of optic neuritis or sudden one-sided muscle weakness. CIS is clinically important 

since treatment during the initial attack can decrease the possibility of developing 

MS. Subjects with CIS are investigated in the chapter 6 to find any DTI changes 

in the normal appearing white matter.  
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Huge efforts have been put into establishing the cause of MS, but it still remains 

elusive. The most commonly held theory is that MS is caused by our body’s own 

immune system attacking the CNS, triggered by genetic and environmental 

factors. The most likely injured structures are the myelin sheaths and 

oligodendrocytes, a type of neuroglial cell that produces the myelin sheath and 

support the axons.  Since the cause is not clear, there is no available prevention 

or cure either. Nevertheless, several therapies proved to be useful in reducing 

relapses, slowing progression and managing neurologic deficits. The prognosis 

varies highly among the patients. Factors associated with a worse prognosis, i.e. 

faster accumulation of disability and shorter time before progression, include 

having PPMS (as supposed to RRMS), old age of onset and male (more likely to 

have PPMS), incomplete recovery after the initial attack, and frequent relapses.   

 

2.1.1.2 Pathology & Imaging 

Conventional MRI such as T1, and T2, and proton density weighted images are 

sensitive for the detection MS lesions (Figure 2-1). However, studies of lesion 

measures yielded generally disappointing correlations with the development of 

clinical disability, possibly due to inability to differentiate the heterogeneous 

pathologic substrates of individual lesions, and to estimate tissue damage that is 

known to occur outside the macroscopic lesions, i.e. in the normal-appearing 

white matter (NAWM) and gray matter (NAGM). Furthermore, even if the degree 

of degeneration is determined, the associated clinical deficit may not be 

predictable due to the unknown functional relevance of the degenerating tissue. 



 10

This prompted the utilization of new quantitative MR techniques that can 

overcome these limitations, and diverse new techniques such as MR 

spectroscopy, diffusion MRI, cell-specific imaging, myelin water imaging, ultra-

high field MRI, and functional MRI are currently under active research with the 

hope of becoming more specific markers of various MS-related pathologies. 

Imaging for three key pathologic aspects of MS, i.e. inflammation, demyelination, 

and axonal injury, is described below. 

 

 

Figure 2-1. MRI images from a MS patient. Arrow: MS lesion. T1WI: T1 weighted image. T2WI: T2 

weighted image. FA: fractional anisotropy of DTI. 

 

Inflammation is a complex process involving multiple cellular and humoral 

components and cell trafficking through the blood-brain barrier (BBB). MRI has 

been able to observe inflammation only indirectly, most successfully in the 

disturbance of the BBB. Inflammatory cells induce loosening of the BBB, i.e. 

capillary endothelial cells connected together with tight junctions, in order to allow 

infiltration of inflammatory cells inside the brain parenchyma. Gadolinium (Gd) 

based MRI contrast agents infiltrate only disrupted BBBs and invade the 
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parenchyma allowing Gd contrast-enhanced MRI to be used as a surrogate 

inflammation marker. However, macroscopically visible inflammation does not 

represent the full inflammatory process that includes microscopic and perhaps 

more diffuse process. Cell-specific imaging based on ultra small particles iron 

oxide (USPIO) [6, 7] is a promising new technique that is sensitive to a different 

aspect of inflammation, macrophage migration. 

 

Demyelination, loss of the myelin sheath insulating axons, is the hallmark 

pathology of MS and some other immune-mediated neurodegenerative diseases. 

It causes an array of neurological symptoms by disrupting efficient nerve 

conduction. While there are several MR techniques that are sensitive to 

demyelination, such as magnetic transfer MRI, diffusion MRI, proton MR 

spectroscopy, and conventional MR relaxation times, these methods are also 

sensitive to other pathologies, making myelin-specific measurements challenging 

or unlikely. Myelin water fraction imaging has been reported to distinguish water 

signals coming from CSF, intra / extra-cellular, and myelin by analyzing T2 

relaxation, and it has the potential to provide more specific quantification of 

degree of myelination [8, 9]. 

 

Axonal injury, previously under-emphasized, has recently drawn attention as an 

early cause of neurologic disability in MS. Pathological studies have found axonal 

loss in the NAWM as well as inside lesions. Axonal injuries within lesions are 

likely to be caused by inflammation, but the mechanism behind NAWM axonal 
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damage remains unclear. It simply might be Wallerian degeneration from axonal 

transection occurred in lesions some distance away. However, some 

investigators raised the possibility of unidentified global axonopathy directly 

damaging NAWM axons independent of lesions [10]. Thus, non-invasive imaging 

techniques that can accurately localize and quantify axonal injury and 

degeneration is critical in elucidating the pathogenesis of NAWM axonal damage 

and better estimating overall irreversible neurological damage. The pathology 

and imaging of axonal injury and Wallerian degeneration are further discussed in 

section 2.1.3. 

 

2.1.2 Traumatic Brain Injury 

2.1.2.1 Overview 

Traumatic brain injury (TBI) is a common and often devastating problem in 

modern society, especially for the population under age 45. It is estimated that 

TBI occurs in 1.5 to 2 million people in the United States every year. Around 2% 

of the entire population of the USA are thought to live with disabilities caused by 

TBI [11]. Both young (teenagers through twenties) and old (older than 70) age 

groups have  especially high incident rates. Motor vehicle accidents are the most 

common cause with young patients, while elderly population suffer from 

accidental falls most frequently. Abuse and neglect are also common causes with 

children. 
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TBI is typically classified by the severity and the nature of injury. The severity of 

TBI is usually based on the Glasgow Coma Scale (GCS), a clinical scoring 

system between 3 (worst) and 15 (best) that combines eye, verbal and motor 

responses. Eighty percent of the patients are mild (GCS 13 to 15), 10-13% 

moderate (GCS 9 to 12), and 7-10% severe (GCS 3 to 8) [12]. TBI can also be 

classified into primary and secondary injuries [11]. Primary injuries occur as 

direct result of the trauma and they include hemorrhage / hematoma, cortical 

contusion, axonal shearing injury and vascular injury. Secondary injuries are 

caused by complications of primary injuries and they are preventable. Acute / 

subacute secondary injures include cerebral edema, ischemia, and brain 

herniation. Hydrocephalus, cerebrospinal fluid (CSF) leak, leptomeningeal cyst 

and encephalomalacia can also follow as chronic secondary injuries. 

 

TBI presents with symptoms and complications of a wide variety in type, severity 

and duration, ranging from mild headaches to coma and brain death. Possible 

outcomes are impairments in movement (e.g. difficulty walking), sensation, 

cognition (e.g. memory loss, poor judgment), mood (e.g. depression, agitation, 

impulsiveness), and sexual function. Patients can also suffer from seizures and 

psychotic symptoms such as hallucination and delusion. Since little can be done 

to reverse the initial brain damage, initial treatments are focused on stabilizing 

patients and preventing secondary injuries, such as brain swelling. Surgery might 

be required to decrease the intracranial pressure and to remove / repair 

hematomas or contusions. 
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2.1.2.2 Pathology & Imaging 

As described above, diverse types of injuries can occur with TBI, such as 

fractures and hemorrhages as primary injuries and cerebral swelling and 

herniation as secondary injuries. While current clinical imaging techniques such 

as CT and conventional MRI are capable of detecting most of these pathologies, 

their sensitivity to diffuse axonal injury (DAI) is limited. As such, DAI is often 

under-diagnosed and accurate evaluation of DAI using more advanced imaging 

techniques is of special interest. Chapter 5 includes studies of patients suspected 

of having cortical contusions and DAI and therefore these pathologies are 

described in detail below. 

 

Cortical contusion is a focal brain lesion mainly in the cortical gray matter. The 

parts of the brain in close contact with the rough surface on the inner skull table 

are commonly involved. Cortical contusions are thought to be caused by the 

brain tissue colliding against the inner surface of the skull. On histology, 

hemorrhage and edema are the seen in the earliest stage, followed by signs of 

injuries in the neuronal cell bodies and axons. On CT, contusions associated with 

hemorrhages are easily identified but non-hemorrhagic contusions can be difficult 

to detect until edema develops. On MRI, contusions appear as ill-defined regions 

of variable intensity. Contusions usually have  better prognoses than DAIs. 
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As the word ‘diffuse’ suggests, diffuse axonal injury (DAI) occurs in a more 

widespread area than focal injuries such as contusion. The affected areas are 

often distant from the site of direct impact, and two thirds of DAI lesions occur 

near the junctions of gray and white matter. DAI is caused by rotational 

acceleration and deceleration forces that produce shearing deformation of the 

brain leading to axonal transection. It was once believed that traumatic 

mechanical forces themselves are the main cause of the axonal transection. 

However, recent studies show that secondary reactions occurring hours to days 

after the trauma in response to the primary injury are largely responsible for the 

transection [13]. Disruption of the cytoskeleton structures during the stretching of 

axons are thought to initiate the biochemical processes that eventually separate 

the axons. 

 

On histology, axonal swelling and transection are observed initially. Axonal 

swelling occurs at the site of damaged cytoskeleton due to failed axonal transport. 

Large enough swellings tear the axon and form a bulb called the retraction ball. 

Transected axons are followed by Wallerian degeneration. Small focal 

hemorrhages are sometimes accompanied in DAI. On imaging, CT is limited for 

the diagnosis of DAI since CT can only detect hemorrhages, not axonal injuries 

directly. Gradient-echo T2*-weighted MRI depicts more DAI lesions than CT and 

has higher sensitivity to hemorrhage. FLAIR MRI can detect many non-

hemorrhagic foci of DAI. Unfortunately, FLAIR MRI still underestimates the true 

extent of DAI since it is not sensitive to the some axonal pathologies [11]. 
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2.1.3 Axonal Transection and Wallerian Degeneration 

2.1.3.1 Pathology 

Once a neuronal fiber is severed either by traumatic or non-traumatic injury, the 

distal (i.e. away from the neuronal cell body) part of the axon / myelin unit 

degenerates, a process called Wallerian degeneration (WD). It is also known as 

anterograde or secondary degeneration. First, the axonal membrane swells and 

breaks apart. The axonal cytoskeleton and inner organelles undergo 

disintegration as well. This axonal degeneration is a rapid process, taking around 

24 hours in the peripheral nervous system (PNS) and somewhat longer in the 

CNS. The second step is the clearance of the myelin sheath. Schwann cells that 

are responsible for producing and supporting the myelin sheath in the PNS are 

actively involved in this process, and the myelin clearance in the PNS is very fast, 

usually completed within a few weeks. On the other hand, oligodendrocytes that 

assume similar roles in the CNS are thought to be less involved in this process. 

The BBB in the CNS also hinders the recruitment of macrophages away from the 

transected nerve. Hence, non-functioning axon-less myelin can remain for an 

extended time in the CNS, as long as years. Third, regeneration follows 

degeneration, but only in the PNS. Regeneration is either absent or very slow in 

the CNS, making any axonal transection an irreversible and permanent 

neurologic damage. 
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Inefficient myelin clearance in the CNS is significant in a few aspects. First, it is 

suspected to be one of major reasons for the lack of regeneration following WD 

[14]. Second, it contributes to a grossly normal appearance of the affected white 

matter, both in pathologic and radiologic studies [15]. Though the microstructure 

of myelin sheath is altered, forming hollow (missing axons inside) and segmented 

structures called myelin ovoids, these features are not easily appreciated either 

in routine histologic studies or by most MR techniques. 

 

 

Figure 2-2. Wallerian degeneration of spinal cord axons. Confocal images of longitudinal sections 

of neuronal fibers. Myelin is stained as green, and axonal neurofilaments are stained as red. In 

the upper image (C), fibers undergoing deneration appears as rows of myelin ovoids (arrows) 

between intact myelinated axons. In the magnified image below (D), it is clear that myelin ovoids 

lack axonal structures indicated by lack of red staining. Scale bar = 25 µm. This image is taken 

from [15]. 
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2.1.3.2 Imaging  

As discussed above, axonal transection and WD is difficult to detect, unless in 

later stages when the myelin debris is eventually cleared and white matter tracts 

undergo atrophy. Atrophy measurement based on conventional MRI such as high 

resolution T1 weighted images is currently the most common approach to study 

CNS degeneration. With advancement in data acquisition and analysis 

techniques, atrophy has been shown to start very early in MS, even at 

presentation with a CIS [16] (and Roland’s VBM paper at JNNP) and that atrophy 

measurement have a better correlation with clinical disability compared to lesion 

loading [17]. However, atrophy measurement 1) cannot measure degeneration 

when myelin debris still remains, 2) is less than optimal in localizing the atrophy, 

though some progress has been made in measuring atrophy in specific gray or 

white matter regions, 3) can easily be confounded by other factors such as fluid 

content, proliferation of other cells such as gliosis, and demyelination without 

degeneration, and 4) the predictive power for prognoses is still weak. 

 

N-Acetyl Aspartate (NAA) measured by Proton (1H) MR Spectroscopy (MRS) 

reflects the neuronal metabolic integrity as well as neuroaxonal density. Reduced 

NAA level in the NAWM of MA patients has been used as evidence of 

widespread pathology outside lesions [18, 19], possibly neurodegeneration either 

primary or secondary. However, this NAA alteration can resolve with time [20], 

suggesting that NAA reduction can also be explained by reversible axonal 

dysfunction or metabolic changes. Limited spatial resolution is another drawback 
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of NAA measurement. Gadofluorine M, a novel gadolinium-based MRI contrast 

agent, selectively accumulates in nerve fibers undergoing WD [21], has the 

potential to provide even more specific information about axonal injury, 

highlighting only irreversible damages with high spatial resolution. However, 

safety issue needs to be addressed and more human trials are needed to 

demonstrate efficacy. 

 

Lastly, DTI also has the potential to be useful in the characterization of 

neurodegeneration. DTI is sensitive to changes in the microstructure, possibly 

including the myelin ovoids in the earlier stage of WD. DTI fiber tracking can help 

narrow down the search region where WD is most likely (i.e. white matter tracts 

connected to a lesion) in order to increase the power of detection via either DTI 

derived parameters or other measurements such as NAA. In this dissertation, 

only DTI is utilized, but combining DTI with other techniques would be ideal 

considering that DTI is not highly specific to WD. 
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2.2 Diffusion Tensor MRI (DTI) 

 

2.2.1 Diffusion 

Diffusion is a result of thermally driven random translational motions of molecules 

called Brownian motion. These motions cannot be predicted since they are 

random events governed by thermodynamics, collisions with other molecules and 

the structures in the medium. Still, we can describe the probabilistic distribution 

of the translation of a molecule after certain time, and collective behaviors of 

these molecules in large numbers become predictable simply as a statistical 

outcome. This macroscopic aspect of diffusion is usually defined as the 

spontaneous net movement of particles from an area of high concentration to an 

area of low concentration in a given volume of fluid (medium) down the 

concentration gradient, a process that will continue until the concentrations are 

equalized. An example is a drop of ink within a glass of water which will diffuse 

until the ink is evenly mixed with the water. 

 

In diffusion MRI, though, we are not looking at a certain species of solute 

diffusing within a water media. Even without the presence of certain solutes, the 

water molecules are diffusing amongst themselves, under the same principle of 

Brownian motion as ink molecules within the water. This process is called self 

diffusion. Unlike a typical diffusion process involving separate solute and medium, 

self diffusion does not demonstrate any net effect that can be observed, such as 
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the spread of ink droplet inside water. Even with water molecules moving around 

within water, they are still collectively water in the same state. To make water self 

diffusion an observable phenomenon in the diffusion MRI experiments, we tag 

water protons so that water molecules become heterogeneous and concentration 

gradients are created. The diffusion MRI concept is further described in the 

section 2.2.2. From now on, the word diffusion and self diffusion will be used 

interchangeably. 

 

It has been proved that in case of free diffusion, i.e. diffusion without hindrance or 

restriction, the probabilistic distribution function (pdf) of the 3x1 position vector r 

after time τ  ( 0=r r when 0τ = ) is a Gaussian function as below. 

0 0
0 3

( ) ( )1( | , ) exp( )
4(4 )

T

p
DD

τ
τπ τ

− −
= −

r r r rr r  Equation 2-1

In this equation, D is the diffusion coefficient, a scalar value that determines the 

amount of displacement in a time τ . D can be estimated by an equation proved 

by Einstein as below, 

D =
RT

6πkPN  Equation 2-2

where R is the universal gas constant, T is the absolute temperature, N is 

Avogardo’s number, k is the viscosity, and P is the radius of molecules. 
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2.2.2 MR Measurement of Diffusion  

Diffusion is typically measured by adding a pair of diffusion-sensitive gradients to 

the spin echo pulse sequence, termed pulsed-gradient spin echo (PGSE). A 

typical 90° and 180° radiofrequency pulse spin echo sequence partially undoes 

the signal attenuation at the echo time TE by reversing the proton spin dephasing 

caused by time-independent field inhomogeneity. Signals from the spin echo 

sequence are T2 weighted, meaning that signals are reduced only by irreversible 

spin-spin interactions (T2 effect) but not by both T2 effect and the reversible effect 

of field inhomogeneity on stationary spins (T2′ effect). Even with the spin echo 

sequence, though, signals can be attenuated by the T2′ effect since the diffusion 

of protons results in incomplete rephasing in an inhomogeneous field. Diffusion 

was once considered an artifact of the spin echo experiment, but is now exploited 

to measure diffusion by artificially creating field inhomogeneities. 

 

Figure 2-3. Pulse sequence diagram for a diffusion-weighted acquisition. A pair of diffusion-

sensitizing gradients (dark gray) are added to a spin echo sequence. This image is taken from 

[22]. 

 

The mechanism of diffusion weighting by PGSE is the following (Figure 2-3). A 

90° pulse excites the proton spins and puts the spins in phase with each other. 
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Immediately after the pulse, they start dephasing by T2* effects, which is a 

combination of T2 and T2′ effects. Next, the first of the pair of diffusion-sensitive 

gradients is turned on, artificially creating a strong field inhomogeneity that 

increases the T2′ effect. This inhomogeneity can be made reversible by applying 

the second of the pair of gradients after a 180° pulse, with exactly the same 

properties (strength, duration and shape) as the first gradient. Just like other 

static unintended field inhomogeneities (caused by improper shimming, for 

instance), spin dephasing caused by diffusion gradients can be undone 

assuming that there is no diffusion (or other movement of the spins). However, 

diffusion will cause dephasing that will not be reversed by 180° pulse, and the 

amount of irreversible dephasing (and signal attenuation due to dephasing) 

depends on the pdf of water diffusion (including the amount of diffusion and any 

other incoherent intravoxel motion) and on the properties of the diffusion 

gradients. 

 

In the case of imaging free diffusion with a PGSE experiment, the MR signal 

attenuation is expressed as, 

0( ) exp( )S b S bD= −  Equation 2-3

where S(b) is the signal with diffusion weighting defined by b, S0 is the signal 

without diffusion weighting, D is the diffusion coefficient. The b-value, b in the 

equation above, can be calculated by the following equation, 

2 ( / 3)b Gγ δ δ= ∆ −  Equation 2-4
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where γ is the Lamour constant, G is the diffusion gradient strength, δ  is the 

diffusion gradient duration, and ∆  is the time from the start of the first diffusion 

gradient to the start of the second one (for δ  and ∆ , see Figure 2-3). From 

Equation 2-3, we can simply calculate the diffusion coefficient D as the following. 

1
0ln( ( ) / )D b S b S−= −  Equation 2-5

From D and / 3τ δ= ∆ − , we can completely describe the pdf of free diffusion in 

the isotropic 3D Gaussian function as shown in Equation 2-1. 

 

2.2.3 Diffusion in the Biological Tissue 

Unlike free diffusion, the diffusion in the biological tissues is hindered and / or 

restricted by various microstructures such as axonal membrane and myelin 

sheath. The pdf of diffusion no longer follows the Gaussian formula shown in 

Equation 2-1, and the diffusion coefficient D is not strictly defined. Nevertheless, 

we can perform MR experiments of diffusion as described above by 

approximating the pdf of hindered diffusion by Equation 2-1. By this, we can 

dramatically reduce the complexity of the problem of pdf measurement to a 

simple estimation of D as with free diffusion, and we can come up with a single 

value that roughly represents the amount of hindered / restricted diffusion. This 

simplification made diffusion-weighted MRI feasible. On the other hand, a 

complete description of the pdf with q-space formalism [23] has not been used in 

in-vivo imaging until recently due to more rigorous technical requirements. 
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The diffusion coefficient in the measurement of hindered / restricted diffusion with 

Gaussian approximation is called the apparent diffusion coefficient (ADC) so that 

it can be distinguished from the diffusion coefficient defined under conditions of 

free diffusion. ADC values are smaller than what is predicted by Equation 2-2, 

reflecting the effects of microstructures that act as barriers of diffusion. As much 

as the utility of ADC values, it was recognized soon after the emergence of DWI 

that measurement of ADC by two images (corresponding to S(b) and S0 in the 

Equation 2-2) was problematic. The diffusion coefficient D in the Equation 2-1 is 

isotropic, and the measured D should be independent of measured direction of 

diffusion. On the other hand, the measured ADC turned out to be strongly 

anisotropic in nervous tissue [24]. Thus, it has been a common practice to 

acquire four images (one S0 and three S(b) in x, y, and z directions of MRI 

coordinate system) and calculate a rotationally invariant ADC value by averaging 

ADC measured in x, y, z directions as below, undoing the anisotropic property of 

measured ADC. 

( ) / 3x y zADC ADC ADC ADC= + +  Equation 2-6

where 1
0ln( ( ) / )i iADC b S b S−= −  (i=x, y or z) Equation 2-7

 

2.2.4 Basic Concepts of DTI 

Measurement of anisotropic diffusion [25] within a mathematically rigorous 

framework was made feasible with the introduction of DTI [26, 27]. DTI explicitly 
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models anisotropic diffusion with a more generic multivariate (x, y, and z) 

Gaussian function shown below (extension of Equation 2-1). 

1

3

( ) ( )1( | , ) exp( )
4(4 )

T

p τ
τπτ

−− −
= − 0 0

0
r r D r rr r

D
 Equation 2-8

In this equation, D is a diffusion tensor, 3x3 diagonally symmetric matrix. 

xx xy xz

xy yy yz

xz yz zz

D D D
D D D
D D D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D  Equation 2-9

D describe ADC values separately along x, y, and z directions (diagonal 

elements, i.e. Dxx, Dyy and Dzz) as well as the correlation between these (off-

diagonal elements, i.e. Dxy, Dxz and Dyz). In fact, the covariance matrix C of the 

pdf of diffusion in the Equation 2-8 is 2 τ=C D . 

 

The MR signal attenuation is the extension of the Equation 2-3 as the following. 

0( , ) exp( )TS b S b= −g g Dg  Equation 2-10

Here, g is the 3x1 unit vector of the direction of diffusion gradient, usually a 

combination of x, y and z gradients. The gradient strength term is included in the 

b-value as shown in Equation 2-4. In Equation 2-10, there are seven unknown 

parameters, the six unique elements of D and S0. Thus, in order to estimate D, 

we need at least seven different equations that can be acquired by varying either 

b or g (typically one image with b≈0, and the remaining six images with b>0 and 

non-collinear g), though often many more images are acquired in order to better 

estimate D. D is commonly solved by linear regression with weighted least 
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squares after log transformation of the above equations (this procedure is further 

described in the chapter 3).  

 

2.2.5 DTI Derived Parameters 

D is an ellipsoidal approximation to the diffusion pdf and therefore can be rotated 

so that ADC values along the new three principal axes are not correlated with 

each other. The rotated matrix will have zero values for all off-diagonal elements, 

and thus this process is called diagonalization shown in the equation below. 

T= ⋅ ⋅Λ R D R  Equation 2-11

where 
1
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Equation 2-12

Λ  is the diagonal matrix with three eigenvalues, and R is the rotation matrix 

where each column is the eigenvector associated with the corresponding 

eigenvalues ( 1 2 3λ λ λ> > ). These three eigenvectors and eigenvalues describe 

the directions and ADC of three principle axes of the diagonalized D. 

Eigenvectors and eigenvalues are rotationally invariant and do not depend on the 

MR coordinate system. Therefore, eigenvectors and eigenvalues themselves or 

any other parameters derived from these (described below) can be estimated 

quite robustly regardless of relative positioning of subjects inside MR system. 

 

Various scalar parameters have been defined using eigenvalues, and the 

parameters that are most commonly used are the following. 
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1 2 3( ) / 3avD λ λ λ= + +  Equation 2-13

Dav is an average ADC, and it is equivalent to the average ADC in the 

conventional three-directional DWI experiments. 

2 2 2
1 2 3

2 2 2
1 2 3

( ) ( ) ( )3
2

av av avD D DFA λ λ λ
λ λ λ

− + − + −
=

+ +
 Equation 2-14

Fractional anisotropy (FA) is the most popular index of the degree of anisotropy. 

FA is a unitless entity ranging between 0 (isotropic) and 1 (completely 

anisotropic). FA is conceptually similar to coefficient of variation between the 

three eigenvalues.  

1λ λ=  Equation 2-15

λ  (lamda parallel, also known as axial or longitudinal diffusivity, is the ADC 

along the primary (largest) eigenvector direction. 

2 3( ) / 2λ λ λ⊥ = +  Equation 2-16

λ⊥  (lamda perpendicular, also known as radial or perpendicular diffusivity) is the 

average of the ADCs in the directions perpendicular to primary eigenvector. 

 

In coherent neuronal fiber bundles, the primary eigenvector tends to align parallel 

to the axons while the secondary and tertiary eigenvectors are perpendicular to 

the axons. Thus, the eigenvectors are helpful in inferring the course of white 

matter pathways and techniques that use this information to delineate this course 

across voxels is called fiber tracking, and is discussed in the following section. 

Regarding parameters derived from eigenvalues, numerous studies on MS and 
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TBI patients have shown that Dav is increased and FA is decreased in the NAWM 

as well as lesions, proving that DTI is able to detect the alterations of 

microstructure that conventional MRI is missing [1, 2]. Recently, there have been 

efforts to investigate axial and radial diffusivity as well. Studies on mice brain 

suggests that λ  is specific to axonal degeneration and λ⊥  is specific to 

demyelination in the highly ordered axonal bundle structures [28], and overall 

increase of λ⊥  is observed in the MS patients [29]. 

 

2.2.6 Fiber Tracking 

Fiber tracking [30] is a technique of reconstructing plausible white matter 

pathways using the 3D diffusion profile in each voxel provided by DTI or more 

sophisticatedly by HARDI (High Angular Resolution DWI). The basic idea is to 

connect from voxel to voxel following the direction indicative of axonal bundle 

(such as primary eigenvector for DTI). There are diverse approaches in the 

actual implementation of this concept, such as either deterministic (do not 

consider uncertainty in the direction) or probabilistic, how to follow the tensor field 

(for DTI), the minimum conditions for tracking, etc. Since this technique is the 

only way to estimate white matter pathways in vivo, validation is difficult yet 

crucial. With supports from direct (such as comparing with the electrostimulation 

in human [31]) and indirect (prior neuroanatomy knowledge) evidence, fiber 

tracking is generally accepted as a valuable tool in studying connectivity and 

delineating specific tracts. In this dissertation, fiber tracking was an essential tool 
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to select regions likely to be connected to lesion, or more generally, regions that 

are likely to be closely connected. 

 

Figure 2-4. Examples of 3D rendered fiber tracking results. Left image shows corpus callosum 

fibers segmented by connectivity to distinct Brodmann areas (antero-left-superior view). Right 

image shows corticospinal tract (CST) fibers in a MS patient (anterior view). A MS lesion 

including a part of CST is also rendered (a yellow mass inside the blue circle). By fiber tracking, 

we can selectively study white matter areas connected to a known pathologic region. 

 

2.2.7 Uncertainty Estimation of DTI Derived Parameters 

In order to properly interpret experimental data, we need to know how different 

our measurements could be to the unknown true value. This degree of potential 

difference is typically referred to as uncertainty or error. It can simply be 

described by a single number (mostly commonly standard error) or it can take 

more complicated forms such as confidence intervals or probability distributions, 

depending on the intended use of the uncertainty information. Multiple methods 

for estimating the uncertainties of diverse DTI derived parameters have been 
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reported, and they can be roughly classified as either analytical or numerical 

approaches. 

 

2.2.7.1 Analytical Approach 

The analytical approach attempts to derive closed-form expressions for errors in 

DTI derived parameters [32-35]. Noise in the measured diffusion signals are 

related to uncertainties in the diffusion tensor elements by propagation of errors 

[36]. These errors of the tensor elements are then related to DTI derived scalar 

or vector parameters by combinations of perturbation and propagation of errors 

methods. While the analytical approach provides a way to simply calculate the 

error with minimal computation effort as long as the equations are available, 

there are several limitations that make this approach impractical. 

 

First, the analytical approach relies on the assumption that the only source of 

error is the Gaussian noise in the MR signals. In reality, MR images are affected 

by various artifacts such as subject head motion, cardiac pulsation artifacts, 

ghosting, and eddy current distortion, that contribute significantly to the overall 

uncertainties. Even if we assume that thermal Gaussian noise is the only source 

of error, this noise is spatially dependent (more pronounced with surface coils) 

and there is a compelling need to estimate this noise voxel-wise, which is an 

issue that has been neglected in the studies utilizing the analytical approach. 

Second, perturbation theory relies on a small angle approximation, which makes 

the estimated errors unreliable when these angles are relatively large. Third, the 
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analytical approach can only estimate errors with single values (such as standard 

error) since no analytic formula exist for the pdf of DTI derived parameters except 

for Dav. 

 

2.2.7.2 Numerical Approach 

The numerical approach depends on modern computer power and algorithms 

rather than mathematical derivations. If the probabilistic distribution of the source 

of noise is known (or is assumed to be known) then Monte Carlo (MC) simulation 

studies can reproduce the probabilistic distributions for any DTI derived 

parameters. MC simulation works even if no closed analytic formulas exist for the 

distributions and the accuracy of results depends on the number of trials. MC 

studies have been used extensively to analyze how the noise affects DTI derived 

parameters [37-39], and they also serve as the gold standard in evaluating other 

uncertainty estimation approaches under the assumption of known distributions 

of noise sources [40-42]. 

 

When the assumption of a known noise source distribution no longer holds, 

which is the case with any real in vivo studies, the numerical approach cannot 

directly replicate the noise propagation process as is done with MC studies. In 

these cases the computer simulation process has to be based on the data 

themselves, and two quite different techniques are available, Bayesian and 

bootstrap. Both methods need the data to be over-sampled, a requirement easily 

met with the recent trend of DTI acquisitions with many diffusion-encoding 
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directions. Bayesian methods [40, 43] can accurately estimate the pdf of DTI 

derived parameters but it is very computationally intensive and the noise has to 

be mathematically modeled (strictly speaking, the source of noise is not unknown 

completely but only the parameters defining the model of the source of noise is 

unknown). Bootstrap [41, 44-46], an empirical, non-parametric, resampling 

statistical technique, does not require modeling of the source of noise unlike the 

Bayesian method. Implementing the bootstrap algorithm is straightforward and 

the computational burden is relatively light, especially compared to Bayesian 

approaches. For these reasons, bootstrap was further developed and applied in 

this dissertation. 

 

 

Figure 2-5. Schematics of basic concept of bootstrap. 
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In the simple scenario with a sample drawn from a population (Figure 2-5), 

bootstrap samples with the same size as the original sample are drawn from the 

original sample with replacement (i.e. same element of the original sample can 

be drawn multiple times) and the statistics of interest (such as mean) from each 

bootstrap samples are calculated. The distribution, then, is used to infer 

uncertainty for a given statistic of the original sample, such as standard errors, 

bias, confidence interval, and an empirical pdf. In reality, bootstrap is not defined 

as a single exact algorithm but rather exists as a set of algorithms that can be 

applied for specific data types. For DTI, implementation of bootstrap was 

originally proposed in terms of resampling separately for different samples of 

each direction [46], which I will refer to as repetition bootstrap. Alternative 

bootstrap approaches exist which are described in detail in chapter 3. 

 

In the chapter 6, permutation testing, another resampling technique is developed 

for DTI serial analysis. Statistical testing based on bootstrap has to assume that 

the null distribution of our statistic of interest (such as difference in certain DTI 

derived parameters) closely follow a Gaussian distribution. Permutation testing 

estimates the null distribution directly from the data instead of making 

assumptions about this distribution and it may prove to be more accurate in the 

estimating the p-values. Lastly, probably the ultimate method of uncertainty 

estimation would be repeated measures, such as acquiring the same dataset a 

hundred times. Though it can serve as a gold standard, it is not feasible due to 

time constraints. 
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Chapter 3: Comparison of DTI Bootstrap Approaches 

 

3.1 Abstract 

Bootstrap is an empirical non-parametric statistical technique based on data 

resampling that has been used to quantify uncertainties of diffusion tensor MRI 

(DTI) parameters, which are very useful in tractography and in assessing DTI 

methods. The current bootstrap method (repetition bootstrap) used for DTI 

analysis performs resampling within the data sharing common diffusion gradients, 

which requires multiple acquisitions for each diffusion gradient. Recently, wild 

bootstrap was proposed which can be applied without multiple acquisitions. In 

this paper, two new approaches are introduced called residual bootstrap and 

repetition bootknife. We show that repetition bootknife corrects for a large bias 

present in the repetition bootstrap method and therefore, better estimates the 

standard errors. Like wild bootstrap, residual bootstrap is applicable to single 

acquisition scheme, and both are based on regression residuals (called model-

based resampling). Residual bootstrap is based on the assumption that non-

constant variance of measured diffusion-attenuated signals can be modeled, 

which is actually the assumption behind the widely used weighted least squares 

approaches for the calculation of diffusion tensor. The performances of these 

bootstrap approaches are compared in terms of bias, variance, and overall error 

of bootstrap-estimated standard error by Monte Carlo simulation. We 

demonstrate that residual bootstrap has smaller biases and overall errors, which 
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enables estimation of uncertainties with higher accuracy. Understanding the 

properties of these bootstrap procedures will help us to choose the optimal 

approach for estimating uncertainties that can benefit hypothesis testing based 

on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods. 

 

3.2 Introduction 

Diffusion Tensor MRI (DTI) is a diffusion weighted MRI technique capable of 

accurately describing anisotropic diffusion properties within a voxel [1, 2]. DTI 

was a breakthrough in the studies of white matter microstructure through 

characterization with DTI parameters and delineation of white matter pathways 

with DTI fiber tracking. In order to conduct the statistical hypothesis tests on DTI 

parameters in different pathophysiologic conditions, especially for voxel-wise 

longitudinal studies, or to follow the white matter tracks in probabilistic sense, 

characterization of uncertainties associated with estimated DTI parameters is 

essential. One approach for this is an empirical, non-parametric statistical 

technique based on data resampling called bootstrap [3]. Bootstrap was 

designed to replace complicated and often inaccurate approximations to 

uncertainty measures, such as biases and variances, by computer simulation 

based on real data. The bootstrap approach can be very helpful in DTI where 

final parameters of interest are known to be complicated non-linear function of 

measured signals. 
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In DTI, a particular implementation of bootstrap was proposed [4] in which 

resampling was done within the data sharing common diffusion gradients. This 

approach makes no assumptions about the noise properties at the cost of 

requiring multiple acquisitions for each diffusion gradient; thus we call this 

approach repetition bootstrap. Applications of repetition bootstrap were reported 

for the fiber tracking [5-7], quality assessment [8], and comparison of DTI 

anisotropy indices [9]. Unfortunately, a substantial under-estimation bias in the 

degree of uncertainty was reported for this method, which degrades the reliability 

of bootstrap with small numbers of repeats [10]. Furthermore, a small number of 

samples is likely to be the case with the most applications, especially in clinical 

settings where acquisition time is limited.  

 

In addition to the limitation of scan times, there is an interest in obtaining more 

diffusion sensitizing directions at the cost of repetitions. By definition, the 

repetition bootstrap approach cannot be used when only one measurement per 

each diffusion direction is made. Acquisition of a single measurement is 

becoming more common practice with evidence that DTI parameters can be 

estimated more robustly with more diffusion gradient directions and with 

increasing interest in high angular resolution diffusion-weighted MRI (HARDI). In 

order to deal with the desire to acquire more diffusion sensitizing directions 

instead of multiple repetitions of the same directions, implementing wild bootstrap 

in the DTI analysis was proposed [11]. Wild bootstrap is a model-based 

resampling technique designed to investigate the uncertainty in the linear 
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regression with heteroscedasticity, i.e. non-constant variance with different 

regressors, of unknown form [12, 13]. 

 

In this paper, we first describe the property of the downward bias of the 

estimated degree of uncertainty in the repetition bootstrap and propose to reduce 

this bias by implementing the bootknife approach [14], which we call repetition 

bootknife. Evidence of bias correction actually improving the overall error of 

estimation is presented as well. Then, we investigate the feasibility of another 

model-based resampling approach called residual bootstrap, a well-known 

resampling technique in the statistics. Using Monte Carlo simulation, we compare 

the performance of repetition bootstrap, repetition bootknife, wild bootstrap, and 

residual bootstrap in terms of accuracy of estimating the degrees of uncertainty 

in diverse conditions such as different number of gradients, number of repetitions, 

diffusion tensor anisotropy, and partial volume with multiple tensors. Particular 

attention is paid to DTI sampling conditions within clinically feasible range, since 

our ultimate goal is to establish the optimal bootstrap procedure that can be 

applied to clinical data. Based on the results, the optimal bootstrap approaches 

under various DTI sampling scheme are discussed.  
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3.3 Methods 

3.3.1 Under-estimation of Standard Errors by Repetition Bootstrap 

Standard errors estimated by bootstrap are known to be generally smaller than 

the ideal values (downward biased) due to the basic mechanism of bootstrap. 

Bootstrap assumes that the empirical probability distribution F̂ created by putting 

equal probabilities of 1/n to all the n elements of a sample, faithfully represents 

the unknown population probability distribution F from which the sample is drawn. 

Creating bootstrap samples from the sample F̂ can be thought of as replicating 

the process of drawing new samples from the unknown population. Thus an 

approximate distribution of some statistic θ̂  (some function of the sample F̂ as 

an estimate of the parameter θ  of the population F) can be generated via the 

bootstrap algorithm. If many samples of size n had been drawn from the 

population F, the standard deviation of the distribution of the statistic θ̂  would 

indicate the precision of θ̂ ; this is defined as the standard error of the statistic θ̂  

of the sample F̂ . Thus the standard error can be estimated by simply calculating 

the standard deviation of *θ̂ , which are the statistic of interest calculated from the 

bootstrap samples.  [15]. 

 

When the original sample size n is small, bootstrap estimated uncertainties are 

noticeably downward biased because the original sample that bootstrap relies on 

is biased. This phenomenon is similar to the bias in the estimator of population 

variance 2σ . It is well known that the estimator 
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is unbiased. This downward bias is a factor of ( 1) /n n− . When n is sufficiently 

large this factor hardly makes any difference in the estimation, and the biased 

estimator is actually known to be slightly better than unbiased estimator in terms 

of mean squared error (MSE) defined by  

2 2 2ˆ(( ) )MSE E bias SDθ θ= − = +  Equation 3-3

ˆ( )bias E θ θ= −  Equation 3-4

2 2ˆ ˆ( ( ) ( ))SD E Eθ θ= −  Equation 3-5

where θ σ=  and ˆ ˆθ σ= . Note that how far away estimator θ̂  is distributed from 

the population parameter θ  depends on both the bias and the variability of the 

estimate (shown as SD or standard deviation in Equation 3-5) and the mean 

squared error (MSE) reflects the average quadratic loss or distance.  

 

For the bootstrap, the usual estimator of uncertainty such as standard error can 

be thought to correspond to Equation 3-1, the biased estimator. In particular, the 

bootstrap estimator of variance (squared standard error) of the sample mean is 

different from the unbiased estimator by the factor of ( 1) /n n−  [14, 15]. When 

bootstrap is performed on the samples from stratified random sampling, the 
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bootstrap bias depends on the size of individual strata (corresponding to number 

of repetitions for repetition bootstrap), not the size of total sample (corresponding 

to number of repetitions times the number of gradient directions), which makes 

the bias substantial in situations with many small strata [14]. For instance, when 

the statistic being bootstrapped is a linear function of the means from multiple 

strata, the degree of bias for the bootstrap estimated variance can be expressed 

as the scaling factor of ( 1) /n n−  just like the sample mean in the non-stratified 

sampling case described above, though now n is the number of samples in each 

stratum [16, 17].  

 

Repetition bootstrap can be regarded as an extreme case of stratified bootstrap 

in the sense that measurements with the same diffusion gradients (including b=0) 

are treated as strata and bootstrap resampling is performed only within each 

strata. Since it is unlikely that acquisitions will be repeated more than a few times 

even in experimental studies, repetition bootstrap will generally underestimate 

the standard error of DTI parameters to a substantial degree. DTI parameters are 

not linear functions of the raw measurements, and the degree of bias for 

bootstrap estimated uncertainty is difficult to express analytically, though we 

might expect it to be somewhat around ( 1) /n n−  for the standard error, where n 

is number of repetitions, not total number of measurements. Assuming that this is 

true, in repetitions of 2, 3, 4 and 5 we would expect the repetition bootstrap to 

estimate standard errors that are only about 71, 82, 87, and 89% of the true 

values. 



 45

 

Multiple algorithms have been proposed to correct this bias in the stratified 

sampling [16-18], and in this paper we propose a very simple modification of the 

conventional repetition bootstrap based on the bootknife algorithm [14]; thus we 

call this approach repetition bootknife. Bootknife is a resampling technique 

combining the features of jackknife and bootstrap as implied by name. Bootknife 

samples are created by first randomly omitting one sample from the original 

sample of size n in each stratum (jackknife) and drawing a bootstrap sample of 

size n with replacement from the remaining sample with size n-1 (bootstrap). The 

strata are the repeats for each diffusion gradient just like the repetition bootstrap 

originally proposed [4], and the rule that resampling does not mix the elements 

from different strata (gradients) is not violated just like repetition bootstrap (thus 

we will call these two algorithms collectively repetition-based or stratified 

resampling). Since bias correction might actually increase the MSE by increasing 

the variance of the standard error estimates more than the decrease in the bias, 

the total MSE needs to be compared with and without the bias correction. This 

will tell whether the bias correction is actually beneficial. 

 

3.3.2 Residual bootstrap and wild bootstrap 

Possible alternatives to repetition-based resampling are model-based resampling 

approaches such as the residual bootstrap and wild bootstrap. Implementation of 

the wild bootstrap was introduced [11] while there are no reports of residual 

bootstrap in DTI. Model-based resampling refers to the bootstrap resampling 
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technique applied to the linear regression model, where the residuals based on 

the initially fitted model are resampled instead of the raw sample values. One 

might choose to do resampling pairs (of certain regressors and response) instead 

of residuals, but this approach, called pair bootstrap, would not be suitable in DTI 

since uncertainties estimated by pair bootstrap includes variance generated due 

to different design (such as skipping some diffusion gradients) which does not 

reflect the fixed design of DTI. Thus pair bootstrap is not considered in this study. 

Another possibility is to assume symmetry in the distribution of residuals for a 

given data point, and resample based on randomly changing the signs of the 

residuals; this is an implementation of the wild bootstrap. A third alternative is to 

assume that all residuals have similar distributions and freely resample among 

them without stratification; this is called residual bootstrap. 

 

Since model-based resampling is ‘based on a model’, the model (diffusion 

tensor) needs to be adequate in describing the measured diffusion signals so 

that the error terms at different design points  (different gradient directions for 

example) will have a common mean of zero. Regarding the variance of errors, 

residual bootstrap can be used in the homoscedastic condition (constant 

variance of error terms for the different design points) and also in the 

heteroscedastic condition as long as the heteroscedasticity can be modeled. If 

heteroscedasticity cannot be described mathematically, wild bootstrap may be a 

better approach since it does not require homoscedasticity. 
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In DTI, it was recognized from the beginning that the degree of uncertainty of log 

transformed signals used for linear regression is the inverse of the raw signals, 

and this property has been widely used for constructing weighting factors in the 

weighted least squares solution of diffusion tensor [1]. Similarly the residual 

bootstrap of DTI can be carried out based on the propagation of variance in log 

transformed signals, and the details of residual bootstrap as well as the diffusion 

tensor calculation are described in the following.  

 

In a DTI experiment, the diffusion-weighted signal S is modeled by  

0( ) exp( )T
j j jS S b= −g g Dg , with j=1,2,…N 

Equation 3-6

where S0 is the signal intensity without diffusion weighting, b is the diffusion 

weighting factor, D is effective self-diffusion tensor in the form of 3x3 positive 

definite matrix, g is 3x1 unit vector of the diffusion-sensitive gradient direction, 

and N is the total number of experiments, including repeated measurements. By 

log transform, the equation above becomes 

0ln( ( )) ln( ) T
j j jS S b= −g g Dg  

Equation 3-7

which can be structured into well-known multiple linear regression form 

+y = Xβ ε  
Equation 3-8

where 1 2[ln( ( )), ln( ( )),..., ln( ( ))]T
NS S S=y g g g  are the logarithm of measured signals, 

0[ , , , , , , ln ]T
xx yy zz xy xz yzD D D D D D S=β  are the unknown regression coefficients 
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including the 6 unique elements of D, X is a design matrix of different diffusion 

gradient directions, 

2 2 2
1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 1/

2 2 2 1/

x y z x y x z y z

Nx Ny Nz Nx Ny Nx Nz Ny Nz

g g g g g g g g g b
b

g g g g g g g g g b

⎡ ⎤
⎢ ⎥= − ⎢ ⎥
⎢ ⎥⎣ ⎦

X  

and 0 1[ , ,..., ]T
Nε ε ε=ε  are error terms. The weighted least squares (WLS) 

estimate of β  is the following. 

1ˆ ( )T T−=β X WX X Wy  Equation 3-9

In order to determine the diagonal weighting matrix W, the ordinary least squares 

(OLS) estimate is calculated first by 1ˆ ( )T T
OLS

−=β X X X y  leading to OLS fitted log 

measurements ˆˆ OLS OLS=µ Xβ  and fitted diffusion signals ˆ ˆexp( )OLS=gS µ . Then 

2ˆ( )diag= gW S , which is based on the property              

2 2( ) /j jVar Sε σ=  
Equation 3-10

where σ is the standard deviation of noise in the raw signal.  σ is assumed to be 

constant for each voxel regardless of the measured signal intensity. 

 

After β̂  is calculated, the WLS fitted log measurements ˆˆ =µ Xβ  are used to 

calculate the residual vector ˆ= −e y µ . In order to resample the errors, error terms 

jε  need to be i.i.d. (independent and identically distributed) to satisfy the basic 

assumption of bootstrap that the samples are i.i.d. However, generally the raw 

residuals e do not satisfy this condition due to the effect of possible 

heterogeneous leverages for different points. Also, jε  actually have non-constant 
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variance (heteroscedasticity) but for DTI this can be modeled as shown in 

Equation 3-10. Therefore, raw residuals needs to be modified to have constant 

variance by following equation              

1/ 2 1/ 2

ˆ
(1 )
j j

j
j j

y
r

w h
µ

−

−
=

−
 

Equation 3-11

where the weighting factor wj is jth diagonal element of W and the leverage value 

hj is the jth diagonal element of the hat matrix H defined by 1( )T T−=H X X WX X W . 

Finally, residual bootstrap resampling is defined as            

* 1/ 2 *ˆ
j j j jy w ε−= +x β  Equation 3-12

where yj
*
 is jth element of resampled log measurements, xj is jth row of X, and *

jε  

is randomly resampled with replacement from the set of centered modified 

residuals 1 2, ,..., Nr r r r r r− − − [12].  

 

A bootstrap sample set * * * *
1 2[ , ,..., ]T

Ny y y=y  undergoes the WLS fitting procedure 

described above which leads to D*, from which a DTI parameter *θ̂ such as FA 

(fractional anisotropy) is calculated. Resampling * * * *
1 2[ , ,..., ]T

Nε ε ε=ε and calculating 

*θ̂  are repeated for some fixed large number NB (typically hundreds to thousands 

times) to acquire NB independent bootstrap samples *ˆ bθ , b=1,2,…, NB. Here, the 

sample statistic θ̂  is an estimation of the true unknown θ  (such as the noise free 

FA of the voxel) using the original sample y by WLS, and *θ̂ are bootstrap 

replications of θ̂ . The bootstrap estimated standard error of θ̂  is simply the 

standard deviation of the NB replications            
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* * 2 1/ 2
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B

B B
b

se b Nθ θ
=

= − ⋅ −∑  
Equation 3-13

where * *
1

ˆ ˆ( ) ( ) /B
Bb

b Nθ θ
=

⋅ = ∑ . 

 

As mentioned above, wild bootstrap is suitable when heteroscedasticity cannot 

be modeled. In DTI with least squares estimation, this means that we are not 

relying on Equation 3-10 to modify raw residuals and resample residuals 

gathered from total design. Instead of resampling residuals from the pool of 

modified residuals causing the residuals from diffusion weighting of specific 

direction to be randomly distributed on any other directions, wild bootstrap 

creates variability by simply multiplying the individual residuals with a mutually 

independent random function. Wild bootstrap resampling is defined as 

* *ˆ
j j jy ε= +x β  Equation 3-14

where the resampled error *
jε  is                

*
1/ 2

ˆ
(1 )

j j
j j

j

y
t

h
µ

ε
−

=
−

 
Equation 3-15

and tj is i.i.d. random variables with ( ) 0jE t = , 2( ) 1jE t = , and 3( ) 1jE t = . Commonly 

tj is a two-point distribution, and in this study the Rademacher distribution F2 with 

the property of Pr( 1) 0.5jt = =  and Pr( 1) 0.5jt = − = was used due to its good 

performance [19]. Simply speaking, modified residuals are randomly multiplied by 

either +1 or -1 and then added back to the fitted point where they originated from, 
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without being distributed to other design points. All the other steps are equivalent 

to residual bootstrap. 

 

3.3.3 Monte Carlo Simulation 

The performance of the four bootstrap approaches in terms of bias, standard 

deviation and overall error (MSE) of bootstrap estimated standard error (or 95% 

confidence interval for the angle of primary eigenvector) were compared under 

diverse conditions by Monte Carlo simulation. We assumed that Johnson RF 

noise is the only source of uncertainty in the diffusion signals. Schemes with the 

number of diffusion encoding directions, ranging from 6 to 54 were investigated. 

The six directions cases were based on the dual gradient scheme while the other 

number of directions were based on the electrostatic repulsion scheme [20]. Two 

b value experiments were used, b=0 s/mm2 and b=1000 s/mm2 (or 3000 s/mm2 

when specified). Number of images for b=0 and b>0 were kept in the ratio of 1:6, 

such that for 54 directions there were 9 b=0 images. One to 9 numbers of 

repetitions were studied, since clinical DTI scans are rarely repeated 10 or more 

even with only 6 directions. 

 

Simulation was performed in a similar manner as described elsewhere [21], using 

custom software in IDL 6.1 (Research Systems, Inc., Boulder, CO). After an ideal, 

noise-free diffusion tensor was derived based on the desired DTI parameters 

such as FA (0.2, 0.5, and 0.8 were considered) and Dav (=Tr(D)/3, fixed to 0.7 x 

10-3 mm2/s), noise-free diffusion weighted signals along  specific direction of 
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diffusion gradients were calculated according to Equation 3-6 (S0 arbitrarily set to 

100). Then, noise modeled as complex random number with real and imaginary 

parts following Gaussian distribution of zero mean and standard deviation σ  

(=S0/SNR) was added to the noise-free signal and the magnitude of the noisy 

signal was calculated. SNR of each b=0 image was set to 25 for this study unless 

specified otherwise. After a complete set of noisy signals was acquired, noisy 

diffusion tensor and DTI parameters were calculated. These steps were repeated 

a large number of times (100,000 used in this study) and a gold standard version 

of the standard error (or confidence interval of angle of primary eigenvector) for 

the DTI parameter of interest was directly calculated from the standard deviation 

(or 95% range of angle of primary eigenvector) of all the noisy parameters. 

 

We also investigated the conditions with partial volume effects (PVE) where 

signals are actually originating from a system more complicated than a single 

tensor. Multiple regions in the brain are known to have PVE due to intravoxel 

crossing of two distinct axonal bundles, and this can violate the assumption of 

appropriateness of the single tensor DTI model in model-based resampling.  

Model-based resampling may not perform optimally with PVE and therefore the 

performance of residual or wild bootstrap with PVE can be important when 

implementing bootstrap in clinical data. In this study, we focused on a mixture of 

white matter bundles [22] where the diffusion weighted signals comes from two 

compartments described as 
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0 1 0 2( ) exp( ) (1 )exp( )T T
j j j j jS S f b S f b= − + − −g g D g g D g  

Equation 3-16

where D1 and D2 represent the tensor from each compartment, f and (1-f) are the 

signal fractions from D1 and D2. We assumed no exchange between the 

compartments, which will make PVE most pronounced. D1 and D2 were assumed 

to be prolate tensors with FA=0.7, f was fixed to 0.5, and angles between primary 

eigenvectors of two tensors were varied. Then, the usual single tensor design 

matrix was used to fit the diffusion signals, in the calculation of gold standard or 

bootstrap estimates of SE. We also created the equivalent single tensor system 

as follows. The noise-free PVE data were fitted and the calculated tensor was 

used to define the equivalent single tensor. Noise was then added to this 

equivalent tensor for further analysis. 

 

In order to evaluate the performance of the bootstrap approaches, the bootstrap 

procedures described above were performed either directly on the diffusion-

weighted signals (repetition bootstrap and repetition bootknife) or on the 

residuals between measured signals and fitted signals (residual bootstrap and 

wild bootstrap) to create the bootstrap samples, and they were used to calculate 

the diffusion tensors and the DTI parameters of interest. This process was 

repeated NB times (1000 was used for this study), and finally the bootstrap 

estimated standard errors were calculated by Equation 3-13. Since standard 

errors cannot be used for vector quantities such as the primary eigenvector, the 

95 percentile confidence intervals of the minimum angle between each bootstrap 

estimate and the average primary eigenvector was used instead [5]. Though not 
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used in this study, there is an alternative measure of accuracy of the primary 

eigenvector based on the dispersion parameter of Watson distribution [23]. The 

experiment of bootstrap estimation of uncertainty was repeated 1000 times from 

which the variance of these estimations were calculated by Equation 3-5, and the 

biases determined by comparing the expectation of estimations with the gold 

standard value by Equation 3-4. The MSE of the bootstrap standard error 

estimates were computed from the biases and variances as shown in Equation 

3-3, which reflects the overall degrees of error and is an objective index of 

performance. 

 

3.4 Results 

3.4.1 Bias of Repetition Bootstrap 

The typical downward bias of repetition bootstrap for small numbers of repetitions 

is demonstrated in Figure 3-1a. Simulation results were acquired for varying 

number of repetitions while the number of gradient directions was fixed to 18 plus 

3 b=0 images. Figure 3-1a show the mean and standard deviation of the 

bootstrap estimates of SE of FA (from 1000 experiments) as well as the gold 

standard value of SE (from 100,000 experiments). The mean of the repetition 

bootstrap SE estimates was substantially smaller than the gold standard, while 

the repetition bootknife estimates are nearly unbiased, though with slightly larger 

standard deviations than the repetition bootstrap. Figure 3-1d-f show the bias, 

standard deviation (SD), and square root of mean squared error (RMSE) of the 
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bootstrap estimates separately, displayed as a percent of the gold standard SE 

of FA value. This normalization allows the bootstrap performance to be 

compared to other conditions such as different DTI parameters, number of 

repetitions and number of directions. Note, again, that repetition bootstrap was 

substantially downward biased down to 30% while the repetition bootknife was 

nearly unbiased. The repetition bootknife proved to be a better estimator with the 

smaller RMSEs, especially for small numbers of repetitions. 

 

Figure 3-1a and Figure 3-1d-f also show that both repetition methods are more 

accurate with more repetitions. This simply reflects the fact that bootstrap 

performs better with a larger sample pool and in particular the estimates do not 

improve due to the increasing total SNR associated with more repeated 

acquisitions. To illustrate this point, the total SNR was held fixed for the different 

numbers of repetitions and is shown in Figure 3-1b. For Figure 3-1a, on the other 

hand, SNR of each repetition is fixed to 25 resulting in increasing SNR with more 

repetitions (and subsequent reduction in the gold standard SE). Figure 3-1b 

shows that now the gold standard SE (FA) is constant instead of decreasing but 

the bootstrap bias, SD, and RMSE (% of gold standard) is almost identical to 

Figure 3-1d-f (thus result not shown in the format of Figure 3-1d-f), illustrating 

that the estimates are still more accurate with larger repetitions independent of 

total SNR. This clearly shows that SNR itself is not a factor influencing the bias of 

the repetition methods. For repetition bootstrap the RMSE is primarily influenced 

by the decrease in bias with increasing number of repetitions. Given that the 
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origin of the bias is due to small sample sizes, it is clear that increasing the 

number of samples (and not the SNR) determines the percent RMSE. For the 

repetition bootknife, the reduction in SD of the SE estimates with increasing 

repetitions is the strongest factor in the RMSE. In both repetition methods, the 

decreases in the SD of SE with increasing the number of repetitions are due to 

the increased sample size. 

 

As expected, the under-estimation bias of repetition bootstrap is problematic 

when the number of directions rather than the number of repetitions is increased. 

Note from Figure 3-1c and Figure 3-1g-i that as more directions are acquired 

while the number of repetitions is fixed to 2, the degree of bias for repetition 

bootstrap hardly improves, which is expected since repetition bootstrap bias 

depends only on the number of repetitions. This property leads to a poor 

improvement of RMSE for repetition bootstrap even with a large number of 

directions. The repetition bootknife, on the other hand, has a small bias that 

becomes even smaller with more directions, leading to the similar trend of RMSE 

as Figure 3-1f. Thus the gap of performance between these two methods is more 

pronounced with a larger sample pool made from increasing the number of 

directions. 
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Figure 3-1: (a) Standard error (SE) of FA estimated by repetition bootstrap (black line) and 

repetition bootknife (green line) plotted as mean and standard deviation (SD) in vertical bars with 

varying number of repetitions while the number of directions is fixed to 18. The gold standard SE 

is shown in red. Noisy diffusion signals were created by adding noise corresponding to SNR=25 

to noise-free signals from a prolate tensor with FA=0.5, Dav=0.7 x 10-3 mm2/s. (b) Same as (a) 

except that SNR for individual acquisition is adjusted to keep the effective SNR after combining 

repetitions to be constant. SNRs used per acquisition in the repetitions from 2 to 9 are 

approximately 25.0, 20.4, 17.7, 15.8, 14.4, 13.3, 12.5, and 11.8. (c) Same as (a) except that 

number of directions is varied while the number of repetition is fixed to 2. Noise were added in the 

same way as in (a). (d-f) Bias, SD, and square root of MSE (RMSE) of bootstrap estimates of SE 
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in % of gold standard SE for the data displayed in (a). % Bias, SD, and RMSE for the data 

displayed in (b) is almost identical to (d-f). (g-i) Bias, SD, and RMSE of bootstrap estimates of SE 

in % of gold standard SE for the data displayed in (c). 

 

3.4.2 Bootstrap methods in the diffusion signals from single tensor 

model 

Figure 3-2 shows the performance of the four bootstrap approaches for 

estimating the 95% confidence interval (CI) of the angle of primary eigenvector 

with the number of repetitions between 1 and 6 and the number of directions 

fixed to 18. Since model-based resampling methods such as residual and wild 

bootstrap do not depend on repeated acquisitions, bootstrap performance can be 

shown even in the case of only one acquisition unlike the repetition methods for 

which results are displayed with number of repetitions starting at two. Figure 

3-2a-c shows the bias, SD, and RMSE when the noise-free modeled diffusion 

tensor has a moderate anisotropy of FA=0.5. The repetition methods have a very 

similar pattern of bias, SD and RMSE to that found for FA in Figure 3-1d-f. 

Repetition bootstrap is substantially downward biased and the overall error is 

smaller with repetition bootknife. The residual bootstrap and wild bootstrap 

methods are shown to be nearly unbiased, have small SD, and have RMSE 

smaller than the repetition methods. The residual bootstrap has slightly lower 

bias and SD than the wild bootstrap. For each value of the number of repetitions, 

residual bootstrap has the smallest RMSE, followed by the wild bootstrap, then 

repetition bootknife, and lastly repetition bootstrap. This bootstrap performance 

pattern is nearly identical in high anisotropy of FA=0.8 (result not shown), while in 
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low anisotropy of FA=0.2 (Figure 3-2d-f), all bootstrap methods suffer from worse 

performance. Figure 3-2d-f show that the residual and wild bootstrap methods 

overestimate the CI especially for small numbers of repetitions, and the 

estimates of all the bootstrap methods are more dispersed at low FA than the 

estimates in medium or high anisotropy (note the scale difference of y axis). This 

implies that not only the primary eigenvector direction is more uncertain in the 

low anisotropy but also the ability of bootstrap to estimate the increased 

uncertainty is worse. Interestingly, all four bootstrap methods show similar RMSE 

in low anisotropy. 
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Figure 3-2: Bias, SD, and RMSE of the 95th percentile confidence interval of the the angle of 

primary eigenvector estimated by bootstrap methods with different number of repetitions while 

number of directions is fixed to 18. The DTI models were prolate tensors with FA of 0.5 (a-c), and 

0.2 (d-f) and Dav of 0.7 x 10-3 mm2/s for all. Data with FA of 0.8 have almost identical plots to (a-c). 
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The bootstrap performance for estimating the primary eigenvector angle CI when 

the number of diffusion gradient directions is increased while the number of 

acquisitions is fixed to two is demonstrated in Figure 3-3. As pointed out in Figure 

3-1c and Figure 3-1g-i, repetition bootstrap bias remains relatively independent 

of the number of directions, leading to substantially larger RMSE for large 

numbers of directions. The other three methods show similar trends of bias, SD, 

and RMSE to Figure 3-2. The residual bootstrap is generally the least biased and 

variable followed by the wild bootstrap and repetition bootknife. Thus residual 

bootstrap seems to have better overall performance than the others. Just as in 

Figure 3-2, results for high anisotropy of FA=0.8 are almost identical to moderate 

anisotropy of FA=0.5, and for low anisotropy of FA=0.2, the model-based 

resampling shows some over-estimation at lower numbers of directions that 

rapidly disappears with more directions. All bootstrap methods except for the 

repetition bootstrap show relatively small differences in RMSE in low anisotropy 

as well. When the data is acquired only once (meaning that number of repetition 

is one), repetition bootstrap and repetition bootknife is no longer available, while 

model-based resampling can still be used. Results for the performance of 

residual and wild bootstrap without any repeated acquisition (not shown) indicate 

that the trend is very similar to Figure 3-3 though the bias, SD, and RMSE are 

larger than that of Figure 3-3, since the sample size is only half of Figure 3-3. 

Overall, residual bootstrap is less biased, less variable and has smaller RMSE. 
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Figure 3-3: Bias, SD, and RMSE of the 95th percentile confidence interval of the angle of the 

primary eigenvector estimated by bootstrap methods with different numbers of directions while 

the number of repetitions is fixed to 2. The DTI models were prolate tensors with FA of 0.5 (a-c), 

and 0.2 (d-f) and Dav of 0.7 x 10-3 mm2/s for all. Data with FA of 0.8 have almost identical plots to 

(a-c). 

 

Figure 3-4 shows Figure 3-2c and Figure 3-3c plotted together with the common 

x-axis representing the number of samples (includes b=0) in order to clearly 

demonstrate the increase of sample size either by number of repetitions (solid 

lines) or directions (dashed lines). This shows that the residual bootstrap and 

wild bootstrap have a very similar trend of improvement of RMSE when either 

number of repetitions or directions is increased. As expected, the repetition 

bootstrap, on the other hand, does not benefit from increasing number of 
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directions as much as number of repetitions. Even the repetition bootknife has a 

slight tendency of better performance with larger repetitions rather than directions. 
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Figure 3-4: Comparison of the RMSE of the 95th percentile confidence interval of the angle of the 

primary eigenvector estimated by bootstrap methods for varying numbers of repetitions and 

directions. Solid lines are results with different number of repetitions (ranging from 1 to 6) while 

number of directions is fixed to 18. Dashed lines are results with different number of directions 

(ranging from 6 to 54) while number of repetitions is fixed to 2. Noisy diffusion signals are created 

by adding noise corresponding to SNR=25 to noise-free signals from a prolate tensor with FA=0.5, 

Dav=0.7 x 10-3 mm2/s. That is, solid line results are same as figure 2c while dashed line results 
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are same as figure 3c. The number of samples include b=0 measurements (with the number 1/6 

of different number of diffusion directions). 

 

3.4.3 Bootstrap methods in the diffusion signals from tensor mixture 

model 

Figure 3-5 shows the performance of the bootstrap methods when acquisitions 

are repeated one or two times with a relatively large number of diffusion 

directions of 54. This sampling scheme was chosen since the model (diffusion 

tensor) insufficiency is more likely to be an issue with the large number of 

directions, and clinical scans are not likely to be repeated more than one or two 

times with large number of directions. Typical diffusion weighting of b=1000 

s/mm2 was used, thus representing the scenario where resolving the PVE such 

as intravoxel crossing is not necessarily of primary interest. In order to separate 

the influence of PVE versus simply different diffusion tensor shape on the 

bootstrap, two separate results from different modeling is simultaneously 

displayed. Solid lines are results from modeling tensor mixture, while dashed 

lines are results from modeling single tensor equivalent to the fitted tensor to 

noise-free signals from tensor mixture. Of course, once the noisy diffusion 

signals are acquired in either way, then fitting a single tensor to the data is 

assumed, just as almost all the diffusion tensor analysis of real data is done (i.e. 

without applying HARDI or multiple tensor modeling of diffusion signals). In the 

case of two repetitions shown in Figure 3-5a-c, all bootstrap methods show 

relatively small differences between the solid and dashed lines implying that PVE 

is not a significant factor in the performance of any of bootstrap methods. This 
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trend is replicated in the case with only one repetition in Figure 3-5d-f, where the 

model-based resampling shows similar trends between solid and dashed lines. 
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Figure 3-5: Bias, SD, and RMSE of the 95th percentile confidence interval of the angle of the 

primary eigenvector estimated by bootstrap methods with varying angles between two tensors 

within a voxel for two (a-c) and one (d-f) repetitions while number of directions is fixed to 54. The 

primary eigenvectors of the two prolate tensors, each with FA=0.7 and Dav=0.7 x 10-3 mm2/s, 

were positioned at angles of 0, 23, 45, and 68 degrees. The solid lines are the usual single tensor 

fits to these modeled PVE. The dashed lines are single tensor fits to an equivalent single tensor 

(with the same FA, Dav, single tensor shape, etc) found from the single tensor fit to the noise-free 

partial volume model and then refitted with noise added. 

 

Figure 3-6 shows the results when the b value is increased to 3000 s/mm2 for 

more pronounced PVE [22]. When the angles between primary eigenvectors of 

the two modeled tensors are small, the difference between solid and dashed 

lines is minimal, but when the angle is large such as 68 degrees, solid lines of 
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residual and wild bootstrap show larger bias and SD leading to larger RMSE. 

This supports our theory that model-base resampling is more susceptible to PVE. 

On the other hand, the repetition bootstrap and repetition bootknife methods are 

insensitive to the presence of PVE. Even so, the residual bootstrap still have 

smaller RMSE than the other methods even with the presence of PVE, except for 

the tensor mixture with 68 degrees where the repetition bootknife seems to be 

slightly better than residual bootstrap. 
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Figure 3-6: Same as figure 5 except that b value used is 3000 s/mm2. 

 

3.5 Discussion 

Bootstrap is a powerful method of estimating the uncertainties in DTI derived 

parameters and it has been successfully implemented and shown to be useful in 
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diverse applications such as probabilistic fiber tracking and quality assessment of 

DTI acquisitions. It also has the potential to be used for statistical tests such as 

voxel-based (or ROI-based) analysis of longitudinal (acquired at multiple time 

points) and cross-sectional DTI data. So far, only one particular implementation 

of bootstrap (repetition bootstrap) has been used in applications, but it is 

important to point out that bootstrap is not defined in a unique way, but rather a 

group of diverse algorithms sharing the basic concept. In this paper we 

implemented four DTI bootstrap approaches, including two previously unreported, 

and tested them by Monte Carlo simulation under diverse conditions in search of 

the optimal method that can calculate the uncertainty reliably. 

 

We showed that repetition bootstrap is substantially downward biased and 

introduced the repetition bootknife that successfully reduced the bias and mean 

squared error. We also introduced the residual bootstrap as another model-

based resampling technique, and compared the four bootstrap methods 

(repetition bootstrap, repetition bootknife, residual bootstrap, and wild bootstrap) 

for their performance in terms of bias, variance and mean squared error. Our 

simulations demonstrated that in the cases where DTI was acquired multiple 

times permitting all four bootstrap methods, model-base resampling outperforms 

repetition-based resampling if the model is true, suggesting that even if multiple 

acquisitions exist, model-based resampling might be the better choice. When 

data is acquired only once with possibly many different diffusion encoding 

directions, repetition-based bootstrap is not feasible but model-based resampling 
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can still be used. This allows greater freedom for researchers and/or clinicians in 

choosing a diffusion gradient sampling scheme when they are considering 

implementing bootstrap for DTI data. Within model-based resampling, residual 

bootstrap was consistently better than wild bootstrap, especially when the single 

tensor model was not sufficient. For repetition-based resampling, the modified 

version introduced here proved to be better than original version. 

 

Another important result of this study is that with model-based bootstrap 

techniques, one can benefit from increasing number of directions just as much as 

increasing number of repetitions. Pajevic and Basser [4] postulated that with 

many distinct non-collinear directions fewer repetitions would be required to 

achieve the same reliability of bootstrap, but their data indicated that the 

relationship between the number of directions, repetitions, and the quality of 

bootstrap estimates were somewhat complicated. For instance, their data shows 

that CV of SE (RA) (similar to SD of SE (FA) (%) in our data) can actually 

increase with very large number of directions with fixed number of repetitions, 

and that CV of SE (Trace) actually gradually worsens with more directions with 

fixed repetitions. We believe that this is related to fixing number of b=0 images to 

one instead of increasing it to keep the ratio of b=0 to b>0 constant (such as 1:6 

in this study). When we fixed the number of b=0 images to one regardless of the 

number of directions, we observed very similar trend that increasing the number 

of directions does not consistently improve the bootstrap performance (result not 

shown here). This effect is probably due to the strong leverage that the b=0 data 
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has on the least squares fit when only one b=0 data is acquired. The influence of 

a data point on the fit depends on the leverage and variance of the data point 

compared to the others. When many encoding directions are used, the influence 

for a single b=0 data point can be large due to the large leverage. Our data with 

fixed ratio of b=0 to b>0 indicate that model-based resampling with either large 

number of directions or large number of repetitions have very similar 

performance, which was clearly demonstrated in Figure 3-4. As long as model-

based resampling is used and b=0 images are increased accordingly with more 

diffusion directions, total sample pool size alone determines the bootstrap 

performance. For repetition bootstrap, using more repetitions is always better 

than increasing the number of directions (even with increased number of b=0 

images) since increasing the number of directions does not directly increase the 

resample pool size. 

 

It is important to emphasize that for bootstrap to be reliable, the sample pool size 

should be large enough, though with model-based techniques repetition is not a 

requirement anymore. Residual or wild bootstrap can generate estimates of SE 

of DTI parameters in a single acquisition, but unless the number of directions is 

large, bootstrap estimates will be highly variable. It is difficult to generalize how 

large the total sample pool should be, because bootstrap performance depends 

on tensor anisotropy and shape, the DTI parameter of interest, and the definition 

of good performance depends on the sensitivity needed in the application. 

However, given an effect size, the bootstrap data will enable power calculations. 
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This study shows how different bootstrap methods can perform under a few 

selected demonstrative conditions, but more studies are needed in order to have 

a more complete picture of bootstrap performance issue. 

 

The results shown in this study were focused on the performance of bootstrap in 

estimating the uncertainty of primary eigenvector and FA because incorporating 

bootstrap to fiber tracking is of a great interest, but similar results were obtained 

for the eigenvalues and Dav. However, it is not clear how the bootstrap methods 

performs in estimating the entire probability density function (pdf) of DTI 

parameters except for some evidence of repetition bootstrap properly capturing 

the characteristics of the pdf [4]. Objective Bayesian analysis [24] is another 

approach that has been used to compute the pdf of  DTI parameters, though this 

can be computationally much more demanding. Now that bootstrap can be 

performed even without repeated acquisitions, it will be interesting to compare 

bootstrap and Bayesian approaches in certain situations such as probabilistic 

fiber tracking using the same dataset. 

 

Inadequacy of the single tensor DTI model to describe the data (as assumed by 

the design matrix used in the WLS fit to obtain the tensor) has been shown here 

to increase the errors of the bootstrap estimates. The model-based wild and 

residual bootstrap methods are particularly sensitive to this effect. The wild 

bootstrap method as implemented here is based on the symmetry of the pdf of 

the residuals. This assumption is violated by both low SNR data (due to log 
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Rician noise) and single tensor assumptions. The residual bootstrap method is 

based on the similarity of the probability distribution functions between data 

points (and not the symmetry of the pdfs). However, depending on the alignment 

of the gradients relative to the tensor principal direction, the pdfs may vary 

among the data points due to log Rician noise and multi-tensor effects. Although 

also affected by the low SNR, the residual bootstrap method is less affected 

since it is not sensitive to the asymmetric pdfs due to log Rician noise, but only 

the differential effects on the pdfs among the gradient directions. Despite these 

effects, our results suggest that the model-based approaches generally perform 

better than the repetition-based methods. Model-based effects are not an issue 

when only 6 directions are used, since this effectively reduces the diffusion ODF 

(orientation distribution function) [25] to an exact effective single tensor. 

 

Rician noise and PVE causing inadequacy of the single tensor model are 

important sources of uncertainty in the DTI derived parameters but there are 

other sources including cardiac pulsation, head motion, artifacts, eddy currents, 

magnetic susceptibility effects, etc [26]. The repetition-based methods are likely 

to better characterize the uncertainty from non-ideal variance caused by these 

sources than the model-based methods since repetition-based methods make 

less assumptions than model-based methods, though whether this holds true 

needs to be evaluated in some way. In this study, only ideal noise and PVE were 

considered because it is relatively straightforward to simulate these effects, but 

more studies are needed to evaluate how bootstrap methods perform with other 
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sources of variance as well, either by simulating some aspects of these sources 

or by using real data. 

 

Weighted linear least squares estimation was used for calculating the diffusion 

tensor from the original as well as bootstrap samples, but alternative ways to 

estimate the diffusion tensor exist. Nonlinear least squares estimator was shown 

to be more robust at high b values or low SNR [27], and was less likely to 

produce unphysical negative eigenvalues [28] than linear least squares. Also, a 

robust estimator was shown to be effective against artifacts producing outliers 

[29, 30]. Bootstrap can be combined with these estimators as well, though the 

additional computation time required by these processing methods instead of the 

computationally efficient linear least squares solution can be a limitation. For 

instance, computation time for nonlinear least squares estimation can be up to 60 

times more than that of linear estimation [29]. Considering the fact that bootstrap 

requires the tensor estimation to be iterated hundreds to thousands of times, 

whether it is beneficial to bootstrap with these more sophisticated tensor 

estimation and how bootstrap can be implemented more efficiently will be a 

subject of future study. 

 

3.6 Conclusion 

We have shown that a bias is present in the currently used repetition bootstrap 

method and have presented an alternate method (repetition bootknife) that 

corrects for this bias and therefore, better estimates the standard errors of DTI 
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parameters. We have also evaluated the model-based wild bootstrap which 

performs better than the repetition methods but is susceptible to model failures. 

We also present another model-based method (residual bootstrap) that generally 

performs better than all the other methods, but is also sensitive to failures of the 

tensor model to describe the data. These results can be used to design DTI 

experiments in terms of choosing number of averages and number of diffusion 

sensitizing gradient directions to achieve the standard errors that permit 

observation of a particular effect sizes. Also, importantly, the model-based 

methods enable probabilistic fiber tracking and hypothesis testing in longitudinal 

voxel-wise analysis with a single acquisition, which allows maximization of the 

number of diffusion sensitizing directions in a clinically feasible scan time. 
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Chapter 4: Bootstrap Quantification of Cardiac 

Pulsation Artifact in DTI 

 

4.1 Abstract 

While several studies have shown the benefit of cardiac gating in the diffusion 

MRI with single-shot EPI acquisition, cardiac gating is still not commonly used, 

probably because it requires additional time and also many investigators may not 

be convinced that cardiac gating is worth the extra effort. We tested a clinically 

feasible protocol with minimal increase in the scan time, and quantified the effect 

of cardiac gating under partial or full Fourier acquisitions. Eight volunteers were 

scanned on a 3T scanner with a SENSE 8-channel head coil. DTI was performed 

with the use of a single-shot spin-echo EPI sequence. Diffusion weighted images 

were acquired along 32 directions, with or without cardiac gating and with partial 

or full Fourier acquisition. Vectorcardiography (VCG) was used to trigger at a 

minimum delay (30ms). Residual bootstrap was performed to estimate the 

uncertainties of DTI derived parameters. With partial Fourier, cardiac gating 

reduced the uncertainties and better efficiency in reducing the DTI parameter 

variability was also achieved even considering the increase in acquisition scan 

time. For full Fourier acquisition, gating slightly decreased the uncertainties but 

the efficiency was worse. Even with a minimum trigger delay which might not be 

the optimal scheme to avoid the majority of systole but allows clinically 

acceptable scan times, we have demonstrated that cardiac gating, especially of 
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partial Fourier acquisitions that are more susceptible to cardiac artifact, can 

reduce the uncertainties of DTI derived parameters in a time-efficient manner in 

DTI studies. 

 

4.2 Introduction 

Diffusion-weighted MRI (DWI), including diffusion tensor MRI (DTI), is designed 

to capture microscopic Brownian motion of water molecules, but these 

sequences are also sensitive to macroscopic movements as well, such as bulk 

subject motion and cardiac triggered brain pulsation. In order to minimize these 

sources of errors, single-shot EPI sequences are widely used for the acquisition 

of DWI. Single-shot EPI effectively freezes the bulk subject motion with its fast 

imaging time of usually around 100 ms or less, but cardiac pulsation artifact can 

still be found occasionally by visual inspection. 

 

Several studies have shown the benefit of cardiac gating with single-shot EPI [1-

5]. In practice, though, cardiac gating is not commonly used in clinical or 

research protocols, probably due to the following two reasons. First, cardiac 

gating calls for additional time and effort in the acquisition. It takes more time to 

acquire the same amount of data with gating, the amount of time depending on 

the gating scheme details (such as trigger delay used and number of slices 

acquired per cycle) and the subject heart rate. The additional step of attaching 

the triggering device to the patient (ECG or pulse oximeter devices) and the 

uncertainty introduced in not knowing the total scan time may also contribute. 
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Second, many investigators may not be convinced that cardiac gating is worth 

the extra effort, even given the cited studies advocating cardiac gating. This may 

partially stem from the way these studies were performed. In order to clearly 

demonstrate the cardiac pulsation artifact, quantification was focused on diffusion 

weighted images acquired in only one direction where the artifact was assumed 

to be strongest [3, 5], or DTI derived parameters were compared from datasets 

acquired only at specific points in the cardiac cycle [2, 4]. These conditions do 

not reflect the realistic effect of cardiac pulsation artifact on DTI since DTI data 

are acquired at multiple, diverse directions and from an array of points in the 

cardiac cycle. These are then combined by means of solving diffusion tensor 

elements, which are then used to calculate DTI derived parameters. For a 

researcher, the principal intent is the effect of cardiac pulsation in the DTI derived 

parameters. 

 

In this work, we re-examined the benefit of cardiac gating in DTI with single-shot 

EPI acquisition by addressing the two issues above. First, cardiac gating was 

performed using a clinically feasible scheme which minimizes the increase in the 

scan time with some compromises in avoiding the systole. Second, the effect of 

cardiac gating was investigated by measuring the uncertainties in DTI derived 

parameters rather than the uncertainties in certain directions of the raw diffusion 

weighted images. Parameter uncertainties were estimated by bootstrap, a non-

parametric, statistical technique based on data resampling. Finally, since it has 
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been suggested that partial Fourier acquisition, which is frequently used to save 

acquisition time, worsens the cardiac artifact [6] we examined the effect of full or 

partial Fourier acquisition.   

 

4.3 Methods 

4.3.1 Subjects / Acquisition 

 

4.3.1.1 Group A 

Five healthy, male volunteers (ages ranging from 24 to 60) were scanned on a 

Philips Intera 3T scanner (Philips, Best, The Netherlands) with a SENSitivity 

Encoding (SENSE) 8-channel head coil and gradients with a maximum strength 

of 33 mT/m. DTI was performed with the use of a single-shot spin-echo EPI 

sequence. Images were acquired with diffusion weighting (b=1000s/mm2) along 

32 non-collinear directions in addition to one image with minimal diffusion 

weighting. Acquisition parameters were as follows: field of view 240 x 240 mm; 

matrix size 96 x 96; 55 slices with thickness of 2.5 mm (no gap) covering the 

whole brain; measured and reconstructed voxel size 2.5 x 2.5 x 2.5 mm isotropic; 

TE 104 ms, SENSE reduction factor 2. These scans were acquired with or 

without cardiac gating and with full or partial (60%) Fourier acquisition. Each 

condition was repeated twice resulting in eight DTI acquisitions per subject. 
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Figure 4-1. Schematics of cardiac gated DTI acquisition. TD: (trigger) delay time. TW: (trigger) 

window time. 

 

Cardiac gating was performed in a way that can be easily implemented in clinical 

or research studies with a minimal increase in scan time, though it might not be 

ideal in terms of avoiding systole. We were interested in this approach since it 

was recognized that the cardiac gating schemes used in previous studies were 

often too lengthy and / or problematic to implement (such as using a dedicated 

pulse sequence). These approaches would discourage wider practice of cardiac 

gating even if it were indeed beneficial. It might be more realistic to use a 

compromised approach in gating as long as it proves be beneficial. The specific 

cardiac gating scheme implemented in our study was the following (Figure 4-1). 
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Triggering system was based on vectorcardiography (VCG) [7, 8]. Just like 

conventional ECG triggering system, VCG triggering utilizes the ECG signals 

from electrodes attached to the chest of the subject. By using spatial information 

provided by VCG, this triggering system can detect R waves more accurately. 

This not only makes triggering more reliable, but also reduces the patient setup 

time by eliminating the trial and error iterations of electrode placements for 

suitable ECG signals, often required with conventional ECG triggering system [7]. 

Time of trigger delay (TD) was set to the minimum value (30 ms) allowed by the 

scanner, and the maximum number of slices were acquired after triggering in 

each cardiac cycle.  Since our system allows acquisition of one image (slice) 

every 145 ms, we could acquire around five slices per cycle, though the exact 

number could vary based on the heart rate. We used single-shot spin-echo EPI 

sequence available in most MR systems, as opposed to special sequence 

optimized for cardiac gating such as re-ordering slice acquisitions [3]. 

 

TR was set to a minimum value of 8 sec (≈ 145 ms per slice x 55 slices) without 

cardiac gating. With gating, the nominal TR was in the range of 9.4 to 11 sec, 

based on the heart rate. In reality, the actual TR was slightly longer, though, 

since heart rate fluctuates during the scan and no data was acquired if heart rate 

is out of allowed range (-20 to 10% variation of heart rate). The nominal 

acquisition time for each DTI dataset was 4 min 48 sec without gating, and 6 min 

7 sec with gating, 27% longer than without gating (see results for more details on 

the acquisition times). 
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4.3.1.2 Group B 

Additional data were acquired from three subjects in order to further examine the 

effect of increased TD on the degree of cardiac artifact. Since large TD (such as 

250 ms which would be sufficient to avoid the majority of cardiac pulsation 

induced brain motion; see discussions for details) increases the scan time to an 

unacceptable level, 50-100% in our system, we only considered maximal TD 

(TDMAX) that does not increase the scan time compared to minimal TD (TDMIN). 

This is possible since with TDMIN there is some remaining time per cardiac cycle 

that are not utilized; single slice acquisition should be completed within a cardiac 

cycle and if not enough time remains at the end of the cycle for another slice 

acquisition, this time will simply be wasted. TDMAX was determined by gradually 

increasing TD from minimal value until the acquisition time was increased.  

 

The acquisition parameters for group B were set to be the same as group A 

except for TE and TR. Stronger gradient system (80 mT/m) were available at the 

time of acquisitions for group B, reducing TE from 104 ms to 72 ms (both partial 

and full Fourier acquisitions) and TR from 8 sec to 6.3 sec (partial Fourier) or 7.2 

sec (full Fourier). The nominal scan times for each DTI datasets were 3 min 45 

sec without gating and partial Fourier acquisition, 4 min 19 sec without gating 

and full Fourier acquisition, 4 min 34 sec to 5 min 2 sec with gating and partial 

Fourier acquisition, and 5 min 45 sec to 6 min 32 sec with gating and full Fourier 

acquisition. Three gating schemes (no gating, gating with TDMIN, and gating with 
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TDMAX) and two Fourier acquisitions (partial or full) were tested without any 

repeated acquisitions, so each subject received six DTI acquisitions lasting 

approximately 30 minutes. Cardiac gating was done as described for group A, 

with TDMIN of 30 ms and TDMAX in the range of 63 to 198 ms (partial Fourier 

acquisition) or 292 to 329 ms (full Fourier acquisition).  

 

4.3.2 Analysis 

For all DTI datasets, subject head movement between different volume 

acquisitions was corrected by registration of diffusion weighted images to the 

minimally weighted (b=0) image using FLIRT (FMRIB’s Linear Image Registration 

Tool, Oxford, UK) [9]. Transformation was modeled as linear equations with six 

degrees of freedom, and images were resampled by sinc interpolation (sinc full-

width of seven voxels) in order to reduce interpolation errors and also to minimize 

modulation of uncertainties that can arise during the interpolation [10]. Then, 

images were slightly smoothed using a 3x3x3 voxel Gaussian kernel with full 

width at half maximum (FWHM) of one voxel to suppress the high frequency 

noise. Diffusion tensors were estimated on each voxel by log-linear weighted 

least squares multiple regression, and then maps of diffusion tensor derived 

parameters such as fractional anisotropy (FA) were created [11]. 

 

To estimate the uncertainties of these DTI derived parameters on a voxel basis, 

residual bootstrap was performed [11]. Residual bootstrap is one of the model-

based bootstrap resampling techniques where residuals, differences between 
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measured MR signals and the model-fitted signals, are resampled on the whole 

dataset to create multiple bootstrap resamples of the original sample (i.e. 

measured signals). The dispersion of DTI derived parameters calculated from 

these resamples reflects the uncertainty of the original parameter. Uncertainties 

of scalar parameters were expressed as standard errors, while the uncertainties 

in the direction of vectors such as primary eigenvectors were expressed as 95 

percentile confidence intervals of minimum angle. Resampling from an original 

sample was iterated 200 times. 

 

Initial DTI processing and bootstrap described above were carried out in the 

native space (i.e. without any registrations except for the correction for the bulk 

head motion), and bootstrap-estimated uncertainty maps were normalized to MNI 

space before the final analysis. Normalization was performed as follows. The 

transformation was initially approximated by linear transformation of b=0 images 

from each DTI datasets to the single subject T1 image in the MNI space using 

FLIRT. FA maps from each datasets were registered to the MNI space using the 

same transformation. Then, high-order non-linear registration was performed [12]. 

The transformation was parameterized using cubic B-spline functions, and 

empirically chosen node spacing of six voxels in x, y, and z directions was used. 

One FA map from a subject was arbitrarily chosen, and all the other FA maps, 

from different datasets of a subject and from different subjects, were all 

registered to the chosen FA map. Finally, all DTI uncertainty maps were 
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resampled to MNI space according to the transformation information acquired 

previously. 

 

To visualize the effect of cardiac gating on the DTI uncertainty maps, for each 

subject, maps of gated to non-gated uncertainty ratios (RU) were created for 

either partial or full Fourier space acquisitions. For group A, two DTI datasets 

were acquired under the same conditions, so two uncertainty maps were 

averaged before further analysis. Efficiency ratio (RE) maps, which can 

demonstrate the brain regions where cardiac gating achieved smaller or larger 

degree of uncertainty per unit time, were also created. RE is conceptually similar 

to SNR efficiency, which is a measure of achieved signal-to-noise ratio per unit 

time. The term SNR efficiency deemed narrowly defined in the context of MR 

signals and their noise expressed as the standard deviation. Definition of RE 

accommodate DTI derived parameters and their uncertainties in more general 

forms. Nevertheless, the scheme of normalizing different acquisition time by 

dividing the SNR by square root of the time was equally applied to RE,as shown 

in the equation below, 
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where PUR (parameter-to-uncertainty ratio; P/U) is DTI derived parameter 

divided by its degree of uncertainty, RT (time ratio) is the ratio of gated to non-

gated acquisition times, and g and ng refers to gating and non-gating each. It 

was assumed that the estimated DTI derived parameters with or without gating 
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were comparable enough so that PURg / PURng could be reduced to the inverse 

of RU. All these maps, either from one subject or from all subjects together, were 

filtered with 3x3x3 voxel median kernel to better demonstrate the general pattern. 

 

In addition to ratio maps showing the spatially-dependent effects of cardiac 

artifact and gating, the effects were also quantified as a single value representing 

the whole brain. Since major white matter bundles, where researchers are 

usually more interested in, are highly anisotropic in general, ROI of voxels with 

FA > 0.4 was created in the FA map. The mean of ratios described above within 

this ROI was reported. 

 

For group B, two different gating schemes exist, so the ratio maps were created 

for both 1) gating with TDMIN versus no gating and 2) gating with TDMAX versus no 

gating. 

 

4.4 Results 

4.4.1 Group A 

The Figure 4-2 shows the acquisition times for each DTI datasets in all five 

subjects. It took 6 min 7 sec ± 23 sec for the acquisitions with cardiac gating, and 

4 min 48 sec without gating, making gated acquisitions 27% lengthier on average 

in scan time. The heart rates for these subjects were 65 ± 4 beats per minutes. 
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Figure 4-2. Nominal acquisition times for each subject in group A. Subjects are sorted by their 

heart rate during the acquisition in the x axis. 

 

Typical diffusion weighted images acquired are shown in the Figure 4-3, with 

possible cardiac artifacts visible on the non-gated data. Artifacts were found to be 

in the diverse locations in the brain, and they were not confined to the images 

with diffusion weighting approximately in the z direction but could be found in 

other images as well. The severity of artifacts were also diverse, though artifacts 

as severe as what has been demonstrated previously [5] were rare, if any, except 

for those in the cerebellum. 
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Figure 4-3. Typical diffusion weighted images without cardiac gating (top row) and with gating 

(bottom row). Images were acquired with partial Fourier acquisition, and top and bottom row 

images are from the same slice of the same subject. White boxes highlights possible cardiac 

pulsation artifacts without gating. 

 

Figure 4-4 shows typical maps of DTI derived parameters as well as their 

bootstrap-estimated uncertainty maps from one non-gated partial Fourier dataset. 

Smaller confidence intervals (meaning high certainty in the estimation) of primary 

eigenvectors in the white matter can be appreciated. Increased FA standard 

errors are found in the central part of the brain, including deep gray matter and 

corpus callosum, possibly reflecting the cardiac artifacts, lower SNR of multiple 

channel coils in the center of the FOV, and the inherently low signals in the deep 

gray matter. From three diffusivity maps, Ev1 (=λ1) had larger uncertainty 

compared to MD (=(λ1+λ2+λ3)/3) or EvT (=(λ2+λ3)/2), since no averaging between 

different eigenvalues is done for Ev1, and the values of this parameter is also 

larger than MD and EvT values. 
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Figure 4-4. Typical maps of DTI derived parameters (top row) and their bootstrap-estimated 

uncertainty maps (bottom row). CI: confidence interval. SE: standard error. Ev1: primary 

eigenvalue = λ1, also known as axial diffusivity. MD: mean diffusivity = (λ1+λ2+λ3)/3, also known 

as Tr(D)/3. EvT: transverse eigenvalue = (λ2+λ3)/2, also known as radial diffusivity. 

 

Figure 4-5 shows the maps of RU and RE with partial Fourier acquisition. In the 

middle row of the figure, virtually all voxels in the brain have RU smaller than one 

(depicted in blue), meaning that cardiac gating reduces the uncertainties 

everywhere in the brain. In the bottom row, RE values were larger than one 

(depicted in blue) in the voxels located mainly in the central part of the brain 

slice-wise, and at the level or below the corpus callosum. This suggests that 

cardiac gating not only reduces the uncertainties in these regions but that 

reduction can be big enough to compensate for the increased scan time in terms 

of time efficiency. In other words, if we were given the same time to scan, it can 

makes more sense to do cardiac gating and acquire less data (i.e. fewer 

averages or directions) than get more data without gating, assuming that we can 

still acquire sufficient data even with cardiac gating. 
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Figure 4-5. Maps of RU (gated to non-gated uncertainty ratio) and RE (gated to non-gated 

efficiency ratio) for the 95th percentile confidence intervals of the primary eigenvector directions, 

with partial Fourier acquisition. These maps show voxel-wise median values of ratios from all five 

subjects. Top row: FA maps from the average of five subjects with yellow contour depicting the 

high anisotropy region, which was used to report results in Figure 4-9 and Figure 4-10. Nine 

slices are shown, from the level of cerebellum to the top of the brain. The fifth slice in each row 

corresponds to the same slice shown in Figure 4-4. Middle / bottom row: RU and RE maps in the 

same slices as top row. The same yellow contours as top row are overlaid as well. 

 

Figure 4-6 shows the same maps as Figure 4-5 but with full Fourier acquisition. 

In the middle row of the figure, RU is no more completely dominated by values 

less than one, and especially in the periphery of the brain, numerous voxels with 

RU larger than one (depicted in red) can be observed. In the bottom row, most of 

the voxels have RE smaller than one (depicted in red). These maps suggest that 

cardiac gating is not time efficient anymore, though it is still effective in reducing 

the uncertainties. 
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Figure 4-6. The same maps as Figure 4-5, except that data are from full Fourier acquisition. 

 

These trends shown in the Figure 4-5 and Figure 4-6 were closely replicated with 

uncertainties of scalar DTI derived parameters. Figure 4-7 shows the maps of RU 

and RE with partial and full Fourier acquisitions in one slice, and uncertainties are 

standard errors of FA, Ev1, MD and EvT. Other than spatially less-varying, the 

maps show the same trend; with partial Fourier acquisition, cardiac gating 

globally reduced the uncertainties and was particularly time efficient generally in 

the central part of the brain; with full Fourier acquisition, while cardiac gating 

generally reduced the uncertainties, this was at the cost of reduced time 

efficiency compared to no gating. 
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Figure 4-7. Maps of RU and RE with partial or full Fourier acquisitions in the same slice as Figure 

4-4 (and the same slice as the fifth slice of Figure 4-5 and Figure 4-6). In addition to CI(vec) 

which was already shown in Figure 4-5 and Figure 4-6, standard errors of scalar parameters (FA, 

Ev1, MD, EvT) are shown as well for comparison. 

 

Figure 4-8 shows spatial intensity projections of RU for partial and full Fourier 

acquisition. These images are presented to make easy comparison with 

previously reported results [3, 5]. For partial Fourier acquisition, our projections 

closely resembled the results presented in [5], with the uncertainty reduction 

effect of cardiac gating more pronounced in the lower half of the brain and in the 
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central region. Projections also make clear that with full Fourier acquisition the 

cardiac gating effect is much less. The distribution of the regions where cardiac 

gating was effective with full Fourier acquisition did not seem to correspond 

highly with the data for partial Fourier acquisition, other than the fact that they are 

both concentrated in the lower part of the brain. 

 

Figure 4-8. Spatial projections of RU for partial and full Fourier acquisition (i.e. projections from 

the data shown in the middle row of Figure 4-5 and Figure 4-6) toward sagittal, axial and coronal 

planes. Since virtually all RU values were below one and since lower values indicate stronger 

reduction of uncertainties by cardiac gating, the projections are actually minimum intensity 

projection, so that stronger reduction of uncertainties will stand out. RU is calculated from CI(vec). 

 

Figure 4-9 shows the plots of RU and RE in each subject averaged in the high 

anisotropy white matter regions of the whole brain. The median value of RU from 
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all subjects was 0.82, meaning that the uncertainties (95 percentile confidence 

interval of primary eigenvectors) are 18% smaller with cardiac gating and partial 

Fourier acquisition. With full Fourier acquisition, RU values were more variable 

between subjects and the median value was 0.93, i.e. 7% smaller uncertainties 

with cardiac gating. The RE values for all subjects were larger than one with 

partial Fourier acquisition, with the median value of 1.08. This suggests that 

cardiac gating is actually more time efficient by around 8%. With full Fourier 

acquisition, all but one subject had RE lower than one with median of 0.95, 

meaning that for most subjects the time efficiency was reduced by cardiac gating. 

 

Figure 4-9. Plots of RU and RE in each subject averaged in the high anisotropy white matter 

regions of the whole brain. 

 

4.4.2 Group B 

Figure 4-10 shows the plots of RU and RE in each group B subject averaged in 

the high anisotropy white matter regions of the whole brain, similarly to Figure 

4-9. With TDMIN, the TD as group A, results were similar to group A. Cardiac 

gating was able to reduce the uncertainties by the median value of 15% (partial 
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Fourier acquisition) or 5% (full Fourier acquisition). Except for one case (subject 

with the heart rate of 55 per min, partial Fourier acquisition), TDMAX always 

reduced RU, meaning that the longer delay was more effective. Since TDMAX does 

not increase scan time compared to TDMIN, RE was generally larger with TDMAX, 

though the trend that partial Fourier acquisition benefits from cardiac gating but 

not full Fourier acquisition in terms of time efficiency still seems to hold with 

TDMAX. 

 

Figure 4-10. Plots of RU and RE in each group B subject averaged in the high anisotropy white 

matter regions of the whole brain. RU and RE calculated from cardiac gating with TDMAX as well as 

TDMIN are both shown side by side for easier comparison. 

 

4.5 Discussion 

Cardiac gating is still rarely used in brain DTI studies probably because 

investigators do not believe that it is not worth extra time and effort despite 

potential benefits. Indeed, according to the previous studies on cardiac gating [3, 

5, 6], the total acquisition time with cardiac gating can be two to three times 

longer than without gating. Even in our system where the acquisition time per 
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slice is much shorter and cardiac gating is more efficient due to less dead time 

compared to typical DTI acquisitions including [3, 5, 6], the total acquisition time 

can be twice as long if TD is large enough as suggested by previous studies 

about brain pulsation (more details are below). Doubling or tripling the scan time 

is not a viable option for many, if not the majority of, clinical and even research 

studies due to study time constraints. An optimized scheme with only relatively 

minor increase in the scan time has been reported [3]. However, it is a 

customized sequence not widely available and it requires further modifications 

depending on the acquisition setting, and is an additional source of complexity in 

the cardiac gating. 

 

In this study, we took an alternate approach, cardiac gating with minor increase 

of scan time and implementation effort at the expense of a less than ideal 

triggering scheme. Our results show that while our gating scheme of using 

minimum TD might not be as effective as a scheme with a longer TD, it clearly 

reduces cardiac artifact to the level where even time efficiency (or scanning 

efficiency, achieved degree of uncertainties under given time) is higher compared 

to no gating scheme. Higher time efficiency applies only to partial Fourier 

acquisition, but considering that most single-shot EPI studies these days are 

performed in partial Fourier scheme, it is likely that our results would generally 

apply to typical DTI studies. 
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We would like to point out that the mechanism for the effectiveness of cardiac 

gating with minimum TD could be effective is not well understood yet. Before 

discussing this issue further, it is worthwhile noting that triggering is typically 

achieved via ECG (and VCG) or pulse oximeter and that the time relationship 

between triggering and cardiac pulsation induced brain motion is quite different 

for these two triggering mechanisms. ECG detects R waves of the heart directly 

while pulse oximeter detects the pulse wave in the finger (thus called peripheral 

gating), and it has been reported that the ECG trigger precedes the peripheral 

trigger by around 250 ms fairly consistently [4]. This means that the ECG TD of 

300 ms is equivalent to peripheral TD of 50 ms. Though exact details vary, there 

is an consensus that cardiac pulsation induced brain motion is greatest from 100 

to 250 ms after the ECG detected R waves [13, 14]. This time period 

corresponds to the last period of 150 ms just before peripheral triggering, and 

this explains why minimum TD relative to the peripheral gate is almost as 

effective as longer TDs relative to the peripheral gate [5]. 

 

On the other hand, triggering in our study occurred by VCG (equivalent to ECG in 

the timing of triggering) and thus our minimum TD happens before the peak of 

brain motion. The acquisition of the first 2D image after the trigger occurs at the 

moment where the brain motion may be largest. Considering the fact that around 

five slices are acquired in each cardiac cycle and that first of those are constantly 

acquired at the time of systole, 20% of the images acquired by our gating 

scheme should be affected by cardiac pulsation artifact, actually similar to the 
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percentage reported without any gating at all [3, 5]. Still, both objective evidence 

of bootstrap estimated uncertainties and subjective visual inspection of the raw 

images suggest that our cardiac gating with minimum TD reduces the artifact 

effectively. 

 

There is another study which observed this phenomenon. A study by Brockstedt 

et al. [1] compared three ECG triggering protocols with TDs of 100 ms, 400 ms, 

and no triggering. Their results showed that ECG gating with TD of 100 ms 

clearly reduces the uncertainties compared to no triggering (statistically 

significant) though not as much as TD of 400 ms (the differences in the degree of 

uncertainties between TD of 100 ms and 400 ms were not statistically significant). 

This is particularly interesting since they had chosen TD of 100 ms to represent 

diffusion encoding during the time period of maximum brain motion to be 

compared to TD of 400 ms that was expected to avoid most pulsation effects. 

Trigger delays of 100 ms was expected to yield worse cardiac artifacts than no 

gating at all but in reality this did not hold and the effectiveness of the short delay 

was almost comparable to TD of 400 ms. 

 

Though the mechanism behind the effectiveness of ECG (or VCG) gating with 

minimum TD remain elusive, our results nevertheless suggest that with partial 

Fourier acquisition, this cardiac gating scheme not only reduces the artifact but is 

also more efficient in terms of achieved degree of uncertainties per unit 

acquisition time. This possibility was previously observed [5], but based on the 
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results 1) from only voxels with statistically significant cardiac artifacts, 2) only 

with diffusion weighting in the z direction (artifact expected to be the worst), 3) 

only for diffusion weighted signals (as opposed to DTI derived parameters), and 

4) with TD of 500 ms, which will lead to clinically (or for many research protocols) 

unfeasible scan times (3.4 times of ungated). We drew our conclusion 1) from all 

the voxels of major white matter bundles, 2) with diffusion weighting in numerous 

directions which is typical in DTI, 3) based on the DTI derived parameters of 

interest which are the eventual metrics of interest, and 4) with TD of 30 ms, 

which only increases the total acquisition time by around 27%. We believe that 

our results provide convincing evidence that short TD provides better scanning 

efficiency and with realistic scan times.  

 

Reducing the uncertainties in DTI derived parameters is not the only benefit of 

cardiac gating. As described previously, cardiac gating reduces the spatial 

varying characteristics of degree of uncertainties since cardiac artifacts are 

worse in the lower central part of the brain [3, 5] which was also confirmed by our 

study. Cardiac gating also reduces any potential bias in the estimated DTI 

derived parameters [2, 4], though their results may over-emphasize the bias 

effect since they compared datasets from different TDs rather than simply 

comparing results of gating versus no gating. 

 

Another crucial finding of our study is that cardiac gating does not decrease the 

uncertainties in DTI derived parameters as much with full Fourier acquisition. 
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Though this might imply that cardiac gating is actually less effective, we believe 

that a more plausible explanation is that full Fourier acquisition is more immune 

to cardiac pulsation artifacts, leaving less room for improvement by cardiac 

gating. When we visually inspected raw diffusion weighted images, we were 

much less likely to find cardiac pulsation artifacts in the full Fourier data. Also, a 

study by Robson et al. [6], which motivated us to examine full Fourier acquisition 

data as well, suggested that Margosian reconstruction scheme [15] after partial 

Fourier acquisition is the major source of cardiac pulsation artifact. Typically, 

single-shot EPI DTI studies are acquired partially in the K-space (partial Fourier) 

and reconstructed in ways similar to the Margosian approach (e.g. homodyne 

method) by completion of K-space by the property of Hermitian conjugate 

symmetry and phase correction using symmetrically acquired data near the 

center of K-space. For this reason above, we therefore suggest that full Fourier 

acquisition would lead to less cardiac pulsation artifacts by avoiding this 

reconstruction approach.  

 

The fact that full Fourier acquisition is more immune to cardiac pulsation artifacts 

provides us with the opportunity to reconsider the trend of always preferring 

partial over full Fourier acquisitions with EPI sequences for diffusion weighted 

images. Partial Fourier acquisitions have been preferred because they reduce 

the image blurring along the phase encoding direction due to less T2 and T2* filter 

effect and TE can be shorter that leads to higher SNR and shorter scan times 

[16]. A recent study [17] concluded that the overall best SNR efficiency was 
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achieved with a SENSE reduction factor of 2.1 and partial Fourier encoding of 

60%, with an eight-element head coil array and a b-value of 1000 s/mm2 for 

diffusion weighting. Unfortunately, the optimizations studies for the fraction of K-

space coverage with single-shot EPI sequences for diffusion weighted images so 

far have not considered effects of cardiac pulsation artifacts. Since the 

advancement in imaging gradient performance and parallel imaging techniques 

which make even full Fourier acquisition fairly easy without sacrificing spatial 

resolution, we have to wonder whether partial Fourier acquisition is still the better 

option. While even our practical cardiac gating scheme will increase the scan 

time by around 27%, full Fourier acquisition takes only marginally longer than 

partial acquisition and cardiac gating can be skipped saving lots of time. For the 

purpose of this discussion we should declare that we did observe lower standard 

errors and fewer artifacts with the ungated full Fourier compared to the partial 

Fourier data. However, due to difficulty in quantifying the effects of smoothing 

with full versus partial Fourier acquisitions, we did not present the direct 

comparison between the errors for these experiments and are wary of drawing 

conclusions from this result alone. 

  

Only one particular cardiac gating scheme was tested in this study, but we 

believe that improvements can be made to make this gating scheme even more 

practical. First, currently our system allows fixed number of slices to be acquired 

in each cardiac cycle based on the heart rate entered just before the scan. 

Cardiac gating can be more efficient if the number of slices acquired per 
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heartbeat is adjusted during the acquisition, reflecting the trend of heart rate 

changes. For instance, if the heart rate decreases during the scan to a point 

where one more slice can be acquired, then one more slice can be acquired 

based on the re-adjusted heart rate based on the stability of the heart at some 

later time during the experiments. Secondly, while we used VCG gating because 

of its superior performance, peripheral gating might make more sense in cardiac 

gating for brain, not heart, imaging. As described above in the discussion, 

because of the inherent delay (≈ 250 ms) between the R wave and the peripheral 

pulse wave, most of the significant brain motions by cardiac pulsation have 

already occurred by the time of peripheral triggering. Contrary to ECG (or VCG) 

gating, peripheral gating with minimum TD makes more sense in terms of 

avoiding the brain motions. Alternatively, even with the cardiac R wave trigger, 

allowance for acquisition during the same period that a trigger is expected would 

enlarge the acquisition time window without risk of acquiring during the brain 

pulsation period. In fact, the known delay between cardiac R wave and the brain 

pulsations can be used to great advantage in this way since time normally lost 

while waiting for the next trigger would be fully utilized and only a period 

corresponding to worse brain pulsatile motion avoided. While the brain motions 

occur at the end of cardiac cycle with peripheral gating, acquisitions are not done 

at this time anyway in order to wait for the next trigger (called TW or window 

time). Using the same time to wait the next trigger and to avoid the brain motions 

will allow even more time for acquisitions. It will be a subject of future study 

whether peripheral gating, even with its shortcoming of less stable triggering, can 
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outperform the scheme presented in our study. Last, as gradient performance 

increases, cardiac gating will become more efficient since there will be less dead 

time, time that is not long enough for one slice acquisition that has to be wasted. 

 

As an objective measure of uncertainties of DTI derived parameters, residual 

bootstrap was utilized. While residual bootstrap was shown to outperform other 

DTI bootstrap methods by a Monte Carlo simulation study [11], we have to take 

into consideration that the assumptions made by residual bootstrap might not be 

realized. We have analyzed the data with wild bootstrap [11, 18] and the results 

for the primary eigenvector direction were almost identical to the results with 

residual bootstrap (results not shown). This gave us confidence that the selection 

of bootstrap will not sway our results, though they are both model-based 

resampling techniques, and limitations with model-based resampling still remains. 

While our acquisition scheme of many different directions with only one or two 

repetition does not suit well with repetition-based resampling [11], it would be an 

interesting subject to quantify the cardiac pulsation artifacts with repetition-based 

resampling on DTI datasets with small number of directions and many repetitions. 

 

4.6 Conclusion 

We have demonstrated that VCG-triggered cardiac gating with minimum trigger 

delay could be a good compromise between the need for cardiac gating and 

maintaining practical scan time. Our gating scheme has higher time efficiency (or 

scanning efficiency) compared to no gating when partial Fourier acquisition was 
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performed. Full Fourier acquisition was relatively immune to cardiac pulsation 

artifacts decreasing the need for cardiac gating. When single-shot EPI DTI 

studies are done with partial Fourier acquisition, we recommend the practical 

cardiac gating scheme presented in this study. If full Fourier acquisition is viable 

then full Fourier acquisition without cardiac gating should be considered as well. 
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Chapter 5: Bootstrap Voxel-wise Serial DTI Analysis 

 

5.1 Abstract 

Diffusion tensor MRI (DTI) is emerging as a powerful tool to overcome the 

limitations of conventional MRI and CT in the evaluation of traumatic brain injury 

(TBI), especially diffuse axonal injury (DAI). We developed a fully automated 

voxel-wise serial DTI analysis for robust and sensitive detection of progressive 

microstructural white matter changes in each TBI patient. This technique called 

Bootstrap-based Longitudinal Analysis of DTI Estimates (BLADE) identifies 

clusters of voxels with statistically significant FA changes over time, with the help 

of DTI residual bootstrap. High quality 3T DTI data with ASSET parallel imaging, 

55 diffusion directions, and 1.8 mm isotropic voxels were acquired from six mild 

TBI patients and seven control subjects on three separate time points. BLADE 

was able to identify voxels with FA increase over time within lesions of TBI 

patients with cortical contusion or DAI. More interestingly, FA decrease over time 

in the normal appearing white matter adjacent to the lesions was also detected 

possibly indicating the presence of ongoing Wallerian degeneration from the 

lesions. BLADE is the first technique that detected voxel-wise FA changes in a 

single subject with high statistical confidence, which can be a powerful tool in 

analyzing neurological disease with high inter-subject variability in the time 

course and spatial distribution of pathologies. 
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5.2 Introduction 

Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in the 

US, especially in young people under age 45. Conventional MRI and CT are 

limited for the accurate evaluation of TBI due to their tendency to underestimate 

the extent of injury, especially diffuse axonal injury (DAI) [1], and absence of 

quantitative pathophysiological information. Diffusion tensor MRI (DTI) is 

emerging as a powerful tool to overcome these limitations. The extensive spatial 

heterogeneity of DTI fractional anisotropy (FA) presents a challenge for detecting 

changes in this parameter. Hence, manual ROI analysis has been the most 

commonly used method for quantitative DTI analysis despite being labor-

intensive and operator-dependent. In this study, we developed a fully automated 

voxel-wise serial DTI analysis (BLADE) for robust and sensitive detection of 

progressive microstructural white matter changes in TBI. 

 

5.3 Methods 

5.3.1 Subjects / Acquisitions 

Six patients with mild TBI (Glasgow Coma Scale 13-15 at presentation in the 

Emergency Dept.) and seven patients who suffered leg injuries but not head 

injuries were enrolled in the study. On conventional imaging studies, two TBI 

patients were suspected of cortical contusion, and the remaining four were 

suspected of having DAI. Patients with leg injuries were used to serve as control 
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subjects in testing the BLADE technique and in determining the cluster 

thresholding (see next section for details).  

 

MR exams including conventional MRI and DTI were performed at three separate 

time points on a 3T GE Signa EXCITE scanner with an 8-channel phased array 

head coil, using ASSET parallel imaging with an acceleration factor of two. The 

three time points were within one week, after one month and after one year of the 

brain injury (simply called 1 week, 1 month and 1 year later in this chapter). 

Whole-brain DTI was performed with a single-shot multi-slice axial spin-echo EPI 

(TR / TE = 14 s / 64 ms, NEX=1) at 1.8-mm isotropic voxel resolution using 55 

diffusion-encoding directions (distributed evenly by electrostatic repulsion 

scheme [2]) at b=1000 s/mm2, as well as one b=10 s/mm2 acquisition. 

 

5.3.2 Analysis 

For the detection of localized FA changes over time, we developed an analysis 

technique called Bootstrap-based Longitudinal Analysis of DTI Estimates 

(BLADE), briefly introduced elsewhere [3]. This technique can be summarized as 

creating an FA subtraction map scaled by standard errors such that thresholding 

and clustering can be used to select groups of voxels with statistically significant 

FA changes over time. The residual bootstrap [4] was used because it only 

requires a single DTI dataset to estimate the standard errors of FA. Utilizing data 

redundancy from the 55 distinct diffusion measurements at each voxel, we can 

perform voxel-wise statistical testing in each subject separately, without multiple 
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DTI acquisitions, pooling data from multiple subjects, or making assumptions 

about the underlying noise properties. 

 

 

Figure 5-1. Schematics of procedures in BLADE. 

 

The framework of BLADE (also illustrated as a graphical flow chart in Figure 5-1) 

consists of four steps. First, the raw DTI images at each time point were 

corrected for the subject motion during the scan by rigid-body transformation 

(FLIRT, http://www.fmrib.ox.ac.uk/fsl/flirt/) [5]. Then, FA maps were generated by 

diffusion tensor analysis (described in chapters 2 and 3), including fitting of 

diffusion tensor by weighted least squares, diagonalization of the tensor to yield 

eigenvectors / eigenvalues, and calculating FA from eigenvalues. 
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Second, these FA maps were used for the registration of DTI datasets between 

different time points. FA maps are preferred over other images since FA maps 

are better suited for registration of brain white matter due to the rich contrast 

within white matter (this rich contrast in fact makes visual inspection of FA maps 

tricky). An initial registration between FA maps by affine transformation (FLIRT) 

was followed by non-linear registration modeled as 3D 5th order polynomials (AIR 

5.2.5, http://bishopw.loni.ucla.edu/AIR5/) [6, 7] in order to correct for any time-point 

dependent non-linear distortion of the images as well as any possible atrophy in 

specific white matter bundles. The transformation parameters were applied to all 

the raw DTI images such that data from all time points were registered to a 

common space. 

 

Third, residual bootstrap with 200 iterations was used to create the standard 

error map of FA as described in [4]. The number of bootstrap iterations of 200 

was chosen since this is a good compromise between reliable estimation of 

uncertainties and reducing computation time, according to my preliminary Monte 

Carlo simulation studies (results not shown) as well as a study by another group 

[8]. 

 

Fourth, FA maps and their standard error maps were combined for each pair of 

time points to calculate a T statistic map, using the equation below. 
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Equation 5-1
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In reality, the distribution of calculated T statistics when there is no difference (i.e. 

null distribution) does not converge to the T distribution for a number of reasons 

(see the discussion section for details), and thus strictly speaking, pseudo T 

statistic might be a better terminology. 

 

Finally, clusters of voxels with relatively large differences between time points 

were defined. All voxels in each cluster were abs(T)>2.6 (roughly corresponding 

to p<0.01), and only voxels connected by edges or faces in 3D were qualified as 

a cluster. It is difficult to assign a p-value to each cluster within our framework, so 

the distribution of clusters in the healthy subjects served as a guide to empirically 

choose statistically significant clusters. The clusters marked as statistically 

significant were overlaid in color on the average FA map. By using clusters of 

voxels, rather than the voxels themselves, the power to detect changes in the 

regions larger than the threshold of cluster size increases at the expense of 

decreased power of detecting changes in the smaller regions. 

 

5.4 Results 

5.4.1 Control Subjects 

The MRI findings were normal in the seven control subjects. In these subjects, 

the size of largest cluster found in the whole brain white matter region after 

thresholding the T statistic map is shown in Figure 5-2. Clusters larger than 25 
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voxels were rare. Thus, for the analysis of TBI patients, the cluster size threshold 

of 30 voxels was empirically chosen as a criterion for defining significant clusters. 
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Figure 5-2. The plot showing the largest cluster with abs(T)>2.6 in the whole brain of each 

healthy subject. X axis: subjects. Y axis: number of voxels in the largest cluster. 

 

FA maps and T statistic maps in the corresponding slices in one of these control 

subjects are shown in Figure 5-3. The T statistic maps generally show random 

patterns with few noticeable structures. This suggests that the original FA 

differences are properly scaled by the bootstrap estimated standard errors to 

make the final T statistic values random and spatially independent. Note that 

voxels not included in the BLADE analysis (voxels outside white matter) are 

masked out in the images shown in Figure 5-3. 
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Figure 5-3. Top row: FA maps in three different slices. Bottom row: T statistics maps in the same 

slices as the top row. 

 

5.4.2 Patients with Cortical Contusion 

In both of the two TBI patients with cortical contusions, BLADE showed 

increased FA values in the interval between the 1-week and 1-month time points 

in the white matter region showing FLAIR (fluid attenuated inversion recovery) 

abnormality due to the contusions. 

 

Results for one of the subjects are shown in Figure 5-4. While FA is increased at 

the site of contusion coinciding with the subsided hyperintensity in FLAIR images 

after 1 month (upper row, arrow), clusters of FA decrease is found in normal 

appearing voxels not contiguous to the FLAIR contusion region but right above 

the contusion site (lower row, arrowhead). 
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Figure 5-4. BLADE analysis between 1 week and 1 month post injury in a focal cortical contusion 

patient. FLAIR images in each time point are also presented. Warm colors indicate the positive T 

statistic values, i.e. larger FA in 1 month compared to 1 week post injury. Smaller FA in 1 month 

are displayed as cool colors. Images in each row are from the same anatomic location. 

 

5.4.3 Patients with Diffuse Axonal Injury 

Of the four mild TBI patients suspected of having DAI on conventional MRI, the 

patient with the most severe DAI (Figure 5-5 and Figure 5-6) showed increased 

FA values within the lesions (arrow) and the decreased FA in non-contiguous 

adjacent normal-appearing white matter (NAWM) (arrowheads). The largest 

component of this progressive FA decrease in NAWM occurred between the 1-

week and 1-month time points, but further decreases were seen at 1-year 

following trauma. 
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Figure 5-5. BLADE analysis between 1 week and 1 month, and 1 week and 1 year in a diffuse 

axonal injury patient. 
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Figure 5-6. BLADE analysis in the different slice of the same patient shown in Figure 5-5. 

 

The other three DAI patients did not show particular findings by the BLADE 

analyses, except for FA increases in the lesion visible by either FLAIR or T2* 

weighted images. The result for one of these patients is shown in Figure 5-7. The 

arrow indicates the lesion visible as a hyperintense region in the FLAIR image 

and a cluster of increased FA determined by the BLADE analysis. 
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Figure 5-7. BLADE analysis between 1 week and 1 month in a diffuse axonal injury patient 

(different from the patient shown in Figure 5-5 and Figure 5-6). 

 

5.5 Discussion 

This is the first study demonstrating automated, subject-specific, voxel-wise 

serial analysis of whole-brain DTI, localizing progressive microstructural changes. 

While this study involves a relatively small number of subjects, the results are 

nevertheless as strong as studies with large number of subjects, due to the 

nature of BLADE to perform an independent statistical inference for each subject. 

The main observations made from the BLADE analysis is that FA values 

increased over time in the lesions visible by conventional MRI and decreased in 

the NAWM near the lesions. It is likely that the increase of FA in the lesions 

represent resolution of vasogenic edema and other local inflammatory changes. 

Increased water content in the lesions not only makes them visible to 

conventional MRI but they are known to decrease the FA values. Thus, it is not 

surprising that the increase in the FA values in the lesions over time is 

accompanied by less pronounced hyperintensity in the FLAIR images. The 
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progressive decrease of FA in NAWM adjacent to the lesions is particularly 

interesting since conventional MRI fails detect any abnormalities, and may 

represent Wallerian degeneration along white matter pathways. 

 

It is extremely useful to detect changes but it is important to note that ambiguities 

can exist in the biological interpretation of these changes. FA values are 

generally known to be reduced in a wide variety of pathologies, but there is the 

possibility of paradoxical increase of FA when only selective populations of fibers 

degenerate in the regions of crossing fibers (although the frequently cited study 

by Pierpaoli et al. [9] actually does not report paradoxical increase in FA values). 

Normal (i.e. pathology-free) FA depends strongly on the subject and brain region, 

thus what is normal is not known unless measured in the same subject and same 

region prior to development of any pathology. 

 

Attempts have been made to adapt the FA values in the anatomically equivalent 

region on the contralateral side of the same subject as normal (often quoted as 

‘internal reference’) [10]. This approach works only with unilateral pathology and 

it is limited by asymmetry of anatomy and asymmetry of the FA values 

themselves that would make the estimate of normal FA values less certain. 

Alternatively, distributions of FA values from healthy subjects has been used to 

determine the deviation of FA values in individual subjects voxel-wise [11]. This 

approach is probably even less optimal in defining normal FA values, since inter-

subject variability is likely to be larger than the variability between right and left 
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sides in the same subject. As a result, currently no effective method exist to 

determine the normal FA values except for measuring FA values before the 

injuries, and interpretation about FA changes should be made cautiously. 

 

On a technical side, the statistics in BLADE is somewhat limited, leaving room for 

improvement. As commented in section 5.3.2, the T statistics calculated by 

BLADE are actually pseudo T statistics. Typically the T statistic is calculated as 

below. 

1 2
2 2

1 2( ) ( )
df

X XT
SE X SE X

−
=

+
 Equation 5-2

1X  and 2X  are n-sized sample means of i.i.d. random variables 1X  and 2X , and 

standard errors (SE) of these sample means in the denominator are estimated by 

1 1( ) /SE X s n=  and 2 2( ) /SE X s n= , where s1 and s2 are standard deviations of 

the same samples from 1X  and 2X . The whole denominator is actually the SE of 

the random variable 1 2X X−  and conceptually the T statistic above can be 

described as the difference in sample means divided by the SE of the difference. 

( )df
XT

SE X
∆

=
∆  Equation 5-3

Unlike the Z statistic with similar expression ( ) /Z X µ σ= −  where σ  is known, 

the SE in Equation 5-3 has to be estimated from the samples as shown in 

Equation 5-2. Thus as the sample size increases the estimated SE becomes 

more accurate and the T statistic distribution approaches the standard normal 
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distribution. The degrees of freedom (df) dictates the shape of the T distribution 

at certain sample sizes, and df is crucial in calculating p-values. 

 

The difference between testing FA∆  and testing X∆  is that 1) FA∆  is not 

normally distributed while X∆  is normally distributed and 2) ( )SE FA∆  is 

estimated by bootstrap while ( )SE X∆  is estimated by equations described above, 

and the df is not known for ( )SE FA∆ . Thus, even under the null hypothesis that 

there is no difference in FA, the null distribution of / ( )T FA SE FA= ∆ ∆  is unknown. 

 

The problem that the null distribution of our pseudo T statistic is unknown can be 

circumvented if we use the pseudo T statistic just to define clusters of relatively 

strong changes rather than calculating voxel-wise p-values directly, a strategy we 

have used for BLADE. The greater challenge remains, though, regarding the 

multiple comparison problem. The null distribution of cluster size is currently 

unknown within the BLADE framework, and p-values cannot be assigned to each 

cluster based on the data from control subjects. These difficulties prompted me 

to investigate the feasibility of permutation testing in serial DTI analysis as 

introduced in the next chapter. Even with these limitations, BLADE is a significant 

step forward in that it is the first technique ever to analyze DTI data from a single 

subject quantitatively, opening new possibilities in research and clinical 

applications of DTI. 
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5.6 Conclusion 

Bootstrap-based voxel-wise statistical testing was able to detect local FA 

changes over time in TBI patients, including within normal-appearing white 

matter on conventional 3T MRI, suggesting a role for DTI in the analysis of 

traumatic white matter injury. 
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Chapter 6: Permutation Voxel-wise Serial DTI Analysis 

 

6.1 Abstract 

Diffusion tensor MRI (DTI) has been widely used to investigate brain 

microstructural changes in pathological conditions as well as for normal 

development and aging. In particular, longitudinal changes are vital to the 

understanding of progression but these studies are typically designed for specific 

regions of interest. To analyze changes in these regions traditional statistical 

methods are often employed to elucidate group differences which are measured 

against the variability found in a control cohort. However, in some cases, rather 

than collecting multiple subjects into two groups, it is necessary and more 

informative to analyze the data for individual subjects. There is also a need for 

understanding changes in a single subject without prior information regarding the 

spatial distribution of the pathology, but no formal statistical framework exists for 

these voxel-wise analyses of DTI. In this study, we present PERVADE 

(PERmutation Voxel-wise Analysis of Diffusion Estimates), a whole brain 

analysis method for detecting localized FA changes between two separate points 

in time of any given subject, without any prior hypothesis about where changes 

might occur. Exploiting the nature of DTI that it is calculated from multiple 

diffusion-weighted images of each region, permutation testing, a non-parametric 

hypothesis testing technique, was modified for the analysis of serial DTI data and 

implemented for voxel-wise hypothesis tests of diffusion metric changes, as well 
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as for suprathreshold cluster analysis to correct for multiple comparisons. We 

describe PERVADE in detail and present results from Monte Carlo simulation 

supporting the validity of the technique as well as illustrative examples from a 

healthy subject and patients in the early stages of multiple sclerosis. 

 

6.2 Introduction 

In recent years, diffusion tensor magnetic resonance imaging (DTI) [1, 2] has 

been widely used in studying normal development and aging, and diverse 

pathological conditions of the human brain due to its unique ability to identify 

microstructural abnormalities. Since DTI is a relatively new technique and is 

fundamentally different from other imaging techniques in that each voxel contains 

not a single value but a 3x3 matrix with 6 unique elements called the diffusion 

tensor, the statistical analysis of DTI is still under development. Multiple 

approaches exist for defining the target regions for statistical comparisons, 

including manually traced region of interest (ROI), fiber tracking defined ROI, 

whole brain histogram, and whole brain voxel-wise analysis by statistical 

parametric mapping SPM [3] or by tract-based spatial statistics [4]. There are 

also diverse DTI-derived parameters to compare, such as mean diffusivity (Dav), 

parallel / transverse diffusivity, fractional anisotropy (FA) and the primary 

eigenvector [5]. 

 

Most DTI studies with statistical testing performed in one or more of the 

aforementioned ways have one thing in common; they are all multiple-subject 
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group comparison studies, usually one group of experimental subjects compared 

with a matched group of healthy control subjects. Group comparison studies are 

possible when the effects of interest are located in stereotypical anatomic 

structures, such as the same white matter tracts, across subjects. In certain 

conditions where the effects are expected to be focal (or multi-focal) with spatial 

distributions that are highly specific for individual subjects, finding and grouping 

subjects that share effects in similar anatomic locations may be difficult. 

Furthermore, group analyses demand that significant effects be larger than group 

variability and therefore may suffer from decreased sensitivity. A statistical 

analysis that can be performed in individual subjects is thus required. 

 

Due to the non-Gaussianity, DTI parameters such as anisotropy indices [6, 7] 

makes parametric testing less optimal. Non-parametric resampling techniques 

have great potential in the statistical testing of these DTI data since the recent 

trend of oversampling DTI data makes it suitable for resampling. One of these 

techniques called bootstrap has been shown to be very useful in DTI [6, 8-12]. 

These works have shown the ability of bootstrap to estimate the uncertainties of 

DTI parameters (descriptive statistics) but have not addressed the issue of 

statistical significance testing (inferential statistics). For statistical testing when 

comparing two groups, permutation testing [13-15], another non-parametric 

resampling technique, can be useful as well.  
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Permutation testing provides statistical significance testing of differences 

between groups, with the unique ability of directly estimating the null distribution 

of the statistic describing the difference, rather than assuming a null distribution 

of analytically known form (such as T-distribution). Multiple groups are required 

for resampling and permutation testing provides exact (or almost exact) p-values 

but does not estimate uncertainties of sample statistics (such as the standard 

error of mean). Bootstrap is mainly used to estimate the accuracy of sample 

statistics by resampling from one group (multiple groups are not required). 

Though it can be used not only in descriptive statistics (i.e. standard errors) but 

also in inferential statistics (i.e. significance testing), bootstrap testing is not able 

to estimate a data-driven null distribution and bootstrap-estimated p-value is only 

approximate. 

 

We focus on permutation testing in this work. Permutation testing is well-

established in the field of neuroimaging, especially functional MRI where 

numerous works advocate the strength of this approach in the last decade (for a 

review refer to [16]). Permutation based method 1) makes minimal assumptions 

and thus can be applied even in situations where the assumptions of parametric 

approaches are not met or cannot be verified, 2) is conceptually simple and 

provides intuitive solutions to the multiple comparison problem, and 3) is easily 

applicable to any test statistics allowing the researchers to freely choose the 

statistic best suited for their studies. Unlike bootstrap, permutation testing can 

elegantly incorporate the whole statistical procedure of voxel-wise comparison 
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and multiple-comparison correction in a completely non-parametric way due to 

the ability to estimate data-specific null distribution as described above, possibly 

with more accurate p-values. 

 

In this study, we describe how permutation testing can be properly implemented 

in voxel-wise analysis of single-subject serial DTI studies. We will pay special 

attention to not violoating exchangeability assumption for permutation testing that 

if groups are not different then any re-grouping of the samples (permutation) are 

equally likely as the original grouping (observation). Then, we present a novel 

statistical analysis framework called PERVADE (PERmutation Voxel-wise 

Analysis of Diffusion Estimates) that is designed to localize subtle and local 

microstructural changes over time in the whole brain of a single subject without 

any prior hypothesis. PERVADE includes 1) non-linear registration between two 

time-points to account for any morphological changes over time, 2) voxel-wise 

calculation of p-values by permutation testing, and 3) suprathreshold cluster 

analysis with permuation testing to deal with the multiple comparison problem. 

Our preliminary results of local microstructural changes detected outside as well 

as inside the focal lesions of patients in the earliest stage of multiple sclerosis 

show the potential of this technique to provide additional information about 

microstructural white matter injury. 
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6.3 Methods 

6.3.1 DTI Permutation Testing 

 

6.3.1.1 Permutation Testing in Group Comparison 

Before presenting the proposed voxel-wise permutation testing in a single-

subject serial DTI study, we first examine how it would be done in a multiple-

subject group comparison study (i.e. comparison of group-averaged metric 

between two cohorts), a simple and typical scenario of permutation testing. To 

test whether the observed difference in group-averaged FA, i.e. ˆ B AFA FAθ = − , is 

statistically significant, permutation testing can be performed as follows. All 

subjects are randomly assigned to either group A or B while maintaining the 

original number of subjects (thus re-defining groups A, B to A*, B*), and one 

permutation replication of θ̂  defined as * **ˆ B Ai FA FAθ = −  is calculated. If the null 

hypothesis H0 that the FA values of groups A and B are not different holds, then 

this re-grouping (or re-labeling to either group in each subject) would be equally 

likely to happen as the original grouping, meaning that any possible *
îθ  are 

equally likely as θ̂ . Thus, the random variable *θ̂  has the null distribution of θ̂  if 

H0 is true, and it is called permutation distribution. 

 

The statistical significance (p-value) in the permutation testing is defined as, 
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* *
perm

ˆ ˆ ˆ ˆProb {| | | |} #{| | | |}/p Nθ θ θ θ= ≥ = ≥  Equation 6-1

where N is the total number of possible labelings. This simply quantifies the 

probability of observing group-averaged FA difference more extreme than θ̂  by 

random chance. If this probability is less than 5 percent (p≤0.05) then θ̂  is 

unlikely under H0, and we reject H0 concluding that two groups are different in 

terms of FA. If N is too large to compute all possible labelings, the p-value can be 

approximated by using a randomly chosen subset of all possible labelings such 

that 

*ˆ ˆ#{| | | |}/ 'ip Nθ θ≈ ≥   (i=1,2,…N’) Equation 6-2

where N’<N. Typically N’=1000 and *
1̂

ˆθ θ=  (i.e. the first labeling of *θ̂  is just the 

observed statistic θ̂ ). 

 

6.3.1.2 Permutation Testing in Intra-subject Serial Comparison 

On the other hand, if we want to test whether FA from two time points of a single 

subject is different, we can no longer permute the observed FA values since 

there are only two such values available, one from each time point. Instead, 

since the FA at one time point is calculated from the diffusion weighted images 

(DWIs, this refers to the raw images acquired in a single diffusion encoding 

direction for DTI in this study) at that time point (just like FA  is calculated using 

the FA values from the individual subjects of the group), the DWIs can be 

permuted. Assuming that same DTI acquisition protocol was used for two time 
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points, which is a typical scenario since it is always strongly encouraged to use 

the same protocol in the same scanner for follow-up MRI studies, the simplest 

approach satisfying exchangeability is to permute only the DWIs that have the 

same diffusion encoding (diffusion gradient direction and strength). This stratified 

permutation scheme shares similarity with permutation of scans only within an 

exchangeability block in functional neuroimaging [16], and with stratified (or 

repetition) DTI bootstrap [6, 8]. While multiple repeated acquisitions are 

mandated for stratified DTI bootstrap, scans for stratified DTI permutation do not 

need to be repeated at each time point since pooling two time points naturally 

guarantees at least two repetitions. 

 

A caveat here, though, is that even with the same diffusion encodings, the DWIs 

may still not be theoretically exchangeable due to differences in the gain factors 

in the raw MR signal intensities and possible difference in head positioning 

(effectively changing the diffusion encoding directions relative to the brain tissue). 

Any drift in the gain factors of the MR system will result in changes of the DWI 

signal intensities. However, this difference can be easily remedied and 

exchangeability secured by simply estimating the ratio of the signal intensities 

from the images where we can assume that there are no biological changes, 

such as normal-appearing white matter (NAWM) in the non-diffusion-weighted 

images, simply called b=0 images. For the head positioning issue, if the relative 

angular locations of the brain to the MRI system are different between two time 

points, the brain will effectively be under different diffusion encodings even if the 
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diffusion gradients are applied exactly the same way. Thus, we propose to 

permute the diffusion encoding gradients (rotated in the same degree as any 

registration performed in order to correct for the different head positioning) in 

conjunction with the DWIs themselves. While DWIs themselves might not be 

exchangeable in a strict sense, the complete set of permuted DWIs paired with 

properly adjusted diffusion encoding directions could be exchangeable. 

 

The only assumption required to justify this approach is that slightly different 

configurations of diffusion encoding directions will not affect the probability 

distributions of DTI metrics. Our experience tells us that in typical serial MRI 

studies, the rotational components by different head angulations are usually a 

few degrees (axis of rotation either x, y, or z). After the permutations above, each 

of diffusion encoding direction will be ‘jittered’ around a few degrees, but the 

diffusion gradient scheme will be similar overall. Notice that even if we are 

permuting the pairs of DWIs and diffusion directions that are slightly jittered, we 

still opt for the stratified permutation since drastic variations of the set of diffusion 

gradients after permutation can distort the permutation distribution due to 

gradient configurations effects on the DTI parameter estimations [17]. Limiting 

the permutation within the exchangeability block defined as the same physical 

diffusion encodings guarantees similar diffusion gradient sets. The permutation 

testing to calculate voxel-wise p-value is illustrated in Figure 6-1 steps (a) to (e) 

and Figure 6-2. 
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Figure 6-1: Overall schematics of permutation testing to calculate voxel-wise p-values and 

multiple-comparison-corrected cluster-wise p-values in a serial DTI study of a single subject. This 

corresponds to steps 4 and 5 in the PERVADE procedures (see human brain data analysis 

section on the methods). (a) DWIs (including b=0) are either kept as observed (i=1) or permuted 

(i=2,… N’).For the simplicity of illustration, it is assumed that only seven images are acquired in 

each time point (A or B). Colored boundaries indicate the observed time point of each DWI. 

Permutation is done separately in each gradient direction (see figure 2). (b) Two FA maps are 
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calculated from (original or reassigned) DWIs by diffusion tensor processing. (c) Two FA maps 

are subtracted to create ∆FA map. (d) All ∆FA maps (total N’) represent the map of voxel-wise 

permutation distribution of ∆FA. (e) Voxel-wise p-value maps are estimated by comparing ∆FA 

maps with the permutation distribution from (d). (f) Clusters are defined by thresholding p-value 

maps. (g) Sizes of the largest clusters in each cluster mask represent the permutation distribution 

of image-wise maximal cluster size. (h) All the clusters in the observed cluster mask are 

compared to the permutation distribution from (g) to estimate cluster-wise p-values, and only 

clusters p<0.05 are declared significant. 

 

 

Figure 6-2: Detailed schematics of permutation testing to estimate voxel-wise p-values in a serial 

DTI study of a single subject. It is assumed that in each time point the DTI scan of seven DWIs 

(first DWI can be regarded as b=0) are repeated twice. In each DTI dataset (inside the black 

dotted box), diffusion-weighted signals ( )S b  in the same row are acquired by applying the same 

diffusion gradients. Ab  or Bb  stresses that the effective gradients can be different in two time 



 132

points due to the head positioning. Boxes around the signals are colored based on the diffusion 

gradients in the observed data while solid and dashed linestyles indicate the original time point A 

and B. On the right side is one possible permutation of DTI dataset. Permutation is done 

separately for each gradient (thus signals in the same gradient forms the exchangeability block), 

easily identified by the colors. For each N’-1 permuted and one observed DTI data, ∆FA from two 

time points are calculated and voxel-wise p-value of observed FA difference are estimated as the 

probability of more (or equal) extreme difference than the observed θ̂  from the null distribution of 

N’ differences, i.e. proportion of counts outside the red dashed lines to all N’ counts in the 

histogram of right lower corner. 

 

6.3.1.3 Permutation Testing for Multiple Comparisons 

The permutation scheme can be used not only for voxel-wise p-values but also to 

deal with the multiple comparison problem arising from testing multiple voxels 

simultaneously. Specifically, we chose the suprathreshold cluster analysis 

(STCA) method that is known to provide a good balance between the statistical 

power and the abilitiy to localize the changes [16, 18-21]. In STCA scheme, the 

statistic map is initially thresholded at some arbitrary single voxel level to define 

clusters (spatially contiguous voxels with contiguous defined as sharing a side). 

The multiple comparison corrected p-values for clusters are then calculated 

based on the distribution of maximum cluster sizes identified in each permutation 

originally done for the voxel-wise analysis; i.e., the same set of permutations are 

used for all voxels in the analysis domain. Equation 2 is valid here as well except 

that taking the absolute values of *
îθ  and θ̂  is not necessary since cluster sizes 

are always positive (thus it is one-tailed testing, not two-tailed) and the equation 

is shown below, 
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*ˆ ˆ#{ }/ 'ip Nθ θ≈ ≥   (i=1,2,…N’) Equation 6-3

where 
{ }

ˆ max({cluster size})
p

θ =  and 
*

*

{ }
ˆ max({cluster size})

i
i

p
θ = . { }p  and *{ }ip  denotes 

the observed p-value map and p-value map from ith permutation each, in the 

domain of whole white matter. 

 

The implemented permutation-based STCA is similar to that described previously 

[22-24], except that we use the p-value maps created from voxel-wise 

permutation tests to define clusters instead of some other statistic maps (like t-

statistic). During the voxel-wise permutation testing, the whole image of DWIs are 

permuted together instead of permuting individual voxels independently. While 

not affecting the voxel-wise permutation testing in any way, this helps to create 

permutation replicas of the statistic maps that are equally likely in terms of spatial 

correlation structures as well as the distribution of p-values. Each cluster in the 

observed p-value map are assigned the cluster-wise p-value by comparing the 

cluster size with the maximal cluster permutation distribution *θ̂ , i.e. the 

collection of image-wise maximal cluster size from all the permutation replicas. 

The cluster-wise p-values estimated as such are by definition multiple-

comparison corrected since the permutation distribution describes the probability 

of having any cluster(s) above certain size in the image by random chance. It has 

been shown that a strong control of family-wise error is achieved in this way, 

meaning that we can localize significantly changing regions by rejecting the null 

hypothesis for the clusters with adjusted p-values smaller than 0.05, rather than 
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simply knowing that changes are occurring somewhere in the brain [23]. The 

permutation testing to calculate multiple-comparison-corrected cluster-wise p-

values is illustrated in Figure 6-1 steps (f) to (h). 

 

Identification of significant clusters was performed with a multi-step iterative 

algorithm called the step-down test [24]. After rejecting the null hypothesis for 

clusters exceeding the 95th percentile of the permutation distribution 

*

*

{ }
ˆ max({cluster size})

p
θ = , a new white matter domain that does not include these 

clusters was defined. *θ̂  was then re-estimated from this new domain using the 

same p-value maps, and any previously undetected clusters were searched. 

These steps were repeated until no more clusters were rejected. Then, *θ̂  in the 

final step was considered the most appropriate null distribution least affected by 

any real changes, and all the clusters in the whole white matter domain were 

tested against this distribution. Actually, this approach of re-estimating *θ̂  after 

excluding all rejected tests simultaneously rather than only the most significant 

test is called the jump-down variant of the step-down approach. Jump-down 

testing can substantially decrease the computation time due to fewer steps. 

 

6.3.2 Non-linear Registration 

As is the case for most voxel-wise analysis techniques, PERVADE depends on 

the accuracy of registration techniques. It is designed for detecting changes over 

time in the same subject, and it is easier to register data from the same subject 
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than across subjects since there is much less intra-individual than inter-individual 

biological variability. This makes PERVADE less vulnerable to mis-registration 

than group comparison methods. Still, any morphological changes over time 

such as atrophy should be accounted for, and, if not, they may be detected as 

significant changes. While acknowledging that detecting atrophy of specific white 

matter structures based on the unique ability of DTI to create rich contrast within 

white matter is also a subject of interest, the focus of PERVADE for now is to 

detect ‘microstructural’ changes over time, parametrized by DTI scalar indices 

such as FA, rather than ‘macrostructural’ volumetric changes associated with 

atrophy. Thus we attempted to eliminate volume changes by non-linear 

registration but remain sensitive to microstructural related intensity changes due 

to the atrophy process. 

 

A high-order non-linear registration algorithm [25] was used for registration of the 

diffusion data between time points. The transformation was parametrized using 

cubic B-splines, making it intrinsically smooth, local, compact and fast to 

compute. The local support property of B-spline is particularly important as it 

ensures that a deformation in a given region of the brain has only a local effect 

on the transformation. An empirically chosen node spacing of 12 voxels in x, y, 

and z directions was used. To prevent folding in the transformation, the 

registration was constrained. These constraints made the Jacobian of the 

transformation greater than a small positive threshold on the pixels. Negative 

Jacobians between the pixels were penalized by making Jacobian derivatives 
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small on pixels. The constrained optimization problem was solved using a 

combination of the multipliers method and the limited memory  Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) method [26] with a non-monotonic line search. The 

cost function was the squared difference between the reference and the 

deformed version of the floating image, suitable for intramodal registration of 

quantitative images such as FA. 

 

6.3.3 Monte Carlo Simulation 

Monte Carlo simulation studies were performed to investigate the effects of 

rotated diffusion encoding directions and different gain factors on the permutation 

exchangeability between different time points. DTI acquisition in each time point 

was assumed to be six diffusion directions (dual gradient scheme, b=1000 

s/mm2) in addition to one b=0 s/mm2 acquisition, repeated three times (total 21 

measurements). The noise-free diffusion tensor D was defined with FA=0.5, Dav 

(=Tr(D)/3) =0.7 x 10-3 mm2/s, and λ2=λ3. 

 

The simulation of noisy diffusion weighted signals and DTI processing was done 

in a similar manner as described elsewhere [8]. From D, noise-free diffusion 

weighted signals were calculated by 0( ) exp( )TS S b= −g g Dg  where S0 is the signal 

without diffusion weighting, b is the diffusion weighting factor, and g is 3x1 unit 

vector of the diffusion-encoding gradient direction. For time point B, in addition to 

using the same gradient set and scaling factors, we also tested scenarios where 

g was replaced by g'=Rg (R is a product of three 3x3 matrices, each describing 
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rotations around x, y, and z axis each) or S0 was replaced by S0' in order to 

simulate the rotated diffusion directions or drift in gain factors. Next, the noise 

modeled as complex random number with real and imaginary parts following 

Gaussian distribution of zero mean and standard deviation σ (=S0/SNR) was 

added to ( )S g  and the magnitude of the noisy signal was calculated. The 

magnitude of the added noise (SNR=25 in S0 or S0') was constant for both time 

points, and for all the simulation studies. 

 

From a complete set of noisy signals, the noisy diffusion tensor, FA, and finally 

the statistic of interest ˆ
B AFA FAθ = −  were calculated. Then, the stratified DTI 

permutation algorithm was performed on a pool of 42 signals (7x3 from each time 

point) 999 times, with and without the ‘corrected’ permutation scheme that 

ensures exchangeability by permuting g (g' for B) in conjunction with S(g) (scaled 

in B to match A). Using the statistic from the original labeling θ̂  and the values 

from the 999 permuted labelings *
îθ , the p-value of θ̂  was calculated by equation 

2. This experiment of estimating a p-value from a noisy dataset was repeated 

10,000 times to derive a distribution of p-values. We assumed that the 

distribution of FA at both time points was equivalent and therefore the distribution 

of p-values should have a uniform probability between 0 and 1. This fundamental 

statistical property was used to evaluate our methods. The gold standard (a 

uniform distribution) and derived p-value distributions were compared using 

quantile-quantile plots (Q-Q plots). 
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6.3.4 Human Brain Data 

 

6.3.4.1 Subjects / Acquisitions 

Clinically isolated syndrome (CIS) is a diagnosis given to patients who 

experience for the first time neurological symptoms indicative of central nervous 

system dysfunction (visual, brain/brainstem, or spinal cord) thought to be due to 

primary demyelinating disease. It is considered by clinicians to be the earliest 

stage of multiple sclerosis (MS), even before a definite diagnosis can be 

confirmed by subsequent clinical symptoms or new lesions seen on MRI scans. 

Three CIS subjects at risk of developing MS and one healthy volunteer were 

included in this study. Patients were part of an ongoing follow-up study of CIS 

patients, with scans at baseline (within 3 month of initial clinical presentation) and 

every 3 to 6 months afterward for two years. A 27-year-old healthy male subject 

was scanned four times within two months in order to validate the technique 

when no biological changes over time can be assumed. All subjects gave 

informed consent and the study was approved by our institution’s committee on 

human research. 

 

All images were acquired on a 1.5T GE Signa system (General Electric, 

Milwaukee, WI) equipped with 4G/cm gradients and a standard quadrature head 

coil. The DTI scans were performed with a single-shot multislice axial spin echo 

EPI sequence (TR/TE = 7s/105ms, 9 NEX) at 1.7x1.7x2.1 mm voxel resolution 

using six diffusion-encoding directions (dual gradient scheme) at b=2000 s/mm2 
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in addition to one b=0 s/mm2 image. The brain was covered from the level of 

midbrain to the vertex with 40 slices. Data averaging in the scanner was done up 

to 3 NEX, which was acquired three times to come up with 3 repetitions of 3 NEX 

data. 

 

6.3.4.2 Analysis 

The overall procedure of PERVADE can be split into 5 steps, and the details of 

each step are given below. 

 

Step 1: Initial DTI processing at each time point 

After motion correction by linear image registration (FLIRT) [27], the DWIs were 

slightly smoothed using a 3x3x3 voxel Gaussian kernel (FWHM 1.5 voxel) to 

increase the SNR and were processed to calculate FA, as described elsewhere 

[8]. Brain masks were created from the b=0 images using the brain extraction tool 

(BET) [28] in order to mask out the artificially high FA regions outside the brain 

so that these will not affect the inter-time-point registration of FA maps in the next 

step. 

 

Step 2: Inter-time-point registration 

Non-linear registration was done after the initial linear registrations by FLIRT. For 

both linear and non-linear registrations, FA maps from all the time points were 

matched to a reference FA map that was created as follows. First, a linear 

transformation between FA maps from two arbitrarily chosen time points was 
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calculated. Then, the FA map from one of these time points was half-transformed 

to the other time point such that the resulting FA map will be spatially in the 

middle in between these two FA maps. This procedure ensured that none of the 

time points benefited from having no registration / interpolation error that can 

arise in other time points. Also, sinc interpolation was used for all the 

registrations in this study. The DWIs were resampled based on the 

transformation between the FA maps. 

 

Step 3: Masking Out Unnecessary Regions 

We masked out brain regions where subsequent permutation tests were not to 

be performed. Not only does this save computation time, but this also increases 

the power of detecting statistically significant clusters by reducing the number of 

multiple comparisons. By default, white matter from the whole brain was defined 

as the domain for permutation testing. The whole brain white matter was defined 

as voxels within the brain that had FA values larger than 0.2 from the average of 

the FA maps from the two time points, and that were not contaminated by CSF 

(defined by segmenting b=0 image using an automated segmentation tool 

(FAST) [29] ). 

 

Step 4: Permutation testing for voxel-wise p-values 

The DWIs that were resampled to the common space by step 2 were smoothed 

using the same smoothing kernel of step 1 before voxel-wise permutation testing. 

Voxels outside the white matter were not included in the smoothing kernel. The 
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first time point (baseline) was compared to subsequent time points. For each 

time point, the directions of the diffusion gradients were rotated to the same 

degree as determined from the linear transformation in step 2. In order to be 

exact, the degree of rotation should include the additional components of the 

non-linear transformation, but this was deemed minor in comparison to rotation 

described by linear transformation and thus was neglected. The scaling factor 

correcting for the drift in the gain factors over time was estimated from the 

median of ratio of signal intensities from NAWM (lesion masked out from white 

matter defined in step 3) and then multiplied back to DWIs. Permutation testing 

was performed with the observed labeling plus a randomly chosen set of 999 

labelings, and the voxel-wise p-values were estimated as described above. 

 

Step 5: Permutation testing for suprathreshold cluster analysis (STCA) 

In step 4, the permutation of the DWIs were done at the image-level, thus each 

permutation could generate a null p-value map maintaining the inter-voxel spatial 

correlation structures. For each of the 1000 p-value maps, the maximum cluster 

size found after thresholding the voxel-wise p-values at p=0.01 was entered as a 

data point in the cluster null distribution. Actual definition of clusters was not only 

based on the voxel-wise p-values but also the sign of the changes; in order to be 

a cluster, all the voxels in the cluster have to be changing in the same direction 

(increased or decreased FA values). This eliminated the chance of defining 

clusters of mixed changes (which is difficult to interpret biologically) and 

increased the power of detecting clusters with unidirectional changes. Significant 
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clusters identified by the jump-down method were overlaid on the averged FA 

maps for better visualization. In some cases, fiber tracking was performed to 

reveal the spatial connectivity between a focal lesion and significant clusters in 

the NAWM. The tracking algorithm was based on FACT [30], with termination 

criteria of FA < 0.2 and angles of primary eigenvectors between connecting 

voxels > 50°. 

 

6.4 Results 

6.4.1 Monte Carlo Simulation 

Comparison of the distribution of observed p-values from the simulation of 

permutation testing and the expected p-values are shown (Figure 6-3). Figure 

6-3a shows that when the diffusion directions were rotated by 20 degrees each 

around x, y and z axes for one time point, and if the permutation was carried out 

ignoring the diffusion gradient directions, the observed p-values were deviated 

from the ideal distribution, with the trend of over-estimating p-values. This is not 

surprising since increased variability due to the mismatched diffusion gradient 

directions will lead to more dispersed permutation null distributions that will 

eventually inflate the estimated p-values. 

 

Permuting rotated gradients in pair with the signals led to observed p-values that 

closely followed the expected distribution, demonstrating the effectiveness of the 

modified permutation strategy. Note that the p-values hit the floor of 0.001 since 
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using 1000 labelings does not allow the p-values to be lower than 0.001. This is 

not an important issue for this study since the voxel-wise p-values are to be 

thresholded at 0.01 for the cluster analysis. However, if estimating smaller p-

values are desired, more permutation labelings would be necessary at the cost of 

increased computation time. 

 

Results for smaller degrees of rotation of 10 degrees show that the deviation 

from the expected distribution without permuting diffusion gradients was much 

less. Since the degrees of rotation for real follow-up studies were typically within 

the range of 5 degrees (see below), we expect that the problem of over-

estimating p-values will not be a serious issue even if diffusion gradients were 

not permuted, and any small effects will be eliminated by our proposed correction 

algorithm. 

 

The differences in signal gain factors can bias the p-values in the similar way as 

diffusion gradient rotation (Figure 6-3c,d), and this effect was eliminated by 

scaling the intensities as described above. 
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Figure 6-3: Qunatile-quantile plots for expected p-values following the uniform distribution 

between 0 and 1 versus observed p-values by permutation testing under diverse simulation 

conditions. Blue and green symbols indicate uncorrected and corrected (permuting the rotated 

gradients paired with the diffusion-weighted signals and equalizing the gain factors) permutation 

scheme while red correspond to perfect match between the expected and the observed. (a) 

Directions of diffusion encoding gradients set rotated by 20 degrees each in x, y and z in one of 

two time points only. (b) Gradients rotated by 10 degrees. (c) MR signal gain factor larger by 10% 

in one of two time points. (d) Gain factor larger by 5%. 
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6.4.2 Healthy Volunteer 

Figure 6-4 shows voxel-wise p-value maps from the observed ∆FA estimated by 

permutation testing from three pairs (0 month versus 0 month (head rotated), 1 

month, and 2 months) for a healthy subject. We can appreciate the smoothed 

random field pattern with few noticeable non-random structures. Further 

evidence of the validity of PERVADE in human data is demonstrated by the Q-Q 

plot showing excellent agreement of single-voxel p-values from the whole brain 

white matter with the expected distribution. The permutation distribution 

*

*

{ }
ˆ max({cluster size})

p
θ =  indicates that the probability of having any clusters larger 

than (or equal to) 11 voxels is 0.05, thus the critical value for significant clusters 

(for 0 versus 2 months) could be set as 11. Overall, only one significant cluster 

(slightly larger than the critical value) was identified in the three pairs of image-

wise cluster analysis (data not shown). 
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Figure 6-4: Healthy volunteer. [Top row] p-value maps from the baseline (0 month) versus 0 

month (same day, subject was moved in between), 1 month, and 2 month as well as FA map 

from the baseline. P-values are rescaled by log transformation, and the maximal intensity 

displayed is p=0.03. White matter regions (as well as the whole brain) used for masking before 

permutation procedures are shown in red contours. [Bottom left] Q-Q plot of estimated voxel-wise 

p-values in the whole brain white matter of baseline versus 2 month. [Bottom right] Histogram of 

baseline versus 2 month permutation distribution of image-wise maximal cluster size from 

N’=1000 permutation trials. Critical value was 11 (i.e. probability of maximal cluster size ≥ 11 

voxels was around 0.05). The largest cluster in the observed p-value map was 8 (p=0.312) thus 

no clusters were declared significant. 

 

6.4.3 Patient #1 

This patient had a significant thinning of the splenium of the corpus callosum 

over time that could be easily identified visually. For this patient, we compared 
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the result from linear and non-linear registrations to investigate the effects of 

atrophy (tissue loss) with or without the non-linear registration. The baseline FA 

map registered to the FA map 10 months later, either by linear alone and by 

linear + non-linear transformation, are shown (Figure 6-5). The corpus callosum 

in the registered baseline FA map was ‘thicker’ by about a half voxel than the 

reference image with linear registration only, while addition of the non-linear 

registration brought a better match in a qualitative sense. With the linear 

registration, significant clusters were identified at the border of the corpus 

callosum by PERVADE and those were not detected after non-linear registration. 

Even after non-linear registration, p-value maps of baseline versus 16 months 

showed the trend of general FA decrease in the corpus callosum (most voxels 

are in ‘blue’ color) though they were not detected by PERVADE as clusters. 

 

Figure 6-5: Patient #1. [Top row] Registration of the baseline FA map to the reference FA map 

(10 months) by linear registration only and non-linear registration (after linear registration). 

Images are magnified to splenium of corpus callosum and nearby structures. Red contour 
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denotes the border defined in the reference image. [Bottom row] P-value maps for the same 

anatomic structure either by linear or non-linear registration for baseline versus 10 months or 16 

months. Significant clusters detected by PERVADE are displayed in the smaller embedded boxes. 

 

6.4.4 Patient #2 

This patient developed three new lesions in and around the splenium of the 

corpus callosum at 9 months after the baseline scan. While a few clusters (most 

of them attributable to lesions visible in conventional MRI as well) were detected 

in the analysis of baseline versus follow-up scans before 9 months (data not 

shown), the analysis of baseline versus 9 months revealed numerous clusters 

with p<0.05, not only within lesions but also in the NAWM (Figure 6-6). In the 

later time points, there was a tendency for the FA clusters to remain longer than 

T2 hyperintensities in some lesions. Using DTI fiber tracking, part of the forceps 

major (a subset of corpus callosum fibers connecting occipital lobes on both 

sides) was delineated that intersects one of the new lesions at 9 months (the 

lesion within the splenium of corpus callosum close to the midline). Significant 

NAWM clusters were located within or near the tracks, suggesting that the 

detected NAWM changes might be related to the new lesion. 



 149

 

Figure 6-6: Patient #2. [Top row] b=0 images at different time points showing lesions around the 

left posterior horn of the lateral ventricle emerging and fading over time. Images are smoothed to 

the same degree as PERVADE and contrast / level were adjusted for the best visibility of lesions. 

Yellow contours demarcate the regions of the new lesions at the time of the appearance. [Middle 

row] Detected significant clusters for baseline versus subsequent time points. [Bottom row left] 

Permutation distribution of ∆FA as well as observed ∆FA for three voxels (NAWM and not within 

a significant cluster, NAWM and within a significant cluster, and core of a new lesion). Locations 

of these voxels are shown as well. [Bottom row right] 3D rendering of the tracks (light green), 

significant clusters (magenta) and lesions visible at b=0 images (cyan). Note that significant 

clusters are also present within the lesions though they are obscured by rendered lesions. 

 

6.4.5 Patient #3 

This patient had a lesion within the right pyramidal tract at the superior level of 

the internal capsule and inferior aspect of the corona radiata. The degree of T2 
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hyperintensity within the lesion lessened after 3 month compared to the baseline 

scan, possibly indicating edema resolution. Results from the serial DTI 

permutation tests highlighted two significant clusters, one in the lesion with 

increasing FA over time, and another in the NAWM at the superior aspect of the 

corona radiata with decreasing FA over time (Figure 6-7). Tracks (part of 

pyramidal tract) seeded from the lesion showed that the distal cluster of 

decreased FA was connected to the lesion, suggesting that they are possibly 

related. 

 

Figure 6-7: Patient #3. [Left column] b=0 images of baseline versus 3 months as well as detected 

clusters. Arrowheads and arrows indicate the lesion fading over time and detected NAWM cluster 

each. [Middle column] ∆FA, p-values and significant clusters in a sagittal slice (viewed from left) 

including these clusters. [Right column] 3D rendering of the tracks (light green), cluster within the 

lesion (orange) and cluster in the NAWM (blue). Cluster-wise p-values are shown as well. 
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6.4.6 Gradient tables rotation and gain factors 

For all the human data analyzed by PERVADE, the average difference of 

angulations between the two time points were 2.52, 1.55 and 1.30 degrees 

around x-, y- and z-axes, respectively. The average difference in the gain factors 

was 5.6%. 

 

6.5 Discussion 

In this paper, we have proposed a novel non-parametric statistical framework for 

detecting subtle and local diffusion MRI changes over time in a single subject. To 

our knowledge, this is the first study to analyze single-subject serial DTI data at 

the voxel / cluster level. This was possible with the ability of DTI permutation 

testing to calculate voxel-wise statistic p-values and to correct for multiple 

comparisons. We have demonstrated that we can ensure exchangeability of the 

DWIs which justified our implementation of permutations for testing two DTI 

datasets. We have also demonstrated that voxel-wise p-values from the DTI 

permutation tests follow the expected null distribution in a control subject, and 

that we can detect statistically significant clusters in lesions and normal-

appearing white matter of patients at the earliest stage of MS. 

 

Diffusion MRI, including three-directional diffusion-weighted MRI and DTI, has 

been widely used in the study of MS [31]. Numerous studies have shown that 

diffusion MRI is sensitive to subtle damage in the normal appearing brain tissue 

as well as lesions and that it might even provide insights about pathological 
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processes such as inflammation, demyelination and axonal injury [32]. Serial 

studies can be especially valuable in studying disease evolution with or without 

treatment that can lead to a better understanding of pathophysiology and drug 

response, although they are rarely reported, probably due to more involved 

recruitment of patients. Four serial studies used ROI analysis of apparent 

diffusion coefficient (ADC) on either lesion or NAWM [33-36] and one study used 

histogram analysis of Dav and FA [37]. PERVADE is a completely different 

approach of analyzing serial DTI that can complement the techniques described 

above. 

 

Before further discussing the merits and challenges of the technique presented 

here, we would like to point out that there have been numerous efforts in the MRI 

literature to use voxel-wise techniques to detect single-subject structural changes 

over time. Since the demonstration of detecting subtle brain changes by subvoxel 

registration and subtraction of serially acquired conventional MRIs [38, 39], 

image subtraction techniques have been widely applied in detecting intensity 

changes (such as lesions in MS or tumor evolution), morphological changes 

(such as atrophy) or both. For localization and quantification of atrophy, image 

subtraction schemes have either focused on the structural boundary shift [40-42] 

or Jacobian matrix [43-46]. For multiple sclerosis, the major interest was in the 

analysis of lesion evolution [47-50]. 
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The techniques listed above have used conventional MRIs, and usually do not 

provide the statistical significance for the difference detected since conventional 

MRIs yield a simple one-image datum that does not allow uncertainties to be 

calculated in each voxel. One study, though, has attempted statistical testing with 

conventional MRIs [51]. In DTI, a study utilized subtraction of FA maps over two 

time points to visualize the spatial distribution of FA changes [52], though no 

formal voxel-wise statistical tests were attempted. DTI is unique in that numerous 

images are acquired, and this allows sufficient number of labelings to be used for 

permutation. We took advantage of this property to create statistical procedures 

for detection, rather than simple subtraction. 

 

The most important strength of PERVADE is that it can lead to an almost exact 

statistical testing with minimal assumptions, while parametric approaches will 

have to make numerous compromises to reach the same goal. For instance, if 

the classical statistical framework of SPM is attempted for this study, we would 

first need to estimate the standard error of FA by an analytical formula [53, 54] 

with approximations from matrix perturbations and assumptions of known SNR or 

non-parametrically [55]. Then, we would need to create t-statistic maps assuming 

that FA probabilitic distribution can be approximated by a Gaussian distribution. 

Finally, for multiple comparison corrections, Gaussian random field theory [56, 

57] can be used to investigate the distribution of the maximal statistic (largest t or 

cluster size) within the image, with numerous assumptions [58] that might not be 

satisfied in our case (such as heavy smoothing of FWHM of at least 2-3 times the 
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voxel size). The feasibility of a parametric statistical framework for serial DTI 

voxel-wise analysis would be a subject of future study. 

 

While we have presented detection of significant FA clusters, the flexibility of the 

DTI permutation in the test statistic θ to be tested (θ =FAB-FAA in this study) 

allows it to be easily applied to different types of problems, as long as θ can be 

formulated. One simple example would be the comparison of FA averaged within 

a ROI. A more complicated scenario would be to test whether the connectivity 

between two predefined ROIs was changing over time in a subject. Connectivity 

testing are neither whole-brain voxel-wise nor ROI based tests, and certainly not 

well-defined in terms of parametric statistics since these problems are very 

specific to DTI analysis. For permutation testing, however, tests can be carried 

out in exactly the same way once θ is defined. Let’s assume that θ=NB-NA where 

N is the number of reconstructed tracks connecting two regions, at time point A 

or B. If the permutation distribution of θ is created by tracking and counting the 

number tracks in each of the relabeled DTI datasets, we can calculate the p-

value of observing the difference in the track counts by random chance. Last, 

permutation testing may be used in testing statistics derived from high angular 

resolution diffusion-weighted MRI or q-space imaging such as difference in 

generalized fractional anisotropy (GFA) or peaks of diffusion orientation diffusion 

function (ODF) [59]. 
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In order to properly implement PERVADE, there are a few requirements to be 

met. First, it is designed to be suitable for serial DTI with the same DTI protocol. 

If comparing data from different sets of diffusion gradients is desired, stratified 

permutation of DWIs might not be optimal and the permutation distribution would 

include the additional variability from the effect of differing gradient configuration. 

Permuting residuals from fitting DWIs to the diffusion tensor model, similar to the 

way that residual bootstrap was implemented [8], might be an alternative that can 

be investigated in the future. Next, the ability of the permutation test to estimate 

small p-values depends on how many different labelings are possible. Suppose 

we have seven images (minimum for DTI) from each time point. Then, (2C1)7=128 

different labelings exist and the smallest possible p-value is 1/128=0.0078 (or 

0.0156 for two-tailed tests due to symmetry of labeling), which is not small 

enough if a p-value threshold of 0.01 is desired, for instance. Fortunately, most of 

the recent DTI studies acquire many more than seven images, and the number of 

possible labelings increase dramatically with more DWIs, such as (2C1)14=16,384 

for 14 images with no repeated acquisitions, or (6C3)7≈1.28x109 for the 

acquisition scheme used in this study. 

 

It is also important to understand the limitations of PERVADE. This technique will 

be susceptible to artifacts that dominate the random noise, such as incomplete 

fat saturation. In a group comparison, the effects of artifacts will tend to be diluted 

due to the nature of having multiple subjects, but in a single subject study with 

only two datasets, image artifacts will play a more important role. For all the 
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results presented here, we made sure that detected clusters were not the result 

of any possible unsuppressed fat signals at one of the time points. Another major 

artifact is due to cardiac pulsation, but this is believed to be less of an issue since 

the two time points will be affected to a similar degree. However, the cardiac 

artifiacts could still have different effects at different time points. The fact that we 

do not tend to see these artifactual effects in our analyses may arise from the 

permutation method, which to some degree will increase the variability in the null 

distribution in response to time–wise random effects during the individual DTI 

acquisitions. 

 

Perhaps a more challenging issue is the effect of atrophy, as described in the 

registration method section. Even with a perfect registration, a complete 

distinction of microscopic and macroscopic changes may not be easy because of 

the following reasons. Technically, it is conceivable that changes in the 

microstructure will lead to slightly different definition of the ‘boundary’ of specific 

white matter structures that guides the registration, since no imaging technique 

other than DTI itself provides such rich contrast within white matter for the 

registration. Biologically, any irreversible damage in the axon / myelin structures 

will likely be followed by atrophy, thus it is not surprising that the two conditions 

often co-exist. Detecting these effects are both of much interest, but at some 

point we may have to accept that in trying to detect one of these two, the other 

may often exist to some degree. This difficulty does not invalidate the technique 
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of detecting biologic changes, but rather adds some uncertainty to the 

interpretation in terms of pure microscopic versus macroscopic changes. 

 

In general, the statistical power of detecting biologically-driven significant clusters 

is somewhat unclear at this moment. Not only do we have little prior information 

about the effect size we want to detect, but this is made more complicated by the 

fact that FA in the different ranges have different uncertainties even with the 

same SNR of the images. Also, it is not known how similar degrees of injuries will 

affect FA in white matter with different magnitudes of FA and whether more than 

one fiber population exists within a voxel. Thus the power to detect a similar 

degree of injury in different white matter structures can be variable. With more 

information available on how pathological changes affect DTI metrics, we will be 

able to estimate the requirements for the SNR of acquisition and more generally 

the reliability of this technique. 

 

6.6 Conclusion 

We presented a novel statistical framework for whole brain voxel / cluster-wise 

analysis of single-subject serial DTI based on non-parametric permutation testing. 

This completely automated technique called PERVADE can be useful in 

detecting suble and local DTI changes over time in a specific subject, especially 

in disease processes such as MS or traumatic brain injury that have 

heterogenous regional distributions across different patients. 
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Chapter 7: Main Findings and Conclusions 

 

In this dissertation, I have developed DTI-optimized resampling statistical tools. 

The bootstrap technique has emerged as a strong candidate to fulfill the need for 

the accurate uncertainty estimation of DTI derived parameters. It could help us to 

assess changes observed by serial DTI studies, which was the initial motivation 

behind of this dissertation project. Before this project, though, DTI bootstrap was 

still in its infancy, substantially biased and not applicable to data without repeated 

acquisitions. Thus, as the first part of the project, various bootstrap algorithms 

suitable for DTI were comprehensively investigated with Monte Carlo simulation. 

This study provided a strong foundation for the applications of bootstrap in the 

second part of the project, and greatly enhanced our understanding about 

bootstrap techniques in the DTI community. 

 

In the second part of this dissertation project, residual bootstrap was used in 

tackling two different problems, cardiac artifact quantification and serial single-

subject analysis. Prior to this project, the benefit of cardiac gating in DTI studies 

with single-shot EPI acquisitions was not clear. Bootstrap analysis on the study 

of cardiac gating offered convincing evidence that cardiac gating is necessary 

with partial Fourier acquisition. Full Fourier acquisition was shown to be less 

sensitive to cardiac pulsation artifacts. These results have a profound effect in 

the DTI community, since virtually every DTI acquisitions can be significantly 

improved. To better analyze serially acquired DTI data in an individual subject, 
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the other problem which motivated this project, a new statistical framework called 

BLADE was developed. BLADE was able to detect FA decrease in the normal 

appearing white matter of TBI patients, a very interesting finding of possible 

Wallerian degeneration that could not be detected otherwise. 

 

Third and last part of this project was devoted to developing another statistical 

framework for serial DTI data analysis. This technique called PERVADE was 

designed to overcome limitations of BLADE such as null distribution estimation 

and multiple comparison correction. Instead of bootstrap, PERVADE is based on 

permutation testing, another resampling statistical technique, which has been 

optimized to accommodate the complex data structure of DTI. PERVADE was 

able to detect FA changes in the normal appearing white matter just like BLADE, 

with even higher confidence in the results due to the robust statistics used in 

PERVADE. 

 

This project has shown that resampling statistics can enhance the capability of 

DTI with new analyses frameworks such as serial single-subject analysis. It is 

expected that the need for bootstrap and permutation testing will only increase in 

the future for diffusion MRI applications, but also for other MRI and imaging 

modalities with data oversampling. Currently, the next generation of modeling 

tissue water diffusion with diffusion MRI such as high angular resolution diffusion 

MR imaging (HARDI) or q-space imaging is under active development. Fiber 

tracking, already a product of complicated data processing, is getting even more 
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sophisticated, with the help of new diffusion models and new approaches to the 

problem of connectivity, such as the structural connectivity matrix. As the data 

processing gets more complex, parametric methods for uncertainty estimation 

such as the analytical approach will be increasingly difficult to implement. On the 

other hand, implementing resampling statistics is relatively straightforward since 

the same principles apply. It will be exciting to watch how resampling statistics 

evolve in the next generation diffusion MRI studies.  






