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SUMMARY

Objective: A fundamental challenge in treating epilepsy is that changes in observed

seizure frequencies do not necessarily reflect changes in underlying seizure risk.

Rather, changes in seizure frequency may occur due to probabilistic variation around

an underlying seizure risk state caused by normal fluctuations from natural history,

leading to seizure unpredictability and potentially suboptimal medication adjustments

in epilepsymanagement. However, no rigorous statistical approach exists to systemat-

ically distinguish expected changes in seizure frequency due to natural variability from

changes in underlying seizure risk.

Methods: Using data from SeizureTracker.com, a patient-reported seizure diary tool

containing over 1.2 million recorded seizures across 8 years, a novel epilepsy seizure

risk assessment tool (EpiSAT) employing a Bayesian mixed-effects hidden Markov

model for zero-inflated count data was developed to estimate changes in underlying

seizure risk using patient-reported seizure diary and clinical measurement data. Accu-

racy for correctly assessing underlying seizure risk was evaluated through a simulation

comparison. Implications for the natural history of tuberous sclerosis complex (TSC)

were assessed using data fromSeizureTracker.com.

Results: EpiSAT led to significant improvement in seizure risk assessment compared

to traditional approaches relying solely on observed seizure frequencies. Applied to

TSC, four underlying seizure risk states were identified. The expected duration of each

state was <12 months, providing a data-driven estimate of the amount of time a per-

son with TSC would be expected to remain at the same seizure risk level according to

the natural course of epilepsy.

Significance: We propose a novel Bayesian statistical approach for evaluating seizure risk

on an individual patient level using patient-reported seizure diaries, which allows for the

incorporation of external clinical variables to assess impact on seizure risk. This tool may

improve the ability to distinguish true changes in seizure risk from natural variations in

seizure frequency in clinical practice. Incorporation of systematic statistical approaches

into antiepileptic drug (AED) management may help improve understanding of seizure

unpredictability aswell as timing of treatment interventions for peoplewith epilepsy.

KEY WORDS: Seizure risk, Bayesian inference, Epilepsy, Hidden Markov model,

Mixed effects, Natural history, Seizure diary data, Tuberous sclerosis complex, Zero-

inflated Poisson.
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Abbreviations
DIC: deviance information criterion
ILAE: International League Against Epilepsy
MCMC:Markov Chain Monte Carlo
TSC: tuberous sclerosis complex
ZIP: zero-inflated Poisson

Tuberous sclerosis complex (TSC) is an autosomal
dominant neurocutaneous disorder affecting approxi-
mately 1/5,000–10,000 live births. For patients with
TSC, epilepsy is among the most common neurological
manifestations, often developing by early infancy or
childhood.1

Seizure unpredictability plays a large role in the burden
of epilepsy for patients with TSC and other forms of epi-
lepsy. Current monitoring and treatment decision-making in
epilepsy is based on the observed number of seizures:
increases in seizure frequency are interpreted as disease
worsening, and typically lead to antiepileptic drug (AED)
dose escalation or changes. However, monthly changes in
seizure count may not necessarily reflect changes in under-
lying seizure risk but expected probabilistic variation
around an unchanged seizure risk state (Figure 1). For
example, 18.7% of TSC patients initially identified as drug-
resistant go on to achieve epilepsy remission for at least
1 year,2 suggesting that defining drug-resistance based on
observed seizure counts may not accurately reflect the
underlying probability of future seizures.

There is currently no systematic established approach for
estimating a patient’s underlying seizure risk while teasing
out variations in seizure frequency due to natural variability.
However, the pattern of seizure remission and recurrence in
epilepsy suggests that parameter-driven statistical models,
compared to observation-driven models, may be better at
separating true improvements in seizure burden from proba-
bilistic deviations. Additionally, seizures are thought to
occur when the level of ictogenicity surpasses the seizure
threshold.3 These considerations support a concept of

epilepsy natural history based on changes in underlying sei-
zure risk rather than observed seizure frequencies.

In this paper, we propose a novel Bayesian statistical epi-
lepsy seizure risk assessment tool (EpiSAT) for distinguish-
ing expected changes in seizure frequency due to natural
variability from changes in underlying seizure risk. This
allows for a concept of “seizure control” based on the stabil-
ity of the underlying seizure risk state rather than observed
seizure counts.

To capture the underlying seizure risk state, we propose a
hierarchical model for seizure predisposition based on latent
(unobserved) variables. Observed seizures are modeled
through a hidden Markov model (HMM) as the observed
manifestation of the unobserved seizure risk state. HMMs
have been successfully utilized to model unobserved states
in several applications, including bronchiolitis obliterans,4

antibiotic resistance,2 multiple sclerosis,5 comparative
genomics hybridization cancer data,6,7 and functional mag-
netic resonance imaging (fMRI).8,9 Utility for modeling sei-
zure counts has also shown promise.10,11 Empirical
evidence that seizure durations and interseizure intervals
cluster around distinct modes12 is consistent with a genera-
tive model of seizure occurrence in which seizures emit

Figure 1.

Example of the issue of probabilistic variation in interpreting sei-

zure count data: Monthly seizure diary from a patient with TSC

from SeizureTracker.com. In month 6, the patient reported a

decrease from 6 (red circle) to 5 (red cross) monthly seizures.

However, the standard deviation of monthly seizures was 5.1.

Therefore, the decrease from 6 to 5 seizures falls within an

expected probabilistic deviation, suggesting it may not be repre-

sentative of a true improvement in the risk of another seizure. Sim-

ilarly, the increase from 6 to 8 seizures in month 50, shown in blue,

also falls within an expected probabilistic deviation, underscoring

the importance of distinguishing between probabilistic variation

and true changes in seizure risk.

Epilepsia Open ILAE

Key Points
• No rigorous statistical method exists to distinguish
expected changes in seizure frequency due to natural
variability from changes in underlying seizure risk

• This study develops a new statistical method for esti-
mating underlying seizure risk from patient-reported
seizure diary data on the individual patient level

• Simulation studies indicate that quantitative model-
based approaches for seizure risk assessment lead to
different and potentially more accurate assessment of
seizure risk

• This statistical method may be beneficial to both clini-
cal practice and clinical trial interpretation
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from an underlying seizure risk state with a given statistical
distribution. From a statistical point of view, HMMs are also
better suited for modeling long-term dependence than
finite-order Markov chains when the length of relevant his-
tory affecting the current seizure risk state is unbounded.13

This consideration is particularly relevant given the com-
plexity of seizure count data, in which multiple mechanisms
may affect seizure risk,12 and the ability to account for error
in recorded patient logs.

However, there are several aspects lacking in current
HMM models for seizure counts. Existing models do not
allow for inference on the unobserved seizure predisposi-
tion state on the individual patient level, due to method-
ological issues involving the increase in parameters
involved in patient-level estimation. Several important
aspects of seizure count data, such as zero-inflation (pro-
longed periods where zero seizures are observed), are fur-
thermore not accounted for. Our proposed Bayesian
statistical approach addresses these considerations. We pro-
pose a new Bayesian mixed-effects hidden Markov model
for zero-inflated count data as an epilepsy seizure assess-
ment tool (EpiSAT), which allows for systematic estima-
tion of underlying seizure risk states at the individual
patient level, while accounting for the influence of clinical
characteristics on transitions between states. A simulation
study is performed to evaluate accuracy for seizure risk
assessment. Using seizure diaries from TSC patients col-
lected by SeizureTracker.com, a patient-reported seizure
diary tool containing over 1.2 million recorded seizures

across 8 years, we demonstrate the clinical utility of an
approach which assesses worsening or improvements in
individual seizure risk rather than seizure frequencies.

Methods
Patients

Four hundred sixty-four patients with TSC recorded seizure
and clinical data on SeizureTracker.com between December
1, 2007, and February 25, 2016. Records with invalid entry
dates, dates of birth, or nonpositive seizure durations were
excluded. To increase accuracy of longitudinal estimates,
patients with <365 days between the first and last seizure
entries were excluded. A full description of data cleaning is in
Appendix S1. A total of 44,697 seizures from 105 patients
with TSC were included, spanning seizure diary entries over a
median of 927 days (range 365–3,003 days). Additional
demographics are in Table 1.

Data preprocessing
Seizure duration was set to zero on days where no sei-

zures were recorded. Three main seizure categories were
considered (original SeizureTracker.com terminology in
parentheses when different from revised 2017 terminol-
ogy14): (1) focal aware (previously “aura” or “simple par-
tial”), focal impaired awareness (previously “complex
partial”), focal emotional (previously “gelastic”); (2) atonic,
clonic, myoclonic, myoclonic cluster, focal-to-bilateral
tonic–clonic (previously “secondarily generalized”), tonic,

Table 1. Demographics and seizure diary characteristics

Tuberous sclerosis

complex cohort, n = 105

Age at initial seizure diary entry, years 6.02 [2.54–12.74]
Male sex 57 (54%)

Monthly seizure duration, min 0.42 [0.13–1.50]
Monthly seizure frequencies

Focal awarea, focal impaired awarenessb,

or focal emotionalc
0–361/mo

Atonic, clonic, myoclonic, myoclonic

cluster, focal to bilateral tonic–clonicd,
tonic, tonic–clonic, or unknown onset
infantile spasmse

0–112/mo

Typical or atypical absence seizures 0–53/mo

Circadian rhythmicity

Morning (6 a.m.–12 p.m.) 0–161/mo

Evening (12 p.m.–11 p.m.) 0–217/mo

Nocturnal (11 p.m.–6 a.m.) 0–38/mo

Status epilepticusf 6.2%

Data are presented as median [interquartile range] or number (%). For monthly seizure frequencies, ranges are reported. For status epilepticus, the
percentage of seizure events lasting longer than 5 min is reported.

aRevised 2017 terminology by Fisher et al.14 (includes previous terminology of “aura” or “simple partial”).
bRevised 2017 terminology by Fisher et al.14 (includes previous terminology of “complex partial”).
cRevised 2017 terminology by Fisher et al.14 (includes previous terminology of “gelastic”).
dRevised 2017 terminology by Fisher et al.14 (includes previous terminology of “secondarily generalized”).
eRevised 2017 terminology by Fisher et al.14 (includes previous terminology of “infantile spasms”).
fDefined as seizure duration >5 min. Percentage of reported seizure events is shown.
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tonic–clonic, unknown onset infantile spasms (previously
“infantile spasms”); and (3) typical and atypical absence.
Morning (6 a.m.–12 p.m.), evening (12 p.m.–11 p.m.), or
nocturnal (11 p.m.–6 a.m.) seizure start times were consid-
ered,15 due to electrocorticographic evidence of circadian
seizure regulation.16,17 Total monthly seizure duration was
also considered. Overall, the following covariates were
included: sex; age; number of seizures per category; number
of morning, evening, or nocturnal seizures; and total
monthly duration of seizure.

Research on focal seizures has suggested that seizure
durations cluster around distinct modes within patients,
implying that seizure duration follows reproducible pat-
terns.12 Random forests is an approach well-suited for
imputing missing data due to nonreliance on distributional
assumptions and accommodation of nonlinear relationships.
For days on which ≥1 seizure was observed, if the duration
of seizure was not reported, missing values were imputed
using random forests.18 Number of seizures of each cate-
gory and the number of morning, evening, or nocturnal sei-
zures were similarly imputed (Appendix S2).

Proposed Bayesian mixed-effects hiddenMarkov model
for zero-inflated counts

Herein we briefly describe the concepts behind our pro-
posed statistical model, referred to as EpiSAT. Figure S1
provides a schematic overview. Appendix S3 provides a
complete mathematical description.

We propose that a patient’s seizure frequency at any
given time is the observed manifestation of a time-varying
hidden (unobserved) seizure risk state. Our proposition is
based on the theory that epilepsy stems from amultifactorial
basis involving seizure threshold, epileptogenic abnormali-
ties, and precipitating factors.19 Seizure threshold is the
propensity for a seizure to occur and likely has a genetic
basis, but may vary over time due to pathological, physio-
logical, or pharmacological conditions. Epileptogenic
abnormalities may be time-invariant, including genetic
mutations or structural lesions; or time-varying, such as
electrolyte status or lesion progression. Finally, precipitat-
ing factors determine when seizures occur and include inter-
nal and external factors, such as emotional or environmental
stressors.19 To mathematically model the concept that sei-
zures occur as the observed manifestation of the unknown
seizure risk state, we impose an emission distribution on
observed seizure counts; that is, conditional on the patient’s
current underlying seizure risk state, seizures occur accord-
ing to some probability distribution.Wemodel zero seizures
as an observed manifestation of a low seizure risk state
rather than a separate no-risk state, as people with epilepsy
are presumed to always have at least some probability of
having a seizure.20 As the true underlying conditional prob-
ability distribution is unknown, our specification of emis-
sion distribution depends on several considerations: (1)
seizure count data are empirically overdispersed relative to

that expected under a generic Poisson process, with the vari-
ance exceeding the mean21,22; and (2) seizure occurrence
patterns exhibit dependence over time.23,24 To account for
these considerations, we employ a zero-inflated Poisson
(ZIP) process for the seizure emission distribution. Seizure
count data are often zero-inflated, that is, patients often
exhibit prolonged periods during which no seizures are
observed, producing a larger number of zeros than expected
under a simple Poisson process. The ZIP distribution mod-
els these excess zeros. An important note is that utilizing a
ZIP process as the emission distribution does not imply that
seizure counts follow a zero-inflated Poisson marginal dis-
tribution. Rather, the convolution of multiple zero-inflated
Poisson conditional probability distributions is equivalent
to a mixture of zero-inflated Poisson distributions, allowing
for flexibility in accounting for overdispersion.

To permit our model to capture temporal dependencies
between seizures, we model temporal dependency between
unobserved seizure risk states using a hidden Markov model.
This is based on our hypothesis that temporal dependence
between seizure frequencies results from dependence in the
underlying three basic factors producing epilepsy. Although
studies have investigated the duration of temporal depen-
dency between seizures, with estimates ranging from 30 min
to 40 days,17,25 the temporal dependency structure between
unobserved underlying seizure risk states is unclear. There
are likely to be multiple mechanisms with different lag
lengths underlying the true temporal dependency between
seizure risk states. A first-order HMM provides a useful
approximation, and it is straightforward to derive extensions
of the model to permit higher order processes. The kth-order
HMM assumes that, given the seizure risk history in the most
recent k time epochs, the current seizure risk state is indepen-
dent of all seizure risk states prior to those k time epochs. This
does not imply that the current seizure risk state is indepen-
dent of all history prior to the preceding k time epochs, but
conditionally independent given the preceding k epochs.

Finally we allow external clinical measurement data to
affect the probability that a patient will worsen/improve to a
higher/lower seizure risk state. It is natural to hypothesize
that clinical factors, such as age, electrolyte status, or corti-
sol level at the present time point, affect the probability of
worsening/improving in seizure risk at the next time point,
and are of particular interest given the advent of wearable
biosensors for collecting physiologic measurements.26–28

Seizure activity may also modify functional brain configu-
rations,29–32 differentially increasing the risk for future sei-
zures for different seizure types.33–35 We model the effect
of clinical measurements on future seizure risk by allowing
the transition probabilities of the hidden Markov process to
follow a multinomial logit distribution.

Derivations of full conditional distributions and Markov
Chain Monte Carlo (MCMC) implementation in
Appendix S4. Code was written in R version 3.1.3 (R Core
Team, Vienna, Austria).

Epilepsia Open, 3(2):236–246, 2018
doi: 10.1002/epi4.12112

239

BayesianModel for Epilepsy Natural History



Simulation study
To validate our model, we tested our algorithm on simu-

lated data for N = 100 patients. Validation on simulated
data is standard in statistical methodology research to assess
accuracy of new methods under known conditions. Model
performance was assessed through the error rate and pro-
jected medication impact, as detailed below. As the true
generative process for seizures is unknown, data were simu-
lated for various levels of zero-inflation, overdispersion,
and seizure emission rates. Seizure counts were generated
from underlying seizure risk assuming that our model’s gen-
erative seizure process was misspecified according to a neg-
ative-binomial process different from the generating
distribution assumed by the model. Simulation study details
are in Appendix S5.

To provide practical context for incorporating a system-
atic statistical approach for seizure risk estimation into clini-
cal practice, a quantitative comparison to current clinical
practice is needed. However, literature review failed to yield
any established quantitative approach employed in clinical
practice. Therefore, we compare our model’s performance
to two quantitative approaches, referred to as QUANT-
GROUP and QUANT-PATIENT, which assess seizure risk
based solely on the observed number of seizures. QUANT-
GROUP is an algorithm analogous to a clinician who con-
siders all of his/her other patients’ seizure count behaviors
when making risk assessments for a given patient. QUANT-
PATIENT is an algorithm analogous to a clinician who con-
siders each patient’s seizure pattern as unique to them, and
therefore only considers the risk state based on the history
of that specific patient. To allow for fair comparison, thresh-
olding for QUANT-GROUP and QUANT-PATIENT was
chosen by thresholding into quantiles based on the true
number of underlying risk states. Table 2 summarizes the
clinical simulation approaches.

Accuracy of EpiSAT, QUANT-GROUP, and QUANT-
PATIENT was compared based on (1) error rate, calculated
as the proportion of incorrectly identified seizure risk states,
and (2) projected medication impact, calculated as the num-
ber of medication adjustments that would be made under
each approach, relative to the optimal number of medication
adjustments if the true seizure risk state were known. Opti-
mal timing of medication adjustments was defined to corre-
spond to true increases/decreases in seizure risk. Similarly,
timing of medication adjustments made in practice was
defined as occurring every time EpiSAT, QUANT-GROUP,

or QUANT-PATIENT detected an increase/decrease in sei-
zure risk.

Application to tuberous sclerosis complex
The proposed approach was applied to seizure diaries

from patients with TSC from SeizureTracker.com. Seizure
risk states were estimated and the expected duration of each
risk state (mean sojourn time) computed as the mean num-
ber of months that the Markov chain remained in each given
state. The number of states was selected based on minimiza-
tion of the deviance information criterion. Hyperparame-
ters, MCMC settings, and convergence diagnostics were as
in Appendix S6.

Results
Simulation study

We found that a model explicitly including hidden states
into seizure risk assessment led to significant differences
when evaluating which changes in seizure frequency
reflected true changes in underlying seizure risk versus nat-
ural variability. Our EpiSAT model consistently estimated
seizure risk with greater accuracy than approaches that
relied solely on observed seizure frequencies (QUANT-
GROUP and QUANT-PATIENT), even in simulation sce-
narios intentionally generated not to correspond to the
assumed model (Figure 2). For all tested approaches, error
was lower in simulation scenarios involving fewer months
with zero seizures (ie, less zero inflation or p = 0.001) or
patients with higher seizure emission rates (ie,
k = 120,100). An example seizure diary, as well as the esti-
mated underlying seizure risk states using the three risk-
evaluation approaches, is shown in Figure 3. In comparison
to our model-based approach, approaches relying only on
observed seizure frequencies had more false positives and
false negatives in identifying changes in underlying risk
(Figure 3C,D). These findings indicate that explicit statisti-
cal modeling of underlying seizure risk results in different
clinical conclusions, compared to non–model-based
approaches where hidden states are not considered.

As an example, we illustrate the potential impact of incor-
porating a systematic approach to seizure risk identification
into clinical AED management. Figure S2 shows the per-
centage reduction in unnecessary medication adjustments
projected in a scenario where a medication adjustment is
made every time a true change in underlying seizure risk is

Table 2. Clinical practice simulation approaches for evaluating seizure risk

Scenario Method

QUANT-GROUP Provider compares each individual patient’s seizure rate to an overall rate

stratification drawn from the population (patient is compared to other patients in

the provider’s practice)

Estimate seizure risk state based on quantiles

of seizure counts for all patients

QUANT-PATIENT Provider compares each individual patient’s seizure rate to only that patient’s own

seizure history (patient is compared only to him/herself)

Estimate seizure risk state based on

individual patient quantiles of seizure counts

Epilepsia Open, 3(2):236–246, 2018
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detected. As shown, our approach consistently resulted in
fewer unnecessary medication adjustments compared to
both QUANT-GROUP and QUANT-PATIENT, an effect
greater in seizure patterns with less overdispersion.

Finally we explore the effect of seizure diary unreliability
on our method’s performance. To do so, we evaluated our
model’s accuracy under situations where patients fail to
report a certain percentage X of their seizures. Figure 4
shows the effect of an increasing percentage X of missing
seizures on our model’s performance. As expected, larger
proportions of unreported seizures led to decreased accu-
racy of underlying seizure risk evaluation.

Application to tuberous sclerosis complex
EpiSAT was applied to seizure diary data recorded by

105 patients with TSC from SeizureTracker.
com. Figure S3 in Appendix S7 shows the estimated under-
lying seizure risk based on the seizure diary of a randomly
selected patient with TSC, as well as the patient’s estimated
probabilities of worsening/improving to a higher/lower sei-
zure risk state during the first month of seizure diary record-
ings. Four underlying seizure states were identified in the
TSC sample: a low seizure risk state averaging one seizure
every 1.77 months, a low-medium seizure risk state averag-
ing 5.03 seizures per month, a high-medium seizure risk
state averaging 20.69 seizures per month, and a high seizure
risk state averaging 78.09 seizures per month (Table S1).

Finally, we explored the expected duration of each
identified underlying seizure risk state in our TSC patient
sample, which is the expected amount of time that a

patient with TSC could be expected to remain in each
state before “exiting” that state. The expected duration of
each underlying seizure risk state is of particular interest,
since the 2009 ILAE Commission provided a practical
definition of seizure freedom based on the minimum of
three times the longest pre-intervention interseizure inter-
val or 12 months, whichever is longer.36 If the expected
duration of the low seizure risk state based on natural his-
tory were known for each seizure etiology, this would be
useful in determining how long a clinician should reliably
wait for the patient to stay in the low seizure risk state
before assessing the patient to be reasonably seizure-free.
In Markov processes such as the model proposed here, the
“mean sojourn time” is an easily estimated quantity that
yields the expected duration of each underlying seizure
risk state. The mean sojourn time was <12 months for all
identified seizure risk states, with a slightly longer mean
(median) sojourn time of 8.16 (3) months for the low sei-
zure risk state (Figure 5). The duration of the low seizure
risk state was <12 months in 77% of cases (Figure 5A).
As such, a 12-month seizure-free period may be hypothe-
sized to be a reasonable indicator of a stable low seizure
risk state for this patient population.

Discussion
In this article, we aim at introducing a rigorous statisti-

cal approach for estimating underlying seizure risk into
clinical practice. We have developed a new epilepsy sei-
zure assessment tool (EpiSAT) employing a Bayesian
mixed-effects hidden Markov model for zero-inflated
count data, which provides a way to differentiate changes
in seizure risk from natural variability, while accounting
for crucial aspects of seizure diary data, such as system
memory, zero-inflation, and other clinical measurements
that may be obtained from electronic health records
(EHRs) or biosensors. Using simulation studies, we statis-
tically validate the proposed new approach, and show that
this method accurately distinguishes true changes in
underlying seizure risk state from natural variations under
model misspecification. Although further trials are needed
to evaluate this method, our simulation studies suggest
that use of EpiSAT in clinical practice leads to different
assessment of seizure risk than when hidden states are not
taken into account. Applied to seizure diary data collected
by SeizureTracker.com from 105 patients with TSC, we
found evidence of four underlying seizure risk states. The
expected duration of each seizure risk state was
<12 months for each state, providing novel data-based evi-
dence supporting the current International League Against
Epilepsy (ILAE) guideline of 12 months as a temporal
marker for seizure freedom in patients with TSC.

While a mathematical model to systematically estimate
underlying seizure risk has not been provided previously,
our study shows that incorporation of rigorous statistical

EpiSAT
QUANT-GROUP
QUANT-PATIENT

Dispersion (φ) 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5
Zero-infla�on (p) 0.1 0.1            0.001          0.001 0.1 0.1            0.001          0.001
Emission rate (λ)   (1,10,50) (1,20,100)   (1,10,50)   (1,20,100)   (1,10,50)  (1,20,100)  (1,10,50)   (
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Figure 2.

Validation study using simulated data: Proportion of incorrectly

identified underlying seizure risk states, under (dark bars): pro-

posed Bayesian mixed-effects hidden Markov model EpiSAT, (med-

ium bars) quantiles of pooled group seizure counts (QUANT-

GROUP), and (light bars) quantiles of individual patient-level sei-

zure counts (QUANT-PATIENT). Seizure diaries with various

levels of dispersion (/), zero-inflation (p), and seizure emission

rates (k) were tested. Mean error rate and standard error of the

mean are shown.
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approaches, such as latent variable models, into seizure
risk evaluation leads to different conclusions about a
patient’s seizure risk level than approaches based only
on observed seizures. The potential for more accurate
seizure risk assessment suggests that hidden Markov
models are a potentially valuable systematic approach to
thinking about seizure occurrence. Higher accuracy of
EpiSAT may result from several factors not currently
considered in day-to-day epilepsy management, including
(1) inclusion of clinical measurement data in predicting
the next seizure risk state, (2) explicit modeling of zero-
inflation, and (3) a Bayesian inferential framework to
provide more accurate estimation due to borrowing of
information across time points as well as patients.

Because physicians generally utilize clinical judgment
rather than a systematic quantitative approach to deter-
mine whether changes in seizure count are due to natural
variability or true changes in underlying seizure risk,
applications of our model to physician trial data are
needed to evaluate whether the simulation results here
extend to actual clinical practice. Given that accuracy of
new statistical models can be assessed only when the
true underlying seizure risk state is known, comparison
to current clinical practice was possible only through
simulations and an operational definition of clinical prac-
tice. Actual clinical decision-making is not systematic,
and therefore it is likely to result in greater variance than
the simulated constructs considered here.
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Figure 3.

Validation study using simulated data: Seizure frequencies from a sample simulated seizure diary (A), along with the estimated underlying

seizure risk states using EpiSAT (B) are shown. In comparison, approaches that estimated seizure risk relying only on observed seizure

frequencies demonstrated significantly poorer performance in correctly identifying changes in underlying seizure risk (C–D). Red = true

underlying seizure risk state; black = estimated underlying seizure risk state. k = (1, 10, 50); p = 0.1; φ = 0.2.
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Compared to EpiSAT, QUANT-GROUP and QUANT-
PATIENT resulted in more false positives and false nega-
tives in discriminating true changes in seizure risk from nat-
ural variations. In clinical practice, overidentification of
fluctuations in natural history as seizure worsening may
lead to unnecessary AED dose increases or polypharmacy,37

resulting in unneeded exposure to AED adverse effects and
higher healthcare costs. Conversely, misinterpretation of
improvement may lead to lack of action or inappropriate
treatment reduction. The ability in clinical practice to accu-
rately identify when increases in seizure frequency repre-
sent true increases in underlying seizure risk, and, likewise,
when decreases in seizure frequency represent true
decreases in seizure risk, may allow for improved medica-
tion management based on changes in underlying seizure
risk rather than patient-reported seizure frequencies.

As shown in our work, improved identification of seizure
freedom in patients with epilepsy has important clinical
consequences for improving understanding of the natural
history of epilepsy. The current ILAE definition of seizure
freedom utilizes a 12-month marker to identify patients as
seizure-free (or three times the longest seizure-free inter-
val). An important attribute of hiddenMarkov models is that
they provide a straightforward method to estimate the
expected amount of time that a patient will remain in a low
seizure risk state. In our study, the expected sojourn time for
the low seizure risk state in patients with TSC was
8.16 months, with a 77% probability that a low-seizure risk
state would last for <12 months. Whereas the ILAE

definition of seizure freedom was initially based on clinical
consensus, our work offers preliminary data-driven support
for this recommendation for the group in this investigation.
In other words, if a patient with TSC remains seizure-free
for at least 12 months, he/she would have exceeded the
expected sojourn time of a low-risk state, suggesting high
likelihood that he/she is seizure-free. Applications of our
model to intracranial electrographic data, as well as to sei-
zure diaries from other populations including patients with
low seizure rates or other epilepsy etiologies, are straight-
forward and may illuminate additional understanding of nat-
ural history.

Usage of Seizure Tracker data in the development and
assessment of EpiSAT allows for model testing based on
one of the largest existing databases of patient-reported sei-
zure events in the world. Studies comparing patient-
reported events to electrographic seizures suggest that
patient-reported seizure diaries may over-/underestimate
the number of seizures depending on patient recognition of
seizures, miscounting, or lack of recording.12,38,39 Although
online and mobile access to Seizure Tracker mitigates the
number of unrecorded events, patients may still be more
(less) likely to record events during periods of worsened
(improved) seizure burden. Application to patient-reported
seizure diary data has its advantages and disadvantages. Use
of seizure diary data allows for large-sample conclusions
not possible through electrographic data, whereas electro-
graphic data allow for smaller-scale verification of prelimi-
nary results discovered through seizure diary data.
Therefore, application of our model to electrographically
verified seizure count data is needed to confirm results of
this work. However, outpatient clinic visits, as well as
nearly all clinical trials, currently depend on patient-
reported seizure counts, so that the results in Section Appli-
cation to tuberous sclerosis complex are pertinent to studies
that involve patient-reported seizure diaries. Seizure clus-
ters, which are broadly defined as “longer-than-normal”
interseizure intervals according to various definitions,40

may be handled by inputting each seizure cluster as an indi-
vidual seizure rather than multiple seizures. Physician veri-
fication of patient-reported data is needed to verify
conclusions regarding mean sojourn time. Additional clini-
cal and seizure covariates may also be useful to consider,
such as medication levels and laboratory values, and are
likely to improve predictive accuracy. Daily seizure count
applications may also be of interest for inpatient interven-
tions.

This study shows that a new view of seizure burden,
based not on observed seizure counts but on statistical esti-
mation of underlying seizure risk, is not only statistically
more rigorous but may lead to decreased misidentification
of normal fluctuations in natural history as reflective of
changing seizure burden. Based on simulation studies, pre-
liminary evidence suggests that incorporation of such statis-
tical approaches into clinical practice may decrease

Figure 4.

Effect of seizure diary unreliability on accuracy in seizure risk esti-

mation. As expected, increasing proportions of missing seizure

diary entries led to decreased accuracy in seizure risk estimation.
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unnecessary medication dose changes while attempting to
achieve seizure control. The promising results of this work
suggest that EpiSAT provides a potentially valuable
approach to clinical evaluation of seizure occurrence.
Future investigations may examine whether incorporating
such a tool into clinical trial data may result in decreased
adverse event rates without altering seizure control rates. If
so, incorporation of systematic estimation of underlying sei-
zure risk into routine clinical management may allow for
improved treatment of people with epilepsy.
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seizure risk states.
Figure S2. Percentage reduction in unnecessary medica-

tion adjustments when EpiSAT was used to infer underlying
seizure risk, in comparison to QUANT-GROUP (stripes)
and QUANT-PATIENT (solid).
Figure S3. Application to tuberous sclerosis complex

(TSC) patients from SeizureTracker.com: Observed seizure
counts (a) and estimated underlying seizure risk states under
EpiSAT (b), QUANT-PATIENT (c), and QUANT-GROUP
(d) for TSC Patient X.
Figure S4. Application to tuberous sclerosis complex

(TSC) patients from SeizureTracker.com: The transition
probability matrix shows the probability of transitioning
between seizure risk states from the current month (x-axis)
to the next month (y-axis), for TSC Patient X during first
month of seizure diary recordings.
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