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Abstract 

In this paper, we investigate the issues that arise when spatial 
abstractions do not capture all the details necessary for correct 
internal reasoning. We argue that in a general-purpose 
reasoning system, an imperfect abstract problem 
representation might be all that is available for any given 
problem. We propose that some forms of such imperfect 
representations are still useful in problem solving and can be 
the basis for heuristic transfer of learning between problem 
instances. However, there are cases when they are inadequate, 
such as for tasks where improper actions might have dire 
consequences. To compensate, an agent can use a concrete 
problem representation based on imagery in parallel with the 
abstract representation to predict the consequence of actions, 
thereby avoiding mistakes. A model is presented showing the 
usefulness of imagery to handle aspects of problem solving 
that the available high-level representation cannot.  

Keywords: Mental imagery; spatial reasoning; transfer 
learning; cognitive architecture. 

Introduction 

In many AI systems and theories of cognition, perception 

is a process of taking raw sensory information, manipulating 

it, and creating an abstract representation that concisely 

captures useful properties of the world. Using this 

representation, internal reasoning can be performed without 

risking potentially costly or dangerous action in an external 

environment (e.g., Newell, 1990). In traditional AI systems, 

these problem representations resemble those used in 

problems like the blocks world (Figure 1). Here, the world 

is described by objects (the blocks and the table), along with 

properties relating objects, such as on(A,B). These objects 

and properties can be treated as logical variables and 

predicates. General rules can then be encoded, such as that 

moving any block X is possible if X is clear, rather than 

enumerating that fact for each block. These rules can be 

used to solve the problem internally. In addition, when the 

agent solves a problem, it can remember that solution, and if 

another problem is encountered with the same initial state 

and goal, the representation allows it to perfectly transfer 

the learned solution to the new problem. The precise size 

and position of the blocks may differ in the new problem, 

but that information is abstracted out of the problem 

representation. It is important that block A is on the table, 

not that it is located 2.12 cm to the left of block C. 

We will call a representation like this that allows accurate 

internal search and transfer an ideal representation of the 

problem. However, as we shall argue later, creating an ideal 

representation of every problem may be difficult or even 

impossible for a generally intelligent agent faced with novel 

problems in complex, diverse environments. Thus, an agent 

must have the capabilities to succeed with problem 

representations that are less than ideal, which we call 

imperfect representations. The first objective of this paper is 

to further elaborate this point: that a generally intelligent 

agent is unable to create ideal problem representations in 

every case, but imperfect representations can be 

productively used instead. 

Using an imperfect representation has costs, since there 

can be important details of the problem that are abstracted 

away. To compensate, an agent must have a way of 

retaining and using these details for precise inference. As an 

agent builds up its most abstract problem representation, 

intermediate representations may be built. In spatial 

perception, for example, sensory data might be used to build 

a representation of objects in 3D space, before being further 

processed into abstract symbols. Alone, this spatial 

representation is not very useful. Without some form of 

abstraction, knowledge must be learned or encoded about 

each specific spatial state, decreasing the generality of the 

agent. However, when used in concert with an abstract 

representation, a spatial representation can fulfill the need 

for precise inference. Operations within concrete 

representations such as this have been viewed as equivalent 

to human mental imagery (Lathrop, 2008). The second 

objective of this paper is to demonstrate how imagery can 

compensate for some of the consequences of using an 

imperfect abstract representation. 

To date, research on mental imagery has focused on 

testing for its existence as a distinct phenomenon in humans 

and determining broad characteristics of mental processes 

involving imagery (e.g., Kosslyn et al., 2004). The issue of 

why imagery is useful, and thus why evolution has given us 

Figure 1. A simple blocks world problem.  

Left: spatial representation  

Right: abstract representation 
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the capability at all, instead of solely abstract reasoning, has 

received less attention. A common argument is that imagery 

allows problems to be  represented in a form where certain 

types of inferences are computationally more efficient, as 

different information is directly available in an image than is 

available in a more abstract representation (Larkin and 

Simon, 1987, Huffman and Laird, 1992, Kosslyn et al., 

2004, Kurup and Chandrasekaran, 2006, Lathrop, 2008). 

For example, systems for solving geometry problems have 

been built, and used to compare abstract and imagery-like 

problem solving (Larkin and Simon, 1987, Lathrop, 2008). 

In these experiments, the inferences possible with either 

representation were the same, but the imagery system was 

shown to be more efficient at making them. 

This sort of comparison between systems is possibly a 

legacy of the imagery debate, where abstract reasoning and 

imagery are posed as alternative hypotheses to explain some 

capability. While the efficiency argument is persuasive (and 

seems to be true), using imagery to compensate for 

imperfections in abstract representations adds another, 

possibly more fundamental role for imagery: it can do 

things that cannot be done with the available abstract 

representation. Imagery and abstract reasoning are 

complements, not alternatives. 

To explore these points, a domain and representation 

exhibiting imperfection will be presented. In this case, the 

imperfection is that objects with the same properties in the 

abstract representation are not completely interchangeable; 

it is not guaranteed that an action in the real world involving 

one object will have the same consequence as one involving 

another object, even though both objects have similar 

abstract descriptions. The objects and properties available 

are not completely equivalent to logical variables and 

predicates. Thus, basing action selection in the world on 

knowledge learned in terms of the abstract representation is 

not guaranteed to lead to success. However, it will be shown 

that despite its imperfection, the representation is still 

useful. In addition, to compensate for using heuristic 

imperfect knowledge, imagery is used to predict the 

consequence of actions, so that mistakes are avoided. 

The model presented here is not intended to be a precise 

model that can be compared to human data, but can serve as 

the starting point for such a model. 

The Modified Blocks World Domain 

The argument we are presenting here is intended to be 

broadly applicable to any agent (human or AI) that reasons 

about suitably complicated spatial problems. To show the 

argument in the clearest possible terms, an exceedingly 

simple domain is necessary. Accordingly, we will use a 

modified version of the blocks world (Figure 2).  

The basic problem is the same as in Figure 1, there is a set 

of blocks, and the agent’s goal is to place them in a certain 

configuration. However, in this domain, the blocks are not 

freely stackable on the table. Instead, there are two fixed 

pegs attached to the table. Each block has a groove down 

the center of its back, which must be aligned with a peg 

when the block is placed. The effect is that all blocks must 

be centered relative to one of the pegs. Blocks cannot be 

placed on the table, but can be moved out of the way to a 

storage bin (not shown). In addition, the blocks are not all 

the same size, but vary slightly in their width and height. 

The pegs are close enough together that this variation can 

cause the blocks to interact in fairly complicated ways: 

whether or not a given block will fit on a given peg depends 

on the exact widths and heights of all the other blocks. We 

assume there is a fairly high cost to moving the blocks to 

and from the bin, so it is best to solve the problem by 

moving blocks between pegs, rather than simply moving 

them all to the bin and then building the goal configuration 

block-by-block. In addition, we assume that there is a very 

high cost to attempting to place a block on a peg where it 

will not fit, possibly the block jams in place and cannot be 

removed or might chip if it hits another block. 

Consider the problem of encoding this domain abstractly, 

in terms of symbolic rules. The states of the problem can be 

described in similar terms to the states of a normal blocks 

world problem: which blocks are on top of which other 

blocks, which are clear, with the addition of a list of which 

pegs align which blocks. However, there is no compact 

symbolic description of the consequence of actions. It 

cannot be assumed that moving a block X to the top of a 

clear block Y will result in on(X,Y), it may instead result in 

jammed(X), depending on the exact sizes of the blocks 

below and in the other tower. The abstract representation of 

the problem does not have enough detail to accurately 

capture these relationships in anything more concise than a 

lookup table of the consequence of every action in every 

state.  

Contrast this with the abstract problem representation 

used in the classic blocks world (Figure 1). The two are 

similar on the surface, but differ in an important way. In 

both problems, the state consists of a set of objects and a set 

of properties of those objects. In the first case, the problem 

can be completely solved in terms of this representation; 

rules can be written such that all future states of any 

problem instance can be predicted based on the initial state: 

the representation is ideal. However, this is not the case in 

the modified problem: the representation is imperfect. 

The important difference between these two 

representations is that in the first case identities of objects 

can be treated as variables, where they cannot in the second. 

In the standard blocks world, the actual identities of the 

objects do not matter in determining the solution; what 

matters are the properties asserted about them. In this way, 

Figure 2. A modified blocks world problem.  

Left: spatial representation  

Right: abstract representation 
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the objects can be treated as variables. This is not the case in 

the modified blocks world, here, objects cannot be treated as 

variables. Accordingly, we will call this form of 

representation object-dependent.  

While imperfect, this form of abstract representation is 

still more useful than none at all. In general, abstract 

problem representations eliminate irrelevant details, 

eliminate the need for detailed inference, allow faster 

learning, and allow learned knowledge to apply across 

different problem instances.
1
 Consider if the only 

representation of the problem was at a perceptual level, such 

as a set of pixel-like points with no higher-level 

interpretation. An abstract representation, even if imperfect, 

provides a good measure of similarity between different 

states, where a concrete representation does not. Two states 

where the blocks are all on the table are probably very 

similar, even if they are not exactly the same, but could be 

represented by very different raw perceptions. Using an 

imperfect abstract representation can provide a valuable 

(although heuristic) measure of state similarity, as will be 

explored in detail in the next section. 

Another, more basic, property of a good problem 

representation is that it can properly differentiate the states 

of the problem.  That is, there should be no alternate paths 

of actions that can lead the agent to states that have the same 

abstract representation but are different in a way that will 

affect future actions. This is the Markov property, a property 

required for the proper use of reinforcement learning 

algorithms (Sutton and Barto, 1998). An imperfect, object-

dependent representation can be Markovian, as long as 

object identities are part of the state: this is the case in the 

modified blocks world, the agent needs only to know the 

present state of the problem to make a decision; its action 

history is unimportant. If the problem representation used 

were too simple, for example, if it just included the ‘clear’ 

predicate, this would not be true. 

Abstract Representation in a General System 

It might be possible to create an ideal abstract 

representation of the modified blocks world, either by 

adding more properties, or by introducing new objects to the 

model that represent important areas of empty space. 

However, such a representation would be much more 

complicated than that needed in the unmodified problem in 

Figure 1, and would be specific to the problem at hand. If 

we are designing a general purpose AI system to solve 

spatial problems, or proposing a theory of human spatial 

reasoning, it seems inappropriate to require a completely 

different abstract representation for every problem: it takes 

complicated calculations to induce each object and property 

from a lower-level representation, and it is difficult to see 

how an AI system or person could perform exactly the 

calculations needed for any arbitrary problem it might 

                                                           
1 In addition, employing abstract representations is implicitly 

required in any psychological model connecting language and 

spatial reasoning (e.g., Ragni and Steffenhagen, 2007). 

encounter (see also Wintermute, 2009).  This is related to 

the cognitive substrate hypothesis of Cassimatis (2006): it is 

more plausible to consider theories for general intelligence 

that use a small set of basic elements in different ways, 

rather than many different elements. 

Theoretically, the best solution is then to develop a fixed, 

ideal abstract qualitative representation that can be used for 

any problem. If that is possible, the mechanism which 

creates that representation from perception does not need to 

change from problem to problem. However, the poverty 

conjecture of Forbus et al. (1991) states that this is 

impossible: if the conjecture is true (which it seems to be), 

“there is no purely qualitative, general-purpose, 

representation of spatial properties”.  

When a qualitative representation is augmented with a 

quantitative representation, though, a more complete 

reasoning system can be built. This idea has been previously 

linked to a need for mental imagery capability by Forbus 

(1993), who argued that a quantitative representation is 

necessary to compute problem-specific qualitative 

representations as needed. Our goal is to build a system that 

is as problem-independent as possible, though, so we take a 

slightly different approach, where an imperfect 

representation is built from problem-independent parts, and 

interaction with imagery supplements abstract reasoning. 

The Model 

To demonstrate these points, a simple example model has 

been implemented. Using this model, it will first be shown 

that an imperfect abstract representation can still be useful 

to an agent, as it can provide a Markovian state 

representation and a heuristic basis for transferring 

knowledge between problem instances. Building on this, it 

will then be shown that imagery capability can overcome 

some of the problems inherent in using an imperfect 

representation. Imperfections in the representation can lead 

the agent to mistakenly believe dangerous actions are good, 

but if action outcomes can be inferred through imagery, 

actual execution of those actions can be avoided.  

Consider a model where the abstract state is represented 

as a set of objects, and properties describing qualitative 

relationships between those objects, as on the right-hand 

side of Figures 1 and 2. In addition, there is a concrete 

representation describing the same situation, similar to the 

left side of each Figure. In this case, this is a set 

polyhedrons described by 3D coordinates.  

A model of this form for the modified blocks world task 

in Figure 2 has been implemented using the Soar cognitive 

architecture (Laird, 2008). Symbolic processing in Soar 

provides a basis for reasoning with an abstract 

representation. A recent extension to Soar, SVS, provides 

specialized processing for spatial and visual information 

(Wintermute and Lathrop, 2008, Wintermute, 2009). SVS 

contains the concrete problem representation, from which 

the abstract representation is built. 
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All of the primitive operations needed to construct the 

abstract representation are provided by built-in, problem-

independent processes in Soar/SVS. These include the 

ability to extract simple properties such as object 

connectivity, distance, and direction from the spatial 

representation. The needed abstract properties can be built 

from these simpler properties, for example, on(A,B) is true 

if A is adjacent to B in the vertical direction.  

The actions available to the agent at each state are to 

move each clear block (those at the top of a tower or in the 

bin) to the top of either tower or to the bin. Moving the 

same block twice in a row is prohibited, unless that is the 

only action possible, or a collision has occurred, in which 

case the colliding block is the only block that can be moved. 

Symbolic rules in Soar encode knowledge about how the 

abstract problem representation is built from the primitives 

provided by SVS, and the knowledge needed to execute in 

the problem: which actions are available based on the 

current state, and whether or not the goal has been achieved. 

To learn to solve the problem faster, reinforcement 

learning (RL) is used over the abstract representation in 

Soar’s working memory (Nason and Laird, 2005). Through 

experience, the agent learns the value of executing a given 

action in a given abstract state. This value is in terms of 

rewards received for environmental interactions. In this 

case, the agent gets a reward of 100 for solving the problem, 

-1 for a normal action moving a block to one of the two 

possible towers, -4 for moving a block to the bin, and -200 

for causing a collision by placing a block where it cannot fit. 

This reward structure encourages the agent to solve the 

problem in the fewest number of steps, avoiding the bin if 

possible, and avoiding collisions. 

Learning and Transfer with an Imperfect Abstract 

Representation 

If the abstract representation available to the agent is 

object-dependent, and therefore imperfect, how useful is 

that representation? We will consider two dimensions in 

evaluating the usefulness of a representation: if it can be 

used by the agent to learn to solve the problem well, and if it 

can be used to transfer learned knowledge to other, similar 

problems. To better separate the effects of using an 

imperfect representation from the effects of using imagery, 

imagery is not initially used for these experiments. 

The model described above has been used to solve the 

modified blocks world problem shown in Figure 3. The goal 

state of the problem is a tower, A on top of B on top of C on 

top of D, all on peg2. The optimal solution is shown in the 

figure; it achieves a total reward of 87. Ten trials of this 

problem were run, each trial consisting of 100 episodes over 

which an RL policy was learned. 

Results for this experiment are shown in Figure 4. The 

agent solved the problem optimally as early as the 50
th
 

episode, although average performance always remains 

slightly sub-optimal due to the exploration policy. From this 

data, it is clear that the representation available to the agent 

was sufficient to allow the problem to be solved.
 2
 

A long-lived agent will encounter many different 

problems in its lifetime, and it is undesirable that each 

encountered problem must be solved completely from 

scratch, as in the previous experiment. Rather, a better 

strategy is to identify a new problem as similar to a 

previously-solved problem, and transfer the solution of the 

old problem to the new problem. One of the benefits of 

using an abstract problem representation is that irrelevant 

details are discarded, so this mapping between problem 

instances is simple. Mapping would be extremely difficult 

without an abstract representation. In an ideal 

representation, if the abstract state of the current problem is 

the same as that in an old problem, the problems can be 

                                                           
2 Soar-RL’s q-learning algorithm was used, with a learning rate 

of .3 and discount factor of .9, and epsilon-greedy exploration with 

an epsilon of .1. The actual results obtained are particular to the 

Soar agent involved, though, since Soar-RL takes into account 

other minor factors outside of the description provided here. 

Figure 3. Optimal solution to a modified blocks 

world problem. The reward for the next state is shown 

at each state transition. 

 Figure 4. Performance on the problem in Figure 3, 

total reward (y) vs. episode (x). Results are averaged 

over 10 trials, error bars show standard deviation. 
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solved in exactly the same way, even though low-level 

details might differ. 

In this case, the representation is object-dependent, but in 

order to map problems, it can be assumed that the objects 

are variables – that the blocks in the new problem are 

functionally the same as those in the old. The mapping is 

not completely reliable, but can still provide a substantial 

benefit. To show this, an agent was trained on a simpler 

instance of the problem, where no blocks were wide enough 

to cause collisions. The initial state and goal were otherwise 

the same. After 250 episodes, the policy learned was 

transferred to the problem in Figure 4, by assuming the 

objects involved were the same. The agent was again run for 

100 instances, as shown in Figure 5. As can be seen, 

although the policy initially caused a large negative reward, 

the agent quickly learns to solve the problem well, much 

faster than when it is not provided with transferred 

knowledge (in Figure 4). This shows that, even though the 

agent does not create an ideal representation of the problem, 

the abstract nature of its representation can provide a 

substantial transfer benefit. Including objects in the 

representation, even though they can’t be treated exactly as 

variables, is still very valuable. 

Imagery Compensates for an Imperfect Abstract 

Representation 

While the transfer performance above is much better than 

what is possible with no prior knowledge, there is certainly 

room for improvement. For a long-lived agent encountering 

many problems, the common case for performance might 

well be the far-left data point on Figure 5, the very first time 

a new problem instance is encountered. There does not seem 

to be a straightforward ideal abstract representation of the 

modified blocks world problem that could be built by a task-

independent perception system. Because of this, there is no 

reason to expect the agent could somehow improve its 

abstract representation to be able to optimally solve any new 

instance of the problem on the first try. 

 There is some high-level knowledge the agent could use 

outside of the RL policy, though. It is clear that causing a 

collision by attempting to move a block where it cannot fit 

is never a good idea; the action always results in a huge 

negative reward and must be undone. The RL policy 

captures this implicitly through the learned values of certain 

actions, but the knowledge is not well-transferred between 

problems, since whether or not a collision will occur 

depends on the exact sizes of the blocks in the problem, 

information thrown out when making the abstract 

representation. However, if the agent has some means for 

making collision predictions at a concrete spatial level, it is 

possible that collisions can be foreseen and avoided. 

In this case, the agent described above can use the 

imagery functions in SVS. SVS has built-in means to 

interpret simple commands such as “imagine block B on top 

of block A”  – it simply copies the polyhedron describing 

the block to the new location. In this way, the consequences 

of an action can be determined by creating an image of its 

result and inspecting the imagined scene (using the same 

means as regular perception) and detecting any collisions. 

Accordingly, the agent has been modified to imagine the 

consequence of each action before executing it. If a collision 

results, it chooses the next-best action (according to the RL 

policy) instead.  This agent was tested on its first encounter 

with the Figure 3 problem, after learning a policy over 250 

episodes of a simpler (collision-free) problem. 35 trials were 

done, each with its own learned policy. The same policies 

were also tested without imagery. In 14 trials, the imagery 

agent performed optimally in its first encounter with the 

new problem. For 33 of 35 trials, more reward was received 

by using imagery than not. In one trial, both performed 

equally, and in one trial the non-imagery agent performed 

better (exploration was possible; in this case, the imagery 

agent explored a very unproductive path).  

Discussion 

To summarize the argument presented above: 

- Abstract, qualitative representations of spatial problems 

are useful. 

- A generally-intelligent agent must solve many different 

types of spatial problems. 

- The poverty conjecture implies that there is no single 

qualitative representation that could perfectly capture all of 

those problems. 

- It is unlikely that wildly different problem-specific abstract 

representations could be built every time a new problem is 

encountered. 

- This leads us to look at the possibility of using imperfect 

abstract representations which might be built out of 

problem-independent parts. 

- One type of such representation is an object-dependent 

representation, where it cannot be reliably assumed that 

objects with the same properties are interchangeable. 

- An object-dependent representation can still be useful to 

differentiate states, and to provide a basis for heuristically 

transferring knowledge between problem instances. 

- However, since this transfer is heuristic and inexact, high-

cost, useless actions could still be performed in new 

problem instances. 

- If an imagery system is used, and the consequences of 

actions can be predicted, those actions can be avoided.  

 

The example agent provides a simple illustration of these 

points, but much more work must be done to determine how 

Figure 5. Performance on the problem in Figure 4, 

after transferring a policy from another instance. 

Results are averaged over 10 trials. (same axes and 

scales as Figure 4) 
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generally the principles apply, and what bearing this has on 

psychological models.  

AI Concerns 

Many of the principles behind the design of this system 

result from the goal of building a general, problem-

independent AI system. Two of the most important claims 

toward this goal are that a fixed system can build a useful 

(though possibly imperfect) qualitative representation for 

any arbitrary problem, and that relevant imagery operations 

exist for arbitrary problems. 

Substantial further work is needed to adequately prove 

these claims. For the first claim, we know that building an 

imperfect representation is much simpler than building a 

perfect representation. In addition, the same basic system 

used here has been successfully used for several different 

tasks (e.g., car motion planning in Wintermute, 2009) where 

states have been built out of the same basic elements (object 

intersections, directions, and distances) without the need for 

architectural modification. How far this same system can 

continue to be used remains to be seen. 

For the second claim, that imagery can be used in a 

problem-independent manner, again, substantial further 

work is needed. A general argument can be made that 

complicated actions can be represented more easily through 

precise forward simulation in imagery than through more 

abstract means (Wintermute and Laird, 2008, Wintermute, 

2009). However, in the case covered here, motion 

simulation was not used. Rather, the agent used a simple 

fixed language to describe the consequence of an action 

(“imagine the A centered on top of B”). The implications of 

this approach have yet to be fully characterized. 

Imagery in Psychological Models 

The model presented here is not intended to be a precise 

psychological model, but even without precision, the model 

does make some basic psychological predictions: people 

will tend to imagine the consequences of actions when the 

problem cannot be easily captured in a simple abstract 

representation, and when the wrong move could be costly. 

Imagery in this way has a functional role in planning. 

A similar hypothesis, motivated by behavioral data from a 

motor planning experiment, was presented by Johnson 

(2000). Johnson’s hypothesis is that “movement selection 

involves mentally simulating candidate response options in 

order to evaluate their consequences”. While Johnson’s 

work involves judgment over intrinsic properties of motor 

imagery (the comfort of a certain grip), and we have instead 

looked at spatial aspects of imagery, the principles here still 

apply. Specifically, a plausible argument for why people 

would use motor imagery in planning is that the abstraction 

of the problem available to the human reasoning system 

does not contain enough information by itself to determine 

whether a certain action in the experiment will be 

comfortable or not. This imperfection in the abstract 

representation is present because the human brain’s 

abstraction-performing machinery has not evolved 

specifically for the problem tested in the experiment, but 

instead to cover a wide variety of tasks. 
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