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ABSTRACT OF THE DISSERTATION

Identification, Estimation and Testing of Auction Models

by

Jie Wei

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2014

Professor Aman Ullah, Committee Co-Chairperson
Professor David Malueg, Committee Co-Chairperson

The first chapter establishes a way of inferring risk aversion in a first-price auction

(FPA) model when an entry decision is endogenous. Bidders’ risk aversion is captured

by a parameter in constant relative risk aversion utility functions and the parameter

is then partially identified in a set under a “monotonicity” condition. The recovery of

the partially identified risk aversion parameter is concluded in a confidence set (CS).

The CS is constructed by inverting a test dealing with many inequality restrictions of

quantiles. In the spirit of Andrews and Shi (2013), we implement quantile selection

to address possible slackness. Asymptotic results show desired properties of size and

power against fixed (and some local) alternatives. Confidence sets perform fairly well

in finite samples and the comparison of results highlights the necessity of quantile

selection. The inference is illustrated by using US Forest Service timber auction data

and detects considerable risk aversion.

Exogenous entry is a convenient assumption to make for identification and in-

ference in auction models. The second chapter examines this assumption and devel-

ops a test against endogenous entry in first-price auctions with risk aversion. The ap-

proach also takes auction observed heterogeneity into account. The desirable property

of asymptotic size and consistency of the test is proven, and Monte Carlo simulations

approve the test at finite samples. The application to US Forest Service timber auc-

tions brings in interesting implication: entry is exogenous with lower entry level but is

endogenous with higher entry level. The result also suggests a relatively stronger risk
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aversion attitude than what is obtained in the literature.

The third chapter shows nonparametric identification and estimation of private

value distribution and density functions in first-price auctions with endogenous entry.

In the model, symmetric bidders face a nontrivial entry cost and a binding reserve

price. We identify latent structures by solving a two stage game, and estimate density

functions (point-wisely) by using and comparing two different methods. Monte Carlo

experiments show good performance of our estimators.

viii



Contents

List of Figures xi

List of Tables xii

1 Introduction 1

2 Inference of Risk Aversion in First-Price Auctions with Endogenous Entry 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Partial Identification of Risk Aversion . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 An FPA Model with Endogenous Entry . . . . . . . . . . . . . . . . 6
2.2.2 Identification Assumptions . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 An Identification Set of Risk Aversion . . . . . . . . . . . . . . . . 10

2.3 Nonparametric Estimation of Quantiles and Asymptotic Properties . . . 11
2.4 Confidence Sets and Their Asymptotic Consistency . . . . . . . . . . . . . 13

2.4.1 Construction of CS’s . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1.1 A Strategy of Obtaining Critical Values . . . . . . . . . . 13

2.4.2 Asymptotic Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2.1 A Useful Bound Result . . . . . . . . . . . . . . . . . . . . 14
2.4.2.2 Asymptotic Size . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Power Against Fixed Alternatives . . . . . . . . . . . . . . . . . . . 15
2.5 Implementation and Numerical Study . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Computation Implementation . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2.1 Basic Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2.2 Type 1 DGP . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2.3 Type 2 DGP . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Empirical Application to USFS Timber FPA . . . . . . . . . . . . . 19
2.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Testing Exogenous Entry in First-Price Auctions with Risk Averse Bidders 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 The Consistent Test of Exogenous Entry . . . . . . . . . . . . . . . . . . . 28

3.3.1 Nonparametric Estimation of Quantiles . . . . . . . . . . . . . . . 28
3.3.2 An Infeasible Estimator of the CRRA Coefficient . . . . . . . . . . 29
3.3.3 The Test Statistic and Consistency . . . . . . . . . . . . . . . . . . 29
3.3.4 Bootstrap the Critical Value . . . . . . . . . . . . . . . . . . . . . . 31

ix



3.4 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Identification and Estimation of First-Price Auctions with Entry 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Identification of the Mixed Entry Strategy . . . . . . . . . . . . . . 39
4.3.2 Identification of F(v) and f (v) . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Comparison with Identification under Exogenous Entry . . . . . . 41

4.4 Nonparametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Construction of Estimators . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 A Brief Discussion of Asymptotic Results . . . . . . . . . . . . . . 42

4.5 Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Appendix to Chapter 1 61
A.1 Definition of UR, FR and GR as in Guerre, Perrigne and Vuong (2009) . . . 61
A.2 Proof of Results in Section 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.2.2 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.3 Proof of Results in Section 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.3.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.4 Power Against a−1
L -Local Alternatives . . . . . . . . . . . . . . . . . . . . . 66

A.5 Details about DGP in Section 2.5 . . . . . . . . . . . . . . . . . . . . . . . 68
A.5.1 Calculation for Type 1 DGP . . . . . . . . . . . . . . . . . . . . . . 68
A.5.2 Calculation for Type 2 DGP . . . . . . . . . . . . . . . . . . . . . . 69

A.6 Graphing Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B Appendix to Chapter 3 73
B.1 Details of the Change of Variables . . . . . . . . . . . . . . . . . . . . . . . 73

x



List of Figures

4.1 Estimate and 95% CIs for F(v) and f (v) at β = 0.5. . . . . . . . . . . . . . 46
4.2 Estimate and 95% CIs for F(v) and f (v) at β = 1. . . . . . . . . . . . . . . . 47
4.3 Estimate and 95% CIs for F(v) and f (v) at β = 2. . . . . . . . . . . . . . . . 48
4.4 Comparison of Simulated Average Estimate for F(v) and f (v) when β =

0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Comparison of Simulated Average Estimate for F(v) and f (v) when β =

1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Comparison of Simulated Average Estimate for F(v) and f (v) when β =

2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1 Bound for ΘI in Type 1 DGP. . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2 Bound for ΘI in Type 2 DGP. . . . . . . . . . . . . . . . . . . . . . . . . . 72

xi



List of Tables

2.1 Finite Sample Performance for Type 1 DGP by using Ṽ (·, ·) . . . . . . . . . 22
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Chapter 1

Introduction

Auctions have been applied in trading a wide range of objects, involving im-

mense amount of value. As researchers, we would like to learn the fundamental prim-

itive to understand bidders’ behaviour at our best.

Two sources can mainly influence bidders’ decision making. One is bidders’ risk

attitude. A higher level of risk aversion induces a bidder to bid closer to her true value,

and therefore increases a seller’s benefit. The other is bidders’ private values to objects

on sale. Knowledge of the value distribution or density is decisive in designing an

optimal auction mechanism.

One significant feature of this dissertation is that it places considerable attention

on endogeneity. This consideration makes the research more appealing as endogeneity

is a popular issue wherever we employ data in economics. On the other hand, intro-

duction of endogeneity fails some main results in the literature. So we need to seek

different solutions under new approaches.

In particular, under exogenous entry, observed different numbers of bidders offer

an ideal source of variation while keeping the underlying value distributions intact.

Similar to the way of estimating a panel model with fixed effect, the uncertainty of

value distribution can be well removed by some sort of “difference” techniques, so that

one can reach identification of other unknowns such as utility functions. Then one

may come back to recover the value distribution at the final stage. With endogenous

entry, however, there is no certain way to separate the uncertainty of unknown value
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distributions with other unknowns, and therefore, we need to think hard about how

much we can recover and what we can still learn, perhaps under some other weak

conditions.

The first two chapters deal with the problem of learning risk aversion with en-

dogenous entry. In the first chapter, “Inference of Risk Aversion in First-Price Auctions

with Endogenous Entry”, the alternative main assumption we impose is a monotonic-

ity condition, under which the number of entrant bidders indicate the ranking of value

distributions in the sense of first-order stochastic dominance (FOSD). The idea of re-

covering risk aversion is to see which (range of) values of the risk aversion parameter

can support the main assumption. This idea naturally leads us to developing a test for

FOSD of unobserved value distributions, by employing recovered value quantiles at

all levels. The technique of Chapter one establishes recovery of an identified set with

multiple values of parameters as solutions.

A natural question to ask now is whether it is necessary to relax the assumption

of exogenous entry, or in other words, when it is justified to use the assumption of

exogenous entry to estimate risk aversion. The second chapter “Testing Exogenous

Entry in First-Price Auctions with Risk Averse Bidders” addresses this question. The

main object of Chapter two is to test the assumption of exogenous entry, and the by-

product is that we obtain the estimate for the risk aversion parameter over a subset of

data where exogenous entry is likely.

In the first two chapters, we do not discuss the recovery of private value distribu-

tions or density functions, or they are treated as some nuisance parameters. In the third

chapter, “Identification and Estimation of First-Price Auctions with Entry”, we turn to

the private value part. There we assume risk neutrality of bidders, yet we are facing a

non-trival endogeneity problem: the sample selection comes from both an entry cost

and a binding reserve price. We need to solve the game in two stages to take care of the

two sources of endogeneity, and estimate value distribution and density accordingly.

Chapter three basically shows a nonparametric approach to first-price auctions with

the first stage of bidders playing a mixed entry strategy.

The solutions that this dissertation tries to provide apply to situations where en-
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try is non-negligible in auctions. One can realize the application is indeed broad by

seeing that it usually takes bidders a good amount of time and money to prepare for

bids and decide to enter or not in reality. A large proportion of existing literature

hinges on one restriction that entry is exogenous. The approach provided in this dis-

sertation is different and more general. Hence, it is a good reference for researchers to

carry out robust inference and institutions to make effective policies.
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Chapter 2

Inference of Risk Aversion in

First-Price Auctions with

Endogenous Entry

2.1 Introduction

An auction provides a transaction format for the trading and allocating of various ob-

jects, such as the rights of exploiting resources and the procurement of constructing

highways. The extensive application calls for a deep understanding of primitives in

an auction, and meanwhile provides rich examples and data for research. To adapt to

various sophisticated auction models, new and effective econometrics methods have

been invented. Meanwhile, as is often the case, one single problem in an auction can

be modeled several different ways in economics. To compare them and choose which

model to use, a practitioner may consult econometricians with data, to examine, for

instance, major assumptions of different candidates.

Estimating agents’ risk aversion is an important issue in empirical microeco-

nomics study. The role risk aversion plays in auctions is relevant to mechanism design.

Generally speaking, a first-price auction (FPA) is ranked by revenue over an ascending

auction with risk averse bidders, whereas the two formats have the same rank with

risk neutral ones. Also, since bidders generally bid more aggressively as risk aversion
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increases, risk aversion may undercut the screening effect of a reserve price and thus

reduce the optimal reserve price (possibly down to 0). Our primary interest is the risk

aversion attitude of bidders represented by their von Neumann-Morgenstern (vNM)

utility function. By virtue of identification results from Guerre, Perrigne and Vuong

(2009), this function is observationally equivalent to a member from a parametrized

family of utility functions under mild assumptions.

As for the other underlying primitive of bidders’ (conditional) value distribu-

tion, we keep it nonparametrically specified. It has been shown (e.g., by Campo et al.

(2011)) that a utility function is not identifiable in this scenario. To solve this prob-

lem, Guerre, Perrigne and Vuong (2009) propose an exogenous participation condition

that assumes that bidders’ private values are (conditionally) independent on the num-

ber of active bidders. On the other hand, empirical study shows significantly selective

entry to auctions: 25% in the US Minerals Management Service (Hendricks, Pinkse

and Porter, 2003) and 28% in the Texas Department of Transportation (DOT) (Li and

Zheng, 2009). By ignoring endogenous entry, inference of underlying primitives would

suffer selection bias. Alternatively, Guerre, Perrigne and Vuong (2009) and Haile, Hong

and Shum (2003) propose instrument variable approaches to control for endogeneity.

The validity of instruments thus raises to be an issue yet to be addressed formally. It is

worth noticing that Fang and Tang (2014) consider testing risk aversion with endoge-

nous entry in ascending auctions. The use of their inference is rather limited, as it is

not very informative at different degrees of risk aversion.

Motivated by a robust inference against endogeneity, one general approach which

has become popular recently, especially in treatment effect study, is to start with only

a few “minimal” assumptions agreed on by almost everyone, and see how much of our

interest in the unknown can be recovered from observables with those assumptions.

More often than not, it comes with non-unique solutions as in an identified set charac-

terized by a certain type of bounds containing objects of the unknown, and sharpness

of the bounds depends on modeling strategies and data sizes. Inference based on sharp

bounds may be fairly informative.

Inspired by this approach, this paper relaxes the assumption of exogenous en-
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try by assuming first-order stochastic dominance (FOSD) of (conditional) private value

distributions, which are not observable. The bounds obtained by this restriction turn

out to be nontrivial but fairly informative in some data generation processes (DGPs).

To preserve consistency, the test for FOSD employs many quantiles of values recov-

ered from quantiles of obervables as instruments. For inference faced with many

(in)equality conditions in general, the main challenge is that one must deal with nui-

sance parameters as slackness of infinite dimensions. Meanwhile, one may want to

employ (infinitely) many conditions for sharp inference. The question then is how

to select the most informative restrictions. Some papers that address these technical

challenges include: Andrews and Shi (2013), Chernozhukov, Lee and Rosen (2013)

and Lee, Song and Whang (2013), among others. We implement selection over many

inequalities on quantiles in the spirit of Andrews and Shi (2013). The rate at which the

test can detect local alternatives mainly depends on uniform rates from nonparametric

estimation of quantiles.

The rest of this paper is organized as follows. Section 2.2 describes the environ-

ment of an FPA model with specification of entry and shows an identification set of

risk aversion. Section 2.3 details the nonparametric (kernel) estimation of quantiles

and density from bids and shows the asymptotic properties of estimators, which are

used in section 2.4, for testing. Section 2.4 constructs a confidence set for the true risk

aversion parameter by inverting a test of FOSD, and shows the asymptotic consistency

of the test. Section 2.5 illustrates the main idea of inference by Monte Carlo simulation

and an empirical application to US Forest Service (USFS) timber auction sales. Sec-

tion 2.6 concludes and discusses possible extensions. Omitted proofs and details are

reserved for the appendix.

2.2 Partial Identification of Risk Aversion

2.2.1 An FPA Model with Endogenous Entry

There is one unit of object for sale in one single auction Ai , i = 1,2,3, . . . ,L. Auction

A′is are independent from each other. By convention, we characterize an auction game

6



in two stages. At stage one of entry, there is an imperfect signal Si ∈ S observed by

potential bidders in total of N ∗i within Ai . Yet S ′i s are unobserved to econometricians.

By the end of stage one, potential bidders make decisions of entry to stage two of

bidding. Each potential bidder possesses an identical vNM utility function U (·) with

U (0) = 0, U ′(·) > 0, and U ′′(·) ≤ 0.

Entry incurs a cost associated with bid preparation and information acquisition.

We assume that the entry cost is the same level of K for all bidders in all auctions. To

avoid negative wealth after paying the entry cost, without loss of generality we assume

that bidders are endowed with initial wealth K . This is rather a normalization. The

inference with bidders having initial wealth larger than K would also work, though by

some proper normalization. Again, K is assumed observed by bidders but not econo-

metricians. A bidder who actually enters the second stage becomes active.

Bidding behavior with entry has been studied recently by, for example, Gentry

and Li (2014), Li and Zheng (2009) and Fang and Tang (2014). Bidders adopt differ-

ent participation strategies at the entry stage according to their knowledge. Basically,

mixed entry (entry with a positive probability) occurs if there is no private information

observed at the entry stage, whereas a pure entry decision is made by a cut-off value if

such information is available at the entry stage. Differently from common approaches

described in the literature, we assume that entry of bidders is sequential and observed

by all (other) bidders including potential ones. Heuristically, each (identical a priori)

potential bidder prior to entry in auction Ai is assigned randomly a different number

from 1 to N ∗i . At the entry stage, bidder j decides to enter or not and then bidder

j + 1 does the same after observing bidder j’s entry decision, for j = 1,2, . . . ,N ∗i − 1. The

reason to consider observed sequential entry here is that in USFS timber auctions for

example, potential bidders usually conduct “cruises” of a tract after entry but before

bidding, as a way of investigating timber values. The “cruises” usually last for days

and thus are likely to be observed in a given tract.

For active bidder j in auction i, she will draw her private value Vij indepen-

dently from a distribution FVi |si (· | si) (Fsi (·) hereafter), where Vij ∈ [v(si),v(si)]. Then

she formulates and submits her bid bij . For simplicity , we assume there are no binding

7



reserve prices.

Suppose there are eventually ni (out of N ∗i ) active bidders at the second stage of

bidding within auction Ai , where ni ≡ n(si) ∈ N =
{
2,3, ...,nN

}
, a finite set. With our

normalization of initial wealth, the entry cost, the utility function and observed se-

quential entry, one can easily see that our bidding model falls into an FPA framework

without initial wealth or entry cost but with known number of active bidders. In par-

ticular, an active bidder’s expected payoff function coincides with the one under the

model specification proposed by Campo et al. (2011). Hence the bid bij solving (active)

bidder j ′s optimization problem satisfies, as in Campo et al. (2011), that

vij = bij +Λ−1(
1

ni − 1

Gsi (bij )

gsi (bij )
), (2.1)

where Gsi (bij ) (gsi (bij )) is the conditional distribution (density) of bij , and Λ−1(·) is the

inverse function of Λ(·) where Λ(·) = U (·)
U ′(·) .

2.2.2 Identification Assumptions

Inheriting the basic identification structure from Guerre, Perrigne and Vuong (2009)

or Campo et al. (2011), we impose Assumptions 1 and 2 for primitives in our model

with unobserved heterogeneity.

Assumption 1. U (·) ∈ UR, Fs(·) ∈ FR and Gn(·) ∈ GR where UR, FR and GR are defined in

Appendix A.1.

Assumption 2. Given any s ∈ S , for n(s) ∈ N , Fs ∈ FR and Gn ∈ GR, there exists θ ∈ Θ ≡

(0,1] such that U (x) = xθ solves the structural equation (2.1).

Assumption 1 ensures that an observed bid distribution Gn ∈ GR can be rational-

ized by [U,Fs] ∈ UR ×FR. Assumption 2 specifies CRRA for UR.

One way to think about the role that an unobserved signal s plays here is to

consider a possible form of correlation between Si and Vij .

Assumption 3. The set S is a totally ordered set. Its order is induced by (FOSD)

Vs′ �FOSD Vs⇒ s′ > s. (2.2)
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Note that the assumption of conditional independence can be treated as a very

particular version of Assumption 3 and thus is much stronger. Moreover, the assump-

tion of FOSD is weaker than that of affiliation, as pointed out by Gentry and Li (2014).

For an active bidder observing signal s in an n-(active)bidder auction, it is easy

to verify that her bidding function can be written as

bs,n,θ(v) =
1

Hs,n,θ(v)

∫ v

0
xhs,n,θ(x)dx = v −

∫ v

0

Hs,n,θ(x)
Hs,n,θ(v)

dx, (2.3)

where Hs,n,θ(v) = [Fs(v)](n−1)/θ, and hs,n,θ(v) is its density. Hence, the bidder’s expected

payoff at the entry stage can be shown as

∫ ∞
0

[
∫ v

0

Hs,n,θ(x)
Hs,n,θ(v)

dx]θdFs(v) ≡ πs,n(θ). (2.4)

With the payoff of non-participation beingU (K) = Kθ, we get ni ≡ n(si) = max{n :

πsi ,n(θ)−Kθ ≥ 0}.

Next comes the additional assumption for the “value” of information s.

Assumption 4. ∀θ ∈ Θ and for ∀s, s′ ∈ S , such that s < s′, one of the two specifications

below holds and is known to econometricians.

1. (“Good” news for larger signals) πs,n(θ) is increasing with s, and

πs′ ,n(s)+1(θ) > Kθ.

2. (“Bad” news for larger signals) πs,n(θ) is decreasing with s, and

πs,n(s′)+1(θ) > Kθ.

Assumption 4 can be understood as restrictions to the domain of FR such that

a larger signal can only be either “good” news or “bad” news for bidders. For exam-

ple, under specification 1 a larger signal increases bidders’ expected payoff at the entry

stage; furthermore, the increase is supposed to be profitable enough so that more po-

tential bidders are induced to enter. The opposite occurs under specification 2.

It is not surprising to see that the result of expected payoff purely increasing with

signals, as in Marmer, Shneyerovb and Xu (2013), does not necessarily hold here, since

we do not assume independence of bidders’ signals. Here we provide some intuition

of why the monotonicity in Assumption 4 may work in either direction. A larger signal
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s′ could discourage entry, as it may shift mass of value density to the higher end so

much so that competition becomes extremely fierce among high value bidders. As

such, πs,n(θ) may decrease with s, and it is possible to have specification 2 hold. On

the other hand, the first order stochastic dominance due to a wider support is likely to

cause specification 1. We will provide one case for each specification in Assumption 4

as a data generation process (DGP) in section 2.5 to fit the intuition.

Consequently, we can obtain a “monotonic entry” result. To simplify, we impose

an additional Assumption 5 of a sufficiently large number of potential bidders to en-

sure that the monotonicity is strong, and we summarize the result in Proposition 1.

The proof is omitted as the statement is quite straightforward.

Assumption 5. The maximal element nN of the finite set N satisfies that nN < N ∗i , i =

1,2, ...,L.

Proposition 1. Under Assumptions 1-3 and 5, ni(≡ n(si))

(a) is strictly increasing with si under specification 1 of Assumption 4,

(b) and is strictly decreasing with si under specification 2 of Assumption 4.

2.2.3 An Identification Set of Risk Aversion

With U0(x) = xθ
0
, θ0 ∈Θ, the previous necessary condition (2.1) now is

vij = bij +θ0 1
ni − 1

Gsi (bij )

gsi (bij )
≡ bij +θ0Xij , (2.5)

where Xij ≡ 1
ni−1

Gsi (bij )
gsi (bij )

. Or equivalently, if si = s, it is necessary that

Vs(τ) = bs(τ) +θ0Xs(τ),∀τ ∈ [0,1], (2.6)

where Xs(τ) = 1
n(s)−1

τ
gs(bs(τ)) , and Y (τ) stands for the τ quantile of a generic random

variable Y .

∀s, s′ ∈ S , such that s < s′, we know Vs′ �FOSD Vs by Assumption 3. So we have

bs(τ) +θ0Xs(τ) = Vs(τ) ≤ Vs′ (τ) = bs′ (τ) +θ0Xs′ (τ),∀τ ∈ [0,1]. (2.7)
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By proposition 1, there exist n , n′ such that n(s) = n, and n(s′) = n′ . This indicates

that (2.7) can be expressed as

[bn′ (τ)− bn(τ)] +θ0[Xn′ (τ)−Xn(τ)] ≥ 0, ∀τ ∈ [0,1]. (2.8)

Without loss of generality, consider that specification 1 in Assumption 4 holds

and is known to econometricians. Thus (2.8) holds ∀n,n′ ∈ N , such that n′ > n. This

leads to an identification set of θ, denoted by ΘI .

ΘI ≡ {θ : [bn′ (τ)− bn(τ)] +θ[Xn′ (τ)−Xn(τ)] ≥ 0, ∀τ ∈ [0,1], (2.9)

∀n′ ,n ∈ N , n′ > n, ∀Gn,Gn′ ∈ GR, θ ∈Θ
}
.

Remark 1. As for the two specifications in Assumption 4, an econometrician may not

always know which one holds. The uncertainty may not be a big problem when ΘI =

∅ under a misspecification from Assumption 4. Inference without knowledge of the

correct specification is illustrated by one application with real data as in section 2.5.3.

2.3 Nonparametric Estimation of Quantiles and Asymptotic

Properties

We aim to construct a CS to cover the true parameter θ0 with probability greater or

equal to 1−α for α ∈ (0,1). The CS is derived by inverting a test in section 2.4, which

adopts quantiles appearing in (2.8) as instruments. The asymptotic consistency of

our test relies on properties of those nonparametrically estimated quantiles which are

shown in this section.

SupposeN = {n,n′}, where n < n′. Let π(l) = P r(ni = l), l ∈ N , i = 1,2, ...,L. Define

4X(τ) ≡ Xn′ (τ) − Xn(τ), and 4b(τ) ≡ bn′ (τ) − bn(τ). It follows that the identification

condition in (2.9) now becomes

4b(τ) +θ4X(τ) ≥ 0, ∀τ ∈ [0,1]. (2.10)

To save notations, let Q(τ,θ) ≡ 4b(τ) +θ4X(τ). Let K(u) : R→ R be a kernel-like

function. Define Kh(u) = h−1K(uh ), where h = o(1) is a bandwidth. To have consistent
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estimators, we require the following (standard) assumption on K(·).

Assumption 6. (a) | K(u) |≤ K <∞ and
∫
| K(u) | du ≤ µ <∞

(b) For some Λ1 <∞ and L <∞, K(u) = 0 for | u |> L and ∀u,u′ ∈ R,

| K(u)−K(u′) |≤Λ1 | u −u′ |.

(c) Lh→∞, ( LhlnL )
1
2hR→ 0.

Consider the following estimators:

π̂(n) =
1
L

L∑
i=1

1(ni = n)

Ĝn(b) =
1

π̂(n)nL

L∑
i=1

n∑
j=1

1(ni = n)1(bij ≤ b)

b̂n(τ) = Ĝn
−1

(τ) ≡ inf
b

{
b : Ĝn(b) ≥ τ

}
ĝn(b) =

1
π̂(n)nL

L∑
i=1

n∑
j=1

1(ni = n)Kh(b − bij )

X̂n(τ) =
1

n− 1
τ

ĝn(b̂n(τ))

Q̂(τ,θ) = 4̂b(τ) +θ4X̂(τ) = [b̂n′ (τ)− b̂n(τ)] +θ[X̂n′ (τ)− X̂n(τ)].

∀τ1, τ2 such that 0 < τ1 < τ2 < 1, by Guerre, Perrigne and Vuong (2000, Propo-

sition 1), ∀n ∈ N , there is a fixed inner compact interval, say [bn,1,bn,2], such that

[bn(τ1),bn(τ2)] ⊂ (bn,1,bn,2), and [bn,1,bn,2] ⊂ [bn,bn]. Hereafter, we use τ1 and τ2 for a

generic arbitrary fixed inner compact interval [τ1, τ2] ∈ [0,1].

Lemma 1 in Appendix A.2 shows uniform convergence results of estimators de-

fined above with convergence rates. Based on Lemma 1, we are able to show asymptotic

normality of relevant statistics of quantiles.

Proposition 2. Under Assumptions 1 and 6, ∀n ∈ N , and ∀τ ∈ [τ1, τ2], ∀b ∈ [bn,1,bn,2], let

Vn(τ) = τ2

(n−1)2
1

nπ(n)g3
n (bn(τ))

∫
K2(u)du, and then

(a) (Lh)1/2(ĝn(b)− gn(b))→d N (0, gn(b)
nπ(n)

∫
K2(u)du),

(b) (Lh)1/2(X̂n(τ)−Xn(τ))→d N (0,Vn(τ)).
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Corollary 1. Under Assumptions 1 and 6, ∀τ ∈ [τ1, τ2] and ∀θ ∈ Θ, (Lh)1/2(Q̂(τ,θ) −

Q(τ,θ))→d N (0,θ2V (τ)), where V (τ) = Vn(τ) +Vn′ (τ).

As for choosing a bandwidth, one typical way is to set h = cL−χ, where c is a

constant. It is easy to verify that χ = 1
2R+1 satisfies Assumption 6. Moreover, it can be

easily seen that such a value of χ leads to the optimal convergence rate (Lh)1/2 = L
R

2R+1 ≡

aL.

2.4 Confidence Sets and Their Asymptotic Consistency

2.4.1 Construction of CS’s

By the identification result of risk aversion in section 2.2, ∀θ ∈Θ, the null and alterna-

tive hypotheses of our test can be written as

H0 :Q(τ,θ) ≥ 0,∀τ ∈ (0,1),

H1 :Q(τ,θ) < 0, for some τ ∈ (0,1).

Consider a Cramer-Von Mises-type(CvM) statistic,

TL(θ) =
∫ 1

0
[
Q̃(τ,θ)

(Ṽ (τ,θ))
1
2

]2
−dτ, (2.11)

where [x]− = 0 if x ≥ 0, and [x]− = −x if x < 0; Q̃L(τ,θ) = aLQ̂L(τ,θ); ṼL(τ,θ) ≡ θ2V̂L(τ) =

θ2(V̂n(τ) + V̂n′ (τ)), where V̂n(τ) = τ2

(n−1)2
1

nπ̂(n)ĝn
3(bn(τ))

∫
K2(u)du.

Let cL,1−α(θ) be the critical value for a test with nominal significance level α.

Then the nominal 1−α CS for the true parameter θ0 is

CSL =
{
θ ∈Θ : TL(θ) ≤ cL,1−α(θ)

}
. (2.12)

2.4.1.1 A Strategy of Obtaining Critical Values

Define Q∗(τ,θ) = aLQ(τ,θ). Rewrite equation (2.23) as

TL(θ) =
∫ 1

0
[
Q̃L(τ,θ)−Q∗L(τ,θ)

ṼL(τ,θ)
1
2

+
Q∗L(τ,θ)

ṼL(τ,θ)
1
2

]2
−dτ. (2.13)
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Note that there is no consistent estimator for Q∗L(τ,θ). We replace Q∗L(τ,θ) in

(2.13) by a data-dependent quantile selection(QS) function ϕL(·,θ).

Define

ξL(θ,τ) ≡ κ−1
L Q̃(τ,θ)Ṽ (τ,θ)−

1
2 , (2.14)

where κL is a sequence diverging as L→∞, and our QS function is defined as

ϕL(·,θ) = BL1(ξL(τ,θ) > 1), (2.15)

where BL is a non-decreasing positive sequence.

Assumption 7. κL→∞ and BL/κL→ 0 as L→∞.

It is necessary for κL→∞ to deliver consistency of our test. The size of the test

is correct as long as BL is non-decreasing.

With the QS function ϕL(·,θ), we define

TL(ϕL,θ) =
∫ 1

0
[
Q̃L(τ,θ)−Q∗L(τ,θ)

ṼL(τ ;θ)
1
2

+
ϕL(τ,θ)

ṼL(τ ;θ)
1
2

]2
−dτ. (2.16)

To obtain critical values, we will simulate the randomness of Q̃L(τ,θ) −Q∗L(τ,θ)

by using (re-centered) bootstrap Q̃†L(τ,θ)− Q̃L(τ,θ), so that we can define

T †L (ϕL,θ) =
∫ 1

0
[
Q̃†L(τ,θ)− Q̃L(τ,θ)

ṼL(τ ;θ)
1
2

+
ϕL(τ,θ)

ṼL(τ ;θ)
1
2

]2
−dτ. (2.17)

Then the critical value is obtained by

cQSL,1−α(ϕL,θ) ≡ c0
L,1−α(ϕL,θ), (2.18)

where c0
L,1−α(ϕL,θ) is the 1−α quantile of T †L (ϕL,θ).

To appreciate the virtue of QS at finite samples in power performance, we com-

pare QS CS’s with plug-in(PA) CS’s, which ignores slackness and quantile selection and

generates the critical value defined by

cPAL,1−α(θ) ≡ c0
L,1−α(0,θ). (2.19)

2.4.2 Asymptotic Size

2.4.2.1 A Useful Bound Result

To derive asymptotic coverage results, we first consider an infeasible estimator
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T̆L(θ) =
∫ 1

0
[
Q̃†L(τ,θ)− Q̃L(τ,θ)

ṼL(τ,θ)
1
2

+
Q∗L(τ,θ)

ṼL(τ,θ)
1
2

]2
−dτ (2.20)

The infeasible estimator T̆L(θ) simulates the randomness of TL(θ), as if we knew

Q∗L(τ,θ). The next result shows that this approximation performs well asymptotically

in probability.

Theorem 1. Under Assumptions 1 and 6, ∀θ ∈ΘI , ∀x ∈ R and ∀δ > 0, we have

(a) limsup
L→∞

[P (TL(θ) > x)− P (T̆L(θ) + δ > x)] ≤ 0,

(b) liminf
L→∞

[P (TL(θ) > x)− P (T̆L(θ)− δ > x)] ≥ 0.

2.4.2.2 Asymptotic Size

Now let us show asymptotic coverage probability results. Denote a CS constructed by

QS and PA with sample size L by CSQSL and CSPAL respectively. The idea is to show that

critical values obtained by using ϕL(·,θ) are no smaller than by using Q∗L(·,θ) asymp-

totically in probability.

Theorem 2. Under Assumptions 1, 6 and 7, ∀θ ∈ΘI ,

(a) liminf
L→∞

P (θ ∈ CSQSL ) ≥ 1−α,

(b) liminf
L→∞

P (θ ∈ CSPAL ) ≥ 1−α.

Remark 2. It may be interesting and useful to consider whether the QS CS is conser-

vative by designing particular configurations in the spirit of Andrews and Shi (2013,

Assumption GMS2).

2.4.3 Power Against Fixed Alternatives

Denote the underlying probability space by (Ω,F , P ). ∀θ ∈Θ, define

X(θ) ≡ {ω ∈Ω : Q(τ,θ)(ω) < 0, τ ∈ (0,1)} . (2.21)

15



The fixed alternative θ∗ ∈ Θ, which the test is against, is specified as below, to

ensure that the “violation” of the null hypothesis under θ∗ cannot be negligible in

probability.

Assumption 8. P (X(θ∗)) > 0.

Theorem 3. Under Assumption 1, 6 and 8,

(a) lim
L→∞

P (θ∗ ∈ CS
QS
L ) = 0,

(b) lim
L→∞

P (θ∗ ∈ CSPAL ) = 0.

Remark 3. The intuition for the consistent rejection is that the value of test statistic

TL(θ∗) goes to infinity (at rate aL) whereas critical values obtained through TL(ϕL,θ∗)

(or TL(0,θ∗)) are Op(1).

The proof of our results in this section is given in Appendix A.3. Some, but not

all, local alternatives drifting to ΘI at the rate aL can also be detected by our test. We

relegate the part of our test that shows power against a−1
L -local alternatives to Appendix

A.4.

2.5 Implementation and Numerical Study

2.5.1 Computation Implementation

Here we provide details for computation implementation. First, to deal with a general

(finite) set N , suppose N =
{
n1,n2, ...,nN ;n1 < n2 <, ...,< nN

}
. Conceptually, ΘI should

be the intersection of all sets each of which is identified by using a subset from N

with cardinality greater than or equal to 2. One equivalent way of implementation,

by transitivity of FOSD, is to apply the procedures previously (for {n,n′}) for pairs{
n1,n2

}
,
{
n2,n3

}
,..., and

{
nN−1,nN

}
respectively, and then the corresponding test statistic

becomes

TL(θ) =
N−1∑
k=1

∫ 1

0
[
Q̃L(τk ,θ)

(ṼL(τk ,θ))
1
2

]2
−dτ

k , (2.22)
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where k indexes the kth pair. And the analogous extension applies to TL(ϕL,θ).

Second, the test statistic we will use (by uniform continuity of FR in Assumption

1) is

TL(θ) = lim
M→∞

1
M

M∑
m=1

[
Q̃L(τm,θ)

(ṼL(τm,θ))
1
2

]2
−, (2.23)

where TM ≡ {τm}Mm=1 is a collection of grids “uniformly” distributed between τ1 = 0.05

and τ2 = 0.95 for all implementation.

In computation, we truncate the infinite sum at ML, where ML →∞, as L→∞,

so we get an approximate test statistic

TML
(θ) =

1
ML

ML∑
m=1

[
Q̃L(τm,θ)

(ṼL(τm,θ))
1
2

]2
−. (2.24)

Third, we use bootstrap to simulate the randomness, and obtain

T
†
ML

(ϕL,θ) =
1
ML

ML∑
m=1

[
Q̃†L(τm,θ)− Q̃L(τm,θ)

ṼL(τm,θ)
1
2

+
ϕL(τm,θ)

ṼL(τm,θ)
1
2

]2
−, (2.25)

where Q̃†L(τm,θ) is the analogue of Q̃L(τm,θ) by using bootstrap samples.

Also, for some higher order refinement, the asymptotic variance of Ṽ (τ,θ) is ex-

pressed up to the “second” order in implementation as V̂ (τ,θ) = hV̂b + θ2V̂ (τ), where

V̂b(τ) = V̂b,n(τ) + V̂b,n′ (τ), and V̂b,n(τ) = τ(1−τ)
(ĝn (̂bn(τ)))2

. Alternatively, a bootstrap counterpart

ṼL(τ,θ), denoted by Ṽ †L (τ,θ), is also employed for comparison.

We use the tri-weight kernel function

K(u) =
35
32

(1−u2)31(| u |≤ 1) (2.26)

for kernel estimators. The parameters for QS procedure are chosen based on experi-

mentations, which are also robust against various choices, as

κL = (0.1ln(T b))
1
2 , BL = (0.4ln(T b)/ ln(ln(T b)))

1
2 , (2.27)

where T b denotes the number of bids over all L auctions.

2.5.2 Monte Carlo Simulation

2.5.2.1 Basic Setup

For programming convenience, we assign the number of auctions such that the total

number of bids of an n-bidder auction is the same across n ∈ N , and this configuration

is also close to the type of real data. We do experiments with L = 174, 870, and 1740

and with ML=100, 200 and 300, respectively.
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By rule-of-thumb,

h = 1.06cσ̂bnb
− 1

5 , (2.28)

where nb and σ̂b denote number and estimated standard deviation of total bids (in a

given context). Results are reported for c = 0.5,1,1.5 and 2.

We will first establish finite sample coverage properties of our CS for risk aver-

sion. The number of simulation repetitions used to compute size and power is 300. For

each original simulation repetition, the critical value is simulated by using 299 repeti-

tions by bootstrap. All results are reported for nominal 95% confidence sets. Also we

compare finite sample performance of QS and PA in confidence sets.

2.5.2.2 Type 1 DGP

A random variable Vs indexed by s is from uniform [0, s] distribution. We consider five

different values for the signal s: s ∈ S = {102,103,104,105,106}. Assumption 3 can be

verified easily. n ∈ N = {2,3,4,5,6}.

We show in Appendix A.5 that πs,n is an increasing function of s for any given n.

Thus we adopt specification 1 as in Assumption 4 to obtain a monotonic entry result

as n(s = 102) = 2, n(s = 103) = 3,..., and n(s = 106) = 6.

We set θ0 = 0.2. As shown in Appendix A.5, ΘI = (0,0.2262]. In particular in

Figure A.1, the bounds for ΘI are flat. We show the size and power properties of our

confidence sets at θ = 0.2262 and θ = 0.3262, respectively.

Table 2.1 and 2.2 summarize the findings of the experiments we implement. Gen-

erally speaking, testing by using bootstrapped Ṽ †(·, ·) behaves better than using Ṽ (·, ·),

although the former is over-sized at small samples. As expected, QS is more powerful

than PA by the existence of slackness of restrictions shown in Figure A.1. The power of

QS or PA increases reasonably fast as sample size increases. Both tables suggest power

increases as bandwidth becomes larger.

2.5.2.3 Type 2 DGP

Vs ∼ Fs(v), where Fs(v) = vs,v ∈ [0,1], s ∈ S = {96,97,98,99,100}. Assumption 3 can be

easily verified. n ∈ N = {2,3,4,5,6}.

18



We show in Appendix A.5 that πs,n is a decreasing function of s when s > 1, for

any given n. Thus we adopt specification 2 as in Assumption 4 to obtain a monotonic

entry result as n(s = 100) = 2, n(s = 99) = 3,..., and n(s = 96) = 6.

We set θ0 = 0.5. As shown in Appendix A.5, ΘI = [0.5,1]. In particular in Figure

A.2, the bounds for ΘI are peak in the sense of Andrews and Shi (2013). We show the

size and power properties of our confidence sets at θ = 0.5 and θ = 0.4, respectively.

The finding is summarized in Tables 2.3 and 2.4. The advantage of QS over PA

remains. This again ought to hold by the peak nature of bound. Testing by using

bootstrapped Ṽ †(·, ·) possesses power about twice as high as Ṽ (·, ·). Interestingly, power

shows the best with bandwidth chosen at an intermediate level of c = 1 in both QS and

PA CS’s.

2.5.3 Empirical Application to USFS Timber FPA

We apply our inference to first-price timber auction sales held by the USFS. To make

the main assumptions of private values appealing, we select certain timber auction

sales to use by a few criteria described here. We only focus on sales between 1982 and

1990, as the policy change after 1981 limited opportunities for resale or subcontracting

thereby reducing the common value element (Haile, Hong and Shum (2003)). Another

way we eliminate the effect of resale is to control the length of the contract during

which bidders are allowed to act upon their rights to harvest timber. We pick sales

with contract length below 24 months. It has also been suggested by, e.g., Baldwin,

Marshall and Richard (1997) that lump-sum sales may introduce some common value

components in auctions whereas those components are less likely to exist in scaled

sales. For this reason, we disregard lump-sum sales.

It has been popular to consider observed heterogeneity of tract characteristics,

for instance appraised value made by USFS, in empirical applications. However, since

there is no such observed heterogeneity in our model, we decide to apply to auction

sales with appraised value less than $ 1,000,000, to limit the variation of value distri-

bution due to appraised value. Also, we exclude auction sales which are set aside for

small business and are of salvage titles. We chooseN = {2,3,4,5,6,7}, as auctions with
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number of bidders larger than seven are relatively fewer.

We end up with 421 auctions. The numbers of auctions for two to seven bidder

auctions are 160, 88, 64, 44, 19 and 46, respectively. The test implementation is done

under specifications 1 and 2 as in Assumption 4, respectively. In each specification, we

apply our method testing 10 values of θ ∈ {0.1,0.2, ...,1}, respectively. The lower θ is,

the more risk averse bidders are. In particular, bidders are risk neutral when θ = 1.

As the QS method outperforms the PA method in both theory and simulation, we only

implement testing by QS. To acquire inference precision, we increase the number of

bootstrap repetitions up toM = 4999. The pair of QS parameters are adopted the same

as in Monte Carlo simulation, therefore is the same as for any other setting as before,

if not particularly specified. The results by specification 1 and 2 are listed in Tables

2.5 and 2.6, respectively. Note that QS 1 and QS 2 refer to testing procedures by using

Ṽ (·, ·) and Ṽ †(·, ·), respectively.

At a significance level of 5%, in Table 2.5 there is no evidence against θ ≤ 0.5 from

either QS1 or QS2 under specification 1. P-value drops as θ increases. In particular

QS2 rejects the range of θ > 0.5 except for using small bandwidth 0.5. Considering the

performance at finite samples, especially the better power property by using Ṽ †(·, ·), we

suggest to make decisions based on QS2. In Table 2.6 under specification 2, each value

of θ we considered is rejected. This uniform rejection result suggests that specification

2 is wrong so that Θ admits no θ fitting into our model under other assumptions.

Our test turns to reject mild risk aversion with θ > 0.5 and especially risk neu-

trality. It may be worth comparing our findings with others’ work done with relatively

stronger restriction. For example, Campo et al. (2011) estimate θ between 0.5560 and

0.7783 in FPA, by imposing different polynomial quantile specifications for FR. Using

both FPA and ascending auction data, Lu and Perrigne (2008) nonparametrically esti-

mate a utility function which can be approximated by a CRRA function of θ = 0.65,

which is based on the assumption that bidders in the two auction formats share the

same value distribution function.
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2.6 Conclusion and Discussion

This paper shows a way of making inference for risk aversion in FPA with endogenous

entry. The assumptions for identification here are flexible in the sense that most of the

relevant assumptions made previously in the literature for (uniquely) identifying risk

aversion can be treated as special versions of our own. The identification result of risk

aversion is characterized by a set featured with inequality constraints. We propose a

way of constructing confidence sets for the true parameter in the identified set, by em-

ploying specified quantiles as “instruments”. Inspired by the moment selection idea,

we select informative “instruments” in a similar way to deliver binding constraints,

which make a test more powerful in general.

The asymptotic size and power properties show the consistency of our test. The

test performs well at finite samples via Monte Carlo simulations. The application to

USFS auction data turns out in favor of strong risk aversion.

We have not considered auction-specific observed heterogeneity other than the

number of entrants. Possible sources for observed heterogeneity include appraisal

value, estimated sales value, estimated manufacturing cost and bidding firms’ exist-

ing inventory. Inclusion of such additional factors may provide more informative con-

ditions for building our test. The downside is that it may suffer from the “curse of

dimensionality” by adding those factors and hence may undermine the power of our

test.

Conceivably, one may be interested in knowing whether the true θ is contained

in a given interval. To solve this problem, one may generalize our testing procedure by

following the research of Santos (2008), which is motivated by a conditional moment

equality problem in nonparametric instrumental variables (IV).
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Table 2.1: Finite Sample Performance for Type 1 DGP by using Ṽ (·, ·)

θ=0.2263(Size) θ=0.3263(Power)
L c QS PA QS PA

174

0.5 0.003 0.000 0.003 0.003
1.0 0.067 0.037 0.047 0.017
1.5 0.050 0.013 0.097 0.033
2.0 0.057 0.017 0.103 0.057

870

0.5 0.023 0.010 0.037 0.027
1.0 0.043 0.017 0.177 0.103
1.5 0.060 0.030 0.203 0.123
2.0 0.067 0.023 0.240 0.147

1740

0.5 0.043 0.013 0.123 0.053
1.0 0.047 0.020 0.303 0.190
1.5 0.033 0.017 0.317 0.203
2.0 0.047 0.010 0.400 0.263

Table 2.2: Finite Sample Performance for Type 1 DGP by using Ṽ †(·, ·)

θ=0.2263(Size) θ=0.3263(Power)
L c QS PA QS PA

174

0.5 0.030 0.017 0.020 0.007
1.0 0.110 0.063 0.097 0.043
1.5 0.080 0.040 0.150 0.067
2.0 0.037 0.017 0.167 0.097

870

0.5 0.037 0.017 0.070 0.037
1.0 0.040 0.023 0.227 0.130
1.5 0.077 0.033 0.280 0.177
2.0 0.087 0.023 0.373 0.253

1740

0.5 0.043 0.017 0.120 0.070
1.0 0.043 0.020 0.340 0.237
1.5 0.030 0.027 0.470 0.350
2.0 0.053 0.023 0.610 0.493
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Table 2.3: Finite Sample Performance for Type 2 DGP by using Ṽ (·, ·)

θ=0.5(Size) θ=0.4(Power)
L c QS PA QS PA

174

0.5 0.003 0.003 0.010 0.003
1.0 0.013 0.007 0.023 0.017
1.5 0.020 0.007 0.023 0.013
2.0 0.033 0.017 0.050 0.013

870

0.5 0.017 0.013 0.143 0.077
1.0 0.037 0.020 0.190 0.113
1.5 0.047 0.020 0.173 0.120
2.0 0.017 0.000 0.147 0.063

1740

0.5 0.017 0.003 0.377 0.243
1.0 0.027 0.010 0.397 0.267
1.5 0.020 0.003 0.277 0.177
2.0 0.033 0.010 0.247 0.163

Table 2.4: Finite Sample Performance for Type 2 DGP by using Ṽ †(·, ·)

θ=0.5(Size) θ=0.4(Power)
L c QS PA QS PA

174

0.5 0.050 0.020 0.070 0.043
1.0 0.067 0.037 0.123 0.060
1.5 0.070 0.023 0.097 0.033
2.0 0.053 0.020 0.093 0.043

870

0.5 0.053 0.010 0.367 0.230
1.0 0.083 0.017 0.403 0.280
1.5 0.057 0.020 0.363 0.250
2.0 0.030 0.003 0.290 0.167

1740

0.5 0.040 0.013 0.687 0.517
1.0 0.043 0.013 0.733 0.577
1.5 0.023 0.003 0.577 0.413
2.0 0.040 0.003 0.473 0.350
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Table 2.5: P-values for Testing Bidders’ Risk Aversion in USFS Auction Sales under
Specification 1

θ c QS1 QS2 θ c QS1 QS2

0.1

0.5 0.555 0.200

0.6

0.5 0.308 0.080
1.0 0.518 0.138 1.0 0.196 0.043
1.5 0.552 0.160 1.5 0.211 0.043
2.0 0.651 0.203 2.0 0.249 0.030

0.2

0.5 0.545 0.216

0.7

0.5 0.237 0.075
1.0 0.516 0.185 1.0 0.142 0.040
1.5 0.563 0.236 1.5 0.154 0.028
2.0 0.655 0.175 2.0 0.174 0.028

0.3

0.5 0.570 0.241

0.8

0.5 0.187 0.060
1.0 0.481 0.153 1.0 0.104 0.023
1.5 0.540 0.108 1.5 0.107 0.025
2.0 0.600 0.125 2.0 0.116 0.008

0.4

0.5 0.486 0.208

0.9

0.5 0.156 0.052
1.0 0.397 0.113 1.0 0.076 0.020
1.5 0.429 0.115 1.5 0.072 0.000
2.0 0.489 0.068 2.0 0.085 0.002

0.5

0.5 0.385 0.125

1.0

0.5 0.121 0.033
1.0 0.311 0.095 1.0 0.063 0.010
1.5 0.325 0.080 1.5 0.055 0.027
2.0 0.359 0.058 2.0 0.070 0.000

Table 2.6: P-values for Testing Bidders’ Risk Aversion in USFS Auction Sales under
Specification 2

θ c QS1 QS2 θ c QS1 QS2

0.1

0.5 0.000 0.000

0.6

0.5 0.000 0.000
1.0 0.000 0.000 1.0 0.000 0.000
1.5 0.000 0.000 1.5 0.002 0.000
2.0 0.000 0.000 2.0 0.001 0.000

0.2

0.5 0.000 0.000

0.7

0.5 0.000 0.000
1.0 0.000 0.000 1.0 0.000 0.000
1.5 0.000 0.000 1.5 0.002 0.000
2.0 0.000 0.000 2.0 0.003 0.000

0.3

0.5 0.000 0.000

0.8

0.5 0.000 0.000
1.0 0.000 0.000 1.0 0.001 0.000
1.5 0.001 0.000 1.5 0.002 0.000
2.0 0.001 0.000 2.0 0.001 0.000

0.4

0.5 0.000 0.000

0.9

0.5 0.000 0.000
1.0 0.001 0.000 1.0 0.001 0.000
1.5 0.002 0.000 1.5 0.002 0.000
2.0 0.000 0.000 2.0 0.001 0.000

0.5

0.5 0.000 0.000

1.0

0.5 0.000 0.000
1.0 0.001 0.000 1.0 0.001 0.000
1.5 0.002 0.000 1.5 0.002 0.000
2.0 0.001 0.000 2.0 0.002 0.000
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Chapter 3

Testing Exogenous Entry in

First-Price Auctions with Risk

Averse Bidders

3.1 Introduction

It is known that a first-price auction model with risk averse bidders is not identified.

Specifically, the confounding effect due to bidders’ risk aversion and private value

distributions, which are both unknown to researchers, complicates recovery of the

two primary model primitives. This problem of non-identification remains even with

parametrization for risk aversion such as constant relative risk aversion (CRRA) or con-

stant absolute risk aversion (CARA), as shown in Campo et al. (2011). To disentangle

the problem, a common strategy that researchers play with is to assume exogenous

entry, under which participation serves an instrument for identification. For example,

Guerre et al. (2009) are able to recover bidders’ utility function by exploring variation

of numbers of entrant bidders; In a similar approach, Campo et al. (2011) identify and

consistently estimate the utility function under either CRRA or CARA, and afterward

recover the value distributions with the obtained risk aversion parameter(s).

Ignoring endogeneity of entry may induce severe bias to estimation and inference

results as decisions of entry made by bidders play a role of self-selection: different
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levels of entry indicate different information to bidders with respect to their private

values. As such, auctions with different numbers of entrants may not be compatible

with each other in values to bidders. One can refer to Gentry and Li (2014) for analysis

on selective entry in auction models. Moreover, empirical finding suggests that entry

in auctions is not negligible.

It is thus important to investigate the validity of the fundamental assumption of

exogenous entry. Conceptually, one can think of testing independence of private value

distributions on number of entrants (or conditional independence with some other ob-

served heterogeneity). This paper investigates the assumption in a weaker form: it con-

siders testing independence on a prescribed quantile level. The reason for testing with

this weaker condition is twofold. First, rejection of the test would be significant evi-

dence against the independence about the entire distribution. Second, as identification

and estimation of Campo et al. (2011) in fact hinges on the conditional independence

of a single quantile of values on the number of entrants, our test can immediately ad-

dress the justification of their approaches. To illustrate the idea of testing, risk aversion

is characterised by one parameter in a particular utility function form.

As for contributions to econometrics, this paper establishes a way of testing (con-

ditional) independence of unobserved values at a certain quantile to the number of en-

trants. The test of (conditional) independence of two sets of variables both observed

have been well studied, such as in Su and White (2012). Also, it would not be a big

problem if bidders’ utility function were known, since we could just recover the un-

known value quantile at equilibrium and treat it as observable. The challenge we are

facing here is that the value is not observed or even directly estimable, yet we wish to

develop a consistent test on independence which we can use, for instance, to guide our

making inference on risk aversion. One by-product the testing procedure generates is

the consistent estimation of risk aversion under the null hypothesis.

The rest of this paper is organized as follows. Section 3.2 describes the model en-

vironment and introduces the model condition for exogenous entry with risk aversion.

Section 3.3 discusses testing idea and procedure and shows asymptotic consistency of

the test. Section 3.4 evaluates performance of the proposed test by Monte Carlo sim-
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ulation. Section 3.5 applies the test to US Forest Service (USFS) timber auction sales.

Section 3.6 concludes.

3.2 The Model

The researcher observes a random sample of L different auctions. In each auction, the

observables are auction-specific covariates Z ∈ Z, number of (entrant) bidders I and

the equilibrium bid for each bidder bj , j = 1, ..., I .

Each Bidder draws her private value from a distribution F(· | Z,I). One example

of covariates Z that can vary private value distributions is the appraised values from

government. For simplicity, we assume the dimension of Z is one. Variation of I can

be also associated with variation of value distributions as the level of entry may reflect

additional information of unobserved heterogeneity which is observed only to bidders.

Each bidder possesses the same CRRA utility function U (x) = xθ ,θ ∈ (0,1) so that risk

aversion is identical among bidders.

Under mild conditions (see, e.g., Campo et al. (2011)), we have the celebrated

first-order condition as

vi(Z,I) = bi(Z,I) +θ(
1

I − 1
G(bi(Z,I) | Z,I)
g(bi(Z,I) | Z,I)

). (3.1)

We can further obtain an equivalent expression by evaluating (4.2) at a specific

level τ of a quantile, τ ∈ [0,1], such that

Vτ (Z,I) = bτ (Z,I) +θ
1

I − 1
τ

g(bτ (Z,I) | Z,I)
≡ bτ (Z,I) +θXτ (Z,I). (3.2)

Now by differentiating (3.2) with two different level of entrants I1 and I2, we can

have

∆Vτ (Z) = ∆bτ (Z) +θ∆Xτ (Z), (3.3)

where ∆Vτ (Z) = Vτ (Z,I2)−Vτ (Z,I1), and ∆bτ (Z) and ∆Xτ (Z) are defined similarly.
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3.3 The Consistent Test of Exogenous Entry

With exogenous entry, V⊥I | Z so that ∆Vτ (z) = 0, ∀z ∈ Z. This suggests us to consider

the null and alternative hypotheses of the test as

H0 : ∆Vτ (z) = 0,∀z ∈ Z,

H1 : ∆Vτ (z) , 0, for some z ∈ Z.

3.3.1 Nonparametric Estimation of Quantiles

To implement the test, we need to construct a test statistic based on∆Vτ (z) and evaluate

it under both null and alternative hypotheses. We first estimate bτ (Z,I) and Xτ (Z,I)

(and hence ∆bτ (Z) and ∆Xτ (Z)) by nonparametric kernel estimation.

Assumption 9 (Kernel). The kernel function K is compactly supported on [-1,1], has

at least R derivatives on its support, the derivatives are Lipschitz, and
∫
K(u)du =

1,
∫
ukK(u)du = 0 for k = 1, ...,R− 1.

The estimators for conditional quantile b̂τ (Z,I) and conditional density ĝ(· | Z,I)

are standard kernel estimators as in, e.g., Pagan and Ullah (1999) and Marmer and

Shneyerov (2012). Then for Xτ (Z,I), we have X̂τ (Z,I) = 1
I−1

τ
ĝ (̂bτ (Z,I)|Z,I)

.

By plugging the estimators in (3.2) and taking into account of estimation error,

our model constraint becomes

∆̂bτ (Z) +θ∆̂Xτ (Z)−∆Vτ (Z) + ξτ (Z) = 0, (3.4)

where ξτ (Z) ≡ [∆bτ (Z)− ∆̂bτ (Z)] +θ[∆Xτ (Z)− ∆̂Xτ (Z)].

Assumption 10 (Bandwidth). Let h be the bandwidth in kernel estimation. h→ 0,Lh2→

∞, and (Lh2)1/2hR→ 0.

By standard arguments of nonparametric kernel estimation, some immediate re-

sults are summarized here. As we will use a bootstrap version of the test, we do not

pursue the explicit forms of asymptotic variance in this paper.

Proposition 3. Under Assumptions 9 and 10,

(a) (Lh)1/2(∆̂bτ (Z)−∆bτ (Z))→d N (0,Vb;Z ),
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(b) (Lh2)1/2(∆̂Xτ (Z)−∆Xτ (Z))→d N (0,VX;Z )), and thus

(c) (Lh2)1/2ξτ (Z)→d N (0,θ2VX;Z,I ),

where Vb;Z and VX;Z are finite and can be consistently estimated.

3.3.2 An Infeasible Estimator of the CRRA Coefficient

In the case where ∆Vτ (Z) were known to researchers, we could apply the method of

weighted least squares or simply ordinary least squares to estimate θ. Specifically,

regression based on (3.4) and observables returns the infeasible estimator θ̂0 of θ as

θ̂0 = −(
L∑
i=1

∆̂X
2
τ (Zi))

−1
L∑
i=1

∆̂Xτ (Zi)(∆̂bτ (Zi)−∆Vτ (Zi)). (3.5)

We can obtain the consistency and asymptotic normality of θ̂0 by following the

approach provided by Campo et al. (2011), as ∆Vτ (Z) ≡ 0, Z-a.s., by their assumption

of exogenous entry.

Proposition 4. Under Assumption 9 and 10,

(Lh)1/2(θ̂0 −θ)→d N (0,Vθ),

where Vθ is finite and can be consistently estimated.

Note that the convergence rate of the estimator is faster that that of ∆̂Xτ (Z).

This is because (3.4) would still hold with integration of it over (Z,I), and integration

increases convergence rate.

3.3.3 The Test Statistic and Consistency

The test statistic is constructed by using a naive estimator θ̂ for θ, i.e., estimating θ by

assuming ∆Vτ (Z) = 0, Z-a.s.. Therefore,

θ̂ = −(
L∑
i=1

∆̂X
2
τ (Zi))

−1
L∑
i=1

∆̂Xτ (Zi)(∆̂bτ (Zi)). (3.6)

Given that Z is exogenous, we can assume that z ≡ E(Z) is known without loss of

generality. Conceptually, one may consider forming a consistent test statistic by using

∆̂V (Z) at (possibly infinitely) many different values of Z. One nice thing here is that
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we do not have to do so; instead, it suffices in general to consider ∆̂V (Z) at a particular

value of Z. Indeed, this idea works because of the fact that θ̂ is not consistent to θ

under H1. Thus, with the estimator θ̂, we consider the following test statistic.

∆̂V τ (z) = ∆̂bτ (z) + θ̂∆̂Xτ (z). (3.7)

Assumption 11. Under the alternative hypothesis, ∆Vτ (z)−∆Xτ (z)[µ∆X2
τ
]−1µ∆Xτ∆Vτ = C ,

0, where µ∆X2
τ

= E[∆X2
τ (Z)] and µ∆Xτ∆Vτ = E[∆Xτ (Z)∆Vτ (Z)].

Note that Assumption 11 does not depend on the risk aversion parameter θ.

Also, one can realize that this assumption is mild by looking at a slightly stronger

condition: ∆Vτ (Z) is not a (deterministically) linear function of ∆Xτ (Z).

The following theorem shows the desirable properties and thus the consistency

of the test.

Theorem 4. Under Assumptions 9-11, we have (Lh2)1/2∆̂V τ (z) →d N (0,θ2VX;z) under

H0, and (Lh2)1/2∆̂V τ (z) diverges under H1. Therefore, for a given α ∈ (0,1), there exists a

constant c1−α, such that P [(Lh2)1/2∆̂V τ (z) ≤ c1−α | H0]) = 1 − α and P [(Lh2)1/2∆̂V τ (z) ≤

c1−α |H1] = 0, as L→∞.

Proof. With θ̂ obtained previously, we write

∆̂V τ (z) = ∆̂bτ (z) + θ̂∆̂Xτ (z)

= ∆bτ (z) +θ∆Xτ (z) + [∆̂bτ (z)−∆bτ (z) +θ(∆̂Xτ (z)−∆Xτ (z))]

+ (θ̂ −θ)∆̂Xτ (z)

= ∆Vτ (z)− ξτ (z) + (θ̂ − θ̂0)∆̂Xτ (z) + (θ̂0 −θ)∆̂Xτ (z)

= (θ̂0 −θ)∆̂Xτ (z)︸            ︷︷            ︸
A1

+∆Vτ (z)− ∆̂Xτ (z)[
L∑
i=1

∆̂X
2
τ (Zi)]

−1[
L∑
i=1

∆̂Xτ (Zi)∆Vτ (Zi)]︸                                                                 ︷︷                                                                 ︸
A2

− ξτ (z),

where the last equality holds due to (3.5) and (3.6).

Now by Propositions 3 and 4, A1 = Op((Lh)−1/2), and (Lh2)1/2ξτ (Z) →d T ∼

N (0,θ2VX;Z ). Hence, (Lh2)1/2∆̂V τ (z)→d T + (Lh2)1/2A2. It can be easily checked that

A2 = C + op(1). Also note that A2 = 0 under H0. The proof is completed.
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3.3.4 Bootstrap the Critical Value

To circumvent estimation of the asymptotic variance under the null and to get refined

finite sample results, we obtain critical values for testing by bootstrap. For a sample of

size L containing {Zi , Ii}Li=1, we first randomly draw with replacement L samples. Then

for each l selected in the first step, l = 1, ...,L, we randomly draw with replacement Il

bids from {blj}
Il
j=1. With such an bootstrap sample, we calculate a bootstrap analogue

of test statistic ∆̂V
†
τ (z).

Let M be the number of bootstrap samples, and let c†α be the α empirical quan-

tile of {∆̂V
†
m,τ (z)}Mm=1. The bootstrap percentile confidence interval is constructed as

CIBP1−α = [c†α/2, c
†
1−α/2]. Our decision rule is to reject H0 under significance level of α, if

∆̂V τ (z) < CIBP1−α.

3.4 Monte Carlo Simulation

We use a tri-weight kernel for estimation. The bandwidth we employ is basically by

the rule-of-thumb, i.e., h = 1.06cσn−1/5, where c is a constant for robustness check, and

σ is an adaptive measure of spread of Z defined as min(standard deviation, interquar-

tile range/1.349), and n is the number of observations. We have examined experiments

under c = 0.5, 1 and 2. The results of tests are robust against choices of c, so we only

report for c = 1. The number of simulation repetitions is 400. For each original simula-

tion repetition, the critical values are simulated by using 199 repetitions by bootstrap.

Results are reported for nominal significance level of 1%, 5% and 10%.

There are two types of data generating process (DGP) from which we simulate

data. In the first type, the exogenous variable Z has a normal distributionN (10,1), and

the variable I takes values of 4 and 5 in the same probability 1/2. For model primitives,

we let θ = 0.5 and FV (v | Z,I) ∼ U [0, sZ,I ], where sZ,I = (Z + aI)2. The DGP satisfies H0

under a = 0. The bigger a is, the more the DGP favors H1. We take τ = 0.5. The sample

size is indicated by the number of auctions L ∈ {100,200,400}.

The results are reported in Table 3.1. The test clearly recognizes endogenous

entry being different from exogenous entry. The power of the test is reasonably good
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at finite samples, and increases significantly as sample size grows.

Table 3.1: Empirical Size and Power of the Bootstrap Test (V ∼U [0, sZ,I ])

L Significance a=0 (size) a=1 (power) a=2 (power)

100 0.01 0.010 0.170 0.348
100 0.05 0.058 0.383 0.668
100 0.10 0.125 0.550 0.790

200 0.01 0.003 0.275 0.660
200 0.05 0.035 0.548 0.853
200 0.10 0.093 0.680 0.930

400 0.01 0.018 0.435 0.918
400 0.05 0.045 0.710 0.970
400 0.10 0.098 0.815 0.985

The consistency of the test justifies the inference for risk aversion. Therefore, we

also report the performance of θ̂ under H0, in Table 3.2.

Table 3.2: Simulated Bias and MSE of θ̂ under H0 (V ∼U [0, sZ,I ])

L Bias MSE

100 -0.0519 0.1844
200 -0.0374 0.1657
400 -0.0193 0.1381

For the second type of DGP, the differences from the first one are that Z ∼U [2,4],

and that FV (v | Z,I) = vsZ,I ,v ∈ [0,1], where sZ,I = Z(1 + a(7− I)).12 The rest of configu-

ration of the second type follow that of the first one. The results are reported in Table

3.3. Similarly, given the consistency, the performance of θ̂ is shown in Table 3.4 as a

by-product.

3.5 Empirical Application

In application, we choose data of USFS timber auctions collected by Professor Philip

Haile.3 The observed Z stands for appraisal value announced by USFS. We select ap-

1The reason that sZ,I is negatively related with I is that one can show that the expected payoff for a
bidder is decreasing with sZ,I when sZ,I > 1. Also one can show the relationship is increasing in the first
type of DGP.

2We choose the number “7” as this is the biggest number of bidders in our empirical data.
3Available at http://www.econ.yale.edu/ pah29/timber/timber.htm
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Table 3.3: Empirical Size and Power of the Bootstrap Test (FV (v | Z,I) = vsZ,I )

L Level a=0 (size) a=1 (power) a=2 (power)

100 0.01 0.005 0.338 0.583
100 0.05 0.053 0.570 0.803
100 0.10 0.095 0.718 0.870

200 0.01 0.010 0.588 0.748
200 0.05 0.068 0.798 0.908
200 0.10 0.145 0.858 0.945

400 0.01 0.003 0.845 0.943
400 0.05 0.035 0.955 0.990
400 0.10 0.115 0.975 1.000

Table 3.4: Simulated Bias and MSE of θ̂ under H0 (FV (v | Z,I) = vsZ,I )

L Bias MSE

100 0.0599 0.1630
200 0.0377 0.1420
400 0.0079 0.1109

propriate observations to reduce the chance of violating our model assumption. For

example, sales that we pick are between 1982 and 1990, as the policy change after

1981 limited opportunities for resale and subcontracting thereby reducing the com-

mon value element Haile et al. (2003). Besides, we use sales with contract length only

below 24 months, and we disregard lump-sum sales. The summary statistics are listed

in Table 3.5 for the selected observations.

Table 3.5: Summary Statistics

Bids($) Appraisal value ($)
Auctions of Number Mean Std Mean Std

2 bidder 159 754748.6 568438.1 441349.0 269424.1
3 bidder 88 915551.9 856711.7 455688.6 269234.7
4 bidder 64 1170819.0 1415073.0 491831.2 288176.9
5 bidder 44 1008253.0 833504.5 453104.0 291272.5
6 bidder 19 1372551.0 1237427.0 514426.5 290936.5
7 bidder 46 2163731.0 2005032.0 493294.6 256505.7

As the auctions with bidder number between five to seven are even fewer than 50

for each category, we decide to further drop those observations. We increase bootstrap
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replication number to 1000. The results are summarized in Table 3.6.

Table 3.6: The Bootstrap P-Values and Estimate of θ̂

Auctions of P value θ̂

2 v.s. 3 bidders 0.375 0.354
(0.230)

3 v.s. 4 bidders 0.002 —

Based on the test evidence, the high p-value obtained by using 2- and 3-bidder

auctions leads to no rejection of the null hypothesis of exogenous entry. Therefore, it is

sensible to estimate θ under the null: the estimate for θ is 0.354, with standard error

of 0.230 obtained by 1000 bootstrap resamples. Clearly, we can significantly reject risk

neutrality where θ = 1, and the evidence against risk neutrality is stronger than that

in Campo et al. (2011) where the estimate for θ is generally between 0.5 and 0.8.4 On

the other hand, the null hypothesis can be rejected significantly with 3- and 4-bidder

auctions by the extremely small p-value, so we do not list estimation for θ.

The test suggests entry is exogenous with a lower entry level but is endogenous

with a higher entry level. The reason that the endogeneity may change with entry

levels is that the common unobserved signals that bidders observe upon their entry

may be associated either with private value distributions or with entry costs, or both.

When signals are associated with entry costs but not with value distributions, numbers

of participants may vary with entry costs, yet the underling value distributions can be

invariant as they are independent of entry costs; when signals are associated with value

distributions, variation of numbers of participants are likely to reflect the variation of

value distributions. Therefore, the variation bidders face may be mostly from entry

costs when the number of bidders is relatively small, and the variation may be mostly

from value distributions when the number of bidders is relatively big.

4Our estimate for θ is also lower than that obtained in Lu and Perrigne (2008). However, Lu and
Perrigne (2008) do not report the standard error for their θ̂, so we can not do a statistical comparison.
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3.6 Conclusion

This paper examines the main assumption of exogenous entry which is extensively

adopted in the existing literature. Checking this assumption is critical as the esti-

mation of risk aversion is invalid and misleading if exogenous entry is violated. The

testing procedure is based on a semiparametric estimation approach. The estimation is

consistent under the null hypothesis but is inconsistent under the alternative, and this

provides the base to construct and evaluate our test.

We show that the test is consistent and performs well in finite samples. Also,

the test justifies the estimation of the risk aversion parameter when exogenous en-

try assumption is employed. The estimation result significantly rejects risk neutrality,

agreeing with existing findings. Empirical testing results reveal various possible fac-

tors affecting bidders’ entry.
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Chapter 4

Identification and Estimation of

First-Price Auctions with Entry

4.1 Introduction

Identification and estimation of latent value distributions of bidders are useful in auc-

tions. The knowledge of bidders’ private values will help make a better auction design

such as an optimal reserve price. The basic idea of identification hinges on equilibrium

conditions that are derived from auction theory, as those conditions provide a founda-

tion to recover the unknown from observables. Identification procedures also inspire

and guide estimation, parametrically or nonparametrically. One has witnessed fruitful

progress in the recent auction literature, such as Guerre et al. (2000), Athey and Haile

(2002), Krasnokutskaya (2011) and Hubbarda et al. (2012), among others.

A large part of existing work relies on the assumption that entry to an auction

is exogenous for bidders, i.e., the number of entrant bidders is taken as given. This

assumption simplifies a bidder’s strategy as the number of entrant opponents for her is

fixed. Yet this simplification restricts a bidder’s choice of participation to an auction. In

contrast, participation in the paper is determined endogenously by auction primitives.

As such, the number of entrant bidders is stochastic to bidders. Hence, our approach

is more general. Also, we will show in this paper that ignoring the fact of endogenous

entry can lead to severe bias in recovering value distribution and density functions.
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To relax the assumption of exogenous entry, we assume that the entry cost is

known to researchers so that we are able to model bidders’ (mixed) entry strategy into

an auction game. The assumption of a known entry cost has been adopted by Li and

Zheng (2009) and Fang and Tang (2014). In particular, it is worth comparing our study

with Li and Zheng (2009). Li and Zheng (2009) do not consider a binding reserve price,

so the number of entrant bidders is the same as the observed number of actual bidders.

With a binding reserve price, however, the two numbers are not necessarily the same,

as a bidder with a value lower than the reserve price will not actually bid. So in our

approach, the selection of actual bidders is via both entry and reserve price.

Several other papers considering endogenous entry in auctions include Gentry

and Li (2014) and Fang and Tang (2014). Yet their methods cannot apply to our model,

as Gentry and Li (2014) assume that bidders have observed i.i.d. signals prior to entry

and Fang and Tang (2014) target at ascending auctions which are strategically equiva-

lent to second price auctions.

The goal of our identification and estimation is at the value cumulative distri-

bution function (CDF) and probability density function (PDF). Our identification can

divide into two stages. At stage one, we identify mixed entry strategy by an indif-

ference condition. After we discover entry strategy, the identification of latent value

distribution and density functions proceeds in the spirit of Guerre et al. (2000). As for

estimation, we recover value density function by two methods, i.e., the pseudo value

(PV) method and the quantile based (QB) method, and compare the result from each

method with Guerre et al. (2000) and Marmer and Shneyerov (2012) respectively, as

the latter two papers initiate PV and QB methods respectively but both take entry as

exogenous.

The paper is organized as follows. Section 4.2 introduces the independent private

value auction model with mixed entry. Section 4.3 shows the procedures of identifica-

tion. section 4.4 constructs estimators and briefly discusses nonparametric asymptotic

properties of the main estimators. Section 4.5 examines finite sample properties of es-

timators for CDF and PDF of private values. Section 4.6 contains possible extension

and concluding remarks. Some technical details for estimation are contained in the
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Appendix B.

4.2 The Model

For each auction, one single and indivisible object is auctioned, and there are N po-

tential bidders, N ≥ 2. Each bidder needs to pay a fixed cost C to participate in an

auction. Prior to entry, bidders do not know their private values yet. Entrant bid-

ders draw their private values independently from a common distribution F(·), which

is absolutely continuous with density f (·) and support [v,v] ⊂ R+. Bids submitted by

entrant bidders are collected simultaneously. Bidders do not know the number of en-

trants when submitting bids. A reservation price p0 is announced by the seller, where

p0 ∈ [v,v]. N,C,F(·) and p0 are common knowledge. All bidders are identical ex ante

and the game is symmetric. Each bidder is assumed to be risk neutral.

Bidders who enter and bid higher than p0 are called actual bidders. We denote

the number of actual bidders by n∗, and their bids by b∗. Hence, b∗ = {bi}n
∗

i=1. What are

observed by researchers are n∗, b∗ and C.

In a symmetric Bayesian Nash equilibrium, each potential bidder adopts a mixed

strategy to entry: entry with probability q and no entry with probability 1 − q. Upon

entry, a bidder who draws a value lower than p0 submits any value less than p0. For an

entrant bidder who draws v ≥ p0, her expected payoff by bidding s(v) is

(v − s(v))(qF(v) + 1− q)N−1. (4.1)

By the first order condition, we obtain a first order differential equation

v − s(v) =
s′(v)
f (v)

qF(v) + 1− q
q(N − 1)

, (4.2)

with the initial condition s(p0) = p0.
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4.3 Identification

4.3.1 Identification of the Mixed Entry Strategy

We first show that the probability of entry q is identified through an indifference con-

dition. In the indifference condition, the ex ante payoff can be expressed as a function

of the identifiable. By (4.2), the ex ante expected payoff for making a decision of entry,

denoted by Π, is

Π =
∫ v

p0

(v − s(v))(qF(v) + 1− q)N−1f (v)dv

=
∫ v

p0

s′(v)(qF(v) + 1− q)N

q(N − 1)
dv. (4.3)

Let G∗(·) be the distribution of observed b∗i , and it follows that,

G∗(b∗) =
F(v)−F(p0)

1−F(p0)
, (4.4)

where v = s−1(b∗). Next, define r = q(1−F(p0)), and it is easy to verify that

qF(v) + 1− q = rG∗(b∗) + 1− r. (4.5)

Plugging (4.5) into (4.3) and by using the fact that db∗ = s′(v)dv, we get

Π =
∫ b

p0

(rG∗(b∗) + 1− r)N

q(N − 1)
db∗, (4.6)

where b = s(v).

The identification of N and r follows from identification of parameters of bino-

mial distributions as n∗ ∼ Binomial(N,r). In addition, b and p0 = s(v) can be identified

from observed bids. As a result, q is identified being the solution to the indifference

condition
∫ b
p0

(rG∗(b∗)+1−r)N
(N−1)q db∗ = C, as C is known.
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4.3.2 Identification of F(v) and f (v)

Next we will discuss identification of F(v), for v ∈ [p0,v]. By differentiating with respect

to b∗ at (4.4), we first obtain g∗(b∗) = f (v)
(1−F(p0)s′(v)) , i.e.,

s′(v)
f (v)

=
1

(1−F(p0))g∗(b∗)
. (4.7)

Then we plug (4.7) into (4.2) and meanwhile use (4.5) to get

v = b∗ +
rG∗(b∗) + 1− r
r(N − 1)g∗(b∗)

≡ ξ(b∗). (4.8)

For a given v ≥ p0, we can solve b∗ by b∗ = ξ−1(v). Then we define naturally

F∗(v) ≡ G∗(b∗), as the value distribution function for actual bidders. Hence, F(v) =

F(p0) + (1−F(p0))F∗(v) by (4.4), where F(p0) = 1− r/q by the definition of r.

As for identification of f (v), for v ∈ [p0,v], there are two methods we implement.

The first method, called PV, is to first recover pseudo values for actual bidders by

v∗ = ξ(b∗), and then to identify value density for actual bidders f ∗(v) based on v∗. Lastly,

by definition, F∗(v) = F(v)−F(p0)
1−F(p0) , so we can identify f (v) by f (v) = (1−F(p0))f ∗(v).

The second method, called QB (for quantile based), is to recover f (v) at a partic-

ular value v ∈ [p0,v], by the unique quantile level τ with which v is associated. Specif-

ically, consider the τ-quantile V ∗(τ) of V ∗ (for actual bidders) and the τ-quantile b∗(τ)

of b∗. Since the reverse bidding function ξ(b∗) is monotone, an equivalent expression

to (4.8) is

V ∗(τ) = b∗(τ) +
rτ + 1− r

r(N − 1)g∗(b∗(τ))
. (4.9)

By differentiation with respect to τ , and the fact that b∗′(τ) = 1/g∗(b∗(τ)), we get

V ∗′(τ) =
1

g∗(b∗(τ))
+

1
r(N − 1)

rg∗(b∗(τ))− (rτ + 1− r)g∗′(b∗(τ))g
∗−1(b∗(τ))

g ∗2(b(∗τ))

=
1

g∗(b∗(τ))
N

N − 1
− 1
r(N − 1)

(rτ + 1− r)g∗′(b∗(τ))
g∗3(b∗(τ))

. (4.10)

Now by substituting τ = F∗(v), and the fact that V ∗′(τ) = 1/f ∗(V ∗(τ)), we derive

the expression for f ∗(v), as reciprocal of (4.10). Finally, f (v) = (1−F(p0))f ∗(v) as before.
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4.3.3 Comparison with Identification under Exogenous Entry

Under exogenous entry, the selection of actual bidders out of potential bidders is only

due to reserve price. In this paper, both entry and reserve prices act upon the selection.

In other words, when a bidder can make a choice of participation, the exogenous entry

approach is correct when each potential bidder enters for sure, and one immediately

realizes that this is subject to a negligible entry cost condition: C < C, where C will be

specified later.

Specifically, under exogenous entry one would get the distribution function, de-

noted by FEX(v), and the density function, denoted by f EX(v), as

FEX(v) = 1− r + rF∗(v), (4.11)

and

f EX(v) = rf ∗(v), (4.12)

for v ≥ p0. Hence, F(v) ≤ FEX(v) and f (v) ≥ f EX(v), for v ≥ p0.

4.4 Nonparametric Estimation

4.4.1 Construction of Estimators

Suppose we have L auctions in total. We use subscript l for auction l, and il for the

ith bidder in auction l. First come some straightforward estimators: N̂ = max
l
n∗l , b̂ =

max
i,l

b∗il , p̂0 = min
i,l

b∗il , r̂ =
L∑
l=1
n∗l /N̂L. q̂ follows by solving the previous indifference

condition with all other estimators plugged in, and F̂(p0) = 1− r̂/ q̂.

The estimator for G∗(b) is the typical empirical distribution function, i.e.,

Ĝ∗(b) =
1
L

L∑
l=1

1
nl

nl∑
i=1

1(b∗il ≤ b), (4.13)

and this enables us to formulate estimator b̂∗(τ) = Ĝ∗
−1

(τ) ≡ inf
{
b : Ĝ∗(b) ≥ τ

}
. We em-

ploy a kernel estimator for g∗(b). Let K(u) : R→ R be a kernel-like function. Define

Kh(u) = h−1K(uh ), where h = o(1) is a bandwidth. Then we get, (see, e.g., Pagan and

Ullah (1999))
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ĝ∗(b) =
1
L

L∑
l=1

1
nl

nl∑
i=1

Kh(b − b∗il). (4.14)

Now by (4.8), we can obtain the conditional CDF estimator F̂∗(v) following the

recipe given in identification. Then, F̂(v) = F̂(p0) + (1− F̂(p0))F̂∗(v).

Moreover, we can obtain the pseudo value estimator V̂il , by plugging b∗il into

(4.8). To be clear, we denote the estimators of (conditional) PDF using PV and QB by

f P V (v) (f ∗P V (v)) and f QB(v) (f ∗QB(v)) respectively. The estimator f ∗P V (v) is also of a

kernel form,

f ∗P V (v) =
1
L

L∑
l=1

1
nl

nl∑
i=1

Kh(v − V̂il). (4.15)

As for f ∗QB(v), we need an additional derivative estimator for g∗′(b) as

ĝ∗′(b) =
1
L

L∑
l=1

1
nl

nl∑
i=1

K ′h(b − b∗il), (4.16)

where K ′h(u) = 1
h2K

′(uh ) and K ′(u) denotes the derivative of K(u). Now we obtain V̂ ∗′(τ)

as a plug-in estimator by (4.10), and f ∗QB(v) = 1/V̂ ∗′(τ), where τ = F̂∗(v). Finally,

f P V (v) = (1− F̂(p0))f ∗P V (v) and f QB(v) = (1− F̂(p0))f ∗QB(v).

4.4.2 A Brief Discussion of Asymptotic Results

The assumptions for estimation are mild and standard. So we just list them as below,

where R ≥ 2.

Assumption 12 (Smoothness). f (v) is bounded away from zero and admits up to R con-

tinuous derivatives over [v,v].

Assumption 13 (Kernel). K is compactly supported on [−1,1], has at least R derivatives

which are Lipschitz, and
∫
K(u)du = 1,

∫
ukK(u)du = 0 for k = 1, ...,R− 1.

Assumption 14 (Bandwidth). Lh→∞, and (Lh3)1/2hR→ 0.

Besides, to make the entry game non-degenerate, we require C ∈ [C,C], where C

and C will be specified later.

Under the assumptions, asymptotic results for our kernel estimators can be ob-

tained by standard techniques as in, e.g., Pagan and Ullah (1999). Also see Guerre et al.
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(2000) and Marmer and Shneyerov (2012) for relevant discussion. Here, we just briefly

discuss and summarize the main (point-wise) results.

First, note that the estimators for N̂ , b̂, p̂0 and r̂ converge at rates greater or equal

to L1/2, so do the empirical distribution Ĝ∗(b) and the derived q̂ and F̂(p0). Hence, all

of them will not affect the nonparametric asymptotic results.

One technical issue is that lim
b↓p0

g∗(b)→∞. We deal with it by a change of variable

in the way of Guerre et al. (2000). We define b† = (b∗−p0)0.5, and replace b∗ by b†. Some

more details will be presented in the Appendix B.

As the recovery of F̂∗(v) and thus F̂(v) rely on the link function defined as in (4.8),

the asymptotic property of F̂(v) depends on that of the estimator for g∗(·) appearing

in (4.8). Specifically, (Lh)1/2(F̂(v) − F(v)) →d N (0,W1), where N (0,W ) represents the

normal distribution with mean zero and variance W .

For f P V (v), one can show that, similar to Guerre et al. (2000), (Lh3)1/2(f P V (v) −

f (v)) →d N (0,W2); for f QB(v), one can show that, similar to Marmer and Shneyerov

(2012), (Lh3)1/2(f QB(v)−f (v))→d N (0,W3). The two asymptotic normality results hold

only when v ∈ V , where V is a closed inner subsect of [v,v].

Here, we do not pursue the explicit formulae for W1, W2 or W3 as above. One

can do this by following Guerre et al. (2000) and Marmer and Shneyerov (2012). It

is actually easier for one to get consistent estimators for those W ’s by bootstrap in

inference. Also, note that the convergence rate for PDF is lower than that of CDF, as

expected.

4.5 Monte Carlo Experiments

For simulation, we need to calculate bidding function s(v), given F(·),p0,N and C. By

solving the first order differential equation (4.2) with the initial condition, we get for

v ≥ p0,

s(v) = v − 1
(qF(v) + 1− q)N−1

∫ v

p0

(qF(x) + 1− q)N−1dx. (4.17)

Next, we plug (4.17) into (4.3), and get
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Π =
∫ v

p0

∫ v

p0

(1− q+ qF(x))N−1dxdv

=
∫ v

p0

(1− q+ qF(v))N−1(1−F(v))dv, (4.18)

so that we can solve the unknown q by using the indifference condition Π = C. Then

we plug the solved q into (4.17) to solve the bidding function and thus to simulate

bids. We drop observations with s(v) < p0. Now we can respond to the range of [C,C]

we have previously assumed for entry cost: as (4.18) is an decreasing function of q,

C =
∫ v
p0

(F(v))N−1(1−F(v))dv, and C =
∫ v
p0

(1−F(v))dv.

For model primitives, we set F(v) = vβ , where v ∈ [0,1], so that f (v) = βvβ−1.

We set the reserve price at 0.2 and the entry cost at 0.08. We do experiments with

three values of β: 0.5, 1 and 2. For each value of β, we report results for v at 0.3,

0.4,...,0.9, and N at 4, 5 and 6. As for kernel estimation, we take the tri-weight kernel

K(u) = 35/32(1− u2)31(| u |≤ 1), and we choose the bandwidth by the rule of thumb as

in Marmer and Shneyerov (2012).

We will evaluate finite sample performance of F̂(v), f QB(v) and f P V (v) by the cov-

erage of bootstrap percentile confidence intervals (CIs) and simulated bias and MSE.

The number of auctions in one experiment is 1000. The number of experiment repli-

cations is 300, and for each replication we draw 199 bootstrap samples when needed.

To have a preliminary view of the bootstrap percentile CIs of the estimators,

we show 95% CIs at one of 300 experiments in Figures 4.1-4.3.1 More precisely, the

CIs’ performance is summarized by simulated coverage probabilities as in Tables 4.1-

4.3. This is useful for inference. In general, the coverage probabilities are close to

the corresponding nominal levels, except at values close to the boundary of 1. The PV

method causes a bit over-coverage whereas the QB method causes a bit under-coverage.

Tables 4.4-4.6 show the simulated bias and MSE of estimators. The findings are

interestingly consistent: compared with the PV method, the QB method is inferior

when β = 2, but is superior when β = 0.5 especially in MSE; when β = 1, QB works

1In particular, we choose the first of 300 simulations.
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better with smaller values whereas PV works better with larger values.

We also compare the average of our estimators with the average of the estimators

under exogenous entry. As Figures 4.4-4.6 show, estimation under exogenous entry

overestimates CDF but underestimates PDF. Moreover, the bias is exaggerated as N

increases. The average of estimate under the two alternative methods considering en-

dogenous entry seem to perform equally well at values away from boundaries.

4.6 Discussion and Conclusion

This paper shows how we can recover bidders’ private value CDF and PDF under en-

dogenous entry, in the presence of additional information of entry costs. As one may

have noticed, the auction objects are treated homogenous across all sales. To allow for

possible observed heterogeneity, we can introduce relevant characteristics, say X, and

rewrite everything conditional on X as needed. Given a specific characteristic value of

x, we may apply a nonparametric kernel smoothing method for data with x. As such,

the recovered objects will be conditional CDF and PDF.

In all, this paper establishes a method to recover the distribution and density of

primitive values, from observed bids selected by entry and a reserve price. The basic

idea of identification is shown as the solution to a two-stage entry and bidding game,

and the estimation immediately follows by nonparametric approaches. We show the

estimated functions perform reasonably well at finite samples, but could be severely

misleading if endogenous entry is ignored.
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Figure 4.1: Estimate and 95% CIs for F(v) and f (v) at β = 0.5.
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Figure 4.2: Estimate and 95% CIs for F(v) and f (v) at β = 1.
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Figure 4.3: Estimate and 95% CIs for F(v) and f (v) at β = 2.

0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1
Estimate and CIs for F(v) when N=4

values

F
(v

)

 

 

true
estimate
pctl for CI

0.2 0.4 0.6 0.8 1
0

1

2

3

4
Estimate and CIs for f(v) when N=4 by QB

values

f(
v
)

0.2 0.4 0.6 0.8 1
0

1

2

3
Estimate and CIs for f(v) when N=4 by PV

values
f(

v
)

0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1
Estimate and CIs for F(v) when N=5

values

F
(v

)

 

 

true
estimate
pctl for CI

0.2 0.4 0.6 0.8 1
0

2

4

6
Estimate and CIs for f(v) when N=5 by QB

values

f(
v
)

0.2 0.4 0.6 0.8 1
0

1

2

3
Estimate and CIs for f(v) when N=5 by PV

values

f(
v
)

0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1
Estimate and CIs for F(v) when N=6

values

F
(v

)

 

 

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
Estimate and CIs for f(v) when N=6 by QB

values

f(
v
)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

Estimate and CIs for f(v) when N=6 by PV

values

f(
v
)

true
estimate
pctl for CI

Note: The legend for f (v) are the same as that for F(v).

48



Table 4.1: Simulated Coverage Probabilities for β = 0.5.

v
Estimator 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N=4, CL=0.99
F̂(v) 0.953 0.970 0.993 0.997 1.000 0.997 1.000
f QB(v) 0.980 0.987 0.973 0.973 0.980 0.990 0.943
f P V (v) 0.990 0.990 0.990 0.990 1.000 0.997 0.953

N=5, CL=0.99
F̂(v) 0.960 0.983 0.993 0.993 1.000 0.993 0.997
f QB(v) 0.973 0.983 0.990 0.997 0.990 0.987 0.957
f P V (v) 0.983 0.993 1.000 0.997 0.997 0.997 0.960

N=6, CL=0.99
F̂(v) 0.983 0.993 1.000 0.997 0.997 0.997 0.960
f QB(v) 0.990 0.997 0.983 0.987 0.977 0.993 0.973
f P V (v) 0.990 0.997 0.997 0.997 1.000 0.997 0.970

N=4, CL=0.95
F̂(v) 0.870 0.893 0.940 0.963 0.967 0.973 0.983
f QB(v) 0.950 0.907 0.933 0.900 0.920 0.947 0.763
f P V (v) 0.930 0.957 0.970 0.973 0.987 0.987 0.817

N=5, CL=0.95
F̂(v) 0.830 0.910 0.930 0.980 0.960 0.980 0.960
f QB(v) 0.950 0.930 0.910 0.970 0.950 0.930 0.750
f P V (v) 0.947 0.950 0.987 0.987 0.983 0.993 0.850

N=6, CL=0.95
F̂(v) 0.947 0.950 0.987 0.987 0.983 0.993 0.850
f QB(v) 0.970 0.970 0.933 0.967 0.933 0.930 0.843
f P V (v) 0.947 0.950 0.967 0.980 0.960 0.987 0.853

N=4, CL=0.90
F̂(v) 0.760 0.843 0.890 0.940 0.923 0.933 0.947
f QB(v) 0.887 0.837 0.870 0.817 0.857 0.883 0.590
f P V (v) 0.873 0.890 0.937 0.937 0.967 0.973 0.673

N=5, CL=0.90
F̂(v) 0.760 0.860 0.870 0.970 0.930 0.930 0.940
f QB(v) 0.930 0.840 0.860 0.930 0.850 0.820 0.640
f P V (v) 0.887 0.913 0.937 0.983 0.957 0.980 0.687

N=6, CL=0.90
F̂(v) 0.887 0.913 0.937 0.983 0.957 0.980 0.687
f QB(v) 0.937 0.890 0.890 0.903 0.863 0.850 0.710
f P V (v) 0.900 0.923 0.927 0.953 0.930 0.957 0.743

Note: CL is for confidence level.
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Table 4.2: Simulated Coverage Probabilities for β = 1.

v
Estimator 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N=4, CL=0.99
F̂(v) 0.960 0.987 0.993 0.997 0.997 1.000 0.997
f QB(v) 1.000 0.990 0.980 0.980 0.983 0.990 0.967
f P V (v) 0.993 1.000 0.987 1.000 0.993 0.993 0.920

N=5, CL=0.99
F̂(v) 0.950 0.973 0.997 0.993 0.993 0.993 0.983
f QB(v) 0.983 0.977 0.993 0.980 0.983 0.987 0.940
f P V (v) 0.973 0.980 0.993 0.993 0.990 0.993 0.917

N=6, CL=0.99
F̂(v) 0.958 0.967 0.982 0.996 1.000 1.000 0.999
f QB(v) 0.990 0.990 0.989 0.994 0.985 0.994 0.978
f P V (v) 0.996 0.996 0.994 0.990 0.986 1.000 0.968

N=4, CL=0.95
F̂(v) 0.897 0.950 0.950 0.960 0.973 0.963 0.963
f QB(v) 0.967 0.967 0.913 0.933 0.913 0.937 0.763
f P V (v) 0.947 0.977 0.947 0.960 0.983 0.963 0.763

N=5, CL=0.95
F̂(v) 0.850 0.913 0.967 0.960 0.967 0.963 0.960
f QB(v) 0.917 0.927 0.953 0.927 0.927 0.930 0.830
f P V (v) 0.930 0.960 0.970 0.967 0.977 0.970 0.810

N=6, CL=0.95
F̂(v) 0.879 0.913 0.922 0.967 0.985 0.981 0.982
f QB(v) 0.940 0.918 0.960 0.935 0.933 0.961 0.863
f P V (v) 0.957 0.979 0.967 0.965 0.958 0.976 0.825

N=4, CL=0.90
F̂(v) 0.817 0.867 0.877 0.917 0.933 0.930 0.900
f QB(v) 0.930 0.920 0.877 0.877 0.837 0.873 0.650
f P V (v) 0.913 0.937 0.903 0.930 0.933 0.920 0.657

N=5, CL=0.90
F̂(v) 0.767 0.850 0.930 0.903 0.907 0.910 0.923
f QB(v) 0.863 0.860 0.887 0.893 0.883 0.863 0.697
f P V (v) 0.857 0.900 0.927 0.933 0.913 0.910 0.677

N=6, CL=0.90
F̂(v) 0.806 0.850 0.864 0.913 0.936 0.933 0.958
f QB(v) 0.904 0.888 0.867 0.893 0.860 0.907 0.726
f P V (v) 0.899 0.926 0.936 0.932 0.918 0.942 0.708

Note: CL is for confidence level.
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Table 4.3: Simulated Coverage Probabilities for β = 2.

v
Estimator 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N=4, CL=0.99
F̂(v) 0.957 0.977 0.983 1.000 0.990 0.993 0.993
f QB(v) 0.987 0.993 0.980 0.997 0.987 0.987 0.957
f P V (v) 0.997 0.993 1.000 1.000 0.983 0.990 0.953

N=5, CL=0.99
F̂(v) 0.937 0.973 0.990 0.987 1.000 0.983 1.000
f QB(v) 0.977 0.990 0.983 0.970 0.993 0.993 0.987
f P V (v) 0.980 0.997 0.990 0.987 0.993 0.990 0.960

N=6, CL=0.99
F̂(v) 0.910 0.967 0.990 0.983 0.997 0.993 0.997
f QB(v) 0.993 0.990 0.977 0.993 0.983 0.997 0.987
f P V (v) 0.987 0.983 0.993 1.000 1.000 1.000 0.983

N=4, CL=0.95
F̂(v) 0.857 0.893 0.943 0.943 0.943 0.957 0.950
f QB(v) 0.950 0.930 0.907 0.930 0.897 0.950 0.893
f P V (v) 0.957 0.960 0.963 0.970 0.953 0.960 0.850

N=5, CL=0.95
F̂(v) 0.787 0.877 0.913 0.950 0.970 0.973 0.980
f QB(v) 0.913 0.947 0.917 0.907 0.960 0.937 0.920
f P V (v) 0.913 0.977 0.970 0.960 0.980 0.957 0.880

N=6, CL=0.95
F̂(v) 0.767 0.847 0.943 0.950 0.967 0.953 0.953
f QB(v) 0.940 0.943 0.913 0.940 0.933 0.963 0.927
f P V (v) 0.963 0.963 0.963 0.970 0.970 0.967 0.927

N=4, CL=0.90
F̂(v) 0.773 0.830 0.907 0.903 0.897 0.920 0.913
f QB(v) 0.877 0.870 0.863 0.863 0.813 0.910 0.820
f P V (v) 0.920 0.923 0.933 0.920 0.907 0.913 0.777

N=5, CL=0.90
F̂(v) 0.697 0.817 0.880 0.903 0.927 0.920 0.917
f QB(v) 0.867 0.863 0.853 0.837 0.890 0.883 0.883
f P V (v) 0.863 0.927 0.907 0.923 0.937 0.900 0.837

N=6, CL=0.90
F̂(v) 0.690 0.747 0.877 0.897 0.917 0.910 0.903
f QB(v) 0.887 0.867 0.823 0.863 0.820 0.913 0.880
f P V (v) 0.917 0.940 0.927 0.923 0.950 0.927 0.850

Note: CL is for confidence level.
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Table 4.4: Simulated Bias and MSE of Estimators for β = 0.5

v Bias MSE
F̂(v) f QB(v) f P V (v) F̂(v) f QB(v) f P V (v)

N=4
0.3 -0.0009 -0.0125 0.0123 0.0003 0.0535 0.0257
0.4 -0.0010 -0.0495 -0.0010 0.0003 0.0607 0.0401
0.5 0.0000 -0.0108 0.0412 0.0003 0.0520 0.0641
0.6 0.0005 -0.0564 -0.0112 0.0002 0.0395 0.0602
0.7 -0.0001 -0.0589 0.0062 0.0002 0.0505 0.0632
0.8 -0.0012 -0.0425 -0.0005 0.0002 0.0596 0.0787
0.9 -0.0009 -0.1682 -0.2054 0.0002 0.0461 0.0744

N=5
0.3 0.0000 -0.0051 0.0070 0.0003 0.0478 0.0246
0.4 -0.0002 -0.0418 0.0031 0.0003 0.0515 0.0409
0.5 0.0005 -0.0562 -0.0093 0.0002 0.0472 0.0533
0.6 0.0006 -0.0659 -0.0019 0.0003 0.0455 0.0540
0.7 0.0000 -0.0591 0.0072 0.0002 0.0390 0.0686
0.8 0.0002 -0.0611 -0.0339 0.0002 0.0547 0.0660
0.9 -0.0015 -0.1566 -0.1810 0.0002 0.0464 0.0655

N=6
0.3 0.0098 0.0742 -0.0031 0.0005 0.0594 0.0259
0.4 0.0069 0.0068 -0.0138 0.0003 0.0527 0.0433
0.5 0.0044 -0.0281 -0.0037 0.0003 0.0468 0.0589
0.6 0.0031 -0.0361 -0.0220 0.0003 0.0425 0.0608
0.7 0.0007 -0.0665 -0.0436 0.0002 0.0276 0.0559
0.8 -0.0025 -0.0429 -0.0177 0.0002 0.0359 0.0645
0.9 -0.0046 -0.1186 -0.1515 0.0003 0.0330 0.0596
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Table 4.5: Simulated Bias and MSE of Estimators for β = 1

v Bias MSE
F̂(v) f QB(v) f P V (v) F̂(v) f QB(v) f P V (v)

N=4
0.3 0.0002 -0.0211 0.0042 0.0006 0.0504 0.0206
0.4 0.0007 -0.0214 0.0162 0.0006 0.0801 0.0413
0.5 0.0000 -0.0344 -0.0102 0.0005 0.1015 0.0601
0.6 -0.0003 -0.0523 -0.0229 0.0004 0.0628 0.0560
0.7 0.0000 -0.0362 0.0121 0.0003 0.0544 0.0825
0.8 -0.0018 -0.0365 -0.0127 0.0002 0.0583 0.0784
0.9 0.0011 -0.1677 -0.2464 0.0002 0.0658 0.1008

N=5
0.3 0.0012 -0.0184 0.0039 0.0005 0.0520 0.0191
0.4 0.0011 -0.0266 0.0222 0.0005 0.0798 0.0446
0.5 0.0005 -0.0795 -0.0236 0.0004 0.0774 0.0629
0.6 0.0002 -0.0579 0.0034 0.0004 0.0634 0.0682
0.7 0.0005 -0.0505 -0.0049 0.0003 0.0757 0.0845
0.8 0.0000 -0.0673 -0.0179 0.0003 0.0516 0.0782
0.9 0.0007 -0.1797 -0.2328 0.0002 0.0613 0.0904

N=6
0.3 -0.0015 -0.0017 0.0049 0.0006 0.0640 0.0221
0.4 -0.0007 -0.0315 0.0088 0.0006 0.0819 0.0414
0.5 -0.0005 -0.0534 0.0154 0.0005 0.0654 0.0665
0.6 -0.0014 -0.0773 -0.0155 0.0004 0.0723 0.0791
0.7 -0.0006 -0.0195 0.0211 0.0004 0.0965 0.1079
0.8 0.0017 -0.0531 -0.0099 0.0003 0.0645 0.0889
0.9 -0.0002 -0.1510 -0.1992 0.0002 0.0590 0.0803
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Table 4.6: Simulated Bias and MSE of Estimators for β = 2

v Bias MSE
F̂(v) f QB(v) f P V (v) F̂(v) f QB(v) f P V (v)

N=4
0.3 0.0055 -0.0332 -0.0067 0.0009 0.0353 0.0151
0.4 0.0045 -0.0779 0.0019 0.0009 0.0853 0.0399
0.5 0.0039 -0.1379 -0.0261 0.0010 0.1514 0.0764
0.6 0.0039 -0.0905 -0.0034 0.0007 0.1524 0.0820
0.7 0.0026 -0.0852 -0.0269 0.0007 0.1513 0.1242
0.8 0.0041 -0.0646 -0.0196 0.0005 0.1281 0.1426
0.9 0.0006 -0.1081 -0.2384 0.0003 0.1268 0.1363

N=5
0.3 0.0050 -0.0328 -0.0120 0.0009 0.0291 0.0143
0.4 0.0054 -0.0684 -0.0092 0.0009 0.0770 0.0431
0.5 0.0033 -0.0966 0.0097 0.0009 0.1770 0.0853
0.6 0.0020 -0.1288 -0.0103 0.0009 0.1632 0.0899
0.7 0.0029 -0.0820 -0.0311 0.0007 0.2296 0.1282
0.8 0.0007 -0.0664 -0.0194 0.0005 0.1748 0.1454
0.9 0.0004 -0.0589 -0.1689 0.0004 0.1465 0.1143

N=6
0.3 0.0027 -0.0203 -0.0014 0.0010 0.0301 0.0149
0.4 0.0029 -0.0561 -0.0106 0.0010 0.1557 0.0456
0.5 -0.0007 -0.0744 0.0083 0.0010 0.5198 0.0861
0.6 0.0014 -0.0437 -0.0070 0.0009 1.8395 0.0986
0.7 0.0025 -0.1005 -0.0226 0.0007 0.1908 0.1504
0.8 -0.0005 -0.0717 0.0280 0.0007 0.1522 0.1488
0.9 0.0010 -0.0737 -0.1676 0.0004 0.1518 0.1333
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Figure 4.4: Comparison of Simulated Average Estimate for F(v) and f (v) when β = 0.5.
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Note: We use “mis-estimate” to denote estimation under exogenous entry. The legend for f (v) are the
same as that for F(v).
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Figure 4.5: Comparison of Simulated Average Estimate for F(v) and f (v) when β = 1.0.
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Note: We use “mis-estimate” to denote estimation under exogenous entry. The legend for f (v) are the
same as that for F(v).
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Figure 4.6: Comparison of Simulated Average Estimate for F(v) and f (v) when β = 2.0.
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Note: We use “mis-estimate” to denote estimation under exogenous entry. The legend for f (v) are the
same as that for F(v).
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Appendix A

Appendix to Chapter 1

A.1 Definition of UR, FR and GR as in Guerre, Perrigne and

Vuong (2009)

Definition 1. For R ≥ 1, let UR be the set of utility functions U (·) that satisfy the fol-

lowing conditions:

(a) U : [0,+∞)→ [0,+∞),U (0) = 0 and U (1) = 1.

(b) U (·) is continuous on [0,+∞) and admits R+ 2 continuous derivatives on (0,+∞)

with U ′(·) > 0 and U ′′(·) ≤ 0 on (0,+∞).

(c) limx↓0Λ
r(x) is finite for 1 ≤ r ≤ R+ 1, where Λr(·) is the rth derivative of Λ(·).

Definition 2. For R ≥ 1, let FR be the set of distributions Fs(·), s ∈ S , that satisfy the

following conditions:

(a) Fs(·) is a cumulative distribution function (c.d.f.) with support of the form [v(s),v(s)],

where 0 ≤ v(s) < v(s) < +∞.

(b) Fs(·) admits R+ 1 continuous derivatives on [v(s),v(s)].

(c) fs(·) > 0 on [v(s),v(s)].

Definition 3. For R ≥ 1, let GR be the set of distributions Gn(·),n ∈ N , that satisfy the

following conditions:
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(a) Gn is a c.d.f. with support of the form [bn,bn], where 0 ≤ bn < bn < +∞.

(b) Gn admits R continuous derivatives on [bn,bn]

(c) gn > 0 on [bn,bn]

(d) gn admits R+ 1 continuous derivatives on (bn,bn]

(e) limb↓bn d
r [Gn/gn]/dbr exists and is finite for r = 1, ...,R+ 1.

A.2 Proof of Results in Section 2.3

Lemma 1. Under Assumptions 1 and 6, ∀n ∈ N , and ∀θ ∈Θ

(a) supb∈[bn,bn] | Ĝn(b)−Gn(b) |=Op(L−
1
2 ).

(b) supτ∈(0,1) | b̂n(τ)− bn(τ) |=Op(L−
1
2 ).

(c) supb∈[bn,1,bn,2] | ĝn(b)− gn(b) |=Op(( LhlnL )−
1
2 + hR).

(d) sup[τ1,τ2] | X̂n(τ)−Xn(τ) |=Op(( LhlnL )−
1
2 + hR).

(e) sup[τ1,τ2] | Q̂(τ,θ)−Q(τ,θ) |=Op(( LhlnL )−
1
2 + hR).

Proof. We refer readers to Marmer and Shneyerov (2012, Lemma 1), where similar

results are derived and proved in the context of conditional quantiles.

A.2.1 Proof of Proposition 2

Proof. Again, a similar proof can be found as in Marmer and Shneyerov (2012, Lemma

2) for result 1 in Proposition 2.

For result 2, the mean-value theorem leads us to

X̂n(τ)−Xn(τ) =
τ

n− 1
[

1

ĝn(b̂n(τ))
− 1
gn(bn(τ))

]

=
τ

n− 1
[

1

ĝn(b̂n(τ))
− 1

gn(b̂n(τ))
+

1

gn(b̂n(τ))
− 1
gn(bn(τ))

]

=
τ

n− 1
[

1

g̃n
2(b̂n(τ))

(ĝn(b̂n(τ))− gn(b̂n(τ)))

+
1

g2
n(b̃n(τ))

g
(1)
n (b̃n(τ))(b̂n(τ)− bn(α))].
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By Assumption 1(boundedness of gn and its derivative), Lemma 1 and the first

result in Proposition 2, we have

(Lh)1/2(X̂n(τ)−Xn(τ)) =
τ

n− 1
1

g2
n(b̂n(τ))

(Lh)1/2(ĝn(b̂n(τ))− gn(b̂n(τ))) +Op(h1/2)

→d N (0, Ṽn(τ)),

where Ṽn(τ) = τ2

(n−1)2
gn(b̂n(τ))

nπ(n)g̃n4(b̂n(τ))

∫
K2(u)du. It is easy to verify that Vn(τ) = Ṽn(τ)+

op(1), by consistency results from Lemma 1. So the claim is proved.

A.2.2 Proof of Corollary 1

Proof. Following Marmer and Shneyerov (2012, Lemma 2), one can show that ĝn(b)

and ĝn′ (b) are asymptotically independent which implies X̂n(τ) and X̂n′ (τ) are asymp-

totically independent.

Then note that

Q̂(τ)−Q(τ) = [(b̂n′ (τ)− bn′ (τ))− (b̂n(τ)− bn(τ))]

+θ[(X̂n′ (τ)−Xn′ (τ))− (X̂n(τ)−Xn(τ))].

Therefore, Lemma 1 and Proposition 2 apply to the expression above gives

(Lh)1/2(Q̂(τ)−Q(τ)) = θ[(Lh)1/2(X̂n′ (τ)−Xn′ (τ))

− (Lh)1/2(X̂n(τ)−Xn(τ))] + op(1)

→d N (0,θ2V (τ)).

A.3 Proof of Results in Section 2.4

Lemma 2. Under Assumptions 1 and 6, ∀θ ∈Θ, ∀τ ∈ [τ1, τ2], and ∀u ∈ R,

limsup
L→∞

| P (Q̃†L(τ,θ)− Q̃L(τ,θ))− P (Q̃L(τ,θ)−Q∗L(τ,θ)) |→p 0

Proof. Given the asymptotic results derived in section 2.3, we refer readers to Marmer

and Shneyerov (2012, Theorem 3).
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A.3.1 Proof of Theorem 1

Proof. By Lemma 2, ∀τ ∈ (0,1),

Q̃†L(τ,θ)− Q̃L(τ,θ)→d Q̃L(τ,θ)−Q∗L(τ,θ), (A.1)

and it is easy to verify that Vn(τ) = Ṽn(τ) + op(1), by consistency results from

Lemma 1. Hence, V (τ,θ) = ṼL(τ,θ) + op(1), where V (τ,θ) ≡ θ2V (τ).

By the almost sure representation theorem, e.g., see ?, Theorem 9.4, there exists

a probability space and random quantities νL(·), ν0(·) and WL(·) defined on it such that

(i)Q̃†L(·,θ) − Q̃L(·,θ) and νL(·) have the same distribution, (ii)Q̃L(·,θ) −Q∗L(·,θ) and ν0(·)

have the same distribution, (iii)ṼL(·,θ) and WL(·) have the same distribution, and (iv)

sup
τ∈(0,1)

| νL(τ)− νL(τ) |→ 0 a.s. and

sup
τ∈(0,1)

|WL(τ)−V (τ,θ) |→ 0 a.s.

Now define

SL =
∫ 1

0
[
νL(τ)

WL(τ)
1
2

+
Q∗L(τ,θ)

WL(τ)
1
2

]2
−dτ, (A.2)

and

SL,0 =
∫ 1

0
[
ν0(τ)

V (τ)
1
2

+
Q∗L(τ,θ)

V (τ)
1
2

]2
−dτ. (A.3)

By construction, SL and T̆L(θ) have the same distribution, and SL,0 and TL(θ) have

the same distribution. And to prove part (a), it suffices to show that SL − SL,0→ 0 a.s.,

by Andrews and Shi (2013, Theorem 1). For a proof for the sufficient condition, we

refer readers to Andrews and Shi (2013, Theorem 1).

A.3.2 Proof of Theorem 2

Proof. As stated before, based on the bound from Theorem 1, the key to proving The-

orem 2 is to show that critical values obtained by using ϕL(·,θ) are no smaller asymp-

totically in probability. In other words, we wish to show that, ∀θ ∈ΘI ,
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lim
L→∞

P [c1−α(ϕL,θ) < c1−α(Q∗L,θ)] = 0. (A.4)

We can prove this result by showing that

P [c1−α(ϕL(θL),θL) < c1−α(Q∗L(θL),θL)]

≤P [ϕL(θL, τ) > Q∗L(θL, τ)]

≤P [ξL(θ,τ) > 1, Q∗L(θL, τ) < BL]

≤P [κ−1
L Q̃L(τ,θL)ṼL(τ,θL)−

1
2 > 1, Q∗L(θL, τ) < BL]

≤P [(Q̃L(τ,θ)−Q∗L(τ,θ))ṼL(τ,θL)−
1
2 +Q∗L(τ,θL)ṼL(τ,θL)−

1
2 > κL, Q∗L(θL, τ) < BL]

≤P [Q∗L(τ,θL)ṼL(τ,θL)−
1
2 > κL −Op(1), Q∗L(θL, τ) < BL]

=o(1).

The last equality follows by Assumption 7.

A.3.3 Proof of Theorem 3

Proof. Note that part (a) follows immediately part (b) as ϕL(θ∗, τ) ≥ 0 and as TL(ϕL,θ∗)

is decreasing with ϕL.

For part (b), We first prove TL(θ∗)→∞.

TL(θ∗) =
∫ 1

0
[
Q̃L(τ,θ∗)−Q∗L(τ,θ∗)

ṼL(τ,θ∗)
1
2

+
Q∗L(τ,θ∗)

ṼL(τ,θ∗)
1
2

]2
−dτ

=
∫ 1

0
[Op(1) +

Q∗L(τ,θ∗)

ṼL(τ,θ∗)
1
2

]2
−dτ

=
∫ 1

0
[Op(1) + aL

Q(τ,θ∗)

ṼL(τ,θ∗)
1
2

]2
−dτ

≥ a2
L

∫
X(θ∗)

[op(1) +
Q(τ,θ∗)

ṼL(τ,θ∗)
1
2

]2
−dτ

→ a2
L

∫
X(θ∗)

[
Q(τ,θ∗)

V (τ,θ∗)
1
2

]2
−dτ

The integration is positive bounded from 0 by Assumption 8 and V (τ,θ∗) =O(1). This

together with the fact that a2
L→∞ shows what we want.

Second, notice that

TL(0,θ∗) =
∫ 1

0
[
Q̃L(τ,θ∗)−Q∗L(τ,θ∗)

ṼL(τ,θ)
1
2

]2
−dτ =Op(1),
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and hence c1−α(0,θ∗) =Op(1).

The two results above basically show that the test statistic TL(θ∗) is bigger than

the critical value c1−α(0,θ∗) in probability 1. Hence, part (b) holds and the proof is

complete.

A.4 Power Against a−1
L -Local Alternatives

As is often the case, fixed alternatives are relatively easier to detect. This section applies

the configurations of a−1
L -local alternatives designed by Andrews and Shi (2013) to our

setting, and shows that our test can also detect a kind of, but not all, local alternatives

drifting to the identified set ΘI at the rate of aL. For illustration, we only consider local

alternatives under a fixed DGP, whereas the setting in Andrews and Shi (2013) allows

the true DGP flow with sample sizes and thus is more general.

The null and alternative hypotheses of our test for local alternative θL,∗ can be

written as

H0 :Q(τ,θL,∗) ≥ 0,∀τ ∈ (0,1),

H1 :Q(τ,θL,∗) < 0, for some τ ∈ (0,1).

The local behavior of θL,∗ relative to ΘI is specified in Assumption 15.

Assumption 15. For a given θ0 ∈ ΘI1, θL,∗ = θ0 + λa−1
L (1 + o(1)) for some λ ∈ R, where

θL,∗ ∈Θ.

A smoothness condition is needed for existence of the probability limit of TL(ϕL,θL,∗),

from which critical values are generated.

Assumption 16. The derivative Ψ (τ,θ) ≡ ∂
∂θQ(τ,θ) is continuous in a neighborhood of

θ0.

With Assumption 16, it is easy to see that the probability limit of TL(ϕL,θL,∗)

depends only on θ0. Hence we denote the probability limit as T∞(ϕ∞,θ0), where

ϕ∞(τ,θ0) =∞ if Q(τ,θ) > 0, and ϕ∞(τ,θ0) = 0 if Q(τ,θ) = 0.

1θ0 is not necessarily the true parameter.
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Some mild regularity conditions are imposed in Assumption 17 to ensure the

non-trivial power of our test.

Assumption 17. (a) The 1−α quantile of T∞(ϕ∞,θ0), denoted by c∞,1−α(ϕ∞,θ0), is a

continuity point for the distribution of T∞(ϕ∞,θ0).

(b) The 1−α quantile of T∞(0,θ0), denoted by c∞,1−α(0,θ0), is a continuity point for

the distribution of T∞(0,θ0).

Proposition 5. Define the asymptotic (limiting) distribution of TL(θL,∗) as Jλ, under As-

sumptions 1,6, 7, and 15-17,

(a) limL→∞ P (θL,∗ < CS
QS
L ) = 1− Jλ(c∞,1−α(ϕ∞,θ0)),

(b) limL→∞ P (θL,∗ < CS
PA
L ) = 1− Jλ(c∞,1−α(0,θ0)).

Proof. We refer readers to Andrews and Shi (2013, Theorem 4).

Without loss of generality, we can specify that λ = βλ0, for some β > 0 and λ0 ∈ R.

We next state a sufficient condition, as in Assumption 18, for our test being asymptot-

ically consistent against the local alternatives θL,∗

Assumption 18. Define Y(θ0) ≡ {τ ∈ (0,1) :Q(τ,θ0) = 0,Ψ0(τ)λ0 < 0}, whereΨ0(τ) = Ψ (τ,θ0).

Then µ(Y(θ0)) > 0, where µ is the Lebsgue measure.

Assumption 18 implies that the θ0 may lie on the “boundary” of ΘI such that

there is a set of binding constraints with its measure bounded away from 0; moreover,

on the set of binding constraints, the values θL,∗ drift to the direction, indicated by λ0,

which detects the violation of the null hypothesis.

Theorem 5. Under Assumptions 15-18,

limβ→∞(1− Jβλ0
(c∞,1−α(ϕ∞,θ0)) = limβ→∞(1− Jβλ0

(c∞,1−α(0,θ0)) = 1
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Proof.

TL(θL,∗) =
∫ 1

0
[
Q̃L(τ,θL,∗)−Q∗L(τ,θL,∗)

ṼL(τ,θL,∗)
1
2

+
Q∗L(τ,θL,∗)

ṼL(τ,θL,∗)
1
2

]2
−dτ

=
∫ 1

0
[Op(1) +

Q∗L(τ,θL,∗)

ṼL(τ,θL,∗)
1
2

]2
−dτ

=
∫ 1

0
[Op(1) +

Q∗L(τ,θ0)

ṼL(τ,θL,∗)
1
2

+
Ψ0(τ)λ

ṼL(τ,θL,∗)
1
2

]2
−dτ

= β
∫ 1

0
[
Op(1)

β
+ 0 +

Ψ0(τ)λ0

ṼL(τ,θL,∗)
1
2

]2
−dτ

L→∞−→ β

∫ 1

0
[
Op(1)

β
+
Ψ0(τ)λ0

V (τ,θ0)
1
2

]2
−dτ

≥ β
∫
Y(θ0)

[
Op(1)

β
+
Ψ0(τ)λ0

V (τ,θ0)
1
2

]2
−dτ

β→∞
−→ ∞×

∫
Y(θ0)

[
Ψ0(τ)λ0

V (τ,θ0)
1
2

]2
−dτ

−→∞,

where the third equality holds by Assumptions 15 and 16, and the convergence as

L → ∞ holds by Assumptions 1 and 16, and the final result of divergence holds by

Assumption 18 and V (τ,θ0) =O(1).

Now we see that Jβλ0
, the asymptotic (limiting) distribution function of TL(θL,∗),

is divergent as β → ∞. On the other hand, neither c∞,1−α(ϕ∞,θ0) nor c∞,1−α(0,θ0)

depends on β. So the result is proved.

Proposition 5 together with Theorem 5 establishes that our test has asymptotic

power 1 against the kind of the a−1
L -local alternatives in this section.

A.5 Details about DGP in Section 2.5

A.5.1 Calculation for Type 1 DGP

For

Fs(v) =
v
s
,Hs,n(v) = (

v
s

)
(n−1)
θ .

So by equation 2.3,

bs,n(v) = v −
∫ v

0
(
x
v

)
(n−1)
θ dx = v − 1

(n−1)
θ + 1

v =
(n−1)
θ

(n−1)
θ + 1

v.
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By equation 2.4,

πs,n =
∫ s

0
(

1

1 + n−1
θ

v)θ
1
s
dv = (

1

1 + (n−1)
θ

)θ
1

1 +θ
sθ .

Obviously, πs,n is an increasing function of s ∀n ∈ N , ∀θ ∈Θ.

Next, we show ΘI = (0,0.2262].

Since

bn(τ) = bn(V (τ)) =
n− 1

θ + (n− 1)
V (τ) =

s(n− 1)τ
θ + (n− 1)

,

and by the fact that gn(bn(τ))b′n(τ) = 1,

gn(bn(τ)) =
1

b′n(τ)
=
θ + (n− 1)
s(n− 1)

.

Now with those specifications in type 1, one can first calculate identified sets

as defined in (2.9) using {2,3} , {3,4} , {4,5} and {5,6} for {n,n′}, respectively, and then

derive ΘI by intersecting these sets. To save space, we do not show the routine work

but illustrate the basic idea by depicting the bounds for ΘI in Figure A.1. Note that

each bound depicted is the upper bound for θ for each pair of entrant numbers in

Figure A.1.

A.5.2 Calculation for Type 2 DGP

For

Fs(v) = vs,v ∈ [0,1],Hs,n(v) = v
s(n−1)
θ .

So by equation 2.3,

bs,n(v) = v −
∫ v

0
(
x
v

)
s(n−1)
θ = v − θ

θ + s(n− 1)
v =

s(n− 1)
θ + s(n− 1)

v.

By equation 2.4,

πs,n =
∫ 1

0
(

θ
θ + s(n− 1)

v)θsvs−1dv =
s

s+θ
(

θ
θ + s(n− 1)

)θ ,

By studying its derivative,

∂πs,n
∂s

=
θ2

(θ + s)2(θ + s(n− 1))
− θ2s(n− 1)

(θ + s)(θ + s(n− 1))2

= C(
1

θ + s
− s(n− 1)
θ + s(n− 1)

)

= C(
1

θ + s
− (n− 1)
θ
s + (n− 1)

)

where C is a generic positive constant. Note that
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∂πs,n
∂s

∣∣∣∣∣
s=1

=
1

1 +θ
− 1

1 + θ
n−1

≤ 0,

and that ∂πs,n
∂s is decreasing with s. Hence, it should be obvious that πs,n is a

decreasing function of s ∀n ∈ N , ∀θ ∈Θ.

The procedure of deriving ΘI = [0.5,1] simply follows that in Type 1 and thus is

omitted. We depict the bounds forΘI in Figure A.2. Note that the greatest lower bound

is also the common lower bound for θ for each pair of entrant numbers in Figure A.2.
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A.6 Graphing Bounds

Figure A.1: Bound for ΘI in Type 1 DGP.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (bound of {2,3}) 0.2262
(bound of {3,4}) 0.2698

(bound of {4,5}) 0.3333

(bound of {5,6}) 0.4167

τ

θ

Least upper bound
for the identified set

Note: Each line represents an upper bound for θ by considering a pair {n,n+ 1}. The intersection of sets
identified by these upper bounds yields ΘI .
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Figure A.2: Bound for ΘI in Type 2 DGP.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

0.1

0.3

0.5

0.6

τ

θ

Greatest lower
 bound for 

the identifed set

Note: Each curve represents a lower bound for θ by considering a pair {n,n+ 1} (n = 2 to 5 from top to
bottom), and the lower bound provided by each pair for θ is the same as 0.5, as needed uniformly across
τ , which reveals the greatest lower bound for ΘI .
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Appendix B

Appendix to Chapter 3

B.1 Details of the Change of Variables

Let b† = (b∗ − p0)0.5, and let g†(·) be the density for b†. It is easy to show that

V ∗(τ) = (b†(τ))2 + p0 +
2

r(N − 1)
(rτ + 1− r)b†(τ)

g†(b†(τ))
. (9′)

Note that

d
dτ

[
(rτ + 1− r)b†(τ)

g†(b†(τ))
]

=
[rb†(τ) + (rτ + 1− r)(g†(b†(τ)))−1]g†(b†(τ))− (rτ + 1− r)b†(τ)g†′(b†(τ))(g†(b†(τ)))−1

(g†(b†(τ)))2

=
rb†(τ) + (rτ + 1− r)(g†(b†(τ)))−1

g†(b†(τ))
−

(rτ + 1− r)b†(τ)g†′(b†(τ))
(g†(b†(τ)))3

=
rτ

g†(b†(τ))
+
rτ + 1− r

(g†(b(τ)))2
−

(rτ + 1− r)b†(τ)g†′(b†(τ))
(g†(b†(τ)))3

So

V ∗′(τ) =
2b†(τ)N

(N − 1)g†(b†(τ))
+

2(rτ + 1− r)
r(N − 1)

[
1

(g†(b†(τ)))2
−
b†(τ)g†′(b†(τ))

(g†(b†(τ)))3
]. (10′)

In estimation, we follow the procedures in Section 4, but replacing (4.9) and

(4.10) by (9′) and (10′), respectively.
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