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ABSTRACT

. The saddle-point activation energy for the nucleation of a pa.ir of kinks
is found as a function df the applied stress, the lattice constants, the height
and shape of the Peierls' hill and the line energy of a dislocation. The kinetics
of dislocation ¥notion Qhen the Peierls' mechanism is cvontr'olling are investigated
and the microsco’pic dislocation velocifies .and macroscopic strain rates are
formulated in terms of the activation energy for the formation of pairs of kinks
by an Arrhenius fype equatibn. The log of the dislocation velocity is found to be
approximately proportional to the log of the local applied stress. It is shown
that the low temperature mechanical properties of several BCC metals can be
explained in terms of the Peierls' mechanism and excellent agreement is
obtained between theory and experiment for the flow stress vs. temperature,

activation energy vs. stress and activation volume vs. stress curves for these

' _ metals.
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I. INTRODUCTION

Peierls'1 was the first investigator to illustrate that a straight disloca-
tion line has its lowesé energy when it lies exclusively in a potential valley
parallel to lines of closest backing -of_atoms on the slip plane. When such a
straight dislocation is moved en mass from one valley toward the next, the
atoms in the vicinity of the core of the dislocation'éhange their positions and
bond angles, causing the energy of the dislocation to increase. At the top of
tﬁe Peierls' hill, .niidWay between two adjacent valleys, the dislocation energy
reache.s a maximum value and any additionél small displacement will cause the
- dislocation to fall down the hill into the next valley.. . The maximum shear stress
nec essary to promote auch forward motion of the dislocation at the absaolute 5
zero, is known as the Peierls' streas, ’(\;Cf - o : ’ i
| In same prystala {e,g. FCC metals) thé Peierls’ hill is so law, that the

B moqon' of disiocatibns can be effected by very small PeierlS! stresses, In these
':fl";cg,_s'és the low temperatuyre deformation {s controlled by the then more difficult
:me"char-xism 6f intersection of dislocétions. However in otheir crystals (e,g. cova~

lently bonded materlals and BCC rctals) the Peierls! hills may be so high, that
the Peierls process {8 the more difﬁcult and therefora becomes the controlling
mechanism of plastic Qeformation. , :

When a stress, T*, is applied ta the s8lip plane tn the direction of the

Buvgers' vector, b, agch thatT{ﬂ for the temperature T, the‘stralght
dislocatlon segmeﬁt lying or1g1na11y along the Pelerls' valley at AoBoCo w1ll
move part way up the Peierls' h111 to ABC, as shown in Fig., .. At temper-
atures, T, above the absolute zero, thermal fluctuations will cause 100p's,.

such as A"B'C , to form along the length of the dislocation, Most of such

loops will collapse because, being 1onger they have higher energies than

the straight dislocation line. With larger ﬂuctuations in energy, however,
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Fig.1 Nucleation of a Pair of Kinks.
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larger loops are formed and more work will be done by the applied stress in
helping produce ‘chéi loop. For sufficiently high local fluctuations in energy
fhe effect of the applie:i stress becomes dominant, and loops of a "critical"
size are produc"ed which cannot‘coilal.as'e. The two kink segments‘ AB' and B'C
.wiil then move away from éach other under the action of the applied stress,
resulting in the fqrward motion of the dislocation by a displacement a , equal
:.to the periodicity of the rows of closely spacedlatoms on the slip plane,
» There are th majole problems associated with the analytical formulation
of 'piastic deformation by the Peierls' mechanism: The first is concerned with
- the calculation of the Sadd1e~point'free enefgy for the successful nucleation of
a pair of kinks as a function of the épplied stress so as to enable the determina-
tion of the frequency of formation of kink pairs along a dislocration 'segrﬁeﬁt;
the second is -associated with the formulation of the macroscopic strain rate
in terms of tfxe kinetic details of nﬁcleation and migration of kink pairs. Other
.. problems associafe.d withxflhe efféct of intersti‘;ials on these details will be
B neglected for thé present. |
_ Severaln signi\ﬁcant approachés_ to the analyticai description of the Peierls'
~mechanism héve already been formulated. Most of these have been directed
. primarily ‘toward the r.ationali‘zation of Bordoni,pea{ks,z where the simplifying
assumption of very small oscillating stresses ( 'TJ ’2/\ T?,) is justifiedr; In
contrast we will be interested here in the entire range of stresses from 0 to (‘\/p
‘of significance to macroscopic plastic deformation. Lothe an;i Hirth3 assumed
that the static equilibrium number of pairs of kinks were pres‘ent and _that‘_these
kinks separated as a.result of stress-aided diffusion. Thevir deductions are
probably useful for extremely high Peierls' hills and low applied stresses but

they cannot be expected to be generally applicable. Seeger‘l“5 based his approx-

imate analysis on kink-kink intgractions as deduced from the continuum dislocation
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theory. His formulation of the problem gives results that are almost correct
for low stresses but, in terms of the assumptions' that were'made, will deviate
from the correct solution at higher stress levels. These approachesv have been
critically reviewed by J}&ssang, Skylstad and Lothe. 6 More recently Friede17

- suggested a more attractive and realistic approach to the solution of the Peierls '
process. He pomted out that the major factor involved in the kink-kmk inter-
action arises from the extra dislocation line energy 1nvolved in the nucleation

of a pair of kinks and therefore the Peierls mechanism can be quite accurately

| _ formulated in terms of the dislocation line energy in 1ieu of the kink-kink inter-

action type of analysis used by Seeger. On the other hand several admittedly
crude approximations were introduced that serve, as will be shoWn,»to disdualify
the conclusions arrived at by Friedel. o

It is the purpose of the present. paper to determine to a rather high degree
of precision the true saddle-point free energy required to nucleate a pair of
kinks as a function of the applied stress. The role of the frequency of nucleation
of pairs of kinks and the frequency of annihilation of kinks in the Peierls' mech-
anism will be formu\lated to give the criticall—shear stress for flow as.-a function

- of the temperature and the shear strain rate.’ ‘Finally the vahdity of the theory

- will be established by direct comparison of several deductions of the theory with

- some of the best eXperimental ‘data that are currently av_ailable. '
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II. KINK ENERGY

Although Seeger has already ca_lculated the energy of an isolated kink,
we will egain e_valuate this energy, principally to illustrate‘the basis of the
enalytical techniques that will be subsequeuntly used to calculate the saddle~
point free energy for tﬁe'nueleatioh of a pair of kinks. We will assume that

“the energy, F{/;)}, per unit length of a dislocatioﬁ lil:le is periodic in the y
direction with a period,a, the spacing between parallel rov;rs of closely
spaced atoms on the slip plane, as shown in Fig. 1. T,he minor Variations of

- the energy of the dislocatioh line vwith x and with .its siepe 'Will be negiected.
‘Furthermore, since the exact shape of the Peiez;is' hill is not yét known, we

will assume that it can be approximated by

s FtP'P—P(x AT A ., 4T
ul - e o, e lol DAy o] T - L (L&A '
Pg‘é%" - QY S % q - o /)
| (1)
where [ ana I} as - ' fotocat
where /. and |, are the energies per unit length of a dislocation lying at
. _the top and bottom of the Pelerls' hill res'pe'ctively and o 1is a factor that
varies between -1 and 1. This perturbs the shape of the Peierls‘ hill from
the purely sinusoidal variation that is obtained when o = 0, and yet admits no
~ additional extremal values of the line energy excepting those at y=Ta/2 and
’ AY

y = 0. On this basis, the stress, /T/ , that is needed to'move the dislocation to

a position, - yo , In the absence of thermal fluctuations is given by.

2 Mg
éx{é

. . “1 II
. '%;Aéa ‘ | ‘ ' (2)
The range of shapes of the Peierls' hills that are being considered here, and

the effect of D{ on the T versus y-O' chrves are illustrated in Fig.2. The Pelerls'

s
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etress, , is given by

f
p’

]

’N'. - r] Fo w :
Iob> mme(“"li*f?c\*) 90\ lﬂiw‘mﬁ .

This function is plotted in Fig. 3; variations in the she}ﬁe of the Peierls' hill

(3)

can have pronouﬁced effects on the Peierls' stress even though the height of
the Pelerls' hill, |\ - [, is fixed. - |

A stable isolated kink under zero .stress is shown in Fig.4. The energy
of a kink, U.k , is defined as the excess line energy of the disloeati'o_n having a
kink above that of a disloce.tion traversing the same distanee X bvutv 1yiﬁg

exclusively in a single Pelerls' valley. - Therefore

wy= | Tda -
—eo - @

where ds is an element of length of the kinked dislocation. Since

R »«f
U, = Sw ( Pmi H(%f’ ) e

'For the equilibrium shape of a kink, U, must be a minimum. Therefore

(5)

(6)

the kink shape, y(x), must satisfy Euler's condition, which is
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Fig.4 An Isolated Kink.




. This simplifles to

Ve

Since ma_]or interest concerns only the value of the kink energy, Eqn 9

' :need not be further integrated and can be introduced directly into Eqn 6. It is _'

convenient however, to express Eqn 6 in terms of y instead of x as the

B v_i",independent variable. Carrying out the substitution and the change’ 'f _variables -

B The analytical integration of Eqn. 12 foro{ o, giVes ]

B Uk= mﬁ(JZ(z 1) + (RH)W\-‘t/T)
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where o ' :
R T
(14)

For the general case, the results are given in Table is
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‘“Table 1
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III, ENERGY TO NUCLEATE A PAIR OF KINKS

In order to calculate the energy' i‘lequifed to nucleate a pair of kinks, we
assume that a segment of a dlslocation under zero stress, lies in the Peierls!
" valley as shown by AB, C, of Fig. 1. When a local stress T¥e ,C is applied,
-the dislocation moves in the positive Y direction as shown by A.BC ; its

nosition, y o ! is’ then given by Eqn. 2. The excess energy of a dislocatmn
havmg any shape y= y(X). (e. g. AB’C in Fig. 1), above that for one that lies

along y = y is given by

; s
u - g (r'{%} Ji +(‘i&) - F{%} tx-b(g g) dx,

| - - (15)
: - where the first term of the integrand is the line energy of the displaced dislo-
cation the second is its line energy when it lies along y = Yo and the third
term refers to the extra work done nrechamcally by the stress 'C in displacing
the dlslocatmn from ¥, to Y. Smce we are Iookmg for the minimum energy,
' _Un , necessary to nucleate a pair of kinks,it is reasonable to agsume that Un. _
is a :stationary value of Eqn.>15 associated with a "critical" shape of the disloca-
tion y(x); If this is the. case,then y will satisfy the E\ilei;:.s- equation ‘associated

' with Equ 15 which is

(b k) [T - oot =

e T ae)

This immediately simplifies to -
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Integrating once and solving for d'y/dx gives

“%( fﬂg‘d/@tbgm) _.'\'i .

, and mtegrating again gives

(18)

1%

* : y (P{%*bg*")“,i d?)‘v _) |  <19>i

where K and A are constants of 1ntegration. : The boundary conditions that
x-—>-+ @ as y->y, imply that the mtegrand on the rtght of Eqn. 19 must go .

to o0 as Y=Y, This 1mplies _
K= Dfy}- T¥by,

and that the + sign be taken for x>0 and the - sign for x<0. A is the

(20)

valueof y at x =0,

Clearly oune solution olf.Eqn. 17 is given by y{x} =y, = constant. This.
corresponds to A=y, As A is increased from ¥, to )‘A’ /\B and ,)\C
the curves given by Eqn. 19 take the shapes shown schematically in Fig.'5.
The curves are smooth except for a jump in the derivitive: at. x = 0 whtch

corresponds to a point force F = 2 F()\) cos 0 acting on the dislocation at -
= 0 in the positive y direction. This force is necessary to nold the disloca- -

tion at the point (O,)\ ). At }\é )\c , where ) c"is given by :

r'{)\% = t*b(Aa 4) +f’{ﬂ )

(21)

the discontinuity in ——g%-— -and consequently the point force go to zero, as

'seen from Equ. 18, Therefore Eqn. 19 with A = A gives a solution of Euler's

=
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Fig.5 Model for Nucleation of a Pair of Kinks. -

B . wie”
o i
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equation. If \»)\.'the slope -—g%—-— becomes i.fnaginary showing that there
‘are no solutions for )\ 7)‘<.' This physical meaning of this situation is clear.
If you require that a-dislocation bass through a point x=0, y=A>)e it
will disassociate into a palr of kinks traveling to . t % under the action of the
applied stress. To see that the "critical" solution passing _thfough Ac gives
:'f- the minimum energy i'or the formnfion of a kink'pair; it is only nevcessarﬂy to '
note that any loop which eventually forms a kink pair must at some time pass .
through the point y= Ao, x=0. Its energy at this time must be higher than
that of the critical solutions since the critical solution.was the solution of
Euler 8 equation passing though )\(_which minimized the energy. | |
Introducing Eqns 18 and 20 into Eqn 15 gives the energy for nucleation

of a pair of kinks, un ’ as

R e (7 ?*b d
) U( \ L@*b(w)w‘{% _\"i% (‘j 3) x)

(22) -

' and changmg the vaaable of integratlon gives

J(P{gl) c*b(w)ﬂ‘{g%) d&

(23)

The results of the numerical integration of Eqn. 23 are given in the appendix,
Un/ 20Uy i’s insensitive to the physically acceptable ranges in R. .'4Consequent1y,
the curves shown in F1g 6 lwere plotted only for the value of R = 1.00]:. Fu_rther-
more, the shape of the Peierls' hille has ouly a small effect on Un/ZUk .

It is most si’gni.ficant’)that the Un/Z‘Uk vs. ’C*/rcp ourvesla're universal
relationships that depend exolusively on w:ell-defined physical quantitiesv arising
from the atomic bonding inb the cryjstall. IThis shows that the energylto nucleate -

a pair of kinks is independent of the details of the statistical distribution of
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dislocations. When the stress is zero, the energy to nucleate a pair of kinks._s :
is,, as expected, just 2Uk (i.e. twice the kink ener.g.v) and'when the st.r.ess L
equals the Peierls! str\ess &Un =0, since no additional thermal ene.rgy is
needed to nucleate kink pairs, the 'stress itself being capable of .doing this
without aid from thermal fluctuations. . | o
We will define the quantity aU / at as'the activation vol'ume, v¥ 3 it

represeunts the Burgers vector times the area swept out during the nucleation:}‘* .
of the critical loop. W-hereas- the activation volume gso defined is quite large o
- for intersection and other dislocation mechanisms,. it has quit-e small values

ranging from about 5 to 50 b3 for the Peierjls' process. Jt is»therefox.'e a
rather rcritical quantity that serves to distinguish'the Peierls'pi‘ocess from o
many other dislocation’ mechanisms which might on many occasions have :

© almost the same activation energies as the energies required to nucleate a

. .,.:i';‘palr of kinks The values of

é([‘%\ ZUL IT¥ 2Ug ... -7
) LT 1)

. as a function of T* /'C and o( are shown in the appendix. . Smce these are o

etk
Pl ot

insensitive to the physical acceptable variations m R . only the values for

"R=1, 001 are plotted in Fig 7
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IV. KINETIC EQUATIONS

FOR DEFORMATION BY THE PEIERLS' MECHANISM' '
3 : | . .‘
in this section w;'will estimate the effects of stress and-temperature
- on the rhacroscopic plastic strain rate when the deforirnation 15 .eontrolled by
the Peierls' mechanism in te’rme of the energy r'equired' to nucleate a pair of |
kinks. Although We will later consider- mere complex 8situations we will |

assume here that L is the mean, geometrically limited, length swept out

'by a palr of kinks once nucleation occurs in that length First we will assume ™

‘that the time required for the migration of the kinks over this length is small '
relative to the time required for the nucleation of a kink. 'It is immediately
‘apparent that the frequericy of nucleatien of a .pair.of kinks ih hny length L
 should be directly proportional to L » neglecting, of course,; end conditione. |
Suppose we cénceive the fluctuation in thermal energy to occur at a point as
d.epicted for the various stage.s of nucleation showh in Fig.5. The frequency
of a vibration would be about V= Zb . i.e'.v the Debye‘ frequency, and where
cCF the speed of sou\n"d.' Consequently the embryonic kinks would collapse in
about b/c seconds. -In .fhis .tiine;therefohé,e shock would have traveled 'oufc
only a distance b along the. x direction of the disloca;cion and the critical
size pair of kinks would not- ha?re formed even though sufficient energy were
available. The 1ssue is that the energy must be spread over the length of the
‘embryonlic pair of kinks, w. Smce the activation volume is a measure of the .
- B\_xrgers' vector time theharea svyept_opt when the dislocation conﬁguratioh

becomes critical,

O~ =4 Y = - 8Uk (“/Zu)
e L “,Pb(’%“do) 3(‘3/ )

(26)
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' s
aund can never be less than 2b . In geueral the variation in ‘w 'with T" has
A { o
only a negligible effect on the results and we will neglect this in the following.
- Therefore, using the B;oltzmann approach, the frequency for nucleation, Vn“,

of a pair of kinks in length L is approximeiely -
: . - _.Um;’ = i
Vo=V L @ W
AR )

‘ . (25)
where V is the Debye frequency, w. is the width of the critical size loop
forrmng the embryonic kinks and kT is the Boltzmann's constant times the

" absolute’ temperature. . In this formulation the reverse reaction of having a-
- kink pair nucleated in the opposite direction to the applied stress is neglected
becasue, under even a small stress, it occurs 8o infrequently. '

If it is assumed tha’c the kink velocity is large compared to the rate of

nucleation, the forward velocity, v, of the dislocation obeying the Peierls' .

_~process is . - L
\& gii". ’; ,;E_
g o 7 .
TR W L J @
op : - c’ :
KT foy- - ELdn V4 = - Ua
Uk, UK: ‘ ‘ué ' 2Ug ‘
. :' rﬁ/‘ | . " | (27a)

' Aic—
Fig.8 is a plot of - Un. versus L illustrating at high stresses the

| A Te
type of linear relationship between { v and w ’G*’ observed in Li F
. by Johnston and Gilman8 and in silicon iron by Stein and Low9 and Erickslon.l,0

Of course the velocity of dilecations obeying the Peierls' mechanism does

s~ .

v -
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not depend onl& on ‘G*,but is also influenced to some extent by L and the other
parameters of Eqn.:,27a. Furthermore this relationship is no longer valid_above
,C*; Cp , Where an alternate mechanism becomes countrolling.
Since, in general the plastic strain rate, K’ is given by =PbU— ,

. where SO is the total length of thermally aciivatable dislocationa per cms,

Uy
Fopab Ly e =3 |
- (28)
over fhe region where the Peleris' meehenism coutrols the deforniation rate.
. At high tempera’mres,‘ thermal fluetuations with energy 2Uk are 8o frequent
 that plastic deformation takes place even as C*approaches zero. The temper-
ature, T CP,'F at which this occurs for a given f 18 defined by
e . | z_u_ S
K pab L\?C‘ KTcP
| | (29)

Therefore, for tests done at the same stratn rate Where Fab L\7 is a constant,
N
and neglecting the minor effect of 6*'0'0 W,

Un ~ T
_ : (30)
as seen from Eqns. 28 and 29, Substituting in the relationship of Eqn. 23, - gives
the variation of O/CP versus T/T_ shown in Fig. 6. Although T varies

. p _ : °p
with P L as well as the remaining physical variables, the /'C versus T /T

. curves are universally appropriate to all crystalsv undertaking the Peierls' P
mechanism., Whereas the preliminary judgment on the operations of fhe Peierls'
mechanism can most readily be made by plotting data as shown in Fig. 6, the -
critical judgment yet rests on agreement with the activation volumes shown in

Fig. 7.
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We have assumed in the preceding discussion that only one pair of kinks
moves in each geometrically determined length 1. at any one tinte. The length
L is at most the distance between nodes on the dislocations but could also be |
_ as small as the distance between superjogs and even single jogs thernselves. '

‘ Nevertheless, it eppears to be desirable to ascertain what conditions muet apply
when Eqn. 28 i{s valid and what alternate formulations are us'ef»ul whe'ln more than -
a single pair -of kinks éppear over segment L .'at one thne. . The frequencyof
formation of a pair of kinks in lenght L is given by Eqn. 25 The average.
frequency, \7(1 , with which a pair of kinks formed in a length L and mOVed out
of L and were ‘thus annihilated 18 | :

Va = g%"- : J

B (31)

~where v, is.the velocity of a kink 'I'uerefore, Eqn. 28 is valid so long as

\7¢ 77 Vf\

. .“ . u ' .
N Z‘UW‘ eh'n' \ o
| Vot (32) -
When formulated: in tefms of the strain rate by introduction of Eqn. 28, this

.

. inequality reduces to

ZLPCLb : . (33)
Considering therefore a moderately fast strain-rate test of 10 °per sec. and
introducing the reasonable values ofﬂ = 108per crnz, e:: b=3x 10_8cm. , and

letting L = 10"%cm, we obtain that Eqn. 28 will be valid when Vi >” |5 cm/sec.

At present we sugg'est three possible limttingﬁ velt;x:tties»for kinks, namely: -
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Frank's relativistic velocity - | Ve =C ) o ~ (34a)
| | loctty V= 0 CFEC
Liebfried's phonon interaction velocity Vp = 3 er (34b)
LY ' : s
~Um g3 |
Thermally activated v “4c C kT sinh (Rl 3 ' (34c)
: : kT

where c is the Q'elocity of sound and Um’ ié the activation energy for t‘h’e
motion of a kink. Both 34a and 34b give extremely high kink velocities under
usual conditions amouﬁting from about '3x 105 to 3x 1060m [sec. Furthermore,
since Um must be quite small,' the kink velocity for the tlhermal.ly activated
mechanism can also be expected to satisfy Eqn. 33. |

| Whereas Eqn. 33 is satisfied and Eqn, 28 is therefore valid for the usual
testing conditions, it is possible that it no longer applies for high vstrain-Arate
tests or in materials that have exfremely low densities of mobile dislocatiouns.
In this event several kinks may be moving along length L at one time. In order
to estimaté the plastic strain rate undér these conditions we assume that under
steady-étate conditions each pair of kinks sweeps over a length Q, in which the
positive and negativ\e\.kinks of each pair are annihilated upon collision with kinks.
of the opposite sign.i This, the fret:jﬁency ofv nucleation pf a pair of kinks in L

-

equals the frequency with which they are annihilated and

G- BB o g =R gy

or | ” |
. v ' ', | SR (35)

The stralin rate is given by | | _
y = Pab% ve <t .?'f?ab 2_.\%& ‘76 ., B
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V. CORRELATION BETWEEN THEORY AND EXPERIMENT

i)

In this section the validity of the theory'/ will be established by cornparing '
the theoretical predictions with various .experimental data on the plastic deforma--

tion of some BCC metals and prismatic slip in two HCP metals. In these compar-

- isous it will soon become apparent that, although the experimentaldata scatter

V. vrath,er uniformly to either glde of the predictions and thus strongly confirm the
validity of the tneory, the experimental data currently available are simply not
good enough to permit use of the full details of the theory. For this reason in
making the comparisions we will neglect the effect of temperature on the shear |
modulus of e_lasticlty and on the values off' 2Uk and Un ; we will make comparisons
: only with the theory for sinusoid_al Peierls' hills for which A = O;'<we will use ouly
| the simple fo'rmulationf-of the theory as given b& Eqn, 28, where only single kinks
are formed ln lengt-h I;".at onevtime; we will neglect the effect of .FT and 'C'x’on
the preexpounential terms in Eqn 28; and in contrast to the thoughts expressed
by Kuhlmann-—Wllsdorf in the discussion of Friedel's paper7 we will assume that |
the Peierls' stress does not change much with temperature, a concept that is in. .
agreement with Friedel's7 evaluation of this issue,‘ | )
Figure 9 is a schematic representation of an experimentally determined L
yield stress versus temperature diagram of a material that deforms by the
Pelerls' process. 'I‘he applied shear stress (or about 1/ 2 of the tensile stress
| for polycrystalline metals) is given by - ‘ . - |
= t*-i—/CA ) |
‘ ' © (37
| where U¥1s the stress required to aid the thermal activation of the Pelerls’
process and therefore decreases precipitously as T increases and 'CA is the

stress necessary to overcome such athermal mechanisms as long~- range back
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PEIERLS'* | INTER- | ATHERMAL

Fig. 9"

'TEMPERATURE

_ = T Relation for a Material Undergoing a Peierls'
Mechanism and Intersection. e ,
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stresses, short-range order stresses, etc, and therefore decreases ounly
modestly as the temperature increases , usually parallel to the shear modulus -
| of elasticity. The shear stress at y,ielding versus the temperature when the
- deformation is controlled by the intersection process is also shown. When
LP is extremely small, as it must be In FCC metals, the deformation will
. be exclusively controlled by intersection. For higher values- of the Peierls'
stress, the low temperature deformation will be controlled by the Peierls' |
process and the higher temperature dei’ormation will, as shown in Fig 9, be
controlled by intersection when T p< Tchhere Tcp is the critical temper-
ature defined in Eqn. 29 and T, ¢y is the critical temperature for the intersection
mechanism defined in an analogous manner. More frequently, however,
'Tcp > T I and the Peierls' process controls over the entire low temperature
- range. Immediately above the highest critical temperature, the deformation
~ -1 athermal and at yet higher temperatures (not shown in Fig.8), it again
becomes thermally activated as a result of “"dynamic" recovery.-
As seen in Fig 9 » the values of LP and T ep may be determined directly
- from the experimental data. Then plotting /'C» 'versus T/ T, cp for the low
temperature range should result in good agreement with the theoretical predictions |
| given in Fig. 6, when the Peierls' mechanism is operative. Conversely, using
.‘the experimentally determined values of CP and T, cp’ it is posSible to‘ introduce
(by application of Fig.6) the theoretically predicted G*——T curve on the exper—
imental data.l Typical examples of the second procedure for the case of prismatic
slip in single crystals of Be11 and Ag plus 33 at. % Al are shown in Fig.10. With
‘the exception of the lowest temperature data for Be, which must be discounted
because of the initiation of twinning, the agreement is excellent. Thus we see
- that the low temperature prismatic slip in Be is handicapped by an extremely

high Peierls! stress. A more critical confirmation that Ag2A1 obeys the Peierls
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" ‘mechanism results from the auxiliary data that have been obtained on
activation volumes. "The data of Mote, et. al. 12 gives an activation volume
at 115°K of about 16b3‘ which is certainly a strong indication of the -]_T-"eierls'v .
mechanism, . '7 7 | l_

. The validity of the Peierls' theory presented in the previous sections
of this report is best illustrated by comparing the theoretical predictions with'
the detailed correlations of experimental data recently summarized so excellently

13-14 Since Conrad neglected the possible effects of 1nterst1tials on

by Conrad.
the thermally aotivated portion of the low temperature deformation of the BCC
metals, we will also assume that such interstitials did not slow down the' velocity
- of the kink enough to disqualify the use of the- simole theory as formulat_ed in Eqn. 28.
In the‘following’we will use Conrad's data as he plotted them; sinee, however, we |

have the advantage of the guidance given by a good theory, we will select more

vappropriate Values of T than was possible by merely viewmg the experlmental

' ' data. We have plotted the experimental datum points for each metal separately,

as shown in Figs. 1\1\-—13, and in terms of Tcp and _superimposed-the theoreticat
‘curve for D{ = 0 on the same graph. Thus the solid line's in Figs. 11-13, give the
v theOretically predicted .trends. Within the scatter of the experimental data, the
agreement between theory and experiment is excellent The lower value of T,
for single, as contrasted with polycrystalllne W, as shown by Eqn 29, can be
attributed to higher values of QK in the single crystal tests, The Peierls' stresses :

obtained from these data are given in Table II Furthermore, letting F S 6 }3

~ where S , in this context, will be assumed to be 1/2

(38)

- e,
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as can be deduced from Equ. 2 for ,t‘, in terms of R -1 when of =0and

" . . - .. L <
a = b, R LT ' p

Table II '

Deduced Values of the Peierls! Stress

c . - Te . . ~,2L{k

At.No. Metal ‘.d-}‘rnes/cmzv dynes/cm2 o 'R . ey
23 V. 5.2x10° 58x10° . 1.00029  0.55
24 . Cr 11.4x10° 07x10° . . 1.00042° - 0.70
26 Fe = 7.4x10° 55x10° 100023 0.5
41 -~ cb 4.0x10% 56% 10° 1.00046 0.50
42 Mo  12.7x10° . 70x10° 1.00025 . 0.70
3 Ta 7.0x10%. 60x10> - 1.00026  0.72
4w 1577x10® © 85x10° 100034  0.80

Courad also summarized the known data on the gxperimentally determined
activation energies as a function of the stress for several BCC metals. These
activation energies were generally ébtained from thé usual technique of the effect
of changes in temperature on strain ra;ce or the eduivalént thereof. As shown
in Fig. 6, however, unique universally valid curves should be obtained when
LA is plotted as a function of U [2U, ; furthermore, such curves should agree -
well with those of ,t/ versus T/T, . This is indeed the case. Thus we have
plotted Conrad's data on this universil bagis, dividing his experimentally determined )
act.ivation energies Un by the activation energy 2U ,shown in Table II, obtained

by extrapolation of the experimentally det_ermin_ed values of .Un as /i\.l*
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approaches zero. The experimental datum points shown in Figs. 14 17 agree
remarkably well with the solid theoretlcal curve. In the vicinity of t) o,
the experimentally determined values of U increase rapidly because athermal
mechanisms begin to become operative here, -
The most reliable verification of the Pelerls' ;irocess coacerns agree-
ment between the‘theor'etieal“ and experimentally deduced activation volumes.
| The experimental activation volumes are tisualiy obtained 'by"'"che effect of small -
changes in strain rate Ao'n t_}h'e:‘f"low streea.f .Aecordiﬁg-te'_EQﬁ.. 23 we define ‘3 '
. as. | .
3 - 3 QM} L 3R 3wy Ty > Um S |
- T 'B’C* ~:'>N-‘ﬂ‘ FT B’L’"' ‘o (39).

g

We take ‘} kT as the apparent activation volume, "va; R where oo |

- - ——?,,QM? 3/Q~wu. gum
"M*T AT ST A o)

. - and the negative or‘last term of Eqn. 40 is the theoretical activation volume, v*,

defined theoretically by Eqn. 24 and shown in Fig.7. Whereas the term containing
.w is always negligible small, v, canon occasions be slightly larger than v"l as |
a resulf of the ppssible 'increase in dislocation density, e , as the stress is
increased. In Figs.18 .aﬁd 19 we have plotted the'data reported by Corxrad for the
experimentally determined valuee of v, /b3 as a function of T L?’ using the ‘
prev1ously determined value of 2Uk we have drawn the curves for theoretical

activation volumes v" /b5, Again the agreement is very good and leaves no

. doubt that the BCC mietals discussed here defbr_m by the Pelerls' mechanism.
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Tabulated here is the computer o,utput‘ for the evaluation of Un . The

notation is as follows:"

R = :'r‘c_
e R
" Alpha = o(
K = “’Cba
(n-)

. _R’is - o
EI 28 (2 UK)_ L

) z, 2‘72-(216
E \ z, - 2 ‘Ita)'\c
E = U‘n‘/ZUk | RER
Difference. %?TIEB )un TC(Q*Q)

M STy

2Ugab
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