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1. Introduction

It is well known that structural equation modeling (SEM) has become one of the most

popular methods in multivariate analysis, especially in the social and behavioral sciences.

In a SEM model with latent variables, the relationships among observed (manifest) vari-

ables is formulated through unobserved (latent) constructs. Because measurement errors

are explicitly accounted for, coefficients in key parts of a model are uninfluenced by errors

of measurement, implying greater theoretical meaningfulness and cross-population stability

to the parameters than might be achieved with methods such as regression or analysis of

variance that do not correct for unreliability. This stability is a key goal of theory testing

with SEM, where a substantive theory or hypothesized causal relationship among the la-

tent constructs, facilitated by path diagrams, can be tested through SEM. With the help

of popular software such as LISREL (Jöreskog & Sörbom, 1993) and EQS (Bentler, 2000),

applications as well as new technical developments in SEM have increased dramatically in

the past decade (e.g., Bollen, 1989; Austin & Calderón, 1996; Austin & Wolfle, 1991; Trem-

blay & Gardner, 1996). There exists a vast amount of recent introductory (Byrne, 1994;

Dunn, Everitt & Pickles, 1993; Kline, 1998; Mueller, 1996; Schumacker & Lomax, 1996)

and overview material (Bentler & Dudgeon, 1996; Browne & Arminger, 1995; Hoyle, 1995;

Marcoulides & Schumacker, 1996).

A commonly encountered situation is the existence of several samples. These may arise

from one or several populations. If the samples are all from one population, their data can

be combined for improved inference. On the other hand, if the samples are from several

populations, it is important to understand how the populations might differ. For example,

it might be interesting to know whether the factor structure of an established instrument,

developed for a specific population, is also valid for other populations. In the context of

SEM, it is natural to ask whether particular parameters, such as factor loadings, regression

coefficients, or variances of factors may be the same or different in various groups such as

different ethnic, gender, or age groups. Motivated by such practical problems, Jöreskog

(1971) developed a maximum likelihood approach to SEM with multiple groups. Sörbom

(1974) studied differences in factor means across groups. Because practical data may not
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be normal, Bentler, Lee and Weng (1987) and Muthén (1989) proposed a generalized least

squares approach to parameter estimation and model test for multi-group structural models.

Recently, Satorra (2000) and Satorra and Bentler (1999) proposed scaled tests in multi-

sample analysis of moment structures. The above literature offers important guidance for

multi-group modeling in practice. For example, standard software enables users to easily

specify simultaneous estimation and evaluation of multi-group models.

With real data obtained under typical testing situations, nonstandard samples that con-

tain missing data, nonnormal data and data with outliers are almost inevitable. As noted

above, the literature on multi-group models of sample means and covariance matrices is

based on either normal theory maximum likelihood or through generalized least squares.

With nonstandard samples, however, there exist various limitations to the current method-

ologies for using sample moments for multi-group analysis. For example, the typical sample

mean vector and sample covariance matrix are not defined when a sample contains missing

data. For a complete sample with outliers, the sample mean and covariance matrix will

be biased estimates of their population counterparts. Even for a sample from a distribu-

tion with heavy tails, the sample moments may not converge at all or at least may not be

efficient estimates of the corresponding population moments. These various drawbacks of

the sample moments will pass on to an analytical procedure that models these moments.

Certain problems with nonstandard samples for single group analysis have been studied

and discussed extensively by various authors. Allison (1987), Lee (1986), Muthén, Kaplan

and Hollis (1987), Arbuckle (1996), and Jamshidian and Bentler (1999), for example, dis-

cussed approaches to dealing with normal missing data. Arminger and Sobel (1990), and

Yuan and Bentler (1999), developed approaches for dealing with nonnormal missing data.

Techniques for identifying outliers or influential cases can be found in Tanaka, Watadani

and Moon (1991), Cadigan (1995), Lee and Wang (1996), Bollen and Arminger (1991), and

Berkane and Bentler (1988). Approaches to robust inference for SEM can be found in Yuan

and Bentler (1998a,b, 2000). As compared to classical methods which are based on sample

means and covariance matrices, these new developments offer various advantages in model

estimation and evaluation. It is the aim of this chapter to develop parallel methods for

2



multi-group analysis with nonstandard samples.

There are various ways to develop multi-group methods for nonstandard samples. Our

purpose is to give a unified treatment for multiple groups, aiming to adopt the various

developments in the statistical literature in estimating population means and covariance

matrices. Suppose we have m groups, and denote the mean vectors and covariance matrices

in the population as µj and Σj , j = 1, · · · , m. Various methods have been developed for

estimating µj and Σj with a nonstandard sample from the jth population. For example,

the EM-algorithm based on a normality assumption can be used to estimate µj and Σj for

a normal sample with missing variables. There also exists an EM-algorithm based on a

multivariate t-distribution that applies when a missing data sample possesses heavier tails

as compared to the normal distribution. And when a sample contains outliers or influential

cases, there exist various robust methods for estimating µj and Σj . Our development will be

based on these new advances in estimating the population mean vectors µj and covariance

matrices Σj .

Let X̄nj and Snj be working estimates for µj and Σj , based on sample size nj , for j = 1,

· · ·, m. While it is anticipated that X̄nj and Snj might be better estimates than the sample

mean vector X̄j and covariance matrix Sj, we do not exclude the possibility of X̄nj = X̄j

and Snj = Sj in the case of normal sampling with no missing data. Actually, we may just

regard X̄nj as a data vector and Snj as a symmetric data matrix which approach µj and Σj ,

respectively, as our information about the jth group increases. It is typical that the µj in all

the groups are of the same dimension, but here we do not need to assume this. Instead, we

denote the dimension of µj as pj. Let vech(·) be an operator which transforms a symmetric

matrix into a vector by stacking the columns of the matrix leaving out the elements above the

diagonal, snj = vech(Snj) and σj = vech(Σj). We will use tnj = (X̄ ′
nj, s

′
nj)

′ and δj = (µ′j, σ
′
j)

′.

We need to assume that each of our data vectors has an appropriate large sample property

√
nj(tnj − δj) L→ N(0,Γj), j = 1, · · · , m, (1)

where Γj is a p
∗
j × p∗j matrix with p∗j = pj + pj(pj + 1)/2. When tnj = (X̄ ′

j, s
′
j)

′, the sample

moments based on a sample from a normal distribution, then

Γj = diag[Σj , 2D
+
pj
(Σj ⊗ Σj)D

+′
pj
],
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where D+
pj
is the Moore-Penrose generalized inverse of the duplication matrix Dpj

(p. 49 of

Magnus & Neudecker, 1988). In such a case, a consistent Γ̂j is easily obtained by replacing

Σj by Sj . However, we need to obtain a better estimator for Γj when dealing with a general

nonstandard sample. As we will see in the next section, our proposed inference procedure

just depends on (1), and we do not need to have the raw data once tnj = δ̂j and a consistent

Γ̂j are available. Procedures for obtaining tnj and Γ̂j will be given in section 3, based on our

experience with current estimation methodologies in the statistical literature for nonstandard

samples.

Suppose we are interested in the mean and covariance structures δj(βj) = (µ′j(β), σ
′
j(βj))

′

for j = 1, · · · , m. There are a variety of ways of using the information in (1) in order

to estimate parameter θ = (β ′
1, · · · , β ′

m)
′ and evaluate the structures δj(βj). All involve

minimizing some function of the distance between tnj and δj(βj). We choose the distance

based on the normal theory likelihood function for the following reasons: (a) When data are

normal the estimator based on such a function is most efficient. (b) For data with influential

cases or outliers, the robust mean vector and covariance matrix can be regarded as the

sample mean vector and sample covariance matrix based on an approximately normal sample

(Yuan, Chan & Bentler, 2000). (c) The estimation process of minimizing the maximum

likelihood function is quite stable, which is very important when modeling several groups

simultaneously.

With N = n1 + · · ·+ nm, the maximum likelihood discrepancy function between tnj and

δj(βj) is given by

F (θ) =
1

N

m∑
j=1

njFj(βj), (2a)

where

Fj(βj) = (X̄nj −µj(βj))
′Σ−1

j (βj)(X̄nj −µj(βj))+tr[SnjΣ
−1
j (βj)]− log |SnjΣ

−1
j (βj)|−pj . (2b)

The analysis of multiple groups is interesting only when we put constraints on the separate

βjs. In the most restricted case, when it is assumed that all samples come from the same

population, parameters from each group may be constrained equal across groups. In a

less restricted setting, only certain parameters such as factor means and loadings, or latent
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variable regression coefficients, may be constrained equal. Let the constraints be represented

by a r × 1 vector function

h(θ) = 0. (3)

Estimation of θ involves minimizing (2) under constraint (3). We denote such an estimator as

θ̂. The classical likelihood ratio test statistic is widely known to be of the form TML = NF (θ̂).

Let p∗ = p∗1 + · · ·+ p∗m, and q be the number of unknown parameters in θ. We need also to

assume
nj

N
→ γj > 0 in order to study the statistical properties of θ̂. When tnj = (X̄ ′

j , s
′
j)

′

are based on samples from normal distributions, both δj = δj(βj) and constraint (3) hold in

the populations, then

TML
L→ χ2

p∗−q+r. (4)

When data vectors tnj are used in (2), (4) will not hold in general. There also exists a

likelihood ratio statistic for testing constraint (3). Let θ̂∗ be the estimate of θ without

constraint (3). This θ̂∗ is just a collection of the β̂∗
j obtained by minimizing the function

Fj(βj) in (2b). The commonly used likelihood ratio statistic in testing constraint (3) is

T
(h)
ML = N [F (θ̂)− F (θ̂∗)].

which is also commonly referred to as the chi-square difference test. When all the samples

follow multivariate normal distributions and tnj = (X̄ ′
j , s

′
j)

′, then

T
(h)
ML

L→ χ2
r

under the null hypothesis of correct model structures and correct constraint. With a non-

standard sample, however, the behavior of T
(h)
ML will not asymptotically follow a chi-square

distribution even when the null hypothesis is correct.

Similarly, when data are normal and tnj = (X̄ ′
j , s

′
j)

′, it is easy to obtain standard error

estimates for θ̂ based on
√
N(θ̂ − θ0) L→ N(0,Ω).

The covariance matrix Ω is the inverse of the information or Hessian matrix associated

with minimizing (2). For nonstandard samples, however, this matrix is inappropriate for
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obtaining standard errors. We need to find another Ω to replace the one based on inverting

the information matrix.

The major purpose of this chapter is to give a unified treatment of multi-sample structural

equation modeling based on minimizing (2) under constraint (3). The most important results

are appropriate standard errors for θ̂ and test statistics for evaluating the overall model

structure and the constraint. These inferential procedures will be developed in section 2.

Section 3 gives brief guidelines for obtaining tnj = δ̂j and Γ̂j for several nonstandard samples.

Some concluding remarks and discussions will be offered at the end of the chapter.

2. Model Inference

Under the null hypothesis of correct model structures about δj(βj) and correct constraint

h(θ) = 0, we will first study the distribution of θ̂ before studying the properties of TML and

T
(h)
ML. Rescaled statistics TRML and T

(h)
RML then follow from our study of TML and T

(h)
ML. Since

standard ML theory cannot be applied without the normality assumption for observed data,

to obtain the properties of θ̂ we will use a generalized estimating equation approach instead

(e.g., Liang & Zeger, 1986; Yuan & Jennrich, 1998). We will use dot on top of a function to

imply derivative (e.g., ḣ(θ) = ∂h(θ)/∂θ′, Ḟ (θ) = ∂F (θ)/∂θ). We may omit the argument of

a function if evaluated at the population value (e.g., δ = δ(θ0)).

In order to obtain θ̂ one generally has to work with the Lagrangian function

L(θ) = F (θ) + h′(θ)λ,

where λ is a r × 1 vector of Lagrangian multipliers (e.g., Aitchison & Silvey, 1958; Bentler

& Dijkstra, 1985). Since θ̂ minimizes L(θ), it satisfies the generalized estimating equation

G(θ̂, λ̂) = 0, (5)

where

G(θ, λ) =

(
Ḟ (θ) + ḣ′(θ)λ

h(θ)

)
.

Notice that G(θ, λ) is just the derivative of L with respect to (θ′, λ′)′. Since λ0 = 0,

G(θ0, λ0) =

(
Ḟ (θ0)
0

)
.

6



Using a first order Taylor expansion on (4) at (θ0, λ0), or equivalently, using the estimating

equation approach as in Yuan and Jennrich (1998), we obtain

√
N

(
θ̂ − θ0
λ̂− λ0

)
= −Ġ−1(θ0, λ0)

√
NG(θ0, λ0) + op(1), (6)

where

Ġ(θ0, λ0) =

(
F̈ (θ0) ḣ′(θ0)
ḣ(θ0) 0

)
.

Denote

Ġ−1(θ0, λ0) =

(
A11 A12

A21 A22

)
,

then it follows from (6) that

√
N(θ̂ − θ0) = −A11

√
NḞ (θ0) + op(1). (7)

Let Wj = diag[Σ−1
j ,

1
2
D′

pj
(Σ−1

j ⊗ Σ−1
j )Dpj

] and ej = tnj − δj, then with (2b) we have

Ḟj(β0j) = −2δ̇′jWjej +Op(1/nj). (8)

It follows from (8) that
√
njḞj(β0j)

L→ N(0,Πj),

where Πj = 4δ̇′jWjΓjWj δ̇j . Since Ḟ (θ0) = (n1Ḟ
′
1(β01)/N, · · · , nmḞ

′
m(β0m)/N)′ and the various

Ḟj(β0j) are independent, √
NḞ (θ0)

L→ N(0,Πγ), (9)

where Πγ = diag(γ1Π1, · · · , γmΠm). It follows from (7) and (9) that

√
N(θ̂ − θ0) L→ N(0,Ω), (10)

where Ω = A11ΠγA
11. A consistent estimator Ω̂ of Ω can be obtained when θ is replaced by

θ̂, γj by nj/N , and Γj by Γ̂j . Standard errors of θ̂ follow from square roots of the diagonals

of Ω̂.

When data are normal, Γj = W
−1
j , Πj = 4δ̇′jWj δ̇j and

Πγ = 4diag(γ1δ̇
′
1W1δ̇1, · · · , γmδ̇

′
mWmδ̇m).
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Since

F̈j(β0j) = 2δ̇′jWj δ̇j +Op(1/
√
ni) (11)

and A11 is a generalized inverse of F̈ (θ0), we have

√
N(θ̂ − θ0) L→ N(0,Ω), (12)

where Ω = A11ΠγA
11 = A11. This corresponds to the standard results obtained when using

the normality assumption for multi-samples.

Equation (10) characterizes the distribution of θ̂, the parameter estimator obtained by

minimizing (2) under constraint (3). Parallel results for θ̂∗ without the constraint are ob-

tained when replacing A11 by A−1 in (7) to (12), where

A = 2diag(γ1δ̇
′
1W1δ̇1, · · · , γmδ̇

′
mWmδ̇m).

That is
√
N(θ̂∗ − θ0) L→ N(0,Ω∗),

where Ω∗ = A−1ΠγA
−1. Notice that the Πγ matrix in Ω∗ is the same as the one in Ω, which

is block diagonal. As A is also block diagonal, the β̂∗
j in θ̂

∗ are independent. The correlations

between various β̂j in (12), due to the constraint (3), are totally characterized by A11 .

Parallel to the likelihood ratio test based on the sample covariance matrices under nor-

mality, we would like to have statistics that can be used for inference with nonstandard

samples. For this purpose, we will first study the statistic TML = NF (θ̂). Rescaled statistics

for testing the structures δj = δj(βj) and constraint (3) will be given next. A parallel version

also will be obtained when interest centers on just testing the constraint (3).

Using the Taylor expansion on F (θ̂) at θ0 we have

F (θ̂) = F (θ0) + Ḟ
′(θ0)(θ̂ − θ0) + 1

2
(θ̂ − θ0)′F̈ (θ̄)(θ̂ − θ0), (13)

where θ̄ lies between θ0 and θ̂. Using equation (11) of Yuan and Bentler (1998b) we have

Fj(β0j) = e
′
jWjej +Op(1/n

3/2
j ). (14)

Let

W = diag(W1, · · · ,Wm),
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Wγ = diag(γ1W1, · · · , γmWm),

δ̇ = diag(δ̇1, · · · , δ̇m),

e = (e′1, · · · , e′m)′,

es = (
√
n1e

′
1, · · · ,

√
nme

′
m)

′.

From (14) we have

NF (θ0) = e
′
sWes + op(1). (15)

Similarly, from (8) and (7) respectively we obtain

√
NḞ (θ0) = −2

√
Nδ̇′Wγe+ op(1) = −2δ̇′W

1
2

γ W
1
2 es + op(1)

and
√
N(θ̂ − θ0) = A11δ̇′W

1
2

γ W
1
2 es + op(1), (16)

which further lead to

NḞ ′(θ0)(θ̂ − θ0) = −2e′sW
1
2W

1
2

γ δ̇A11δ̇′W
1
2

γ W
1
2es + op(1). (17)

Equation (11) implies

F̈ (θ0) = 2δ̇′Wγ δ̇ + Op(1/
√
N). (18)

It follows from (16) and (18) that

N(θ̂ − θ0)′F̈ (θ̄)(θ̂ − θ0) = 2e′sW
1
2W

1
2

γ δ̇A11δ̇′Wγ δ̇A
11δ̇′W

1
2

γ W
1
2 es + op(1)

= 2e′sW
1
2W

1
2

γ δ̇A11δ̇′W
1
2

γ W
1
2 es + op(1).

(19)

Combining (13), (15), (17) and (19) gives

NF (θ̂) = e′sWes − 2e′sW
1
2W

1
2

γ δ̇A11δ̇′W
1
2

γ W
1
2 es + e

′
sW

1
2W

1
2

γ δ̇A11δ̇′W
1
2

γ W
1
2es + op(1)

= e′sUes + op(1),
(20)

where

U = W −W 1
2W

1
2

γ δ̇A11δ̇′W
1
2

γ W
1
2 .

Let

Γ = diag(Γ1, · · · ,Γm),
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then it follows from (1) that z = Γ− 1
2es

L→ Np∗(0, I). Now we have from (20)

NF (θ̂) = z′(Γ
1
2W

1
2 ){I −W

1
2

γ δ̇A11δ̇′W
1
2

γ }(W 1
2Γ

1
2 )z + op(1). (21)

The first term on the right hand side of (21) is a quadratic form in z. Consequently, the

asymptotic distribution of TML = NF (θ̂) can be characterized as the distribution of a

quadratic form of normal variates (e.g., section 1.4 of Muirhead, 1982). Let τj be the nonzero

eigenvalues of UΓ and χ2
j1 be independent chi-square variates with degree of freedom 1. Then

TML
L→

p∗−q+r∑
j=1

τjχ
2
j1. (22)

Unless all the τj are equal, there is no simple distribution to describe the randomness of the

right hand side of (22). However, a simple rescaling on TML can result in a statistic that

is better approximated by the χ2
p∗−q+r distribution. Let c = tr(UΓ)/(p − q + r). Then the

rescaled statistic

TRML = TML/ĉ

approaches a distribution with mean equal to that of χ2
p∗−q+r. Similar statistics for inference

based on sample covariance matrices have been proposed by Satorra and Bentler (1988) for

single sample analysis, and by Satorra (2000) for multi-sample analysis. Simulation work

in the single sample case with the sample covariance matrix has shown that this type of

correction works remarkably well under a variety of conditions (e.g., Hu, Bentler, & Kano,

1992; Curran, West, & Finch, 1996).

A special case results when data are normal and sample means and covariance matrices

are used in (2). Then Γ = W−1. Since W
1
2

γ δ̇A11δ̇′W
1
2

γ is an idempotent matrix with rank

(q − r), it follows from (21) that

TML
L→ χ2

p∗−q+r,

which is the basis for the likelihood ratio statistic.

In order to study the property of the test statistic T
(h)
ML = N [F (θ̂)−F (θ̂∗)], we need also

to characterize the distribution of NF (θ̂∗). This can be obtained when replacing the A11 in

(21) by A−1. Specifically, let

U∗ = W −W 1
2W

1
2

γ δ̇A−1δ̇′W
1
2

γ W
1
2 ,
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then

NF (θ̂∗) = e′sU
∗es + op(1). (23)

Since W
1
2

γ δ̇A−1δ̇′W
1
2

γ is an idempotent matrix with rank q, there are only p∗ − q nonzero

eigenvalues of U∗Γ. Denote these as τ ∗j , j = 1, · · · , p∗ − q, then

NF (θ̂∗) L→
p∗−q∑
j=1

τ ∗j χ
2
j1.

Similarly, letting c∗ = tr(U∗Γ)/(p∗ − q), the rescaled statistic

T ∗
RML = NF (θ̂∗)/ĉ∗

approaches a distribution with mean equal to that of χ2
p∗−q.

For testing the constraint h(θ) = 0, based on (20) and (23), the statistic T
(h)
ML can be

expressed as

T
(h)
ML = e′s(U − U∗)es + op(1). (24)

It can be verified that

U − U∗ =W
1
2W

1
2

γ δ̇(A−1 − A11)δ̇′W
1
2

γ W
1
2 (25)

and W
1
2

γ δ̇(A−1 −A11)δ̇′W
1
2

γ is an idempotent matrix of rank r. It follows from (24) and (25)

that

T
(h)
ML

L→
r∑

j=1

κjχ
2
j1,

where κj are the nonzero eigenvalues of (U − U∗)Γ. Let ch = tr[(U − U∗)Γ]/r, then

T
(h)
RML = T

(h)
ML/ĉh

converges to a distribution with mean r. Satorra (2000) gave a rescaled version of the Wald

type statistic for testing a constraint like (3) when sample moment matrices are used in (2).

A more general version than testing h(θ) = 0 is to test one set of constraints nested

within another set of constraints. Let the two sets of constraints be represented by h(θ) = 0

and g(θ) = 0, and

Rh = {θ : h(θ) = 0} ⊂ Rg = {θ : g(θ) = 0}. (26)
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A rescaled statistic for testing (26) can be derived similarly. Let Uh and Ug represent the

U matrices corresponding to the constraints, then the likelihood ratio statistic T
(h⊂g)
ML =

T
(h)
ML − T (g)

ML can be written as

T
(h⊂g)
ML = e′s(Uh − Ug)es + op(1).

Let rh and rg be the numbers of independent constraints in h(θ) = 0 and g(θ) = 0 respec-

tively, then

tr[(Uh − Ug)Γ] = tr(UhΓ)− tr(UgΓ) = (p∗ − q + rh)ch − (p∗ − q + rg)cg,

we have

c(h⊂g) = [(p∗ − q + rh)ch − (p∗ − q + rg)cg]/(rh − rg). (27)

Suppose a software has already had the rescaling option for nonstandard samples with con-

straint built in, but rescaling for nested models is still not available. Then we can get c(h⊂g)

using (27) in a straightforward way. Let T
(g)
ML and T

(g)
RML be the likelihood ratio statistic

and the rescaled statistic, respectively. Then ĉg = T
(g)
ML/T

(g)
RML, and similarly to obtain ĉh.

Since p∗ − q + rh and p∗ − q + rg are just the degrees of freedom in the two models, ĉ(h⊂g)

immediately follows from (27). A similar procedure for modeling based on sample moments

is discussed in Satorra and Bentler (1999).

3. Estimating δj and Γj for Nonstandard Samples

Estimation of covariance matrices for nonstandard samples can be accomplished by var-

ious procedures that have been described in the statistical literature. Since the most com-

monly encountered nonstandard situations in the social and behavioral sciences are probably

nonnormal samples, samples with outliers, and samples with missing data, we will deal with

each of these situations in sequence. The following procedures for estimating δj and Γj are

based on our experience with various practical nonstandard samples. A further discussion

of these procedures applied to exploratory factor analysis can be found in Yuan, Marshall

and Bentler (1999).

12



3.1. Nonnormal data

When samples come from distributions with heavy tails which are not due to outliers,

sample mean vectors and covariance matrices may still be unbiased estimates of their popula-

tion counterparts. For example, if a sample is from a multivariate t-distribution, the sample

does not contain outliers but is still nonnormal. In such a case, using sample mean vectors

and covariance matrices in (2) still leads to consistent parameter estimates when all of the

population second-order moments exist. In order to obtain consistent standard errors, we

need to have the population fourth-order moment matrices to exist. Let X1j , · · ·, Xnjj be the

sample from the jth group with sample mean X̄j , let Yij = {X ′
ij, vech

′[(Xij−X̄j)(Xij−X̄j)
′]}′

with sample mean vector Ȳj and sample covariance matrix SY j. Then tnj = Ȳj and

Γ̂j = SY j

is a consistent estimator of Γj in (1). Using the sample fourth-order moment matrix to

estimate its population counterpart was first used by Browne (1982, 1984) in the context of

covariance structure analysis. Mooijaart and Bentler (1985) formulated an efficient way to

compute SY j .

3.2. Data with outliers

With nonnormal data, sample covariance matrices are no longer the most efficient esti-

mates of their population counterparts. If the nonnormality is created by outliers, analysis

based on sample covariance matrices can be misleading to a greater or lesser degree, de-

pending on the influence of the outliers. There are two ways to deal with outliers. One is

to identify the influential cases through some analytical procedure and make a subjective

decision whether to keep them or remove them. Another way is to use a robust approach.

Whether any cases are outliers or just influential cases, their effect will be automatically

downweighted through this approach. Compared with an outlier removal approach, the

merit of a downweighting approach was discussed by Rousseeuw and van Zomeren (1990).

We will also use the downweighting approach here. We especially recommend the Huber-

type weight, because of its explicit control of the percentage of outliers when the majority

of a data cloud follows a multivariate normal distribution.
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For the sample X1j , · · ·, Xnjj from the jth population, let

dij = d(Xij, µj,Σj) = [(Xij − µj)
′Σ−1

j (Xij − µj)]
1/2

be the Mahalanobis distance and u1(t) and u2(t) be some nonnegative scalar functions.

Maronna (1976) defined robust M-estimators (µ̂j, Σ̂j) by solving the following equations

µj =
nj∑
i=1

u1(dij)Xij/
nj∑
i=1

u1(dij), (28a)

and

Σj =
nj∑
i=1

u2(d
2
ij)(Xij − µj)(Xij − µj)

′/nj . (28b)

If u1(t) and u2(t) are decreasing functions, cases with larger dijs will get smaller weights than

those with smaller dijs. If a case lies far away form the majority of the data cloud, its effect

will be downweighted. A solution to (28) can be obtained through iteratively reweighted

least squares (e.g., Green, 1984). The Huber-type weight is given by

u1(d) =

{
1, if d ≤ r
r/d, if d > r

(29)

and u2(d
2) = {u1(d)}2/β (e.g., Tyler, 1983). Here, r2 satisfies P (χ2

pj
> r2) = α, α is

the percentage of outliers one wants to control assuming the massive data cloud follows a

multivariate normal distribution, and β is a constant such that E{χ2
pu2(χ

2
p)} = pj. This

approach makes the estimator Σ̂j unbiased for Σj if sampling is from a pj-variate normal

distribution. Notice that only the tuning parameter α needs to be decided in applying the

Huber-type weight, since r and β are just functions of α.

Let Xij , i = 1, · · · , nj follow an elliptical distribution (e.g., Fang, Kotz, & Ng, 1990)

and Snj = Σ̂j be a robust covariance matrix estimate. Snj generally does not converge to

the population covariance matrix. Instead, it converges to a constant times the population

covariance matrix: κjΣj . The positive scalar κj depends on the weight function used in the

estimation procedure, as well as the unknown underlying distribution of the data. Because

of this issue, we recommend using the Huber-type weight with the same α for every sample

of the m groups. Since multiple samples are commonly obtained by administering the same

questionnaire tom groups, the massive data cloud in each sample should resemble the massive
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data clouds of other samples, even though one may contain fewer or more influential cases

than the others. Actually, robust covariance matrices from separate samples are much more

similar than traditional sample counterparts when data have heavy tails (Yuan, Marshall &

Weston, 1999).

We will resort to the estimating equation approach for getting a consistent estimator of

Γj. Rewrite (28) as

1

nj

nj∑
i=1

Gj(Xij, δj) = 0, (30a)

where

Gj(x, δj) =

(
u1[d(x, µj,Σj)](x− µj)

u2[d
2(x, µj,Σj)]vech[(x− µj)(x− µj)

′]− σj

)
. (30b)

Then
√
nj(δ̂j − δj0) L→ N(0,Γj), (31)

where Γj = H
−1
j BjH

′−1
j with

Hj = E[Ġj(Xij, δj0)] and Bj = E[Gj(Xij, δj0)G
′(Xij , δj0)].

A consistent estimator of Γj can be obtained by using consistent estimates for Hj and Bj ;

these are given by

Ĥj =
1

nj

nj∑
i=1

Ġj(Xij, δ̂j) and B̂j =
1

nj

nj∑
i=1

Gj(Xij, δ̂j)G
′
j(Xij, δ̂j).

3.3. Normal missing data

Data are said to be missing completely at random (MCAR) if their absence does not

depend on the missing values themselves nor on the observed values of the other variables.

Data are said to be missing at random (MAR) if the missing data do not depend on the

missing values themselves, but may depend on the observed values of other variables. For

the jth sample with missing data, denote Xij as the vector of observed variables for the ith

case with dimension pij . Then E(Xij) = µij and Cov(Xij) = Σij are respectively subvector

of µj and submatrix of Σj . Under the assumption of normality, the log likelihood function

based on Xij is

lij(δj) =
pij

2
log(2π)− 1

2
[log |Σij |+ (Xij − µij)

′Σ−1
ij (Xij − µij)]. (32a)
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The MLE of δj is actually obtained by maximizing

lj(δj) =
nj∑
i=1

lij(δj). (32b)

Consequently, δ̂j satisfies the following generalized estimating equation

Gj(δ̂j) = 0, (33a)

where

Gj(δj) =
1

nj

nj∑
i=1

l̇ij(δj). (33b)

A solution to (33) is straightforward using the EM-algorithm developed in Dempster, Laird

and Rubin (1977). Specific steps are also discussed in detail in Little and Rubin (1987).

Assuming the missing data mechanism is MAR, using the result for generalized estimating

equations (e.g., Liang & Zeger, 1986; Yuan & Jennrich, 1998), we have

√
nj(δ̂j − δj0) L→ N(0,Γj), (34a)

where Γj = A
−1
j BjA

−1
j with

Aj = −E[Ġj(δj0)], Bj = E[
1

nj

nj∑
i=1

l̇ij(δj)l̇
′
ij(δj)]. (34b)

A consistent estimate of Γj is given by

Γ̂j = Â
−1
j B̂jÂ

−1
j

with

Âj = −Ġj(δ̂j), B̂j =
1

nj

nj∑
i=1

l̇ij(δ̂j)l̇
′
ij(δ̂j).

When Xij ∼ N(µij ,Σij), the corresponding observed information matrix is given by Âj

(Little & Rubin, 1987; Kenward & Molenberghs, 1998) and Γ̂j = Â−1
j is consistent for Γj

in (34). For a general nonnormal distribution, the result in (34) is also correct as long as

the missing data mechanism is MCAR. However, as discussed in Laird (1988), some bias

may exist in using δ̂j to estimate δj0 when data are not normal and missing data are MAR.

Ideally, it would be desirable to model a data set through ML to avoid bias. However,

because of complexity of the real world, there will be always a discrepancy between the
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underlying distribution of the data and a carefully specified modeling distribution. So we

would consider the normal distribution assumption for missing data to offer only a working

assumption in multivariate analysis. Fortunately, for estimating population mean vectors

and covariance matrices, a recent simulation study by Yuan and Bentler (1999) indicates

that the bias is minimal for a variety of nonnormal distributions. It is important to realize

that once tnj is used in (2), the parameter estimate θ̂ will be the same whatever missing

data mechanism is assumed. The important question is, which procedure leads to a more

accurate evaluation of model structures. According to the results for single group analysis

in Yuan and Bentler (1999), inference based on (34) is much more accurate than that based

on the observed information matrix. We recommend using (34) for estimating Γj .

3.4. Nonnormal missing data

When a sample contains both missing data and outliers, normal theory based missing

data procedures will lead to inaccurate conclusions. As in the situation with complete

data, appropriate downweighting procedures are needed for better inference. Little and

Smith (1987) proposed several methods for such a purpose. Little (1988) further proposed

the EM-algorithm for modeling missing data by a multivariate t-distribution as well as a

multivariate contaminated normal distribution. Here, we will outline a procedure for using

the multivariate t-distribution to get tnj = δ̂j and Γ̂j .

The density of the p-variate t-distribution with degrees of freedom k is given by

f(x|µ,Σ, k) = Γ[(p+ k)/2]

(kπ)p/2Γ(k/2)
|Σ|−1/2(1 +

(x− µ)′Σ−1(x− µ)
k

)−(p+k)/2. (35)

If X follows (35) with k > 2, then E(X) = µ and Cov(X) = kΣ/(k − 2). So the MLE of Σ

will converge to κCov(X) with κ = (k−2)/k. As discussed in subsection 3.2, we recommend

using t-distributions with the same degrees of freedom for each of the m samples.

Denote (35) as Mtp(µ,Σ, k). Since a marginal distribution of (35) is also a t-distribution

with the same degrees of freedom (e.g., Fang, Kotz, & Ng, 1990; Kano, 1994), if Xij ∼
Mtpij

(µij ,Σij, k), its log likelihood function is

lij(δj) = cij − 1

2
log |Σij | − (pij + k)

2
log[1 +

(Xij − µij)
′Σ−1

ij (Xij − µij)

k
]. (36a)
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where δj = (µ′j, δ
′
j)

′. The MLE of δj can be obtained by maximizing

lj(δj) =
nj∑
i=1

lij(δj). (36b)

Similarly, as in the last subsection, the δ̂j satisfy the following generalized estimating equation

Gj(δ̂j) = 0, (37a)

where

Gj(δ̂j) =
1

nj

nj∑
i=1

l̇ij(δj). (37b)

We can maximize (36) for δj and k simultaneously. However, a data set may not exactly

follow a t-distribution, and the simultaneous ML procedure may not lead to the most ef-

ficient estimator of δj. In addition to requiring much more complicated computations, a

nonadmissible MLE of k may occur with some practical data as discussed in Lange, Little

and Taylor (1989). Little (1988) recommended using several prefixed ks, and then using the

δ̂j corresponding to the largest lj(δ̂j) as the final parameter estimator. Real data examples

in Yuan and Bentler (1998a,b) indicate that most of the smaller ks (1 ≤ k ≤ 5) can ef-

fectively control the influence of outliers in SEM. In practice, we suggest following Little’s

recommendation to try several prefixed k (e.g., 1 ≤ k ≤ 5). With a fixed k, the solution to

(37) is straightforward using the EM-algorithm developed in Little (1988).

As discussed for the normal theory based likelihood function, the t-distribution in (36) is

only a working assumption for downweighting outliers. Real data may not exactly follow such

an assumption. Consequently, computations to obtain good standard error estimators need

to be modified. We will use a sandwich-type covariance matrix to describe the distribution

of δ̂j . With a MAR assumption for the missing data mechanism, this is given by

√
nj(δ̂j − δ̂j0) L→ N(0,Γj), (38a)

where Γj = A
−1
j BjA

−1
j with

Aj = −E[Ġj(δj0)], Bj = E[
1

nj

nj∑
i=1

l̇ij(δj0)l̇
′
ij(δj0)]. (38b)

A consistent estimate of Γj is obtained from

Γ̂j = Â
−1
j B̂jÂ

−1
j (38c)
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with

Âj = −Ġj(δ̂j), B̂j =
1

nj

nj∑
i=1

l̇ij(δ̂j)l̇
′
ij(δ̂j).

When evidence suggests that a data set does closely follow the t-distribution used in esti-

mating δ̂j , we may use the inverse of the observed information matrix Â−1
j instead of (38c)

to describe the behavior of δ̂j. However, the result in (38) is more accurate under violation

of distributional assumptions. When the missing data mechanism is MAR, and the data set

does not follow a multivariate t-distribution, there may exist a bias for using δ̂j to estimate

δj0 (Laird, 1988). That is, the δ̂j may not approach δj as the sample size increases. Based on

results in Yuan and Bentler (1999), we suspect that the bias would be minimal for most of

the commonly encountered continuous distributions. Further studies on bias associated with

the MLE from a misspecified t-distribution and different missing data mechanisms would

provide a valuable guide for future application of the method. For the same reason as dis-

cussed for the normality working assumption in the previous subsection, our interest is to

obtain a better description of the variability in tnj = δ̂j .

4. Discussion and Conclusion

Motivated by the typical nonstandard samples for survey data in practice, that is, sam-

ples with nonnormal distributions, missing data, and outliers, we proposed replacing the

sample mean vectors and sample covariance matrices by more appropriate quantities tnj in

the normal theory based likelihood function for multi-group SEM. Because the parameter

estimator θ̂ depends on tnj, possible merits of tnj such as efficiency and robustness are in-

herited by θ̂. Standard errors of θ̂ are obtained through a generalized estimating equation

approach. Two rescaled test statistics, one for the overall structural model with constraints,

and one just for the constraints, are provided. Procedures for obtaining appropriate tnj for

each situation, and their large sample covariance matrices, are given for each of several non-

standard sampling setups. Our approach is so general that it can be applied to any types

of nonstandard samples once a new method for estimating the population mean vector and

covariance matrix together with the associated Γ matrix are available for such samples.

We have chosen to use the normal theory based likelihood function as the discrepancy

function to measure the distance between tnj and δj because of its relative advantage in
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reaching convergence. A generalized least squares approach using Γ̂−1
j as weights is equally

general, and development along this line is straightforward.

It would be ideal to demonstrate the procedures in section 2 with a practical example

for each of the various types of nonstandard samples considered. Due to the unavailability

of multiple samples that contain the various features, such a demonstration will not be

done at present. Future research clearly should be directed to evaluating our proposals.

Based on our experience with the inference procedures in section 2 for various one group

nonstandard samples, we would expect the proposed procedures to generally give much

more reliable model and parameter evaluation than classical procedures based on sample

covariance matrices. Our recommendation is to use the proper methods given in section

3 to estimate (µj,Σj) and Γj when nonstandard samples occur in practice, and follow the

procedure in section 2 for model evaluation.
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