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Extreme heat and ozone are co-occurring exposures that indepen-
dently and synergistically increase the risk of respiratory disease.
To our knowledge, no joint warning systems consider both risks;
understanding their interactive effect can warrant use of compre-
hensive warning systems to reduce their burden. We examined
heterogeneity in joint effects (on the additive scale) between heat
and ozone at small geographical scales. A within-community
matched design with a Bayesian hierarchical model was applied
to study this association at the zip code level. Spatially varying
relative risks due to interaction (RERI) were quantified to consider
joint effects. Determinants of the spatial variability of effects were
assessed using a random effects metaregression to consider the
role of demographic/neighborhood characteristics that are known
effect modifiers. A total of 817,354 unscheduled respiratory hos-
pitalizations occurred in California from 2004 to 2013 in the May to
September period. RERIs revealed no additive interaction when
considering overall joint effects. However, when considering the
zip code level, certain areas observed strong joint effects. A lower
median income, higher percentage of unemployed residents, and
exposure to other air pollutants within a zip code drove stronger
joint effects; a higher percentage of commuters who walk/bicycle,
a marker for neighborhood wealth, showed decreased effects. Re-
sults indicate the importance of going beyond average measures
to consider spatial variation in the health burden of these expo-
sures and predictors of joint effects. This information can be used
to inform early warning systems that consider both heat and
ozone to protect populations from these deleterious effects in
identified areas.

extreme heat | ozone | health | joint effects | spatial analysis

Early warning systems for air pollution (1, 2) and heat (3, 4)
have been implemented in various areas to limit the health

impact of these increasingly prevalent environmental stressors
(5, 6). Extreme heat events and some air pollutants such as tro-
pospheric ozone have similar meteorological drivers, as they result
from chemical reactions between volatile organic compounds,
nitrogen oxides (NOx), and sunlight, leading them to regularly
coincide (7). However, no joint early warning systems have been
implemented to combat the dual burden of these environmental
health risks. An improved understanding of these risks and the
interaction between these hazards is important to inform the de-
velopment and use of early warning systems that consider these
joint exposures.
The adverse health effects of heat are well documented. For

example, exposure to high ambient temperature has been shown
to increase the risk of mortality and morbidity for a range of
diseases (8, 9). High ambient temperature causes heat stress and
decreases ability to thermoregulate efficiently, which can produce

heat-related inflammation and cardiac stress (10). Several studies
have found impacts of heat on respiratory hospital admissions, such
as chronic obstructive pulmonary disease and an increase in respi-
ratory infections leading to increased hospitalizations (11–14).
Ozone is a reactive, oxidative gas that is absorbed by the upper

respiratory tract; epidemiological studies show a robust rela-
tionship between acute exposure to ambient ozone and mor-
bidity (15). Ozone pollution is associated with a range of adverse
health effects induced by oxidative stress and increased risk of
respiratory disease, such as acute respiratory illnesses and asthma
(15–18). In 2015, it was reported that globally, 4.1 million disability-
adjusted life years were attributable to ozone exposure alone (19).
Ambient ozone increases under high ambient temperature and

blazing sunlight, both of which are characteristics of extreme
heat events (15). Due to the comparable meteorological pat-
terns, heat and ozone are co-occurring risk factors, and a number
of studies have considered the potential concurrent risks and
interaction of these exposures in driving the health burden
(20–22). Studies in Brisbane, Australia, and in the Netherlands
suggested that both ozone and heat play a role in increasing
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excess deaths during a heat wave (23, 24). Interaction between
both exposures suggests that the effect of both ozone and heat
drive an increased burden compared to each exposure individ-
ually. Findings differ between these studies, some revealing a
strong relative interaction (20, 25, 26), while others demonstrate
a weaker signal (27, 28) or no joint effect (29). For example, high
temperature enhanced the effects of ozone on all-cause mortality
in France (20) and cardiovascular and respiratory deaths in
China (22). In contrast, no relative interaction between ozone
and heat was observed in all but one city in England (23).
Although several studies have considered the joint effects of

temperature and ozone (20, 26, 27), few have considered the fine
spatial variation in these effects (30). The consideration of fine
spatial variation is important because it can provide location-
specific thresholds that are most effective in revealing this
health burden. Studying spatial variation across diverse regions is
vital because it can reveal the heterogeneity of this interaction
that can be used to inform warning systems. One study applied a
spatial semiparametric model to estimate the joint effects of
ozone and temperature risk in urban areas in the United States
(30). Although that paper finds evidence of ozone–temperature
interaction at high temperature thresholds and ozone concen-
trations, the study focused on urban areas and the relationship
varied by city studied. Therefore, we were motivated to consider
this interaction at the zip code level in various geographical and
sociodemographic contexts.
Some vulnerable groups are known to be especially susceptible

to the effects of ozone and heat. For example, the ozone-related
excess attributable risk was found to be almost two times higher
for Black compared to White residents in California for air
pollution exposure above federal standards (31). Racial dis-
crimination plays a role, as decreased access to primary care,
private insurance, and preventive medication of Black residents
when compared to their White counterparts likely drive this
health disparity (31). Furthermore, racial minorities and com-
munities of a low socioeconomic status are also more susceptible
to heat-related health effects; this is associated with poorer
physical health, lower access to air conditioning, and greater
neighborhood-level exposure that may increase risk (32). Green
space, for example, has been shown to be a modifier of heat-
related health effects (14). Although these contextual variables
are known to play a role in the effect of these exposures, no study
to our knowledge has considered the role of sociodemographics
and neighborhood-level factors in driving the interactive effect
between ozone and heat.
We examined the potential heterogeneity in the joint effects

between heat and ozone resolving fine geographical scales. The
majority of studies considering joint effects have not used heat
waves or extreme heat events as a binary variable to study tem-
perature effects. We argue that studying the effects of temper-
ature exceeding thresholds is a policy-relevant measure that can
be used to activate early warning systems (9). Moreover, most
studies focus on mortality, and very few have considered the
burden on hospitalizations, a more moderate signal that could
reveal broader health impacts. Lastly, the majority of studies
investigated heat–ozone interactions based on the relative scale
by including a product term in multiplicative models (33, 34). In
this study, we investigate interaction on the additive scale that
constitutes a more relevant public health measure (35, 36) since
it directly quantifies the absolute number of hospital admission
cases that could be prevented by a joint intervention on both
heat and ozone exposures as compared to independent inter-
ventions. Focusing on the highly diverse state of California, we
explore the role of sociodemographics and environment char-
acteristics at the zip code level in predicting these joint effects to
identify factors that can be used to prioritize areas for joint
warning systems.

Materials and Methods
Data Sources.
Environmental data. Temperature data from the National Oceanic and At-
mospheric Administration’s vast Cooperative Observer and First Order sta-
tions were used for this study (37). The minimum and maximum daily
temperature (°C) observations at these stations spanning 1950 through 2013
had been interpolated onto a 1/16° (∼6 km) grid (38). Population-weighted
centroids for each Zip Code Tabulation Area (ZCTA) were linked with the
nearest temperature measurements using the geonear function in Stata15
SE. The distance from each centroid to a temperature grid cell center
therefore did not exceed 6 km. Unpopulated areas such as national parks are
excluded from the ZCTA delineations, so no data are provided for these
areas.

Various extreme heat events were defined when the daily maximum or
minimum temperature exceeded the 99th, 97.5th, or 95th percentile of the
temperature distribution for each ZCTA for 1 d and 2 consecutive days during
the warm season of May to September. We considered a total of six extreme
heat event definitions during the warm period (Table 1). Each of these
definitions were examined using maximum and minimum temperature to
consider daytime- and nighttime-accentuated extreme heat events, as
nighttime-accentuated heat typically occurs in anomalously humid condi-
tions (39), which hold special health risks.

Ozone data were estimated at the daily level using 8-hmaximums sampled
and analyzed by the US Environmental Protection Agency (EPA) Air Quality
System (40). Measured concentrations from fixed-site monitoring stations
within a 20 km radius of each population-weighted zip code centroid were
used for interpolation (reference SI Appendix, Fig. S9 for the spatial distri-
bution of ozone estimates missingness). To capture acute exposure to high
ozone levels, five definitions of ozone peaks were estimated at various
percentiles of the ozone distribution for each ZCTA. The 99th, 95th, 90th,
and 75th percentiles of the May through September period were considered
as well as a standard threshold of 70 parts per billion (ppb), which corre-
sponds to the EPA National Ambient Air Quality Standard for ozone (41).
Hospitalization data. Unscheduled hospitalizations in California from 2004
through 2013 were obtained from the Office of Statewide Health Planning
and Development Patient Discharge Data. This included all hospital visits that
were not prearranged, including emergency department visits and hospital
admissions; these together will be referred to as hospital visits in the re-
mainder of this manuscript. Variables of interest included ZCTA of the pa-
tient’s residence, day of the week, and hospitalization outcome, which was
aggregated into daily counts for each ZCTA in California. Respiratory disease
(International Classification of Diseases Ninth Revision code: 460–519) hos-
pital visits were considered as the outcome of interest due to the well-
documented association with both ozone and extreme heat.

Statistical Analysis.
Case-crossover methodology for the California overall effect. A time-stratified
case-crossover design was used to study the association between each ex-
treme heat event definition, ozone peak, and hospital visits for respiratory
disease (42–44) to understand average joint effects in California as a whole.
Controls were identified for each case in the study population and selected
based on the same day of the week of the hospital visit within the samemonth
and year that the case occurred. Only time-varying variables were considered as
covariates in models. A RERI was then calculated to consider the overall joint
effect of ozone and extreme heat events for California (36). We first assessed
the average joint effect of ozone and extreme heat across the entire state.
Within-community matched design analysis. A within-community matched de-
sign was then used to study the association between extreme heat events
and ozone exposure and hospital visits for respiratory disease at the zip code
level to further understand whether spatial variation played a role in aver-
age overall effect. This approach offers benefits over previous approaches by
allowing the investigation of interactive effects at the zip code level. For
each exposed day, we identified all possible controls based on two criteria:
1) matches must be in the same zip code, and 2) matches must be in the
same summer. We used an inverse time weighting scheme to calculate the
comparison averages of hospitalizations on those control days for the con-
trast. For example, control days closer in time to the exposed day were given
a stronger weight than those that were further in time. A RERI was calcu-
lated for each ZCTA to consider the joint effects of ozone and extreme heat
events at the zip code level (45, 46). Three relative risks (RRs) were computed
for each zip code using the control day weighted averages mentioned above
where we compared rates in joint extreme heat events (HW)/O3 days RR11

(RRjoint), HW only RR10(RRhw), and O3 only RR01(RRozone) days to days without
any HW nor O3 event RR00 (RRneither), where HW is the extreme heat event
and O3 is ozone. For each independent occurrence of an ozone peak and an
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extreme heat event, we calculated RR by taking the total number of respi-
ratory hospitalizations in a zip code on a case day versus the weighted av-
erage on all control days for that particular case day (extreme heat event,
ozone peak), and then similarly RRs for the joint heat and ozone days were
calculated. When all RRs were calculated for a zip code, we used the average
to produce zip code–level RR estimates. Thus, RERI was calculated by the
following equation:

RERI = (RRjoint − 1) − (RRHWozone − 1) − (RRozoneHW − 1).
This quantifies the joint effects at this fine spatial domain on the additive
scale (45). The within-community matched design focused on extreme heat
events using the 95th percentile of maximum temperature and ozone peaks
at the 75th percentile to capture sufficient joint-effect days for analysis.

With an outcome of interest such as hospital visits, we expect there to be
many days in low population zip codes where there are zero hospital visits.
For this reason, some of the RRs are very small for small population zip codes
on case days. Due to the weighted average being used as a denominator for
our RRs, we do not encounter many zeros in the denominator. The few
case days where there was a zero-value denominator, the numerator was
also zero. Thus, the scarcity of data did not pose a significant problem for
our analysis; however, for the smallest population zip codes, we do not
observe precise estimates. Incorporating information from surrounding zip
codes can improve precision, and thus, a spatial analysis is beneficial.

Analyses were conducted on Stata 15/SE and R. For reproducibility pur-
poses, a coauthor that was not involved in the analysis reviewed the code for
the study. Additionally, the code and a sample dataset for reproducibility
purposes is provided at the following link: https://github.com/benmarhnia-
lab/JointOzoneHeatWaves.
Bayesian hierarchical model extension. We expect there to be spatial autocor-
relation in our RERI estimates. Due to data scarcity, leveraging this spatial
information can increase the precision in our estimates. Similarly to Aguilera
et al. we used a spatial Bayesian hierarchical model (BHM) for this purpose
(47). BHMs provide a decrease in variance of estimates by using information
spatially near any point. The RERI estimates for each zip code obtained from
the within-community matched design analysis were used as the response
variable in a spatial linear model. The Bayesian model was fit using the
spBayes package in R (48). This package requires the use of point-referenced
data rather than areal regions, and for this we used population-weighted
centroids from the US Census Bureau (49). We fit an empirical semivariogram

to estimate the starting values for the spatial parameters: sill (σ2), nugget

(τ2), and range (ϕ). Based on the shape of the semivariogram, a spherical
covariance structure fit the most closely to the data. The spherical covariance
function is commonly used in spatial analyses and has the following form:

Csph(h) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ σ2(1 − 3

2
|h|
ϕ

+ 1
2
|h|3
ϕ3 ), 0 ≤ |h| ≤ ϕ

0, |h|>ϕ
.

The covariance structure is specified in the model implementation, which
forces the covariance matrix to hold this form. All covariance structures for
this type of model are isotropic.

The model forms a hierarchical model with two stages:

the first stage is Y
�
�θ, Z � NðXβ þ Z, τ2IÞ, and

the second stage is Z
�
�σ2,ϕ � Nð0, σ2HÞ,

where θ is the vector of parameters including β, sill, nugget, and range,
and Z is the vector of spatial random effects. Conditionally, Yi|Z are inde-
pendent. H represents the spatial correlation structure, which we set as
spherical in this case. The second stage model, called the process model, is
introduced to capture spatial dependence in the outcome variable. Model
specification finally includes adding starting, tuning, and distribution values
for our priors of parameters τ2 and the hyper parameters ϕ and σ2. The
model captures the spatial process underlying the distribution of RERI in
California from 2004 through 2013. This model generally can be considered
a spatial Bayesian extension to a general linear model.

The prior distributions and tuning parameters we used allowed for min-
imal impact on the final values. Monte Carlo Markov chain samples are used
to estimate parameters. We used 10,000 samples, 75% for burn-in. An 800 ×
800 raster grid was produced by interpolating the recovered sample weights
using multilevel B-splines. This methodology assumes isotropy, although
that may not hold in the case of environmental variables.

To represent the precision of the point estimates, we computed the
signal-to-noise ratio (SNR) from the model output, which includes weight
and SEs. The SNR was mapped for each ZCTA to represent statistical preci-
sion. This gives a visual representation of areas where estimates of RERI from
the BHM are precise. We use the traditional cutoff when |SNR| > 2 to rep-
resent precision. Additionally, as acclimation and adaptation can modify the
effects of heat (50) and ozone (51), respectively, a sensitivity analysis was
conducted considering stratified estimates for each month of study, to
consider the potential differing effect of these exposures throughout the
summer.
Metaregression. Once spatial estimates from the BHM were output, we used
them in a metaregression to understand the factors influencing these joint
effects of ozone and heat over space. Demographic and environmental
variables were retrieved from the US Census American Community Survey
(49) and the Healthy Places Index (52). The variables we considered for this
analysis were neighborhood and demographic variables that have been
shown to be related to ozone and heat effects. These include population
density, the percentage of residents that are non-White, Black, over 65 y of

Table 1. Characteristics of respiratory hospital visits and summary of daily temperature
and ozone pollution in California, May to September 2004 to 2013

Health outcome n Mean daily cases (SD)

Respiratory hospital visits 817,354 677 (195)
Environmental exposures Threshold No. ZCTA days exceeding threshold for 2,863 ZCTAs
Heat waves (°C) Mean ± SD
Maximum temperature

97.5th 1 d 37.75 ± 4.11 69,692
99th 1 d 38.95 ± 3.85 28,616
97.5th 2 d 38.37 ± 3.98 34,612
99th 2 d 39.57 ± 3.78 11,391

Minimum temperature
97.5th 1 d 20.29 ± 4.21 69,783
99th 1 d 21.27 ± 4.22 28,679
97.5th 2 d 21.08 ± 4.00 33,394
99th 2 d 22.10 ± 3.88 12,105

Ozone waves (ppb)
99th 79.92 ± 15.36 23,126
95th 71.58 ± 15.00 110,122
90th 67.49 ± 14.87 217,272
75th 61.67 ± 14.41 534,519
70 ppb 78.07 ± 7.81 187,227
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age, female, unemployed, without health insurance, foreign born, and race
and environmental variables such as the percentage of the zip code with tree
canopy, access to parks, and concentrations of other pollutants (PM2.5, PM10,
NO2). We additionally included variables about lifestyle, including accessibility
of parks, the percentage of commuters who walk or ride a bike, and auto-
mobile ownership. The normalized difference vegetation index (NDVI) was
used to characterize green space at the zip code level. Finally, we create a
composite score from the eigenvectors of the first principal component de-
rived from the principal component analysis (PCA); we use this composite score
as another variable. Each variable was considered in a univariate linear model,
with the spatial estimates output from the BHM as the outcome. Effect esti-
mates and CIs were taken from each model to represent the significance of
each variable in the spatial distribution of joint ozone and heat effects.

Results
Study Population and Summary of Exposures. A total of 817,354
unscheduled respiratory hospitalizations occurred from 2004 to
2013 in 543 hospitals (map shown in SI Appendix, Fig. S8) in
California (Table 1). Temperature and ozone thresholds for
various extreme heat event and ozone peak definitions are also
described in Table 1. For example, extreme heat events defined
by the 99th percentile using maximum temperature across all
ZCTAs have an average threshold of 38.95 °C, ranging from 22.5
°C at the coast of Northern California to 49.8 °C in the southern
desert, and a total of 28,616 ZCTA days are considered extreme
heat event days using this definition (Table 1). There is coherent
spatial variation in what temperature value corresponds to spe-
cific percentiles throughout California; the variation in the
maximum temperature threshold is shown for the 95th percentile
of the temperature distribution in Fig. 1, ranging between 20 °C
in the coastal redwood forest of Humboldt County in far
Northern California as well as in the high southern Sierra Nevada
mountains to greater than 45 °C in the Mojave and Colorado/
Sonoran Deserts in the far southeast. For ozone peaks, whose
spatial distribution largely reflects that of temperature but locally
modified by the distribution of population centers and industrial
activity around the state, the overall average concentration is 79.9
ppb with an SD of 15.3 for the 99th percentile definition; 23,126
ZCTA days fall within these concentration levels (Table 1). In
subsequent results, ozone peaks were considered at the 75th
percentile to ensure sufficient ozone days could be analyzed.

Isolated Effects of Extreme Heat Events and Ozone Exposures. Fig. 2
shows the association between extreme heat events and ozone
peaks separately and respiratory hospital visits for California.

Extreme heat events defined using maximum temperature revealed
greater health impacts than extreme heat events defined using
minimum temperature (Fig. 2). Therefore, maximum temperature
extreme heat events were emphasized in the following analyses.
Overall, the majority of thresholds used for ozone peaks appear to
be associated with increased hospital visits (Fig. 2). Overall, results
showed that ozone and extreme heat events were independently
associated with respiratory disease hospital visits in some areas of
California, but this association is not consistent.

Joint Effects and Spatial Variation. When considering average joint
effect in all of California, the RERIs revealed no effect for any
combination of extreme heat events and ozone peak definition
(SI Appendix, Table S1). However, when considering spatial
differences in effect at the zip code level within California, the
variation is revealed (Fig. 3). Differences in RERI estimates
considering extreme heat events at the 95th percentile and ozone
at the 75th percentile within California demonstrated that some
areas showed a strong joint effect with RERIs exceeding values
of 2, and other areas indicate negative interaction of values lower
than −2 (Fig. 3). Hotspots that show strong joint effects are
sparse, peppering the state here and there. Examples of these
hotspots include a spot along the United States–Mexico border
area and a sizable area in the western Central Valley along the
San Joaquin River. It is important to note that the high variation
leads to imprecise estimates of joint effects through RERI; pre-
cision of estimates can be seen in SI Appendix, Figs. S1 and S2.
The results of spatial heterogeneity in RERI when the ozone peak
is defined by an absolute threshold of 70 ppb are shown in SI
Appendix, Figs. S3 and S4. However, some information is missing
for this definition because of many ZCTAs never reaching 70 ppb
for ozone. The definitions of both extreme heat events and ozone
peaks analyzed showed distinct spatial differences.
We consider the lagged effect of these joint days by consid-

ering the average hospitalizations on the two following days after
an event. SI Appendix, Fig. S5 displays the Bayesian surface of
the RERI estimates. Overall, we find lower effect sizes but
higher precision for this analysis. The sensitivity analysis consid-
ering stratified estimates for each month of study showed some
variation in spatial patterns throughout the summer, indicating
that acclimation may play a role in some ZCTAs (SI Appendix,
Fig. S6). However, we did not identify a strong attenuation of
effect, and acclimation does not seem to be a major driver of our
observed results.

Fig. 1. Spatial distribution of exposure values that corresponds to a 75th percentile of ozone (ppb) and 95th percentile of maximum temperature (°C) during
the warm season (May to September) for each ZCTA, 2004 to 2013 in California. Light gray areas indicate ZCTAs with no data, and gray areas indicate ZCTAs
with no climate data.
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Prediction of Joint Effects Using Neighborhood-Level Sociodemographics.
Descriptors of variables included in the metaregression for all
California zip codes are shown in SI Appendix, Table S3. Results of
the metaregression showed that zip codes with a higher percentage

of non-White residents, unemployed residents, and population
with no health insurance were associated with stronger joint ef-
fects (Fig. 4). However, these variables are correlated with other
demographic variables considered (SI Appendix, Fig. S7).

Fig. 2. Odds ratios and 95% CI of the bivariate association between heat waves (99th 1 d, 99th 1 d, 97.5th 1 d, and 97.5th 2 d), ozone peaks (99th, 95th, 90th,
75th, and 70 ppm), and respiratory hospital visits in California, 2004 to 2013.

Fig. 3. Interpolated spatial distribution of joint effects of heat waves at the 95th percentile of maximum temperature (°C) and ozone peaks (ppb) at the 75th
percentile on respiratory hospital visits using RERI in California, 2004 to 2013 from a BHM. (Left) The right displays the SNR (signal-to-noise ratio) for the BHM
estimates, dark gray area indicates missing ozone data, red and blue indicate significance of a BHM estimate in a positive or negative direction, respectively.
Light gray areas indicate no population and therefore no ZCTA.

Schwarz et al. PNAS | 5 of 9
Spatial variation in the joint effect of extreme heat events and ozone on respiratory
hospitalizations in California

https://doi.org/10.1073/pnas.2023078118

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023078118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023078118/-/DCSupplemental
https://doi.org/10.1073/pnas.2023078118


After accounting for median income, an effect for the percentage
of non-White residents is no longer observed (SI Appendix, Table
S4) because of the high correlation between these two variables
leading to a model that is less reliable for identifying effects. Zip
codes with higher concentrations of other pollutants were also
associated with stronger effects, while a higher percentage of
commuters who walk or ride a bike was associated with decreased
joint effects, although this effect was attenuated after adjusting for
socioeconomic status (SI Appendix, Table S4). Park accessibility,
tree canopy, the percentage of female residents, the percentage of
residents with air conditioning, and those over 65 y of age showed
imprecise predictions. The composite score produced from PCA
showed high influence from the variables NDVI, no health in-
surance percentage, percent non-White, and mean NO2. The PCA
score was precise and relatively high in magnitude as we would
expect.

Discussion
The results of this study indicate that the effects of ozone and
heat are highly heterogeneous throughout California; some areas
show strong joint effects, while other parts of the state suggest no
interaction, or negative interaction, between ozone and heat.
This validates the importance of considering the effects of these
exposures at a local scale. Understanding which spatial units
(e.g., ZCTA) have joint heat and ozone effects in a large geo-
graphically and demographically complex region such as Cal-
ifornia can inform warning systems and provide motive for
considering thresholds of both ozone and heat exposures to ac-
tivate these warning systems in specific geographical areas. More
specifically, understanding how zip code–level demographic and
environmental information is associated with these joint effects
can be used to prioritize resources.

In California, the forecasting system includes extreme heat
events; the National Weather Service uses an early warning
system to identify potential heat risks at a local scale, which pro-
vides guidance to decisionmakers to take action (53). This re-
source forecasts potential threats of dangerous high heat year
round but to our knowledge does not take into account the joint
effects of ozone and heat. Our results highlight an opportunity to
identify spatial heterogeneity to inform joint warning systems at
this localized scale. Interestingly, no large-scale spatial pattern was
observed, but “hotspots,” such as the strongest positive joint ef-
fects, were observed in certain areas such as the Central Valley
and the southern border region (Fig. 3). When considering a
smaller scale, what appeared to be large-scale noise showed local
signals at the ZCTA level. The results of the metaregression show
that specific demographic and zip code–level information are
drivers of these interactive effects. By identifying these areas that
experience joint effects of ozone and heat, interventions consid-
ering thresholds of both exposures have the potential to prevent
more cases of respiratory disease when implemented in addition
to two independent interventions.
Heat warning systems have been shown to be effective at de-

creasing the deleterious effects of heat exposure (3, 54, 55). In
particular, the thresholds of local heat emergency plans can be
adapted based on evidence from epidemiological studies, which
have been shown to increase the health benefits of activating
heat action plans (54). Warning systems can be adapted to
consider the joint effects of air pollutants such as ozone, which
our results show would be beneficial in specific areas throughout
California. This study and others considering fine spatial varia-
tion in the effect of environmental exposures can be valuable to
define and target these specific regions.
A literature review was conducted for studies investigating the

joint effect of ozone and heat on health (SI Appendix, Table S2).

Fig. 4. Results of metaregression showing the association between standardized sociodemographic characteristics at the zip code level and joint effects of
heat waves at the 95th percentile of maximum temperature (°C) and ozone peaks (ppb) at the 75th percentile on respiratory hospital visits in California, 2004
to 2013.
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Most of the literature considering the joint effects of heat and
ozone have presented assessments of average exposures in spe-
cific geographic areas such as cities or counties, primarily in Asia
and Europe (28, 33, 34). Studies have found conflicting results,
ranging from indications of strong interaction (56, 57) to no in-
teraction (29). Another study found a negative association be-
tween ozone exposure and mortality on hot days (58). Two
papers considering different cities or geographical areas found
spatial variation in their results; Pattenden et al. found ozone–
heat interaction in only one conurbation in England (London)
out of the 15 studied (27). Similarly, Ren et al found synergistic
associations in communities in the northeast but not in the
southeast of the United States (25, 59).
Our results shed light on some of the variation in the findings

of previous studies, some of which may be explained by differ-
ences in sociodemographics and environmental factors at the
local level. Fig. 3 shows the spatial distribution of the effect of
extreme heat events on respiratory hospital visits, which is highly
heterogeneous (60, 61). When considering joint effects, the
overall results for the entire state of California showed no inter-
action between ozone and extreme heat events (SI Appendix, Table
S1). However, there is a wide spatial variation in the effects of heat,
ozone, and the interaction of both as observed in Fig. 3. Some
areas show negative interaction. There is evidence to suggest that
reductions in NOx are associated with an increase in ozone con-
centrations (62); these ozone precursors, such as nitrogen dioxide,
could therefore be higher on low ozone days, acting as a competing
risk in this association and potentially driving a negative interaction
in some ZCTAs. Additionally, the perceived risk of air pollution
and high heat events may alter behaviors and decrease exposure
when there is a dual threat of ozone and heat exposure (63); this
may vary based on the capacity of populations to adapt, which may
be related to resource and socioeconomic factors.
As shown in the metaregression results, neighborhood-level

environmental characteristics modify the vulnerability of specific
ZCTAs to ozone and heat joint exposures. Previous research has
shown that high settlement density and sparse vegetation can in-
crease the human thermal comfort index, an indicator of heat
stress (64). In our results, population density was found to have a
slight positive association with ozone–heat interactive effects, but
this estimate was not precise (Fig. 4). Tree canopy, a measure of
green space at the ZCTA level, was not found to be a strong
predictor of joint effects either, although it did have a slight
protective effect (Fig. 4). Although the interaction hotspots we
observe are not consistently concentrated in the highly urbanized
areas of California, the total population showed a strong positive
association with observed interactive effects in the metaregression
results. This heterogeneity may be explained by neighborhood-
level demographic differences within highly urbanized areas.
Minority populations and those of a low socioeconomic status

are particularly vulnerable to heat (32) and ozone (65) due to the
range of associated individual- and neighborhood-level factors
that increase risk in these specific populations. Racial micro-
aggressions and racism experienced by individuals from minority
groups may also hinder their comfort in seeking care (66). Our
results are consistent with this finding, as zip codes with a higher
proportion of non-White populations showed a stronger joint
effect of ozone and heat (Fig. 4). Interestingly, such an effect is
no longer observed after adjusting for median income (SI Ap-
pendix, Table S4). As discussed recently, race/ethnicity (both for
individual-level self-reported race/ethnicity or neighborhood race/
ethnicity composition) in environmental epidemiological studies
operates through various pathways such as differential socioeco-
nomic status to generate observed environmental health disparities
of interest (67). As described in the social epidemiological litera-
ture (68), such patterns can be interpreted as mediated inequality
measures, which correspond to what would happen to race/ethnic
inequalities for a given health outcome if certain socioeconomic

status (like income) distributions were set to something other than
what they in fact were across racial/ethnic subgroups. In the context
of our findings, it means that if we were able to (hypothetically)
reduce income inequalities between race/ethnic groups (at the
neighborhood level) to zero, observed race/ethnic disparities re-
garding the joint impacts of extreme heat and ozone would dis-
appear. Interestingly, such patterns have been found in other
studies in environmental epidemiology (67) or in the context of
COVID-19 test positivity and risk of hospitalization (69).
That being said, the positive association between median in-

come and the role of the proportion of unemployed residents in
driving joint effects also exemplifies differential susceptibility to
environmental determinants and demonstrates the strong role of
neighborhood socioeconomic status in driving this increased
vulnerability to joint effects of heat and ozone exposure. Expo-
sure to multiple environmental risks, such as other toxins and
poor housing quality (70), as well as social deprivation from lack
of access to proper healthcare and education can increase the
vulnerability of populations from a lower socioeconomic status
(71). Older populations are considered to be more vulnerable to
both heat (72) and ozone exposures (73), although our results do
not indicate that zip codes with a higher elderly population have
increased vulnerability. Our results can be used to prioritize
specific neighborhoods that are considered at a higher risk for
joint ozone–heat effects, such as those with lower income and
with a higher rate of unemployment.
Certain commuting and travel behaviors can also play a role in

the joint health effects of ozone and extreme heat events. In our
results, the percentage of workers commuting by walking, cy-
cling, or transit was shown to be associated with decreased joint
effects, and automobile ownership showed the opposite, indi-
cating that car usage may a predictor of joint effects. Reduced
car travel has been shown to have health benefits through re-
duced air pollution exposure and increased exercise (74). Spe-
cifically, using bicycles for urban travel has been found to drive
health benefits from decreased emissions (75). Increased walking
and bicycling in California have been shown to contribute to
disease reduction (76). However, accessibility to walking and bicy-
cling for commuting is also strongly correlated with neighborhood
socioeconomic status (77), which is partially driving the association
we observe. Although a higher percentage of workers commuting
by walking, cycling, or transit remains associated with decreased
joint effects after adjusting for income (SI Appendix, Table S4),
there may be various other factors related to the socioeconomic
context of the ZCTA that may explain this association.
Lastly, long-term exposure to other air pollutants were found

to be associated with increased joint effects, indicating that there
may be multipollutant effects. This may be related to environmental
injustices, as low-income areas and communities of color have a
disproportionate exposure to air pollutant concentrations (78). The
Central Valley, where we observe a large hotspot of strong inter-
active effects, has some of the worst air quality in the nation; this has
been shown to be associated with the highest rates of asthma in
California (79). These findings indicate the importance of consid-
ering neighborhood-level characteristics in understanding the vul-
nerability of specific areas to interactive ozone and heat effects.
Our results demonstrate the importance of going beyond an

overall regional measure to consider fine spatial heterogeneity in
the effects and thresholds for early warning systems. Without
considering these effects at a local scale, positive associations may
be concealed. In the future, it would be important to assess the
spatial variation in effects in other studies which found limited or
no joint effects of ozone and heat in other regions. Additionally,
this methodology can be applied to other exposures to understand
their spatial heterogeneity and identify susceptible areas that can
be used to inform targeted interventions.
There are a few limitations to this study that should be ac-

knowledged. Missing values for ozone left some gaps in our
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understanding in certain areas of California (23.4% of zip codes
do not have ozone information; missing data shown in SI Ap-
pendix, Fig. S9); zero values for hospital visits also led to some
difficulties in examining this association at the ZCTA level.
Existing methodologies for the use of spatial effects do not allow
for anisotropy in spatial processes. The assumption of isotropy does
not hold for data across complex geographies of regions and cli-
mates such as that of California, where, for example, heat wave
expressions at the highly populated coast are modulated by coastal
marine-layer clouds (80). There is room for methodological devel-
opment in this area, and we plan to explore more flexible meth-
odologies. Lastly, heat waves are expected to become more humid
in California (5); understanding the role of humidity in driving
ozone and heat interaction is an important area for future work.

Climate change projections show that the frequency, intensity,
and duration of extreme heat events as well as days of high ozone
concentration are expected to increase (5, 6, 39). This study
helps understand predictors in the spatial distribution of these
effects and can be used to inform and target joint early warning
systems to protect populations from the deleterious effects of
both ozone and heat.

Data Availability. The code and simulated sample dataset for re-
producibility purposes is provided at the following link: https://
github.com/benmarhnia-lab/JointOzoneHeatWaves.

ACKNOWLEDGMENTS. This work was supported by the Office of Environ-
mental Health Hazard Assessment No. 18-E0012.

1. F. J. Kelly, G. W. Fuller, H. A. Walton, J. C. Fussell, Monitoring air pollution: Use of
early warning systems for public health. Respirology 17, 7–19 (2012).

2. J. Wang, X. Zhang, Z. Guo, H. Lu, Developing an early-warning system for air quality
prediction and assessment of cities in China. Expert Syst. Appl. 84, 102–116 (2017).

3. G. Toloo, G. FitzGerald, P. Aitken, K. Verrall, S. Tong, Evaluating the effectiveness of
heat warning systems: Systematic review of epidemiological evidence. Int. J. Public
Health 58, 667–681 (2013).

4. D. Lowe, K. L. Ebi, B. Forsberg, Heatwave early warning systems and adaptation ad-
vice to reduce human health consequences of heatwaves. Int. J. Environ. Res. Public
Health 8, 4623–4648 (2011).

5. A. Gershunov, K. Guirguis, California heat waves in the present and future. Geophys.
Res. Lett. 39, 18710 (2012).

6. A. Mahmud, M. Tyree, D. Cayan, N. Motallebi, M. J. Kleeman, Statistical downscaling
of climate change impacts on ozone concentrations in California. J. Geophys. Res. D
Atmospheres 113, 10.1029/2007JD009534 (2008).

7. J. L. Schnell, M. J. Prather, Co-occurrence of extremes in surface ozone, particulate
matter, and temperature over eastern North America. Proc. Natl. Acad. Sci. U.S.A. 114,
2854–2859 (2017).

8. D. Phung et al., Ambient temperature and risk of cardiovascular hospitalization: An
updated systematic review and meta-analysis. Sci. Total Environ. 550, 1084–1102
(2016).

9. Z. Xu, G. FitzGerald, Y. Guo, B. Jalaludin, S. Tong, Impact of heatwave on mortality
under different heatwave definitions: A systematic review and meta-analysis. Envi-
ron. Int. 89-90, 193–203 (2016).

10. A. Bouchama et al., A model of exposure to extreme environmental heat uncovers
the human transcriptome to heat stress. Sci. Rep. 7, 9429 (2017).

11. P. Michelozzi et al.; PHEWE Collaborative Group, High temperature and hospitali-
zations for cardiovascular and respiratory causes in 12 European cities. Am. J. Respir.
Crit. Care Med. 179, 383–389 (2009).

12. R. S. Green et al., The effect of temperature on hospital admissions in nine California
counties. Int. J. Public Health 55, 113–121 (2010).

13. G. B. Anderson et al., Heat-related emergency hospitalizations for respiratory diseases
in the Medicare population. Am. J. Respir. Crit. Care Med. 187, 1098–1103 (2013).

14. C. J. Gronlund, A. Zanobetti, J. D. Schwartz, G. A. Wellenius, M. S. O’Neill, Heat, heat
waves, and hospital admissions among the elderly in the United States, 1992-2006.
Environ. Health Perspect. 122, 1187–1192 (2014).

15. D. Nuvolone, D. Petri, F. Voller, The effects of ozone on human health. Environ. Sci.
Pollut. Res. Int. 25, 8074–8088 (2018).

16. S. Magzamen, B. F. Moore, M. G. Yost, R. A. Fenske, C. J. Karr, Ozone-related respi-
ratory morbidity in a low-pollution region. J. Occup. Environ. Med. 59, 624–630
(2017).

17. B. J. Malig et al., A time-stratified case-crossover study of ambient ozone exposure
and emergency department visits for specific respiratory diagnoses in California
(2005–2008). Environ. Health Perspect. 124, 745–753 (2016).

18. H. Liu et al., Ground-level ozone pollution and its health impacts in China. Atmos.
Environ. 173, 223–230 (2018).

19. M. H. Forouzanfar et al.; GBD 2015 Risk Factors Collaborators, Global, regional, and
national comparative risk assessment of 79 behavioural, environmental and occupa-
tional, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the
global burden of disease study 2015. Lancet 388, 1659–1724 (2016).

20. L. Filleul et al., The relation between temperature, ozone, and mortality in nine
French cities during the heat wave of 2003. Environ. Health Perspect. 114, 1344–1347
(2006).

21. R. W. Atkinson et al., Long-term exposure to ambient ozone and mortality: A
quantitative systematic review and meta-analysis of evidence from cohort studies.
BMJ Open 6, e009493 (2016).

22. J. Madrigano, D. Jack, G. B. Anderson, M. L. Bell, P. L. Kinney, Temperature, ozone,
and mortality in urban and non-urban counties in the northeastern United States.
Environ. Health 14, 3 (2015).

23. P. H. Fischer, B. Brunekreef, E. Lebret, Air pollution related deaths during the 2003
heat wave in The Netherlands. Atmos. Environ. 38, 1083–1085 (2004).

24. S. Tong, C. Ren, N. Becker, Excess deaths during the 2004 heatwave in Brisbane,
Australia. Int. J. Biometeorol. 54, 393–400 (2010).

25. C. Ren, G. M. Williams, K. Mengersen, L. Morawska, S. Tong, Does temperature

modify short-term effects of ozone on total mortality in 60 large eastern US com-
munities? An assessment using the NMMAPS data. Environ. Int. 34, 451–458 (2008).

26. W. Shi et al., Modification effects of temperature on the ozone-mortality relation-

ship: A nationwide multicounty study in China. Environ. Sci. Technol. 54, 2859–2868
(2020).

27. S. Pattenden et al., Ozone, heat and mortality: Acute effects in 15 British conurba-

tions. Occup. Environ. Med. 67, 699–707 (2010).
28. M. Scortichini et al., Short-term effects of heat on mortality and effect modification

by air pollution in 25 Italian cities. Int. J. Environ. Res. Public Health 15, 1771 (2018).
29. I. Jhun, N. Fann, A. Zanobetti, B. Hubbell, Effect modification of ozone-related

mortality risks by temperature in 97 US cities. Environ. Int. 73, 128–134 (2014).
30. A. Wilson, A. G. Rappold, L. M. Neas, B. J. Reich, Modeling the effect of temperature

on ozone-related mortality. Ann. Appl. Stat. 8, 1728–1749 (2014).
31. A. D. Hackbarth, J. A. Romley, D. P. Goldman, Racial and ethnic disparities in hospital

care resulting from air pollution in excess of federal standards. Soc. Sci. Med. 73,

1163–1168 (2011).
32. C. J. Gronlund, Racial and socioeconomic disparities in heat-related health effects and

their mechanisms: A review. Curr. Epidemiol. Rep. 1, 165–173 (2014).
33. A. Analitis et al., Effects of heat waves on mortality: Effect modification and con-

founding by air pollutants. Epidemiology 25, 15–22 (2014).
34. J. Li et al., Modification of the effects of air pollutants on mortality by temperature: A

systematic review and meta-analysis. Sci. Total Environ. 575, 1556–1570 (2017).
35. K. J. Rothman, S. Greenland, A. M. Walker, Concepts of interaction. Am. J. Epidemiol.

112, 467–470 (1980).
36. T. J. VanderWeele, M. J. Knol, A tutorial on interaction. Epidemiol. Methods 3, 33–72

(2014).
37. Cal-Adapt, Exploring California’s climate change research. https://cal-adapt.org/data/.

Accessed 1 June 2018.
38. B. Livneh et al., A spatially comprehensive, hydrometeorological data set for Mexico,

the U.S., and Southern Canada 1950-2013. Sci. Data 2, 150042 (2015).
39. A. Gershunov, D. R. Cayan, S. F. Iacobellis, The great 2006 heat wave over California

and Nevada: Signal of an increasing trend. J. Clim. 22, 6181–6203 (2009).
40. EPA, Air quality system. https://www.epa.gov/aqs. Accessed 1 June 2018.
41. EPA, 2015 National ambient air quality standards (NAAQS) for ozone. (2018). (https://

www.epa.gov/ground-level-ozone-pollution/2015-national-ambient-air-quality-stan-
dards-naaqs-ozone). Accessed 1 June 2018.

42. R. Basu, B. D. Ostro, A multicounty analysis identifying the populations vulnerable to
mortality associated with high ambient temperature in California. Am. J. Epidemiol.

168, 632–637 (2008).
43. R. Basu, W.-Y. Feng, B. D. Ostro, Characterizing temperature and mortality in nine

California counties. Epidemiology 19, 138–145 (2008).
44. S. Tong, X. Y. Wang, Y. Guo, Assessing the short-term effects of heatwaves on mor-

tality and morbidity in Brisbane, Australia: Comparison of case-crossover and time
series analyses. PloS One 7, e37500 (2012).

45. D. B. Richardson, J. S. Kaufman, Estimation of the relative excess risk due to inter-
action and associated confidence bounds. Am. J. Epidemiol. 169, 756–760 (2009).

46. D. W. Hosmer, S. Lemeshow, Confidence interval estimation of interaction. Epide-

miology 3, 452–456 (1992).
47. R. Aguilera et al., Respiratory hospitalizations and wildfire smoke: A spatiotemporal

analysis of an extreme firestorm in San Diego County, California. Environ. Epidemiol.
4, e114 (2020).

48. A. O. Finley, S. Banerjee, B. P. Carlin, spBayes: An R package for univariate and

multivariate hierarchical point-referenced spatial models. J. Stat. Softw. 19, 1–24
(2007).

49. Anonymous, U.S. Census Bureau. American Community Survey (2010). Retrieved from

https://www.census.gov/programs-surveys/acs. Accessed 20 May 2020.
50. M. Marmor, Heat wave mortality in New York City, 1949 to 1970. Arch. Environ.

Health 30, 130–136 (1975).
51. H. Gong Jr, M. S. McManus, W. S. Linn, Attenuated response to repeated daily ozone

exposures in asthmatic subjects. Arch. Environ. Health 52, 34–41 (1997).
52. T. Delaney et al., “Healthy places index” (Public Health Alliance of Southern Cal-

ifornia, Long Beach, CA, 2018).

8 of 9 | PNAS Schwarz et al.
https://doi.org/10.1073/pnas.2023078118 Spatial variation in the joint effect of extreme heat events and ozone on respiratory

hospitalizations in California

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023078118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023078118/-/DCSupplemental
https://github.com/benmarhnia-lab/JointOzoneHeatWaves
https://github.com/benmarhnia-lab/JointOzoneHeatWaves
https://cal-adapt.org/data/
https://www.epa.gov/aqs
https://www.epa.gov/ground-level-ozone-pollution/2015-national-ambient-air-quality-standards-naaqs-ozone
https://www.epa.gov/ground-level-ozone-pollution/2015-national-ambient-air-quality-standards-naaqs-ozone
https://www.epa.gov/ground-level-ozone-pollution/2015-national-ambient-air-quality-standards-naaqs-ozone
https://www.census.gov/programs-surveys/acs
https://doi.org/10.1073/pnas.2023078118


53. NWS, NWS experimental heatrisk: Identifying potential heat risks in the seven day
forecast. HeatRisk (2019). https://www.wrh.noaa.gov/wrh/heatrisk/?wfo=sgx. Accessed 1
June 2019.

54. T. Benmarhnia, L. Schwarz, A. Nori-Sarma, M. L. Bell, Quantifying the impact of
changing the threshold of New York City Heat Emergency Plan in reducing heat-
related illnesses. Environ. Res. Lett. 14, 114006 (2019).

55. T. Benmarhnia et al., A difference-in-differences approach to assess the effect of a
heat action plan on heat-related mortality, and differences in effectiveness according
to sex, age, and socioeconomic status (Montreal, Quebec). Environ. Health Perspect.
124, 1694–1699 (2016).

56. Z. Qian et al., High temperatures enhanced acute mortality effects of ambient particle
pollution in the “oven” city of Wuhan, China. Environ. Health Perspect. 116, 1172–1178
(2008).

57. M. Pascal et al., Ozone and short-term mortality in nine French cities: Influence of
temperature and season. Atmos. Environ. 62, 566–572 (2012).

58. C.-M. Lin, C.-M. Liao, Temperature-dependent association between mortality rate and
carbon monoxide level in a subtropical city: Kaohsiung, Taiwan. Int. J. Environ. Health
Res. 19, 163–174 (2009).

59. C. Ren, G. M. Williams, K. Mengersen, L. Morawska, S. Tong, Temperature enhanced
effects of ozone on cardiovascular mortality in 95 large US communities, 1987-2000:
Assessment using the NMMAPS data. Arch. Environ. Occup. Health 64, 177–184
(2009).

60. R. Basu, D. Pearson, B. Malig, R. Broadwin, R. Green, The effect of high ambient
temperature on emergency room visits. Epidemiology 23, 813–820 (2012).

61. K. Guirguis, A. Gershunov, A. Tardy, R. Basu, The impact of recent heat waves on
human health in California. J. Appl. Meteorol. Climatol. 53, 3–19 (2014).

62. I. Jhun, B. A. Coull, A. Zanobetti, P. Koutrakis, The impact of nitrogen oxides con-
centration decreases on ozone trends in the USA. Air Qual. Atmos. Health 8, 283–292
(2015).

63. J. C. Semenza et al., Public perception and behavior change in relationship to hot
weather and air pollution. Environ. Res. 107, 401–411 (2008).

64. S. L. Harlan, A. J. Brazel, L. Prashad, W. L. Stefanov, L. Larsen, Neighborhood micro-
climates and vulnerability to heat stress. Soc. Sci. Med. 63, 2847–2863 (2006).

65. M. L. Bell, A. Zanobetti, F. Dominici, Who is more affected by ozone pollution? A
systematic review and meta-analysis. Am. J. Epidemiol. 180, 15–28 (2014).

66. K. Babla et al., Racial microaggressions within respiratory and critical care medicine.
Lancet Respir. Med. 9, e27–e28 (2021).

67. T. Benmarhnia, A. Hajat, J. S. Kaufman, Inferential challenges when assessing racial/
ethnic health disparities in environmental research. Environ. Health 20, 7 (2021).

68. T. J. VanderWeele, W. R. Robinson, On the causal interpretation of race in regressions
adjusting for confounding and mediating variables. Epidemiology 25, 473–484 (2014).

69. H. B. Gershengorn et al.; UHealth-DART Research Group, Association of race and
ethnicity with COVID-19 test positivity and hospitalization is mediated by socioeco-
nomic factors. Ann. Am. Thorac. Soc., 10.1513/AnnalsATS.202011-1448OC (2021).

70. G. W. Evans, E. Kantrowitz, Socioeconomic status and health: The potential role of
environmental risk exposure. Annu. Rev. Public Health 23, 303–331 (2002).

71. J. Schnittker, Education and the changing shape of the income gradient in health.
J. Health Soc. Behav. 45, 286–305 (2004).

72. T. Benmarhnia, S. Deguen, J. S. Kaufman, A. Smargiassi, Vulnerability to heat-related
mortality. Epidemiology 26, 781–793 (2015).

73. M. Medina-Ramón, J. Schwartz, Who is more vulnerable to die from ozone air pol-
lution? Epidemiology 19, 672–679 (2008).

74. M. L. Grabow et al., Air quality and exercise-related health benefits from reduced car
travel in the midwestern United States. Environ. Health Perspect. 120, 68–76 (2012).

75. G. Lindsay, A. Macmillan, A. Woodward, Moving urban trips from cars to bicycles:
Impact on health and emissions. Aust. N. Z. J. Public Health 35, 54–60 (2011).

76. N. Maizlish, N. J. Linesch, J. Woodcock, Health and greenhouse gas mitigation ben-
efits of ambitious expansion of cycling, walking, and transit in California. J. Transp.
Health 6, 490–500 (2017).

77. S. Zahran, S. D. Brody, P. Maghelal, A. Prelog, M. Lacy, Cycling and walking: Ex-
plaining the spatial distribution of healthy modes of transportation in the United
States. Transp. Res. Part D Transp. Environ. 13, 462–470 (2008).

78. J. G. Su et al., An index for assessing demographic inequalities in cumulative envi-
ronmental hazards with application to Los Angeles. Environ. Sci. Technol. 43,
7626–7634 (2009).

79. Y.-Y. Meng et al., Outdoor air pollution and uncontrolled asthma in the San Joaquin
Valley, California. J. Epidemiol. Community Health 64, 142–147 (2010).

80. R. E. Clemesha, K. Guirguis, A. Gershunov, I. J. Small, A. Tardy, California heat waves:
Their spatial evolution, variation, and coastal modulation by low clouds. Clim. Dyn.
50, 4285–4301 (2018).

Schwarz et al. PNAS | 9 of 9
Spatial variation in the joint effect of extreme heat events and ozone on respiratory
hospitalizations in California

https://doi.org/10.1073/pnas.2023078118

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

https://www.wrh.noaa.gov/wrh/heatrisk/?wfo=sgx
https://doi.org/10.1073/pnas.2023078118



