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Abstract

This paper studies the relation between demographics and the equity premium in a
dynamic overlapping generations (OLG) equilibrium model. Investors have both labor
and investment income. The labor income and the dividend processes are correlated.
Investors trade stocks for consumption purposes and to hedge against the risk of their
labor income. The per capita stock supply is normalized to unity, and the demographic
structure is time varying. In equilibrium, the equity premium is linear in the real per
capita stock price, the dividend yield and the dividend payout ratio, but the coefficients
of the linear relation are time varying because of demographic change. Proxying the
coefficients by linear functions of the change in the share of population in the age
range 40-64, we derive a non-linear predictive regression for the equity premium, which
is not only significant in the empirical tests using post-1947 data but also improves
significantly on previous predictive relations.
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1 Introduction

The late 1990s is a particularly challenging period for models that predict the equity pre-

mium. The stock market has had a strong upwards movement, while the dividend yield

and the dividend payout ratio have been relatively low (See figure 9). These two variables,

which are significant in predicting the equity premium in the period 1947-1994 (Fama and

French (1988) and Lamont (1998)), lose their forecasting power when the late 1990s data are

included. During this period of extraordinary stock market performance, in which previous

predictive relations have failed, the baby boomers entered their middle age. It is possible

that this is just a coincidence. But if not, it is important to understand how stock price

movements are related to variation in the demographic structure, and to consider whether it

is demographic change that has caused the simple predictive relations between the dividend

yield and/or the dividend payout ratio and the equity premium to break down.

This paper develops a model which predicts that the break down is caused by demographic

change. The intuition for the relation between demographics and the equity premium can

be easily derived from life cycle portfolio theories, which were pioneered by Modigliani and

Brumberg (1954), Friedman (1957) and Samuelson (1969). These models assume that the

objective of an investor’s consumption-investment decision is to smooth consumption over

time in order to maximize lifetime utility, and this induces a life cycle pattern in investment

behavior. Suppose that the supply of risky assets is constant or inelastic. If an investor’s

demand for risky assets is affected by his age, one might expect as a first approximation that

when the population is dominated by investors of the age at which the demand for risky

assets is highest, the stock price would rise to ensure market clearing causing the equity

premium to decline.1 In addition, when the population is dominated by investors of the

age at which the demand for risky assets is the most sensitive to certain macroeconomic

factors, the stock price will also become sensitive to these factors. However, the situation is

complicated by the fact that the demands of today’s investors are affected by their forecasts

1This effect is similar to the common wisdom of “too much money chasing too few deals”, which has
been found in the venture capital investment by Gompers and Lerner (2000). They show that inflows of
capital into venture funds increase the valuation of these funds’ new investments, which is consistent with
competition for a limited number of attractive investments being responsible for rising prices.
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of future investors, which will depend on the future demographic structure as well as future

expectation about future demand.

In this paper, we develop a dynamic overlapping generations (OLG) equilibrium model,

which allows us to study the relation between demographics, stock prices and the equity

premium. We assume that the per capita stock supply is constant, and that the demographic

structure is deterministic and exogenous but time varying. We are primarily interested in

the information for stock returns that is contained in the demand side of the economy, which

is represented by the demographic structure.

In the model, agents’ income derives from two sources: labor and capital investments.

Labor income is received in the form of wages. Capital is assumed to pay dividends. The

labor income process and the dividend process are correlated. Investors’ demand for stocks is

affected both by the expected returns on stocks and by their ability to hedge against the risk

of labor income. In equilibrium, the excess return on stocks follows an AR(1) process (with

deterministic time varying coefficients), and the expected excess return is linear in the labor

income state variables. We show that investors with exponential utility over consumption

are more risk tolerant and, everything else equal, hold more risky assets on average when

young than when old.2 The sensitivity of investors’ demand for risky assets to the labor

income state variables is also age specific. When the demographic structure is time varying,

the per capita demand for stocks is also time varying so that with a constant per capital

supply of stocks, the excess stock return must be related to the demographic structure to

ensure that the per capita demand for stocks equals the per capita supply.

The equilibrium price function implies a non-linear relation between the equity premium

and demographic variables, the real per capita stock price, the dividend yield and the div-

idend payout ratio. The equity premium is linear in the real per capita stock price, the

dividend yield and the dividend payout ratio; however, the coefficients of this linear rela-

tion depend in a nonlinear fashion on the demographic structure, which is time varying.

These time varying coefficients are functions of moments of the current and all the future

2Samuelson (1991) shows that this life cycle pattern in investment behavior holds when investors have
exponential utility over consumption and the excess return on stocks is mean-reverting with constant coef-
ficients, which is equivalent to an AR(1) process. Here, we show that this investment behavior holds even
when the coefficients of the AR(1) process are time varying.
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demographic structures.

Calibration results show that the observed demographic change in the post World War

II period could induce significant variation in the demographic variables in the predictive

relation. In addition, these demographic variables are more highly correlated with the change

in the share of population in the age range 40-64 than with the level. Intuitively, as shown in

the estimates of the labor income process, households in this age range have the highest labor

income, and their labor income is the least sensitive to macroeconomic risk, as measured by

the unemployment rate. An increase in the share of population in this age range reduces

the labor income risk in the whole economy, tending to reduce the importance of stocks

as a hedging vehicle. However, since households in this age range have the highest level

of idiosyncratic labor income risk, and their risk aversion is relatively high, the increase in

this share of population makes the population more risk averse, which tends to make the

role of stocks as a hedging vehicle more important. Previous research on stock returns, (for

example, Poterba (2000)), uses this share as an explanatory variable in predictive regressions,

although Poterba focuses on the predictive power of this share for real stock returns, instead

of the equity premium, and finds no significant results.

Writing the demographic variables in the predictive relation as linear functions of the

change in the share of population in the age range 40-64, we express the equity premium as

a linear function of the change in this share of population, the real per capita stock price,

the dividend yield, the dividend payout ratio and the products of the change in this share of

population with the real per capita stock price, the dividend yield and the dividend payout

ratio. Empirical evidence supports the derived predictive regression for the equity premium,

whether or not the late 1990s data are included. The inclusion of demographic variables

significantly improves on previous predictive regressions, in which the equity excess return is

regressed on the dividend yield and/or the dividend payout ratio. In particular, replication

of the regression by Lamont (1998) for the period 1947-1994, in which the quarterly equity

excess return is regressed on the dividend yield and the dividend payout ratio, yields R2 of

11.7%, while adding the change in this share of population to the regression raises R2 to

14.7%. For the period 1947-1999, the Lamont predictive regressions are no longer significant,

while our predictive regression is significant with R2 of 13.6%.
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Thus, our model salvages the predictive power of the dividend yield and the dividend

payout ratio, but suggests a changing structure for the predictive relation due to demographic

change.

Prior research on the predictability of the equity premium either ignores demographic

considerations or, as in Poterba (2000), focuses solely on the effects of demographic change

on stock returns. These two strands of research on the equity premium have remained totally

distinct despite the fact that they are both attempting to explain the same variable. They are

based on different theoretical frameworks, and their explanatory variables seldom overlap.

The first strand of research investigates the information in stock prices, dividends and/or

earnings for stock returns. It has identified several explanatory variables that are statis-

tically important in predicting stock returns, for example, the dividend yield (Fama and

French (1988)), the earnings yield (Shiller (1984)) and, most recently, the dividend payout

ratio (Lamont (1998)) and etc.3 The relation between the equity premium and explanatory

variables is usually derived from the present value formula, which expresses the current stock

price as the discounted value of future dividends. However, Bossaerts and Hillion (1999),

while confirming the presence of in-sample predictability across several different national

markets, find that even the best prediction models have no out-of-sample forecasting power.

In fact, if data for the late 1990s are included, even the in-sample tests fail to be significant.

Several explanations have been offered for this failure. Most focus on the statistical biases

of empirical tests.4

Several authors, including Viceira (1997), Goyal and Welch (1999) and Pesaran and

Timmermann (1995), have pointed to the possibility of a changing structure in the predictive

regression for the equity premium. Viceira (1997) tests if there is a structural break in the

relation between the dividend yield and the stock return, but fails to detect one. Goyal and

Welch (1999) provide a “learning market hypothesis”, under which investors’ attempts to

take advantage via market-timing strategies of the dividend yield’s forecasting ability drive

3See Cochrane (1999) for survey.
4For example, Goetzmann and Jorion (1993) and Nelson and Kim (1993) on small sample bias; Hodrick

(1992) on bias of test statistics in long-horizon forecasting; Goetzman and Jorion (1995) on survivorship
bias; Stambaugh (1999) and Torous and Yan (1999) on bias arising from near-nonstationarity in regressors;
and etc.
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its forecasting power to zero. Pesaran and Timmermann (1995) find that the predictive

power of various economic factors over stock returns changes through time and tends to

vary with the volatility of returns. In addition, the timing of the episodes where many of

the regressors get included in the forecasting model seems to be linked to macroeconomic

events. They suggest using forecasting procedures that allow for possible regime changes in

analyzing stock return predictability.

The second strand of research on the equity premium investigates the relation between de-

mographics and stock returns.5 The theoretical research in this strand, such as Yoo (1994a),

Brooks (1999) and Abel (1999), focuses on whether a shifting age structure can significantly

affect equilibrium asset returns and asset prices. These authors present simulation or analytic

results, which suggest that demographic change can affect equilibrium returns.

The empirical research in this strand is typically based on life cycle portfolio selection

theories,6 and proceeds to test either the direct relation between (changes in) shares of

population between certain ages and stock returns, like Erb, Harvey and Viskanta (1999),

Poterba (2000), Macunovich (1997) and Yoo (1994b), or the relation between changes in

moments of the population age structure and stock returns, like Bakshi and Chen (1994).

Bakshi and Chen (1994) claim that the extraordinary stock market performance in the

1990s is caused by the fact that the baby boomers entered their middle age and thereafter

the population average age increases at the same time. Some researchers, including Siegel

(1998) and Schieber and Shoven (1997), have predicted that stock prices will drop when the

baby boomers retire later in this century.

The demographic part of our analysis is most closely related to Bergantino (1998), who

studies the U.S. stock market. He first develops estimates of age specific asset demands, and

then uses these demands along with the changing demographic structure to construct time

varying estimates of the demand for financial assets. The findings suggest clear relations

between the level of age specific asset demand and the level of stock prices, and between the

difference in “demographic demand” and difference in asset prices over multi-year horizons.

5See Poterba (2000) for survey.
6For theoretical work, see Modigliani (1986), Canner, Mankiw and Weil (1997), Samuelson (1989, 1991),

Bodie, Merton and Samuelson (1992), Kimball (1993), Brennan (1998) and Xia (2000); for empirical evidence,
see Mankiw and Weil (1989), Bossons (1973), Poterba and Samwick (1997) and Heaton and Lucas (2000).
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Our model is different from Bergantino’s in that we consider the effects of demographics on

stock returns in a general equilibrium framework, in which investors anticipate the effects

of their future demands on stock prices and returns when choosing their portfolios, while

Bergantino simply takes investors’ life cycle pattern of investment behavior as exogenous.

Goyal (1999) also adopts a partial equilibrium approach. Like Bergantino (1998), he

takes the price as exogeneous, and relates capital flow to change in demographic structure;

he also examines the relation between demographic change and the equity premium but not

in a context of a rational expectation economy.

Although it is commonly agreed that demographic factors affect stock returns,7 the pre-

dictive power of demographic variables is not high, especially in forecasting short-term re-

turns. One reason for this is that the second strand of research ignores the information in

dividends and/or earnings for stock returns. Ideally, with sufficiently precise high-frequency

demand data, the demographic data in this case, it should be possible to provide a good

estimate of the equity excess return, which might be consistent with that conditional on the

dividend yield and/or the dividend payout ratio. But the time series of demographic data

are rather limited. For example, for U.S. demographic data, we only have annual observa-

tions in 5 or 10 year intervals in people’s age. In addition, demographic change is smooth.

Not surprisingly, regressions of short-term, for example, quarterly, equity excess returns on

demographic variables have low R2s. This greatly limits the application of demographics in

practice. Finally, a question for any partial equilibrium study is: if investors adjust their

demands when they realize that demographic factors affect stock prices and therefore stock

returns, will the life cycle investment pattern and the relation between demographic change

and stock returns still hold? The partial equilibrium models claim that, given the return

process, investors’ investment behavior will have a life cycle pattern. They then conclude

that demographic change should be correlated with stock prices and returns. In other words,

they first assume that stock returns are exogenously given, then conclude that stock returns

should be endogenously determined. Although the intuition is plausible, the logic is defective.

Our paper unifies these two strands of research on the predictability of the equity premium

7See Bakshi and Chen (1994), Macunovich (1997), Erb, Harvey and Viskanta (1997), Bergantino (1998),
Poterba (2000), Goyal (1999) and etc.
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within an OLG general equilibrium model. The model accounts for the information for stock

returns that is contained in stock prices, dividends and earnings on the one hand, and for

the information in demographics on the other hand, and provides a clear description of the

determination of the equity premium. The non-linear predictive relation between the equity

premium and the change in the share of population in the age range 40-64, the real per

capita stock price, the dividend yield and the dividend payout ratio not only confirms the

previous findings of the predictive power of the dividend yield and the dividend payout ratio,

but also leads to significant improvements on previous empirical research.

The remainder of the paper is organized as follows: Section 2 presents the model; Section 3

studies the investors’ optimization problem and obtains the equilibrium; Section 4 calibrates

a simplified version of the model; Section 5 derives the non-linear predictive regression for

the equity premium and conducts the empirical test; Section 6 concludes.

2 The Model

Consider an economy with a single good that can be either consumed or invested. The

economy is defined as follows.

2.1 Time parameters and the Demographic Structure

Let τ , τ = 0, 1, ..., T , denote the age of an investor who is assumed to live for T + 1 periods.

For simplicity, T is assumed to be a constant.8 The number of investors alive at time t is

denoted by G(t). The fraction of investors of age τ at time t is g(τ ; t). G(t) and g(τ ; t) are

assumed to be exogenous and deterministic, and are common knowledge. Thus, there is no

uncertainty about the demographic structure among investors. Investors fully anticipate the

effects of demographic change on the economy when making their consumption-investment

decisions.

8We ignore uncertainty about life-span, which has been studied by Hubbard, Skinner and Zeldes (1994).
Incorporating uncertain life-span in the model may introduce second order effects, but is unlikely to change
our main results.
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2.2 Preferences

All investors are assumed to have identical constant absolute risk aversion (CARA) pref-

erences defined on their consumption. At time t, an investor of age τ maximizes expected

utility of the following form

Et

·
−

τ̄X
s=t

βτ+s−t exp(−αcs)
¸

(2.1)

where Et is the expectations operator conditional on his information at time t; cs is his

consumption in period s; τ̄ = t+ T − τ is the date of which he will leave the market.9

2.3 Endowments

Investors derive their income from two sources: labor and investments. Labor income is

defined to include all the income other than that obtained from financial assets. At time t,

an investor of age τ has labor income

Yτ,t = hτ + nτ t+
1

2
ZTt ωτZt + ²τ,t (2.2)

Labor income has a time and age dependent deterministic component, hτ + nτ t, which cap-

tures the secular trend in labor income and the deterministic element of the life cycle. In

addition, it has two stochastic components,
1

2
ZTt ωτZt and ²τ,t. The first stochastic com-

ponent,
1

2
ZTt ωτZt, where Zt is an N × 1 column vector of normal variables and ωτ is a

symmetric N × N matrix dependent on τ , captures the common stochastic component in

labor income. The labor income state variable vector, Zt, can be interpreted as a vector

of macroeconomic variables that affect all investors’ labor income, such as changes in the

business cycle and the production technology. Its effects on the labor income of investors of

9We ignore bequests in the model. Including bequests would have only a negligible effect on investors’
utility functions. Also, since we have a fairly broad definition of labor income, the non-financial bequests
are already captured in the labor income process.
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different age, which are measured by ωτ , may be different. The quadratic form,
1

2
ZTt ωτZt,

can be calibrated to capture a rich class of characteristics of labor income, for example, the

fat tail, skewness and even the time variation in the risk of labor income.10 The sign of Z

may not affect the labor income process because of the quadratic form, but will affect the

stock price and the expected excess return because its correlation with the dividend process,

which is defined later, makes its effects on the economy asymmetric. The second stochastic

component, ²τ,t, is an idiosyncratic temporary shock, i.e. ²τ,t ⊥ ²%,s for τ 6= % or t 6= s, and
has a normal distribution ²τ,t ∼ N(0, σ2

τ ). The size of the shocks, ²τ,t, as measured by the

variance, σ2
τ , may depend on age.

11

Zt is assumed to follow an AR(1) process

Zt = aZZt−1 + ²Z,t (2.3)

where aZ is an N × N constant matrix whose eigenvalues are all are less than 1; ²Z,t is an

N×1 column vector, and has an independent and identical normal distribution. The process
of Zt can be calibrated to capture the short-term persistence in the aggregate labor income

process, which is documented by Campbell (1996) and Pischke (1995).

In addition to his endowment of non-tradeable labor income, each investor is endowed

at birth with one share of risky asset whose characteristics are described in the following

section.

2.4 Financial assets

There are two publicly traded assets in the economy, a riskless asset and a risky asset (stock).

The riskless asset, which is assumed to be in infinitely elastic supply, offers a positive constant

10The non-trivial quadratic form of
1

2
ZTt ωτZt is essential to our model. It captures the fact that the risk

of labor income is itself stochastic. Without this feature, the stock price would not depend on the labor
income state variable vector, Z, and the equity premium would depend only on the real per capita stock
price.

11See Gollier and Pratt (1996) and Franke, Stapleton and Subrahmanyam (1998) for the effect of this
idiosyncratic risk of labor income on investors’ investment behavior.
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rate of return, r. Its gross rate of return is thus R = 1 + r. Given the endowment process,

the per capita supply of stocks is one so that the number of shares outstanding at time t is

G(t).12 Each share of stocks pays a dividend Dt at time t, which is governed by the process

Dt = D̄ + Ft + ²D,t (2.4)

where D̄ is a constant, and ²D,t is a temporary shock to Dt which has an independent and

identical normal distribution. The dividend state variable, Ft, also follows an AR(1) process

Ft = aFFt−1 + ²F,t (2.5)

where aF is a constant with 0 ≤ aF < 1, and ²F,t is a temporary shock to Ft which has an
independent and identical normal distribution. Thus, the dividend is the sum of a constant

and two random components, one transitory and one permanent. The permanent random

component can be calibrated to capture the short-term persistence in dividends.

2.5 Distributional assumptions

The stochastic dimension of the economy is determined by the rank of the covariance matrix

of {²τ,t}Tτ=0, ²D,t, ²F,t and ²Z,t. For simplicity, we assume that ²τ,t is serially uncorrelated and

independent of the other random variables, ²D,t, ²F,t and ²Z,t. Define the vector of shocks

at time t, ξt ≡ (²D,t, ²F,t, ²Z,t)T . It is shown later that the stochastic dimension of the asset
return structure is determined by the rank of the covariance matrix of ξt. We assume that ξt

has a multivariate independent and identical normal distribution ξt ∼ N(0(N+2)×1,Σ), where

Σ is nonsingular and, in general, is not diagonal. Thus, dividends and labor income can

either be positively or negatively correlated. Since labor income is given exogenously, stocks

provide a vehicle for investors to hedge against the risk of their labor income.

12This normalization is for simplicity. Allowing for a stochastic stock supply would introduce another
state variable, which would affect the stock price and the excess return. But the predictive relation for the
equity premium, which is derived later, would still hold.
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2.6 Informational assumptions

The structure of the economy is common knowledge. At time t, investors observe Dt, Ft and

Zt. The Markovian structure of the economy implies that past information about dividends

and labor income is redundant for investors’ consumption-investment decisions. Therefore,

investors have identical sufficient information sets =t ≡ {Dt, Ft, Zt}.

The assumptions that are essential to the tractability of the model are the following.

First, the riskless interest rate is constant. Secondly, dividends follow a Gaussian process, and

labor income is a quadratic form of Gaussian processes. Thirdly, utility over consumption

is negative exponential. The assumptions of a constant riskless interest rate, a Gaussian

dividend process and a quadratic Gaussian labor income process, and negative exponential

utility are restrictive. Under this framework, investors’ demands for stocks do not depend

on their wealth. Thus, the aggregate demand is independent of the wealth distribution.

This framework drastically simplifies our derivation and makes the over-lapping generations

equilibrium tractable.

3 Equilibrium

In this section, we solve for the equilibrium of the economy defined in Section 2. The

method is similar to that of Campbell and Kyle (1993). We first conjecture an equilibrium

price function. Based on the conjectured price function, we solve the investors’ optimization

problem. Market clearing is then imposed to verify the conjectured price function.

As a prelude to the conjecture-verification procedure, consider first the optimization

problem, at time t, of an investor of age τ . Let W be his wealth, c his consumption, and X

the number of shares of stocks he holds. His optimization problem is then

J(Wt,=t, τ ; t) ≡ max
ct,Xt

Et

·
−

τ̄X
s=t

βτ+s−t exp(−αcs)
¸

(3.1)
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subject to

Wt+1 = (Wt − ct)R+XtQt+1 + Yτ+1,t+1 (3.2)

where Qt+1 ≡ Pt+1+Dt+1−RPt is the excess return on one share of stocks. Qt+1 is different

from the excess rate of return, which is defined as the excess return on one dollar invested

in stocks. The share return must be divided by the share price to get the rate of return.

3.1 The Constant Demographics Case: g(τ ; t) ≡ g(τ)

Before analyzing the complete model with a changing demographics, we assume first that

the demographic structure is constant over time and solve for the stationary equilibrium.

The equilibrium is stationary in that, even though the equilibrium price function and the

equilibrium value function depend on the state variables and the time trend, the coefficients

of the functions are independent of time. These coefficients depend only on investors’ ages.

Intuitively, when the demographic structure is constant over time, the economy is charac-

terized by the Markovian processes of the labor income state variable vector, Zt, and the

dividend state variable, Ft. The functional form of the equilibrium is same for all periods in

an infinite horizon setting.13

While the constant demographic structure precludes any time variation in the economy,

it is still worth studying. First, if one wants to compare the effects of two demographic

structures on two segmented economies, as in the cross-national study of Erb, Harvey and

Viskanta (1999), a comparative analysis of the stationary case is informative. Secondly,

intuition about investors’ life cycle pattern of investment behavior under the stationary

demographic structure applies to the time varying case as well. Since the equilibrium is

stationary, the intuition is clearer and easier to derive. Thirdly, we use the stationary case

to derive the stationary equilibrium, which we use as the boundary condition for the non-

stationary model for which the equilibrium is computed by the backward induction in the

numerical example in Section 4.

13A constant demographic structure is only a convenient abstraction. In general, only certain age struc-
tures, such as the uniform, remain constant over time.
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Consider first a further simplified economy in which labor income is deterministic, i.e.

{ωτ}Tτ=0 ≡ 0N×N and {στ}Tτ=0 ≡ 0. The derivation of the equilibrium for this economy is

similar to that of the general case, the results of which are stated in proposition 3.2 and

theorem 3.3. Here, we just give the equilibrium price function.

Proposition 3.1 When the demographic structure is constant over time, i.e. g(τ ; t) ≡ g(τ),
and labor income is deterministic, i.e. {ωτ}Tτ=0 ≡ 0N×N and {στ}Tτ=0 ≡ 0, the economy
defined in Section 2 has a steady-state equilibrium in which the equilibrium price function is

Pt = p∗0 + p
∗
FFt (3.3)

where p∗0 is a constant, and p∗F =
aF

R− aF .

The first term of the price function, p∗0, can be divided into two parts: the discounted

value of the constant level of dividends,
D̄

r
, and the discount in the price to compensate

for the risk of dividends, p∗0 −
D̄

r
. The second term, p∗FFt, is the discounted value of the

stochastic part of dividends. As new information about dividends, F , arrives, the stock price

adjusts to fully reflect it.

In this economy, there is no labor income risk. Investors trade stocks only for consumption

purposes. Investors buy stocks when born and slowly sell them until they die.14

When there is systemic labor income risk, i.e. {ωτ}Tτ=0 are not equivalent to 0N×N ,

investors trade stocks both for consumption purposes and to hedge against the risk of their

labor income. The equilibrium price function has to adjust to reflect the role of stocks as a

hedging vehicle.

Proposition 3.2 When the demographic structure is constant over time, i.e. g(τ ; t) ≡ g(τ),
the economy defined in Section 2 has a steady-state equilibrium in which the equilibrium price
function is

Pt = p0 + pFFt + pZZt (3.4)

14See Vayanos (1998) for a similar set up.
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where p0 is a constant; pF =
aF

R− aF ; pZ is a 1×N row vector of constants.

Proof: See Appendix A.

The first term of the price function, p0, can be divided into three parts. Besides the

discounted value of the constant level of dividends,
D̄

r
, and the discount in the price to

compensate for the risk of dividends, p∗0−
D̄

r
, which are obtained from the economy without

labor income risk, it also includes the discount in the price to compensate for the risk of

labor income, p0 − p∗0. The second term, pFFt, is the discounted value of the stochastic
part of dividends. As new information about dividends, F , arrives, the stock price adjusts

to fully reflect it. The third item, pZZt, reflects the role of stocks in hedging the risk of

labor income. As shown later, the expected excess share return on stocks is correlated

with labor income. Thus, when new information about labor income, Z, arrives, investors

rebalance their portfolios to hedge against the risk of labor income. The stock price adjusts to

accommodate the rebalance motivated trade. Therefore, the equilibrium stock price depends

not only on the information about the future dividend, F , but also on the information about

the background labor income risk, Z.

Define Πt ≡ (1, Zt)
T . Given the equilibrium price function, the excess share return on

stocks is

Qt+1 ≡ Pt+1 +Dt+1 −RPt = ΘΠt + Φξt+1 (3.5)

where Θ = (D̄ + (1−R)p0, pZaZ −RpZ) and Φ = (1, 1 + pF , pZ). ξt+1 which was defined in

Section 2 as ξt+1 ≡ (²D,t+1, ²F,t+1, ²Z,t+1)
T represents the uncertainty of asset returns. Note

that the expected excess share return, ΘΠt, is not affected by the “fundamental” of stocks,

F . The expected excess return depends only on the labor income variables, Z. When new

information about the fundamental, F , arrives, the stock price adjusts to fully reflect it, and

the expected excess share return stays the same. However, when new information about

labor income, Z, arrives, the stock price and the expected excess share return adjust to

reflect the changed asset demands.
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Given the excess share return on stocks and the labor income process, we can derive the

investors’ optimal consumption-investment policy.

Theorem 3.3 When the demographic structure is constant over time, problem (3.1)-(3.2)
has the following solution

J(Wt,=t, τ ; t) = −βτ exp(−γτWt − µτ t− 1
2
ΠTt ντΠt) (3.6)

where γτ and µτ are functions of τ ; ντ is a (N + 1)× (N + 1) symmetric matrix dependent
on τ . The optimal demand for stocks, Xt, and consumption, ct, are

Xt =
1

γτ+1
Γτ+1Et(Qt+1)− 1

γτ+1
κτ+1Πt (3.7)

ct = c̄τ +
Rγτ+1

α+ Rγτ+1
Wt +

γτ+1nτ+1 + µτ+1

α+Rγτ+1
t

+
1

2(α+Rγτ+1)
ΠTt mτ+1Πt (3.8)

where Γτ+1 and c̄τ are functions of τ ; κτ+1 is a 1× (N +1) row vector dependent on τ ; mτ+1

is a (N + 1)× (N + 1) matrix dependent on τ .

Proof: See Appendix A.

The value function retains the negative exponential form of the utility function. It

depends not only on wealth, but also on the time trend, t, and a quadratic form of Π.

The value function depends on t because of the secular growth in labor income. Since labor

income grows with time, everything else equal, investors at time t have higher utility than

the investors of the same age at earlier dates. Note that Π is obtained by augmenting Z

with 1. Investors trade stocks both for consumption purposes and to hedge against the risk

of their labor income. The incentive to trade is much clearer if one considers investors’

demand for stocks, X. Similar to Wang (1994), X consists of two components. The first

component,
1

γτ+1

Γτ+1Et(Qt+1), is a mean-variance efficient portfolio reflecting the trade off

between expected return and risk. Like Vayanos (1998), γτ+1 is the coefficient of absolute

risk aversion of investors with respect of their wealth at the age of τ + 1. The term, Γτ+1,
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is the inverse of the renormalized covariance matrix of returns for investors of age τ . The

second component is a hedge portfolio. Since the expected excess share return on stocks

is correlated with labor income, stocks provide a vehicle to hedge against the risk of labor

income.

Since the coefficients of the value functions and consumption-investment policies are age

specific, investment behavior exhibits a life cycle pattern. It is difficult to tell how the

demand of an investor of certain age responds to the labor income state variable vector, Z,

since the response depends on Γτ and κτ , and we have no closed form expression for these

coefficients. However, the risk aversion of the value function, γτ , provides an informative

way to study investors’ average holdings of stocks. γτ , which is positive from its expression

derived in Appendix A, is the denominator in the demand function, X. When γτ is lower,

investors will be more risk tolerant and, everything else equal, hold more stocks on average.15

[ Insert Figure 1 Here ]

From equation (A.9) in Appendix A, we have γτ =
αRγτ+1

α+Rγτ+1
. Figure 1 plots γτ as a

function of age for α = 0.05, r = 1.2% and T = 54. These parameter values are the same

as those used in the numerical example in Section 4, in which we consider the population in

the age range 20-74. The economic age of an investor of calendar age 20 is τ = 0. To be

consistent to the later calibrations, we let the x-axis represent calendar age. We have tried

other parameter values, and the pattern of γτ is robust.

γτ is monotonic increasing and convex in τ . After a certain age, it becomes steeper.

Intuitively, since the excess share return follows a mean-reverting process, young investors

with longer investment horizons are willing to hold more risky assets than old investors. In

the sense of risk aversion, investors will be more risk taking when young than when old. This

result is in accordance with Samuelson (1991). The convexity of γτ reflects the fact that the

same calendar change shortens an old investor’s investment horizon proportionately much

more than it does a young investor’s investment horizon.

15From their expressions in Appendix A, Γτ and κτ are just rearrangements of the coefficients of the mean
and the variance of the excess return, Θ and Φ. They should have second order effects on investors’ average
holdings compared to γτ .
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In sum, young investors are more risk taking. Everything else equal, they tend to hold

more stocks than old investors. When an investor gets older, he gradually sells his holdings

of stocks, but after a certain age, he accelerates his selling.

3.2 The Time Varying Demographics Case: g(τ ; t)

When the demographic structure is time varying, the equilibrium price function, the value

function and the investors’ optimal consumption-investment policy have the same functional

forms as when the demographic structure is constant. But because of demographic change,

the coefficients of the equilibrium depend not only on investors’ ages, but also on time.

Demographic change and the equilibrium are related in a highly non-linear way.

The equilibrium price function is stated in proposition 3.4.

Proposition 3.4 When the demographic structure is time varying, the economy defined in
Section 2 has an equilibrium in which the equilibrium price function is

Pt = p0,t + pFFt + pZ,tZt (3.9)

where p0,t is a function of t; pF =
aF

R− aF ; pZ,t is a 1×N row vector dependent on t.

Proof: See Appendix A.

Most of the analysis of the components of the price function in the economy with a

constant demographic structure still holds. But now p0,t and pZ,t depend on time t because

of the changing demographic structure. The discount in the price to compensate for the risk

of dividends and labor income, and the sensitivity of the price to the risk of labor income

are time varying.

For example, consider the simplest case of an economy with a time varying demographic

structure, in which the demographic structure is g(τ ; 0) at time 0 and g(τ ; 1) at time 1 and

later. From the prior analysis, we know that the equilibrium is stationary from time 1 on. At

time 0, investors fully anticipate the next period price function. But since g(τ ; 0) 6≡ g(τ ; 1),
the equilibrium price function at time 1 will not hold for time 0. The coefficients of the price
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function at time 0 are specific to the demographic change from g(τ ; 0) to g(τ ; 1). In general,

the stock price is linear in F and Z, but the coefficients of this linear relation depend on the

current and all the future demographic structures.

Given the equilibrium price function, the excess share return on stocks is

Qt+1 ≡ Pt+1 +Dt+1 −RPt = Θt+1Πt + Φt+1ξt+1 (3.10)

where Θt+1 = (p0,t+1+ D̄−Rp0,t, pZ,t+1aZ −RpZ,t) and Φt+1 = (1, 1 + pF , pZ,t+1). Similar to

the price function, the excess share return keeps the same functional form as in the economy

with a constant demographic structure, but the coefficients are now time varying. Since

it is assumed that the demographic structure, both the current and the future, is common

knowledge, investors fully anticipate the effects of future demographic change on future stock

prices and excess share returns when making consumption-investment decisions. Therefore,

both Θ and Φ are determined by the current and all the future demographic structures.

Given the excess share return on stocks and the labor income process, we can derive the

investors’ optimal consumption-investment policy.

Theorem 3.5 When the demographic structure is time varying, problem (3.1)-(3.2) has the
following solution

J(Wt,=t, τ ; t) = −βτ exp(−γτWt − µτ t− 1
2
ΠTt ντ,tΠt) (3.11)

where γτ and µτ are functions of τ ; ντ,t is a (N + 1)× (N + 1) symmetric matrix dependent
on τ and t. The optimal demand for stocks, Xt, and consumption, ct, are

Xt =
1

γτ+1
Γτ+1,t+1Et(Qt+1)− 1

γτ+1
κτ+1,t+1Πt (3.12)

ct = c̄τ,t +
Rγτ+1

α+Rγτ+1
Wt +

γτ+1nτ+1 + µτ+1

α+Rγτ+1
t

+
1

2(α+Rγτ+1)
ΠTt mτ+1,t+1Πt (3.13)
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where Γτ+1,t+1 and c̄τ,t are functions of τ and t; κτ+1,t+1 is a 1×(N+1) row vector dependent
on τ and t; mτ+1,t+1 is a (N + 1)× (N + 1) matrix dependent on τ and t.

Proof: See Appendix A.

Both the value function and the investors’ optimal consumption-investment policy are

time varying because of demographic change and the secular growth in labor income. In

particular, different from the constant demographics case, their coefficients are also time

varying because of demographic change. Investors in our model fully anticipate the effect of

demographic change on stock returns. This rational expectations property of our model is

in contrast to previous work on the relation between demographics and stock returns, which

relies on partial equilibrium models of life cycle portfolio selection.16

Demographics can be viewed as an additional set of state variables that affect the deter-

mination of stock prices, the investors’ optimal investment-consumption policy, and etc. By

assuming a time varying but deterministic demographic structure, we are able to capture

demographic state variables in a single variable, time.

3.3 Derivation of the Predictive Relation for the Equity Risk Pre-
mium

The equity premium is obtained by dividing the expected excess share return by the stock

price. From equation (3.10), the equity premium, Rm,t+1 −R, can be written as

Rm,t+1 −R = Θt+1Πt
Pt

= θ0,t+1
1

Pt
+ θZ,t+1

Zt
Pt

(3.14)

where θ0,t+1 = Θt+1,11 is the first element of Θt+1; θZ,t+1 = (Θt+1,12,Θt+1,12, ...,Θt+1,1N ) is

the vector obtained by taking the 1st element of Θt+1 away.

The econometrician cannot directly observe the labor income state variable vector, Z.

It must be inferred from the available information, such as the stock price, P , and the

dividends, D. From the econometrician’ point of view, the dividend state variable, F , can
16See Bergantino (1998).
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be interpreted empirically as a value proportional to the demeaned earnings plus a noise,17

i.e.

Ft = aB(Bt − B̄) + ²B,t (3.15)

where Bt is the earnings with mean B̄; aB and B̄ are constants; ²B,t is a temporary shock,

which has an independent and identical normal distribution, ²B,t ∼ N(0, σ2
B). ²B,t can be

correlated with other innovations to the economy, ξt. From the normality assumption of the

model, the labor income state variable vector, Z, can be expressed as

Zt = η0,t + η1,tPt + η2,tDt + η3,tBt + υt (3.16)

where η0,t, η1,t, η2,t and η3,t areN×1 matrices dependent on t. υt is the unexpected component
of Z conditional on P , D and B. Its variance also depends on t. The coefficients are time

dependent because the coefficients, p0,t and pZ,t, of the price function, Pt = p0,t+pFFt+pZ,tZt,

are time varying due to demographic change, and thereafter the correlation matrix of Z, P ,

D and B is time varying.

Substituting the expression for Z back into equation (3.14), we have the predictive rela-

tion for the equity premium

Rm,t+1 −R = λ0,t + λ1,t
1

Pt
+ λ2,t

Dt
Pt
+ λ3,t

Bt
Pt
+ εt+1 (3.17)

where λ0,t = θZ,t+1η1,t, λ1,t = θ0,t+1 + θZ,t+1η0,t, λ2,t = θZ,t+1η2,t, λ3,t = θZ,t+1η3,t and εt =
θZ,t+1υt
Pt

. Equation (3.17) is the one of the main results of this paper. In equilibrium, the

equity premium is linear in the real per capita stock price, the dividend yield and the earnings

yield, but the coefficients of this linear relation are time varying because of demographic

17As Lintner (1956) documents, most managers have a target level of dividends equal to a fraction of
the earnings. A immediate implication is that the de-meaned dividends will be a fraction of the de-meaned
earnings, as we assumed here.
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change. These coefficients are highly non-linear functions of all the moments of the current

and the future demographic structures. Without further assumptions, we cannot determine

their signs and magnitude.

In what follows, we try different strategies to study this predictive relation. In Section

4, we calibrate a simplified version of the model, and obtain the dynamics of the coefficients

of the predictive relation. We are primarily interested in whether demographic change can

induce significant variation in these coefficients. In Section 5, we infer a demographic variable

that summarizes the demographic information for stock returns from the calibration results.

We then linearize the predictive relation and conduct empirical tests. We compare the

performance of the predictive relation with the results of previous empirical research.

4 Calibration

In this section, we calibrate a simplified version of the model. We want to show that de-

mographic change can induce variation in the coefficients of the linear predictive relation

so that simple linear predictive regressions that ignore the structural change may produce

misleading results. Because of data limitations, all the calibrations are with respect to an-

nual data. The derivation of the equilibrium uses the backward induction procedure. We

first solve the equilibrium at a future date, the year 2050 in this case, by assuming that the

demographic structure is constant after this date, and use this as the boundary condition

for the time varying equilibrium which we solve recursively.

[ Insert Figures 2-3 Here ]

The demographic data were collected from Citibase. We only consider the population

in the age range 20-74, with the average population from 1982 to 1984 normalized to unity.

Therefore, the economic age of an investor of calendar age 20 is τ = 0. The density function

of the time varying demographic structure for 1947-2050, g(τ ; t), is plotted in figure 2.

Additional information on the variables is given in Appendix C. As shown in figure 2, the

demographic structure has undergone drastic changes in the post-1947 period. From the

1960s to the 1980s, there was a boom in the share of the young population. Members of
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this generation are usually called “baby boomers”. Baby boomers entered their middle age

in the 1990s, and will retire in the late 2010s. As they age, the demographic structure

changes accordingly. Figure 3 plots two moments of the demographic structure, the share of

population in the age range 40-64 and the population average age, and their changes. The

share of population in the age range 40-64 is the highest in the middle 1960s, then decreases

and obtain its lowest level in 1986, and increases in the 1990s. The population age profile

has a similar pattern as this share of population.

[ Insert Figure 4 Here ]

We use the family questionnaire of the Panel Study of Income Dynamics (PSID) to

estimate the labor income process, which is specified by equations (2.2) and (2.3). The

PSID provides a panel of annual observations of individual and family income and other

variables from 1967 to 1992. In using the PSID, we take age of family head as a measure

of τ and the average of family labor income per family member, adjusted to the Standard

and Poor’s (S&P) Composite Index, as a measure of Yτ,t.
18 We deflated Yτ,t by the annual

average CPI to obtain real income.

Prespecify the dimension of the labor income state variable, N , to be 1, i.e. Zt becomes

a scalar. We proxy the labor income state variable, Z, by the de-meaned unemployment rate

scaled up by 100. For a given τ , we regressed the time series of Yτ,t on a constant, time t and
1

2
Z2
t to obtain the estimates of hτ , nτ , ωτ and στ , which are plotted in figure 4. Due to data

limitations, these estimates are volatile for even a small change in age. This contradicts the

economic intuition that the coefficients of the labor income process should be smooth in age.

Therefore, we use cubic polynomials to approximate these estimates. We will use the cubic

polynomial approximations as the true parameters in the numerical solution. We regress Zt

on its lagged values to obtain the estimates of aZ = 0.74 and σZ = 1.00.

From this rough estimation of the labor income process, we can see that households in the

age range 40-64 have significantly different labor income from others. They have the highest

18The average per capita market capitalization of one point of the S&P Composite Index is about 60
dollars. So we divide the family labor income per family member by 60 to adjust it to the S&P Composite
Index. The average real per capita labor income from 1967 to 1992 is 11420 dollars, which is 192.19 index
points.
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level of income from the estimates of hτ and nτ , and the highest level of idiosyncratic risk from

the estimate of στ . But their labor income has the lowest sensitivity to the labor income state

variable from the estimate of ωτ . The absolute value of the polynomial approximation for

ωτ of investors in the age range 40-64 is about half of that for investors of age 20. Combined

with the dynamics of the risk aversion coefficient as a function of age, these characteristics

make the population in the age range 40-64 have significantly different effects on the economy

from other age groups.

Prices, P , dividends per share, D, and earnings per share, B, which correspond to the

S&P Composite Index, were obtained from the Security Price Index Record Published by

Standard & Poor’s Statistical Service. We deflated them by CPI and population to obtain

the real per capita items.19 We use the long run average of dividends as D̄ = 8.54 and the

long run average of earnings as B̄ = 17.45. Note that, after substituting the expression for

F into equation (2.2), we have

Dt − D̄ = aB(Bt − B̄) + ²B,t + ²D,t (4.1)

We regress the de-meaned dividends, Dt − D̄, on the demeaned earnings, Bt − B̄, to obtain
the estimates of aB = 0.21 and σ

2
B + σ

2
D = 1.00. Denote F̂t = aB(Bt − B̄) . Note

F̂t = aF F̂t−1 + aF ²B,t−1 + ²F,t − ²B,t (4.2)

After regressing F̂t on a constant and its lagged values, we have the estimates of aF = 0.74

and (1 + a2
F )σ

2
B + σ

2
F = 0.27.

For the correlation between the innovations to dividends, ²D,t, to the dividend state

variable, ²F,t, and to the labor income state variable, ²Z,t, we assume that only ²F,t and ²Z,t

are correlated with a correlation coefficient ρFZ = −0.8. We assume that the innovations to
19We use the annual average stock price as that year’s stock price, the annual dividends as that year’s

dividends, and the annual earnings as that year’s earnings. Then, we divide them by the annual average of
CPI and that year’s population to obtain the real per capita items.
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earnings, ²B,t, are independent of ²D,t, ²F,t and ²Z,t, and that their volatility is σB = 0.32.

Thus, from the estimation results of equation (4.1)-(4.2), we have σD = 0.95 and σF = 0.33.

For other parameters, we let the riskfree interest rate r = 1.2%. The preference parameters

are set α = 0.08 and β = 1.5.20

[ Insert Table 1 Here ]

Table 1 summarizes the estimates or the prespecified values of the parameters. In this

section, we are primarily interested in whether demographic change can induce significant

variation in the coefficients of the predictive relation. Other parameter values have been

tried. They give similar qualitative results.

[ Insert Figure 5 Here ]

Figure 5 plots the time varying coefficients of the price function, p0,t and pZ,t. The

coefficients of the dividend state variable is a constant, pF = 2.79. We focus our analysis on

the pattern of pZ,t.

pZ,t is negative. Intuitively, the common component of investors’ labor income,
1

2
ωτZ

2,

can be viewed as a non-tradable security, whose next period payoff is Zt+1, and investors of

age τ have to hold
1

2
ωτZt share of this security. Since the dividend state variable, F , and

the labor income state variable, Z, are negatively correlated, dividends and labor income

are substitutes for each other. When Zt increases, everything else equal, an average investor

will reduce his demand for stocks, though he can not increase his position of labor income.

The stock price has to decrease to clear the market.

[ Insert Figure 6 Here ]

Figure 6 plots the resulting time varying coefficients of the expected excess return, θ0,t+1

and θZ,t+1. We are primarily interested in the pattern of θZ,t+1. θZ,t+1 is positive. As shown
20A number of capital market studies have obtain estimates of the coefficient of relative risk aversion

ranging from 2 to 16. We use 16 as an intermediate value of the coefficient of relative risk aversion and
scale it down by an income level of 200, adjusted to the S&P Composite Index, to estimate the coefficient
of absolute risk aversion.
The discounted factor, β, is set to be greater than 1 because utility is negative.
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before, the stock price decreases with Z. The expected excess return increases as the stock

price decreases. Therefore, the expected excess return increases with Z.

[ Insert Figure 7 Here ]

Figure 7 plots the time varying coefficients of the predictive relation specified in equation

(3.17). The signs of these coefficients are determined by the expectation of Z conditional on

the stock price, P , dividends, D, and earnings, B. In equilibrium, λ1,t and λ2,t are positive,

and λ3,t is negative, which is consistent to the empirical findings that the equity premium

decreases with the stock price, and increases with the dividend yield (Lamont (1998) and

Fama (1988)). Lamont also finds that conditional on the dividend yield, the earnings yield

is negatively correlated with the future return.

Demographic change causes significant variation in these coefficients. For example, in the

dividend yield case, the difference between the highest and the lowest level of λ2,t is about

6% of its average level. Therefore, if one regresses the excess return on the stock price,

the dividend yield and/or the earnings yield without considering the variation in the linear

coefficients, he is likely to obtain misleading results. A positive result can not conclude the

predictability of the equity premium, and a negative result can not rule it out, either.

[ Insert Figure 8 Here ]

The pattern of λ0,t, λ1,t, λ2,t and λ3,t in the late 1990s coincides with the stock market

performance at the same time, which the traditional predictive models fail to explain. During

this period, the stock price was extraordinarily high and dividends were quite low (See figure

9). The traditional predictive models, for example, Fama and French (1988) and Lamont

(1998), predict a low equity premium, while the actual equity excess return was quite high.

Our model, which incorporates demographic changes in the predictive relation, can be used

to explain this. As shown in figure 7, during this period the absolute values of λ1,t, λ2,t and

λ3,t are historically low, which means that the equity premium is not sensitive to the stock

price, the dividend yield and the earnings yield. The high level of the stock price and the

low level of the dividend yield do not mean that the equity premium is necessarily low. In
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addition, the constant term in the predictive relation, λ0,t, is relatively high. Everything else

equal, this means that the equity premium will be higher.

Figure 8 plots the fitted value of the predictive relation where the stock price, the dividend

yield and the earnings yield are obtained from the historical data and the coefficients are

derived under the calibrated parameter values. The predictive relation forecasts significant

variation in the equity premium. The highest level of the equity premium, 6.39%, is obtained

in 1954, and the lowest, 0.85%, is obtained in 1977. In particular, in the 1990s, the predictive

relation forecasts a high equity premium. The average of the fitted equity premium is 2.9%,

while the historical average of realized excess returns for the period 1947-1999 is 7.8%. We

are not trying to fit the model to this value.21 The calibration is simplified so that we

consider only one source of labor income risk, which is measured by the unemployment rate,

and the calibration is imprecise.

[ Insert Table 2 Here ]

Table 2 reports the correlations between moments of the demographic structure and the

calibrated coefficients, λ0,t, λ1,t, λ2,t and λ3,t. In order to minimize the effects of arbitrarily

choosing the future date, which is 2050, as the boundary in the numerical derivation, we

take the sample period as 1947-1999. The coefficients of the predictive relation are highly

correlated with changes in demographic moments, in particular, the change in population

average age and the change in the share of population in the age range 40-64. We conjecture

that it is the change in the share of population in the age range 40-64 that causes the

variation of the predictive relation. Intuitively, since households in this age range have the

least sensitive labor income to the macroeconomic risk, represented by the unemployment

rate here, the increase in this share of population introduces less labor income risk to the

whole economy. The role of stocks as a hedging vehicle should be less important. However,

they have the highest level of idiosyncratic labor income risk, and their risk aversion is

21Several researchers have questioned the use of historical average of realized returns as the estimate of the
equity premium. For example, Brown, Goetzmann and Ross (1995) obtain an equity premium of 4% after
adjusting the survival bias in the historical estimates of the equity premium; Blanchard (1995) claims that
the equity premium has gone steadily down since the early 1950s, and the premium appears to be around
2%-3% in the middle 1990s.
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relatively high as shown in figure 1, the increase in this share of population also makes

the population more risk averse, which makes the role of stocks as a hedging vehicle more

important. The net effect is different from zero. This motivates the later empirical tests.

In what follows, we will empirically test the predictive relation as specified in equation

(3.17). We use the change in the share of population in the age range 40-64 to summarize

the demographic information in the predictive relation for the equity premium. Since the

calibration is highly simplified, the results are only indicative of the potential importance of

fully anticipated demographic change.

5 Empirical Tests

In this section, we test the predictive relation specified in equation (3.17) using quarterly

equity excess returns for the post-1947 period. As suggested in Section 4, we use the change

in the share of population in the age range 40-64 to summarize the demographic information

in the predictive relation.

5.1 The Derivation of the Predictive Regression

We follow the tradition of using log variables. Define ς as the sum of log CPI and log

population. Write the log excess return as rm − rf , the log real per capita stock price as
ln(P ) = p− ς, where log price, p, is the natural logarithm of the nominal stock price, the log
real per capita dividends as ln(D) = d− ς , where log dividends, d, are the natural logarithm
of nominal dividends, and the log real per capita earnings as ln(B) = e − ς, where log
earnings, e, are the natural logarithm of nominal earnings. In addition, as in Lamont (1998),

we use the dividend payout ratio instead of the earnings yield in the predictive regression.22

Therefore, we loglinearize equation (3.17) as

22Lamont (1998) has shown that, in the predictive relation, using the dividend payout ratio is numerically
identical to using the earnings yield. To be consistent to previous research on the equity premium, we use
the dividend payout ratio here.
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rm,t+1 − rf,t+1 = λ
∗
0,t + λ

∗
1,t(pt − ςt) + λ∗2,t(dt − pt) + λ∗3,t(dt − et) + ²t+1 (5.3)

where λ∗0,t, λ
∗
1,t, λ

∗
2,t and λ

∗
3,t depend on λ0,t, λ1,t, λ2,t, λ3,t and the means of p− ς, d− p and

d− e. ²t+1 is the residual term, which is, in general, different from εt+1. The derivation uses

the fact ln(y+ x) ≈ ln(y+ e ¯lnx) + e
¯lnx(ȳ+ e

¯lnx)−1(ln x− ¯ln x), which is derived in Appendix

B.

We cannot estimate equation (5.3) directly because the coefficients are time varying due

to demographic change. As suggested in the calibration results in Section 4, we use linear

functions of the change in the share of population in the age range 40-64, denoted by φ, to

proxy the demographic variables in the predictive relation, i.e.

λ∗0,t = β0 + β1φt, λ∗1,t = β2 + β3φt, λ∗2,t = β4 + β5φt, λ∗3,t = β6 + β7φt (5.4)

Bakshi and Chen (1994) have found that the change in average age is significant in predicting

the annual equity excess return for the post-1947 period. In fact, as shown in figure 3 and

reported below, the change in the share of population in the age range 40-64 is highly

positively correlated with the change in average age. The information in the change in this

share of population for stock returns is similar to that in the change in average age. The

regression results obtained using linear functions of the change in average age to proxy the

demographic variables in the predictive relation are similar to those reported below.

Substituting the expressions (5.4) into equation (5.3), we have the predictive regression

rm,t+1 − rf,t+1 = β0 + β1φt + β2(pt − ςt) + β3φt(pt − ςt)
+β4(dt − pt) + β5φt(dt − pt) + β6(dt − et) + β7φt(dt − et) + ²t+1(5.5)
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5.2 Data

The sample period is 1947Q1-1999Q4. This period includes the late 1990s, in which the

baby boomers entered their middle age and the demographic structure underwent drastic

change as shown in figure 2. We also consider the subsample period 1947Q1-1994Q4, which

has been studied before, so that we can compare the relative performance of our model and

previous predictive regressions.

Stock returns, prices, dividends per share, and quarterly earnings per share all correspond

to the S&P Composite Index, because historical quarterly earnings data for the index are

available. Additional information on the variables is given in the Appendix C.

[ Insert Figure 9 Here ]

Excess returns, rm − rf , are total stock returns (continuously compounded including
reinvested dividends) minus returns on a portfolio of treasury bills. Log price, p, is the natural

logarithm of the nominal S&P Composite Index. Log dividends, d, are the natural logarithm

of the sum of the past four quarters of nominal dividends per share.23 Log earnings, e, are the

natural logarithm of a single quarter’s nominal earnings per share. The predictive relation

specified in equation (5.5) does not require that earnings and dividends be contemporary.

The derivation of the predictive relation just requires that earnings and dividends of whatever

period(s) are correlated with the labor income state variable vector, Z, and thereafter that

the expectation of Z is linear in the stock price, dividends and earnings. Log sum of CPI

and population, ς, is the sum of the natural logarithm of CPI and that of the previous year’s

population. The change in average age, ϑ, is the difference between the natural logarithm of

the population average age in the previous year and that in the year before. The change in the

share of population in the age range 40-64, φ, is the difference between the natural logarithm

of this share of population in the previous year and that in the year before. Thus, all the

explanatory variables on the right hand side of the predictive regression are predetermined.

Figure 9 plots the historical log real per capita stock price, p − ς, the log dividend yield,
d− p, and the log dividend payout ratio, d− e.

23We use the past four quarters of dividends to adjust the seasonality in dividends.
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[ Insert Table 3 Here ]

Summary statistics are reported in table 3. Several observations require special attention.

First, the real per capita stock price, p−ς , and the dividend yield, d−p, are highly correlated.
The correlation coefficient for the sample period 1947Q1-1999Q4 is -0.932. Therefore, if a

predictive regression has both variables on the right hand side, a multicollinearity problem

will arise. Secondly, the change in average age, ϑ, and the change in the share of population

in the age range 40-64, φ, are also highly correlated. The correlation coefficient for the sample

period 1947Q1-1999Q4 is 0.841. These two variables contain similar information, and can

be viewed as substitutes for each other. Therefore, in the following empirical tests, we just

use one of them, the change in this share of population, to summarize the demographic

information for stock returns.

Finally and most importantly, the real per capita stock price, p− ς, the dividend yield,
d−p, and the dividend payout ratio, d−e, are highly autocorrelated. The autocorrelation co-
efficients are 0.984, 0.976 and 0.725 respectively. If these three time series are non-stationary,

the regressions that run the equity excess return on these variables will be spurious. There-

fore, we have to clear up the stationarity issue, before we go further to the empirical tests.

The annual change in average age, ϑ, and the annual change in the share of population in

the age range 40-64, φ, are also highly autocorrelated. The autocorrelation coefficients are

0.908 and 0.939 respectively. But there is no reason to believe that these two time series are

non-stationary.

[ Insert Table 4 Here ]

We follow Horvath and Watson (1995) in testing the stationarity of the real per capita

stock price, p− ς, the dividend yield, d− p, and the dividend payout ratio, d− e. We just
need to show that any pair of log price, p, log dividends, d, log earnings, e, and log sum of

CPI and population, ς , which are non-stationary because of nominal and real growth in the

economy and population, are cointegrated and that the cointegration vectors are (1, -1). The

Horvath and Watson test provides an informative way to test the joint hypothesis that all

four variables are cointegrated with unitary coefficients. The procedure tests the alternative
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of known cointegrating vectors against the null of no cointegration. The test statistic is

identical to a Wald test for whether the error correction terms, p− ς, d−p and d− e, belong
on the right hand side of a vector autoregression (VAR) of 4p, 4ς, 4d and 4e. Table 4
reports the results of this quadri-variate error-correction VAR. The null hypothesis of no

cointegration is rejected.24

In summary, the statistical tests show that log price, p, log dividends, d, and log earnings,

e, and log sum of CPI and population, ς, all share a common trend. Thus, the difference

of any two of these variables are stationary. This finding also confirms our assumption that

the (real per capita) dividend process is stationary in our theoretical model.

5.3 Regression Results

In this section, we test the predictive relation specified in equation (5.5). We also try to

replicate previous empirical work of Fama and French (1988) and Lamont (1998) who focus

on the information in dividends and/or earnings for stock returns, and Bakshi and Chen

(1994) who focus on the demographic information for stock returns, in order to compare the

performance of our model to theirs.

[ Insert Table 5 Here ]

Table 5 replicates Fama and French (1988) and Lamont (1998) in predicting the quarterly

equity excess return. We regress the equity excess return on the dividend yield and/or the

dividend payout ratio. Panel A reports the regression results for the period 1947Q1-1994Q4,

which has been studied by Lamont (1998). The dividend yield and the dividend payout ratio

are significant in both the univariate and the multivariate regressions. When the dividend

yield and the dividend payout ratio are higher, the equity excess return will be higher. Row

3 shows that the dividend yield and the dividend payout ratio combined explain 11.7% of

the variation in the equity excess return for this period.

24Using quarterly data, the test statistics are 61.135 (and 88.989 with trend) for a VAR with one lag, and
63.208 for a VAR with four lags. All these are well above the 1 percent critical value of 41.08 (or 56.17)
for a system with four variables, three known cointegrating relationships with (or without) an unknown
cointegrating relationship, and a null hypothesis of no cointegration.
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Panel B reports the regression results for the period 1947Q1-1999Q4. This period includes

the late 1990s in which the baby boomers began to enter their middle age. The calibration

results in Section 4 suggest a significant changing structure in the predictive relation for

this period. Now the dividend yield is not significant in predicting the equity excess return

in either the univariate or the multivariate regressions for this period. Only the dividend

payout ratio is marginally significant. Row 6 shows that the dividend yield and the dividend

payout ratio combined explain only 1.5% of the variation in the equity excess return for this

period.

[ Insert Table 6 Here ]

Table 6 replicates Bakshi and Chen (1994) in using the change in average age to predict

the quarterly and annual equity excess return for the period 1947Q1-1999Q4. We also regress

the quarterly and annual equity excess return on the change in the share of population in the

age range 40-64 for the same period. Poterba (2000) regresses the real stock return, instead

of the equity excess return, on the level of this share, and finds no significant relation. As

suggested by the calibration results in Section 4, we expect that the change in this share

matters in predicting the equity excess return.

Panel A regresses the annual and quarterly equity excess return on the change in average

age. As in Bakshi and Chen (1994), the change in average age is significant. When the change

in average age is higher, the equity excess return is higher. However, the performance of the

change in average age in forecasting the short term, for example, quarterly, excess return,

is quite poor. As shown in row 2, the R2 is only 2.4%. Panel B shows that the change

in the share of population in the age range 40-64 has the similar problem in the predictive

regression.

The empirical evidence supports the claim that demographics matters in the determina-

tion of the equity excess return. However, the low regression R2, especially in predicting the

short-term equity excess return, suggests that considerable amount of information for stock

returns is missing.

[ Insert Table 7 Here ]
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Table 7 tests the predictive relation specified in equation (5.5). Panel A reports the

regression results for the period 1947Q1-1994Q4. Row 1 reports the coefficient estimates

of the predictive relation specified in equation (5.5). Although the 13.7% R2 is high, only

two explanatory variables, the dividend payout ratio, d− e, and the product of the dividend
payout ratio and the change in the share of population in the age range 40-64, φ(d−e), have
significant t-statistics. Remember that the real per capita stock price, p−ς, and the dividend
yield, d−p, are highly correlated. The multicollinearity problem causes lack of identification.
In rows 2-4, we take away the explanatory variables that have the lowest t-statistics one by

one, and conduct the regressions again until all the coefficients are significant. The fact that

there is no significant change in the R2 during this process confirms our suspicion of the

multicollinearity problem in the regressors in row 1.

Row 4 is the main result of our empirical tests. The equity excess return can be explained

by the dividend yield, d − p, the dividend payout ratio, d− e, and their products with the
change in the share of population in the age range 40-64, φ(d−p) and φ(d−e). The implicit
coefficients with the dividend yield and the dividend payout ratio, calculated by averaging

the change in this share of population out, are positive. Therefore, the equity excess return

still increases with the dividend yield and the dividend payout ratio. But the sensitivities

of the equity excess return to the dividend yield and the dividend payout ratio are time

varying. When the change in this share of population is higher, the equity excess return

becomes less sensitive to the dividend yield and the dividend payout ratio.

Comparing row 4, table 7 to row 3, table 5, we find that the coefficient estimates of the

dividend yield, d − p, and the dividend payout ratio, d − e, of these two regressions have
the same signs and similar magnitude. However, the inclusion of demographic information

significantly improves the R2. Row 3, table 5 reports R2 of 11.7%, while row 4, table 7

reports 14.7%.

Panel B reports the regression results for the period 1947Q1-1999Q4. We follow the same

procedure as in panel A, and end up with row 8. Row 8 has the same explanatory variables

as row 4 does. In addition, the coefficient estimates in row 8 have the same signs and similar

magnitude as in row 4. The late 1990s data did not damage the predictive power of our

model. Row 8 reports R2 of 13.6%, which is only slightly lower than 14.7% of row 4. The
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F -statistic is well about the 95 percent critical value of 2.37.

The coefficient estimates in row 8 have similar patter to the calibrated coefficients in

Section 4. For example, the coefficient of dividends, (0.076 − 2.215φ + 0.096 − 9.731φ =
0.172−11.946φ), is positive, which is obtained after averaging φ out, and negatively correlated
with φ, as predicted by λ2,t; the coefficient of earnings, −0.096 + 9.731φ, is negative, which
is obtained after averaging φ out, and positively correlated with φ, as predicted by λ3,t. This

confirms the quality of our calibration results.

The most significant improvement of our model on previous research on the predictability

of the equity premium is shown from the comparison between row 8 of table 7 and the

regressions in panel B of table 5, and that between row 8 of table 7 and row 4 of table 6.

Row 8 of table 7 states that the equity excess return can be explained by the dividend

yield and the dividend payout ratio, but the coefficients of the linear regression are time

varying because of demographic change. The regressions in panel B of table 5 ignore the

changing structure in the linear regression and produce misleading coefficient estimates.

Statistically, the regressions in panel B of table 5 can be viewed as misspecified versions of

row 8 of table 7. The two missing variables, φ(d − p) and φ(d − e), which are obviously
correlated with the dividend yield, d− p, and the dividend payout ratio, d− e, make classic
inference biased. The regressions in panel B of table 5 fail to detect any significance of the

dividend yield and the dividend payout ratio in predicting the equity excess return.

Figure 10 reports the forecasts of the quarterly log excess return on the S&P Composite

Index, rm − rf , from the predictive regression in row 6 of table 5 and from that in row 8

of table 7. The predictive regression that incorporates demographic change forecasts more

variation in the equity premium than does the predictive regression that ignores it. The most

significant difference between these two forecasts happened in the early 1950s, the 1970s and

the 1990s, when the demographic structure changed drastically and the change in the share

of population in the age range 40-64 was far from its average level. Demographic change

helps to understand the relation between the equity premium and the dividend yield and the

dividend payout ratio. For example, in 1974, there were no significant change in these two

explanatory variables, but the change in the share of population in the age range 40-64 was
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quite low, which made the equity premium sensitive to the explanatory variables. Therefore,

a modest change in these two variables produced significant change in the equity premium.

In contrast, in the 1990s, demographic change made the equity premium less sensitive to

these three variables. Even though the dividend yield and the dividend payout ratio were

low, the equity premium was still high. The predictive regression forecasts negative equity

premia in the middle 1970s and in 1987, which correspond to the market crash then.25

Row 4 of table 6 does not consider the information in dividends and earnings for stock

returns. It can be viewed as an unconditional version of row 8 of table 7. Actually, if

one calculates the implicit constant term and the coefficient of the change in the share of

population in the age range 40-64, φ, in row 8 of table 7 by substituting the means of the

dividend yield, d−p, and the dividend payout ratio, d−e, into the regression, he will obtain
the similar estimates as in row 4 of table 6. Failure to consider the information in dividends

and earnings still produces a significant result about the predictive power of demographic

variables, but the R2 is quite low.

In summary, our predictive relation that incorporates not only the information in div-

idends and earnings, but also the demographic information significantly improves on the

previous predictive regressions that only consider either of them. The sources of predictive

power are different. We use a linear combination of the dividend yield and the dividend

payout ratio to predict the equity excess return, and use demographic variables to explain

the changing structure in this linear relationship.

[ Insert Table 8 Here ]

We also test the significance of the dividend yield, the dividend payout ratio and the

change in share of population in the age range 40-64 in predicting the long-run equity excess

return. Table 8 reports the regression results of predicting the equity excess return of 1

up to 4 quarters. As claimed by Fama and French (1988), the predictability of the equity

excess return increases with the return horizons. The regression reports R2 of 13.6% when

25Boudoukh, Richardson and Smith (1993) report that the equity premium is negative in some states of
the world.
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predicting the quarterly equity excess return, while 35.8% when predicting the annual equity

excess return.

Compare row 4 of table 8 to row 2 and 4 of table 6. Even though the demographic

variables, the change in average age and the change in the share of population in the age

range 40-64 in this case, explain a significant proportion, around 10%, of the variation in the

annual equity excess return respectively, adding the dividend yield and the dividend payout

ratio increases this proportion further. Row 4 of table 8 reports R2 of 35.8%. This further

confirms our theoretical analysis and empirical results.

Figure 11 plots the forecast of the annual equity premium obtained from the fitted value

of the predictive regression in row 4 of table 8. Compare figure 11 to figure 8. Since the

interval between consecutive observations is one quarter in figure 11, and one year in figure

8, the former figure documents much more variation in the equity premium than the latter.

Also, the scales of the equity premium are different in the these two figures. However, the

moving trends of the equity premium are quite similar. This further confirms the quality

prediction of our calibration results.

6 Conclusion

In this paper, we have developed a dynamic overlapping generations (OLG) equilibrium

model with a constant per capita stock supply, and a deterministic but time varying de-

mographic structure to study the relation between demographics and the equity premium.

Investors’ income derives from two sources: labor and capital investments. The labor income

process and the dividend process are correlated. Investors trade stocks both for consumption

purposes and to hedge against the risk of labor income. Since the equilibrium excess return

on stocks follows an AR(1) process (with deterministic time varying coefficients), investors

with exponential utility over consumption are more risk taking and, everything else equal,

hold more risky assets on average when young than when old.

A non-linear predictive relation between the equity premium and demographic variables,

the real per capita stock price, the dividend yield and the dividend payout ratio is derived
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from the equilibrium price function. In particular, the equity premium is linear in the real

per capita stock price, the dividend yield and the dividend payout ratio, but the coefficients

of this linear relation are time varying because of demographic change. These coefficients

depend on the current and all the future demographic structures.

Calibration results suggest that the observed historical demographic change could induce

significant variations in the coefficients of the predictive relation, and that these coefficients

are correlated with the change in the share of population in the age range 40-64. Writing

these coefficients as linear functions of the change in this share of population, we express

the equity premium as a linear function of the change in this share of population, the real

per capita stock price, the dividend yield, the dividend payout ratio and the products of the

change in this share of population with the real per capita stock price, the dividend yield

and the dividend payout ratio.

The inclusion of demographic variables significantly improves on the previous predictive

regressions, in which the equity excess return is regressed on the dividend yield and/or the

dividend payout ratio. In particular, replication of the regression by Lamont (1998) for the

period 1947-1994, in which the quarterly equity excess return is regressed on the dividend

yield and the dividend payout ratio, yields R2 of 11.7%, while adding the change in the share

of population in the age range 40-64 to the regression raises R2 to 14.7%. For the period

1947-1999, the previous predictive regressions are no longer significant, while our predictive

regression is significant with R2 of 13.6%.

Appendix A

A.1 Proof of Proposition 3.2 and Theorem 3.3

In what follows, we first treat proposition 3.2 as a conjecture, and prove theorem 3.3. We

then use the results from the proof of theorem 3.3 to prove proposition 3.2.

Proof of Theorem 3.3

The investors’ optimization problem, equations (3.1)-(3.2), can be expressed in the form
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of the Bellman equation

0 = max
X,c

½
−βτ exp(−αct) + Et

·
J(Wt+1,=t+1, τ + 1; t+ 1)

¸
− J(Wt,=t, τ ; t)

¾
(A.1)

subject to

Wt+1 = (Wt − ct)R+XtQt+1 + Yτ+1,t+1 (A.2)

where Qt+1 is expressed as in equation (3.5), given that proposition 3.2 is true.

Consider the following trial solution for the value function

J(Wt,=t, τ ; t) = −βτ exp(−γτWt − µτ t− 1
2
ΠTt ντΠt) (A.3)

where γτ and µτ are functions of τ . ντ is a (N + 1)× (N + 1) symmetric matrix dependent
on τ .
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(A.4)

Substitute expression (A.4) into equation (A.1) and take derivatives with respect to Xt and

ct to obtain
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−γτ+1qτ+1Πt + γ
2
τ+1Γ

−1
τ+1Xt = 0 (A.5)

αβτ exp(−αct) + γτ+1REt

·
J(Wt+1,Πt+1, τ + 1; t+ 1)

¸
= 0 (A.6)
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aa
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aa
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ln(
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The optimal investment-consumption policy is

Xt =
1

γτ+1
Γτ+1qτ+1Πt (A.7)

ct = c̄τ +
Rγτ+1

α+Rγτ+1

Wt +
γτ+1nτ+1 + µτ+1

α+Rγτ+1

t+
1

2(α+Rγτ+1)
ΠTt mτ+1Πt (A.8)

The optimal demand for stocks as expressed in theorem 3.2 is immediate if one substitutes

the expression for qτ+1 into equation A.7. Substituting the optimal consumption-investment

policy back into the Bellman equation (A.1), we obtain

γτ =
αRγτ+1

α+Rγτ+1
(A.9)

µτ =
α(γτ+1nτ+1 + µτ+1)

α+Rγτ+1

(A.10)

ντ = −2 ln
·
exp(−αc̄τ ) + dτ+1β exp(Rγτ+1c̄τ )

¸
i
(N+1,N+1)
11 +

α

α+Rγτ+1

mτ+1 (A.11)

where i(n,n)
11 is an n × n index matrix.26 Equations (A.9)-(A.11), combined with the initial

values γT = α, µT = 0 and νT = 0(N+1)×(N+1), recursively solve γτ , µτ and ντ . The solution

determines γτ , µτ and ντ in the trial value function, equation (A.3), and thereafter fully

specifies the investors’ optimal consumption-investment policy, equations (A.7)-(A.8).

The trial value function is confirmed on condition that the price function is as claimed in

proposition 3.2. To ensure that the value function is actually the equilibrium value function,

we have to verify proposition 3.2.

26An index matrix i
(m,n)
ij is an m×n matrix with the element {i, j} being one and all other elements being

zero.
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Proof of Proposition 3.2

From equation (A.7), at time t, each investor of age τ has demand for stocks,
1

γτ+1
κτ+1Πt.

Market clearing requires

G(t)

T−1X
τ=0

g(τ )
1

γτ+1
κτ+1Πt = G(t) (A.12)

Therefore

·T−1X
τ=0

g(τ)
1

γτ+1
κτ+1

¸
11

= 1 (A.13)

·T−1X
τ=0

g(τ)
1

γτ+1

κτ+1

¸
12

= 01×N (A.14)

where [.]mn is the element {m,n} of the matrix. Equations (A.13)-(A.14) are a set of algebraic
equations of p0 and pZ . The solution completely specifies the proposed equilibrium price

function. We are not able to express the roots in analytical form. A numerical method can

be used to solve equations (A.13)-(A.14). This verifies proposition 3.2, and further confirms

the proof of theorem 3.3.

A.2 Proof of Proposition 3.4 and Theorem 3.5

In what follows, we first treat proposition 3.4 as a conjecture, and prove theorem 3.5. We

then use the results from the proof of theorem 3.5 to prove proposition 3.4. The derivation

is quite similar to that for proposition 3.2 and theorem 3.3. But allowing for demographic

change makes the coefficients of the price function and the value function dependent on time

t.

Proof of theorem 3.5

The investors’ optimization problem, equations (3.1)-(3.2), can be expressed in the form

of the Bellman equation

40



0 = max
X,c
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subject to

Wt+1 = (Wt − ct)R+XtQt+1 + Yτ+1,t+1 (A.16)

where Qt+1 is expressed as in equation 3.10, given proposition 3.4 is true.

Consider the following trial solution for the value function
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where γτ and µτ are defined as in equation (A.9)-(A.10). ντ,t is a (N+1)×(N+1) symmetric
matrix dependent on τ and t.

Denote νaaτ,t = a
Tντ,ta, ν

ab
τ,t = a

Tντ,tb, ν
bb
τ,t = b

Tντ,tb, Ωτ,t = (Σ
−1 + νbbτ,t + γτω

bb
τ )

−1, Γτ,t =

(ΦtΩτ,tΦ
T
t )
−1, qτ,t = Θt − ΦtΩτ,t(γτωabτ + νabτ,t)T and dτ,t = |Ω−1

τ,tΣ|−
1
2 exp

n1
2
γ2
τσ

2
τ −

h
γτ (hτ +

nτ ) + µτ

io
. It is straightforward to show that

Eτ

·
J(Wt+1,Πt+1, τ + 1; t+ 1)

¸
= −dτ+1,t+1β

τ+1 exp

½
−γτ+1(Wt − ct)R− (γτ+1nτ+1 + µτ+1)t

−γτ+1Xtqτ+1,t+1Πt +
1

2
γ2
τ+1X

2
t Γ

−1
τ+1,t+1 −

1

2
ΠTt

·
γτ+1ω

aa
τ+1 + ν

aa
τ+1,t+1

−(γτ+1ω
ab
τ+1 + ν

ab
τ+1,t+1)Ωτ+1,t+1(γτ+1ω

ab
τ+1 + ν

ab
τ+1,t+1)

T

¸
Πt

¾
(A.18)

Substitute expression (A.18) into equation (A.15) and take the derivatives with respect to

Xt and ct to obtain

−γτ+1qτ+1,t+1Πt + γ
2
τ+1Γ

−1
τ+1,t+1Xt = 0 (A.19)

αβτ exp(−αct) + γτ+1REt

·
J(Wt+1,Πt+1, τ + 1; t+ 1)

¸
= 0 (A.20)
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Denote c̄τ,t =
1

α+Rγτ+1
ln(

α

dτ+1,t+1βRγτ+1
), andmτ,t = ν

aa
τ,t+γτω

aa
τ −(γτωabτ +νabτ,t)Ωτ,t(γτωabτ +

νabτ,t)
T + qTτ,tΓτ,tqτ,t. The optimal investment-consumption policy is

Xt =
1

γτ+1

Γτ+1,t+1qτ+1,t+1Πt (A.21)

ct = c̄τ,t +
Rγτ+1

α+Rγτ+1

Wt +
γτ+1nτ+1 + µτ+1

α+Rγτ+1

t

+
1

2(α+Rγτ+1)
ΠTt mτ+1,t+1Πt (A.22)

The optimal demand for stocks as expressed in theorem 3.5 is immediate if one substitutes

the expression for qτ+1,t+1 into equation (A.21). Substituting the optimal consumption-

investment policy back into the Bellman equation (A.15), we obtain

ντ,t = −2 ln
·
exp(−αc̄τ,t) + dτ+1,t+1β exp(Rγτ+1c̄τ,t)

¸
i
(N+1,N+1)
11

+
α

α+Rγτ+1
mτ+1,t+1 (A.23)

The trial value function is confirmed on condition that the price function is as claimed in

proposition 3.4. To ensure that the trial indirect utility function is actually the equilibrium

value function, we have to verify proposition 3.4.

Proof of theorem 3.5

From equation (A.21), at time t, each investor of age τ has demand for stocks,
1

γτ+1
κτ+1,tΠt.

Market clearing requires

G(t)
T−1X
τ=0

g(τ ; t)
1

γτ+1
κτ+1,t+1Πt = G(t) (A.24)

Therefore
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·T−1X
τ=0

g(τ ; t)
1

γτ+1
κτ+1,t+1

¸
11

= 1 (A.25)

·T−1X
τ=0

g(τ ; t)
1

γτ+1

κτ+1,t+1

¸
12

= 01×N (A.26)

Equations (A.25)-(A.26) are a set of algebraic equations of p0 and pZ. The solution com-

pletely specifies the proposed equilibrium price function. We are not able to express the

roots in analytical form. A numerical method can be used to solve equations (A.25)-(A.26).

This verifies proposition 3.4, and further confirms the proof of theorem 3.5.

Appendix B

Derivation of Approximation Formula

ln(y + x) = ln(y + elnx)

≈ ln(y + e
¯lnx) + e

¯lnx(y + e
¯lnx)−1(ln x− ¯ln x)

≈ ln(y + e
¯lnx) + e

¯lnx(ȳ + e
¯lnx)−1(ln x− ¯ln x)

The first approximation is obtained by viewing ln(y + x) as a function of lnx and taking

Tailor expansion around ¯ln x. The second approximation is obtained by substituting ȳ for y.

Appendix C

Data

The Consumer Price index (CPI) data, 1982-1984=100, are from the Department of

Labor, Bureau of Labor Statistics. We use the CPI of the last month of the quarter as the

CPI for that quarter.
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The annual demographic data are from Citibase. Citibase provides the annual demo-

graphic data from 1946 to 1997 in 5 years interval in people’s age. It also provides the

demographic data after 1997, projected by the Bureau of Census. We view the projection

as true historical data. We only consider the population in the age range 20-74, with the

average population from 1982 to 1984 normalized to unity. A simple interpolation is used to

calculate the population of any age in each year.

The Panel Study of Income Dynamics (PSID) provides a panel of annual observations of

individual and family income and other variables from 1967 to 1992. The PSID oversamples

poorer members of the U.S. population by including a sample of poor families from the

Survey of Economic Opportunity (SEO). We dropped the families that were originally part

of the SEO to obtain a random sample. Only families with a male head from age 20 to 74

are used. We take a broad definition of labor income. Total family labor income includes

total labor income of the head of the family and his wife along with total transfers to the

family. The transfers include unemployment compensation, workers’ compensation, pension

income, child support, social security, and so on. Observations that still report zero for this

broad income category are dropped. Labor income defined this way is adjusted to the S&P

Composite Index.

The unemployment rate data are from the Department of Labor, Bureau of Labor Sta-

tistics. We use the annual average unemployment rate as that year’s unemployment rate.

All data on stock and bill returns come from Ibbotson Associates. Excess stock returns

are rm,t+1 − rf,t+1, defined as ln(CSTINDt+1/CSTINDt)− ln(CSTINDt+1/CSTINDt), where

CSTIND is an index of total return (including reinvested dividends) on the S&P Composite

Index and USTIND is an index of total return on T-bills, as of the last day of quarter t.

The basic earnings and dividends data are from the Security Price Index Record published

by Standard & Poor’s Statistical Service. EPS is quarterly earnings per share, Adjusted to

Index, Composite. DPS is 12-month moving total dividends per share, Adjusted to Index,

Composite. The Index Record report dividends and earnings indexed to their composite price

index, SPLEVEL. We define log price as p ≡ ln(SPLEVEL), log dividends as d ≡ ln(DPS)
and log earnings as e ≡ ln(EPS) and . Log sum of CPI and population is defined as

44



ς ≡ ln(CPI/100) + ln(Pop), where CPI is the price level of the last month in the quarter,

and Pop is the amount of population in the previous year.
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Figure 1: The Risk Aversion Coefficient of the Value Function

The figure plots the risk aversion coefficient of the value function, γτ . The parameter values are α = 0.08,

r = 1.2% and T = 54. We consider the population in the age range 20-74, so that the economic age of an

investor of calendar age 20 is τ = 0. The x-axis is of calendar age.
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Figure 2: The Demographic Structure of the U.S. Population in the Age Range 20-74 for 1947-2050

Source: Citibase. The demographic data of U.S. population after 1997 are based on projections by Bureau

of Census.
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Figure 3: Moments of the U.S. Demographic Structure for 1947-1999

Source: Citibase. The whole population include only people in the age range 20-74.
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Figure 4: The Estimates of the Labor Income Process

At time t, an investor of age τ has labor income

Yτ,t = hτ + nτ t+
1

2
ZTt ωτZt + ²τ,t

The variance of ²τ,t is σ
2
τ . The solid lines represent the empirical estimates of the labor income process, hτ ,

nτ , ωτ and στ ; the dashed lines represent the cubic polynomial approximations of the empirical estimates.
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Figure 5: The Time Varying Coefficients of the Price Function

The figures plot the coefficients of the price function

Pt = p0,t + pFFt + pZ,tZt

where p0,t is the constant term; pF is the coefficient of the dividend state variable, F ; pZ,t is that of the labor

income state variable, Z. p0,t and pZ,t are time varying because of demographic change. pF is a constant,

which equals 2.79 under the calibration.
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Figure 6: The Time Varying Coefficients of the Expected Excess Return

The figures plot the coefficients of the expected excess return

Et(Qt+1) = θ0,t+1 + θZ,t+1Zt

where θ0,t+1 is the constant term; θZ,t+1 is the coefficient of the labor income state variable, Z.
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Figure 7: The Time Varying Coefficients of the Predictive Relation

The figures plot the coefficients of the predictive relation

Rm,t+1 −R = λ0,t + λ1,t
1

Pt
+ λ2,t

Dt
Pt
+ λ3,t

Bt
Pt
+ εt+1

where λ0,t is the constant term; λ1,t is the coefficient of the inverse of the real per capita stock price,
1

Pt
;

λ2,t is that of the dividend yield,
Dt
Pt
; λ3,t is that of the earnings yield,

Bt
Pt
.
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Figure 8: The Fitted Value of the Calibrated Predictive Relation

The figure plots the fitted value of the predictive relation

Rm,t+1 −R = λ0,t + λ1,t
1
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Dt
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+ λ3,t
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+ εt+1

where Pt,
Dt
Pt

and
Bt
Pt

are the historical values of the real per capita stock price, the dividend yield and the

earnings yield respectively, which correspond the S&P Composite Index; λ0,t, λ1,t, λ2,t and λ3,t are derived

in the numerical solution under the calibrated parameter values.
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Figure 9: The Real Per Capita Stock Price, the Dividend Yield and the Dividend Payout Ratio
1947Q1-1999Q4

The figures plot the historical log real per capita stock price, p − ς, the log dividend yield, d − e, and the
dividend payout ratio, d − e. Log price, p, is the natural logarithm of the nominal S&P Composite Index.

Log dividends, d, are the natural logarithm of the sum of the past four quarters of nominal dividends per

share. Log earnings, e, are the natural logarithm of a single quarter’s nominal earnings per share. Log

sum of CPI and population, ς, is the sum of the natural logarithm of CPI and that of the previous year’s

population.
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Figure 10: The Fitted Value of the Predictive Regression

The solid line represents the fitted value of the predictive regression, calculated by

rm,t+1 − rf,t+1 = 0.202 + 0.076(dt − pt)− 2.215φt(dt − pt) + 0.096(dt − et)− 9.731φt(dt − et)

where d−p is the log dividend yield; d−e is the log dividend payout ratio; φ is the previous year’s change in
the log share of population in the age range 40-64. This predictive regression is estimated in row 8 of table
7. The dashed line represents the fitted value of the predictive regression by Lamont (1998), calculated by

rm,t+1 − rf,t+1 = 0.038 + 0.016(dt − pt) + 0.050(dt − et)

This predictive regression is estimated in row 6 of table 5.

1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997
−0.2

−0.1

0

0.1

0.2

year

r m
−

r f

58



Figure 11: The Fitted Value of the Long-run Predictive Regression

The figure plots the fitted value of the long-run predictive regression, calculated by

rm,t+1 − rf,t+1 = 0.918 + 0.280(dt − pt)− 6.332φt(dt − pt) + 0.110(dt − et)− 23.064φt(dt − et)

where rm,t+1− rf,t+1 is the annual equity premium; d− p is the log dividend yield; d− e is the log dividend
payout ratio; φ is the previous year’s change in the log share of population in the age range 40-64. This

predictive regression is estimated in row 4 of table 8.
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Table 1: Model Calibration I

This table lists the estimates or the prespecified values of the parameters used in the numerical analysis.

Parameter Descriptions Notation Parameter Values

The Dividend Process

1 Long-run Level of Dividends, Dt D̄ 8.54
2 Volatility of Temporary Shocks to Dividends, ²D,t σD 0.95
3 AR(1) Coefficient of the Dividend State Variable, Ft aF 0.74
4 Volatility of Temporary Shocks to the Dividend State Variable, ²F,t σF 0.33
5 Long-run Level of Earnings, Bt B̄ 17.45
6 Ratio of the Dividend State Variable, Ft, to the De-meaned Earnings, Bt aB 0.22
7 Volatility of Temporary Shocks to Earnings, ²B,t σB 0.32

The Labor Income Process

8 AR(1) Coefficient of the Labor Income State Variable, Zt aZ 0.74
9 Volatility of Temporary Shocks to the Labor Income State Variable, ²Z,t σZ 1.00

Correlations between the Dividend Process and the Labor Income Process

10 Correlation Coefficients between ²D,t and ²F,t ρDF 0
11 Correlation Coefficients between ²D,t and ²Z,t ρDZ 0
12 Correlation Coefficients between ²F,t and ²Z,t ρFZ -0.80

Other Parameters

13 Risk Aversion Coefficient α 0.08
14 Subjective Discount Factor β 1.5
15 Real Interest Rate r 1.2%
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Table 2: Model Calibration II

This table reports the correlations between the calibrated coefficients of the predictive relation moments of
the demographic structure. The sample period is 1947-1999.

λ0,t λ1,t λ2,t λ3,t

Population Average Age -0.36 0.37 0.51 -0.51
Change in Population Average Age 0.85 -0.85 -0.77 0.77
Share of Population in the Age Range 40-64 -0.28 0.28 0.44 -0.44
Change in Share of Population in the Age Range 40-64 0.75 -0.75 -0.66 0.66

Table 3: Summary Statistics 1947Q1-1999Q4

rm − rf are quarterly log excess returns, calculated as total returns on the S&P composite Index minus
total returns on T-bills. p− ς is the log real per capita stock price. d− p is the log dividend yield. d− e is
the log dividend payout ratio. Log price, p, is the natural logarithm of the nominal S&P Composite Index.
Log dividends, d, are the natural logarithm of the sum of the past four quarters of nominal dividends per
share. Log earnings, e, are the natural logarithm of a single quarter’s nominal earnings per share. Log
sum of CPI and population, ς, is the sum of the natural logarithm of CPI and that of the previous year’s
population. The change in average age, ϑ, is the previous year’s change in the natural logarithm of the
population average age. The change in the share of population in the age range 40-64, φ, is the previous
year’s change in the natural logarithm of this share of population.

Correlation Matrix
rm,t+1 − rf,t+1 pt − ςt dt − pt dt − et ϑt φt

rm,t+1 − rf,t+1 1.000
pt − ςt -0.092 1.000
dt − pt 0.085 -0.932 1.000
dt − et 0.139 0.044 0.086 1.000
ϑt 0.168 0.034 -0.125 0.103 1.000
φt 0.167 0.441 -0.522 0.104 0.841 1.000

Univariate Summary Statistics

Mean 0.019 5.462 -3.318 0.673 0.760a 1.180a

Standard deviation 0.075 0.431 0.359 0.201 2.471a 10.910a

Min -0.311 4.569 -4.474 0.268 −4.362a −17.064a
Max 0.193 6.624 -2.597 1.565 4.395a −22.006a
Autocorrelation 0.079 0.984 0.976 0.725 0.908b 0.939b

a We multiply the value by 103.
b The value is with respect to annual observations.
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Table 4: Quadri-variate Cointegration Tests 1947Q1-1999Q4

This table shows a first-order error-correction vector autoregression of the changes in log price, 4p, log
dividends, 4d, log earnings, 4e, and log sum of CPI and population, 4ς, on their own lags and the lagged
level of the real per capita stock price, p − ς, the dividend yield, d − p, and the dividend payout ratio,
d − e. The Horvath-Watson statistic tests the alternative hypothesis that log price, p, log dividends, d, log
earnings, e and log sum of CPI and population, ς, are cointegrated with unitary coefficients, against the
null hypothesis of no cointegration. The test statistic is an exclusion test for the real per capita stock price
p − ς, the dividend yield, d − p, and the dividend payout ratio, d − e, in this vector autoregression. OLS
standard errors are in parentheses below the coefficient estimates.

Dependent
variable Const 4pt 4ςt 4dt 4et pt − ςt dt − pt dt − et R2

4pt+1 0.164 0.057 -0.801 -0.327 -0.099 -0.036 -0.022 -0.006 0.069
(0.080) (0.069) (0.450) (0.281) (0.037) (0.034) (0.042) (0.032)

4ςt+1 0.015 0.001 0.299 0.084 -0.000 0.007 0.011 -0.010 0.184
(0.011) (0.010) (0.065) (0.040) (0.005) (0.005) (0.006) (0.005)

4dt+1 0.067 0.022 -0.023 0.373 -0.008 -0.011 -0.006 -0.028 0.303
(0.017) (0.015) (0.099) (0.062) (0.008) (0.008) (0.009) (0.007)

4et+1 -0.026 0.117 1.261 0.184 -0.324 -0.162 -0.234 0.203 0.214
(0.142) (0.123) (0.804) (0.502) (0.066) (0.061) (0.076) (0.057)

Horvath-Watson test for cointegration: 61.135
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Table 5: Predicting the Quarterly Equity Excess Return by the Dividend Yield and/or the Dividend
Payout Ratio

This table reports the results of the regressions that replicate Fama and French (1988) and Lamont (1998),
in which the equity excess return is regressed on the dividend yield and/or the dividend payout ratio, for
different periods. The predictive regression is

rm,t+1 − rf,t+1 = β0 + β1(dt − pt) + β2(dt − et) + ²t+1

where rm − rf is the quarterly log excess return on the S&P Composite Index; d − p is the log dividend
yield; d−e is the log dividend payout ratio. Standard errors, calculated using the method outlined in Newey
and West (1987) with a lag length of 4, are in parentheses below the coefficient estimates. The reported R2

is the adjusted R2 statistic. D-W is the Durbin-Watson statistic for the error term. Obs is the number of
observations. F is the F statistic.

No. Const d− p d− e R2 D-W F

Panel A: 1947Q1-1994Q4 Obs=192

1 0.222 0.064 0.046 1.766 10.196
(0.054) (0.017)

2 -0.042 0.083 0.039 1.802 8.778
(0.025) (0.033)

3 0.207 0.083 0.112 0.117 1.805 13.599
(0.057) (0.020) (0.035)

Panel B: 1947Q1-1999Q4 Obs=212

4 0.080 0.018 0.002 1.812 1.513
(0.051) (0.016)

5 -0.016 0.053 0.015 1.821 4.131
(0.022) (0.029)

6 0.038 0.016 0.050 0.015 1.804 2.639
(0.056) (0.017) (0.029)
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Table 6: Predicting the Quarterly and Annual Equity Excess Return by Demographic Variables
1947-1999

This table reports the results of the regressions that replicate Bakshi and Chen (1994), in which the equity
excess return is regressed on the change in average age, and the regressions that run the equity excess return
on the change in the share of population in the age range 40-64. The predictive regression is

rm,t+1 − rf,t+1 = β0 + β1(Demographic Variables)t + ²t+1

where rm − rf is the quarterly or annual log excess return on the S&P Composite Index. In calculating
the annual equity excess return, over-lapping data are used. ϑ is the previous year’s change in the natural
logarithm of the population average age. φ is the previous year’s change in the log share of population in
the age range 40-64. Standard errors, calculated using the method outlined in Newey and West (1987) with
a lag length of 4, are in parentheses below the coefficient estimates. The reported R2 is the adjusted R2

statistic. D-W is the Durbin-Watson statistic for the error term. Obs is the number of observations. F is
the F statistic.

No. Return Horizons Const Demographic Variables R2 D-W Obs F

Panel A: rt+1 = β0 + β1ϑt + ²t+1

1 Annual 0.062 21.533 0.113 0.552 209 27.478
(0.018) (7.275)

2 Quarterly 0.016 5.121 0.024 1.892 212 6.090
(0.005) (2.137)

Panel B: rt+1 = β0 + β1φt + ²t+1

3 Annual 0.074 4.577 0.094 0.533 209 22.634
(0.017) (1.532)

4 Quarterly 0.018 1.160 0.023 1.886 212 6.012
(0.005) (0.463)
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Table 7: Predicting the Quarterly Equity Excess Return by Using the Change in the Share of
Population in the Age Range 40-64 to Proxy Demographic Change

This table reports the results of the regressions specified in equation (5.5). We use linear functions of the
change in the share of population in the age range 40-64 to proxy the time varying coefficients. The predictive
regression is

rm,t+1 − rf,t+1 = β0 + β1φt + β2(pt − ςt) + β3φt(pt − ςt)
+β4(dt − pt) + β5φt(dt − pt) + β6(dt − et) + β7φt(dt − et) + ²t+1

where rm − rf is the quarterly log excess return on the S&P Composite Index; p − ς is the log real per
capita stock price; d − p is the log dividend yield; d − e is the log dividend payout ratio; φ is the previous
year’s change in the log share of population in the age range 40-64. Standard errors, calculated using the
method outlined in Newey and West (1987) with a lag length of 4, are in parentheses below the coefficient
estimates. The reported R2 is the adjusted R2 statistic. D-W is the Durbin-Watson statistic for the error
term. Obs is the number of observations. F is the F statistic.

No. Const φt pt − ςt φt(pt − ςt) dt − pt φt(dt − pt) dt − et φt(dt − et) R2 D-W F

Panel A: 1947Q1-1994Q4 Obs=192

1 0.217 -9.182 0.000 1.355 0.086 -2.373 0.117 -8.390 0.137 1.823 5.342
(0.066) (15.741) (0.028) (6.633) (0.043) (7.638) (0.035) (3.317)

2 0.217 -9.182 1.354 0.086 -2.374 0.117 -8.390 0.142 1.823 6.266
(0.060) (15.801) (6.527) (0.020) (7.407) (0.036) (3.321)

3 0.219 -6.799 0.087 -3.860 0.118 -8.322 0.146 1.820 7.548
(0.061) (8.711) (0.020) (2.942) (0.035) (3.422)

4 0.223 0.087 -1.737 0.114 -8.096 0.147 1.825 9.241
(0.063) (0.020) (0.674) (0.034) (3.351)

Panel B: 1947Q1-1999Q4 Obs=212

5 0.223 -8.067 -0.002 0.439 0.083 -3.638 0.109 -8.432 0.133 1.905 5.644
(0.068) (13.267) (0.028) (6.502) (0.044) (7.175) (0.036) (2.660)

6 0.221 -8.084 0.422 0.085 -3.671 0.108 -8.425 0.138 1.904 6.616
(0.061) (13.326) (6.394) (0.021) (6.964) (0.036) (2.668)

7 0.221 -7.327 0.085 -4.128 0.109 -8.398 0.142 1.903 7.977
(0.062) (4.872) (0.021) (1.444) (0.035) (2.795)

8 0.202 0.076 -2.215 0.096 -9.731 0.136 1.911 9.338
(0.056) (0.018) (0.518) (0.035) (2.802)
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