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Abstract

There is broad interest in designing nanostructured materials that can interact with cells and 

regulate key downstream functions1–7. In particular, materials with nanoscale features may enable 

control over multivalent interactions, which involve the simultaneous binding of multiple ligands 

on one entity to multiple receptors on another and are ubiquitous throughout biology8–10. Cellular 

signal transduction of growth factor and morphogen cues that play critical roles in regulating cell 

function and fate often begins with such multivalent binding of ligands, either secreted or cell-

surface tethered, to target cell receptors, leading to receptor clustering11–18. Cellular mechanisms 

that orchestrate ligand-receptor oligomerisation are complex, however, and the capacity to control 

multivalent interactions and thereby modulate key signaling events within living systems is 

therefore currently very limited. Here we demonstrate the design of potent multivalent conjugates 

that can organise stem cell receptors into nanoscale clusters and control stem cell behaviour in 

vitro and in vivo. The ectodomain of ephrin-B2, normally an integral membrane protein ligand, 

was conjugated to a soluble biopolymer to yield multivalent nanoscale conjugates that potently 

induced signaling in neural stem cells and promoted their neuronal differentiation both in culture 

and within the brain. Super-resolution microscopy analysis yielded insights into the organisation 
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of receptor-ligand clusters at the nanoscale. We also found that synthetic multivalent conjugates of 

ephrin-B1 strongly enhanced human embryonic and induced pluripotent stem cell differentiation 

into functional dopaminergic neurons. Multivalent bioconjugates thus represent powerful tools and 

potential nanoscale therapeutics for controlling the behaviour of target stem cells in vitro and in 

vivo.

Adult neural stem cells (NSC) are an important class of therapeutically relevant cells, persist 

in specific regions of the mammalian brain, and have the capacity to generate new neurons 

and glia throughout life19. In addition, human pluripotent stem cells (hPSCs) – which 

include human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) – 

have the capacity to differentiate into all cells of the adult body and therefore offer broad 

potential for cell replacement therapy and modeling human disease. We recently found that 

ephrin-Eph signaling regulates both the neuronal differentiation of adult hippocampal 

NSCs19 and the differentiation of hESCs into dopaminergic neurons20, cells lost in 

Parkinson’s disease. The design of molecules that regulate ephrin-Eph signaling in NSCs 

and hPSCs could therefore advance both basic biology and therapeutic applications.

To create synthetic multivalent ligands with potentially high potencies, recombinantly 

produced ephrin-B2 extracellular domain was conjugated at a range of stoichiometries to 

high molecular weight hyaluronic acid (HA) – a well-characterised biopolymer present 

throughout the body and in particular within the brain – using EDC/Sulfo-NHS chemistry, 

as previously described21 (Fig. 1a,b). Valencies of the resulting ~100 nm polymeric 

conjugates22 – estimated using a bicinchoninic acid (BCA) assay and further quantified with 

size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) (Fig. 

1c) – ranged from 2 to 25 ephrin molecules per HA chain in this synthesis.

Based on the recently discovered role of ephrin-B2 signaling in regulating neuronal lineage 

commitment of adult NSCs19, we investigated the activity of the multivalent conjugates in 

NSC culture. At a given concentration of ephrin-B2 ectodomain molecules, increasing the 

valency of HA:Ephrin-B2 conjugates progressively elevated neuronal differentiation (Fig. 

1d,e). Strikingly, compared to antibody-clustered ligand, the 1:22, 1:12, and 1:8 valency 

conjugates induced similar levels of neuronal differentiation at 37-, 26-, and 9-fold lower 

protein concentrations, respectively. Thus, in contrast to the current, standard antibody-

clustered form, whose low potency necessitates high concentrations, the multivalent ligands 

are potent agonists, with potentially reduced cost. Next, the addition of monomeric ephrin-

B2 in tenfold molar excess to Fc-ephrin-B2 wells blocked differentiation, further 

establishing that ephrin clustering is required for activity. Finally, the results were further 

validated by quantifying mRNA levels of the neuronal marker Tubb3 (Fig. 1f).

We next compared the ability of natural and synthetic ligands to cluster Eph receptors. Since 

ephrin-B2 presented from astrocytes regulates the neuronal differentiation of adult NSCs19, 

we analyzed ephrin-Eph localisation on NSCs in contact with hippocampal astrocytes. 

Punctate staining of both ephrin-B2 and its receptor EphB4 was observed at cell-cell 

junctions (Fig. 2a), and co-localisation of the ligand and receptor was also observed at cell-

cell contacts in the subgranular zone (SGZ) of the adult hippocampus (Fig. 2b), where NSCs 

reside19.
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We then analyzed whether the multivalent conjugates could emulate this natural process of 

receptor-ligand assembly. Fluorescently-labeled ephrin-B2 conjugates were synthesised and 

incubated with NSCs, at 4 °C to block endocytosis. EphB4 localisation was diffuse across 

the cell membrane in the absence of ephrin-B2 or with low ratio conjugates, whereas EphB4 

puncta were observed in the presence of highly multivalent conjugates or antibody-clustered 

ligand (Fig. 2c). Additionally, while low ephrin-B2 valency conjugates yielded fewer and 

smaller EphB4 clusters than antibody-clustered ligand, high valency conjugates showed 

more (Fig. 2d), larger (Fig. 2e), and more intense (Fig. 2f) EphB4 clusters in close proximity 

(within the ~250 nm resolution limit of light microscopy) to fluorescently tagged ephrin-B2. 

Ligand multivalency therefore modulates both the number and the size of receptor clusters. 

In addition, we generated conjugates from ephrin-B2 protein recombinantly produced in 

mammalian cells and observed similar cell surface binding, indicating different protein 

expression systems result in similar downstream conjugate binding (Supplementary Fig. 1a).

Next, to explore the effect of ligand spacing on NSC differentiation and cell receptor 

clustering, monodisperse hyaluronic acid (HA) molecules of varying molecular weights 

were conjugated with recombinant ephrin-B2 extracellular domains tagged with fluorescent 

Alexa Fluor 647 molecules. Reactions were performed such that the polymers of varying 

molecular weights were linked to an equal number of fluorescently-tagged proteins, with the 

lower molecular weight conjugate containing an apparently saturated number of ephrin 

ligands (1:5 HA:Ephrin-B2 final molar ratio). The high molecular weight conjugates thus 

had greater inter-ligand spacing than lower molecular weight conjugates. After 6 days of 

culture, lower molecular weight conjugates induced significantly higher neuronal 

differentiation from NSCs, and higher molecular weight conjugates showed significantly 

less differentiation, compared to antibody-clustered Fc-ephrin-B2 (Fig. 2g). Inter-ligand 

spacing thus modulates conjugate activity.

Since standard fluorescence microscopy cannot accurately analyze the clustering properties 

of different molecular weight conjugates, we applied recently-developed super-resolution 

microscopy approaches to image receptor clusters on NSCs at 16 nm resolution. We 

generated a NSC line expressing an EphB4-Dendra223 fusion protein for photoactivatable 

localisation microscopy (PALM)24, which was combined with direct stochastic optical 

resolution microscopy (dSTORM)25 of Alexa Fluor 647-tagged HA:Ephrin-B2 conjugates 

(Fig. 2h). A single EphB4 and Ephrin-B2 signal were considered co-localised (and thus the 

molecules likely bound) when found to lie within the 16 nm resolution of the technique, 

corresponding to a single pixel in the images. We first analyzed receptor-ligand clusters for 

NSCs co-cultured with astrocytes and verified the existence of punctate staining at 

astrocyte-NSC junctions (Supplementary Fig. 2a), and co-localisation of ephrin-B2 with 

EphB4 was significantly more prevalent on NSCs when in contact with astrocytes 

(Supplementary Fig. 2b).

We next analyzed clusters generated by multivalent conjugates. In the absence of ligand, 

EphB4 was patchy but diffuse. However, after incubation of conjugates with cells for 4 

hours at 4 °C, the spacing between ephrin-B2 ligands that co-localised with EphB4 was 

significantly lower for the lower molecular weight HA conjugates (Fig. 2i). Furthermore, 

conjugates with closer ephrin-B2 inter-ligand spacing formed significantly more EphB4 
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clusters, which were also denser (i.e. higher number of co-localised EphB4-ephrin-B2 

signals per nm2), compared to conjugates with larger ephrin-B2 inter-ligand spacing (Fig. 

2j–l). Consequently, the shorter polymer conjugates resulted in more ligand-bound EphB4 

molecules per cell (Fig. 2m) and per individual cluster (Fig. 2n). Since the number of co-

localised EphB4-ephrin-B2 signals was larger than the valency of a single conjugate, each 

receptor-ligand cluster involved multiple bound conjugates, consistent with reports of lateral 

Eph receptor clustering26. Super-resolution imaging also confirmed that multivalent ligands 

produced in different expression systems yielded indistinguishable numbers, sizes, and 

densities of ligand-receptor clusters (Supplementary Fig. 3a–d). Modulating inter-ligand 

spacing can thus control the number of clusters per cell and number of receptors per cluster, 

potentially due to entropic effects associated with the conjugate’s polymer backbone27, and 

thereby control stem cell differentiation.

Ephrin-B2 induces neuronal differentiation by downstream activation of the transcriptional 

co-activator β-catenin19. Western blotting indicated that higher valency conjugate activated 

β-catenin significantly more than antibody-clustered Fc-ephrin or HA alone (Fig. 3a,b). 

Furthermore, a β-catenin responsive promoter-reporter construct showed a higher 

quantitative level of activation with increasing valency, which at a 1:31 valency was 

substantially greater than antibody-clustered Fc-ephrin-B2 (Fig. 3c). Finally, β-catenin 

drives neuronal differentiation via transcriptional activation of the proneural transcription 

factor NeuroD119, and multivalent ephrin-B2 conjugates with increasing valency again 

progressively induced higher levels of expression of this important target (Fig. 3d).

Multivalent conjugates may have strong utility not only in vitro but also in vivo. To 

investigate the latter, multivalent ephrin-B2 was administered into the hippocampal region 

of the adult rodent brain to analyze its ability to modulate endogenous stem cell function. 

Bromodeoxyuridine (BrdU) was administered to label dividing cells, followed by 

stereotactic injection of the ephrin-B2 conjugate or controls (Fig. 4a). After 5 days, the 

fractions of newly born cells (BrdU+) that had differentiated into neurons (DCX+) was 

quantified in tissue sections19. Antibody-clustered ligand showed a modest 20% increase 

over the uninjected or vehicle-injected HA control brains at the ephrin levels administered; 

however, the same number of ephrin-B2 domains incorporated into the highly multivalent 

conjugate yielded a substantial 60% increase in neurogenesis in the brain (Fig. 4b,c). These 

data demonstrate that nanoscale organisation in the presentation of this ligand greatly 

enhances its ability to elicit cellular responses both in vitro and in vivo.

We next assessed the generality of this approach with both hESCs and hiPSCs. Vazin et al. 

showed that unclustered ephrin-B1 – in combination with soluble stromal cell-derived 

factor-1 (SDF-1), pleiotrophin (PTN), and IGF-2, a blend known as SPIE – enhanced hESC 

differentiation into midbrain dopaminergic neurons20, which are being considered as cell 

replacement therapies for Parkinson’s disease28. By analogy with ephrin-B2, we synthesised 

multivalent ephrin-B1 conjugates. Using conjugates of varying valency, along with the other 

components of SPIE, hESCs were first differentiated within embryoid bodies and then 

toward dopaminergic neurons for 14–18 days (Fig. 5a). After 15 days, transcripts for the 

midbrain-specific marker En1 increased with higher valency (Fig. 5b), and QPCR showed 
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that both the pan-neuronal markerTubb3 and the dopaminergic marker TH progressively 

increased with conjugate valency (Fig. 5c).

Immunostaining was then conducted to quantify cell differentiation into a dopaminergic 

lineage. After 15–18 days of differentiation in ephrin post-embryoid body formation, hESC-

derived cultures exhibited substantially higher proportions of cells expressing pan-neuronal 

(Map2) and the dopaminergic neuron (TH) markers with increasing conjugate valency, 

compared to antibody-clustered ephrin-B1 (Fig. 5d–f). Similar results were achieved with 

hiPSCs (Supplementary Fig. 4a,b). Since contaminating cells within dopaminergic grafts 

have been associated with adverse events in clinical trials29, approaches to improve 

dopaminergic neuron purity are significant. Finally, to assess the functional properties of the 

differentiated dopaminergic neurons, levels of the neurotransmitter dopamine were 

measured, either in conditioned medium or upon addition of KCl to induce synaptic 

neurotransmitter release. Dopamine levels increased with increasing valency and were 

greater with highly multivalent conjugates than antibody-clustered groups (Fig. 5g), 

consistent with the observed higher dopaminergic differentiation levels observed with the 

conjugates.

As an initial assessment of how multivalent ephrin affects differentiating cultures, at various 

times over 14 days cells received a 24 hour pulse of bromodeoxyuridine (BrdU) to quantify 

DNA synthesis. Cells with multivalent ephrin-B1 remained mitotically active longer than 

with unclustered ephrin-B1 or no SPIE factors, indicating that enhanced proliferation of 

intermediate neuronal progenitors may increase the number of dopaminergic neurons in 

fully differentiated cultures (Fig. 5h). These results indicate that ephrin effects on 

dopaminergic differentiation are complex, and the multivalent conjugates will enable future 

mechanistic investigation of the role of this signaling system in dopaminergic neuron 

generation.

This study demonstrates that multivalency greatly enhances the bioactivity of ligands that 

regulate stem cell behaviour, and multivalent conjugates thus have utility for mechanistic 

investigation in both stem cell and developmental biology. Studying the mechanistic role of 

receptor complex assembly in cell-cell contact dependent Delta-Notch11, c-kit12, Fas 

ligand13, and Flt ligand14 signaling – as well as matrix-binding fibroblast growth factor 

(FGF)15, transforming growth factor-β (TGF-β)16, Hedgehogs (Hh)17, vascular endothelial 

growth factor (VEGF)18 signaling – and other signaling systems could greatly benefit from 

nanoscale synthetic ligands that potently activate receptors in a biomimetic fashion. For 

example, the effects of many receptor-ligand complex properties – including the number of 

receptor clusters per cell, cluster size, ligand scaffold, inter-receptor distance within an 

oligomer, and induced heteroligomerisation of different receptors into the same cluster – on 

biological activity can now be systematically varied and studied in vitro or in vivo. 

Furthermore, nanoscale multivalent conjugates could potentially activate these systems more 

potently, and thus less expensively. Finally, this platform has biotechnological and 

biomedical applications, including in cell culture systems, bioactive materials, and drug 

delivery technologies.
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METHODS

Recombinant protein production, purification, and bioconjugation

Murine ephrin-B2 ectodomain sequence (amino acids 31–227) was amplified from the 

plasmid pcDNA3.1-ephrin-B2-hFc (a kind gift from T. Miyamoto, Keio University), and 

human ephrin-B1 ectodomain sequence (amino acids 28–237) was amplified from 

pALTER-MAX (a kind gift from H. Sugimura, Hamamatsu University). A C-terminal 

hexahistidine tag and cysteine were added during PCR, followed by insertion into the 

bacterial expression plasmid pBAD. Protein was expressed in bacteria and purified as 

previously described21. Protein purity was assessed by confirmation of a single band 

following SDS-PAGE. Purified ephrin-B2 or ephrin-B1 was conjugated to 800 kDa 

hyaluronic acid (HA) (Genzyme) or to a range of monodisperse molecular weight HAs 

(Hyalose) through a two-step reaction using carbodiimide chemistry at the HA carboxylate 

group and a maleimide reaction at the protein C-terminal cysteine21. In the first step, 3,3′-N-

(ε-Maleimidocaproic acid) hydrazide (EMCH, Pierce, 1.2 mg/mL), N-

hydroxysulfosuccinimide (Sulfo-NHS, Pierce, 2.8 mg/mL), and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC, Pierce, 10 mg/mL) were added to 

a 3 mg/mL solution of HA in 0.1 M 2-(N-morpholino)ethanesulfonic acid (MES) (Sigma) 

buffer pH 6.5 and allowed to react at 4 °C for 4 hours. The solution was then dialyzed into 

pH 7.0 PBS containing 10% glycerol and 2 mM EDTA. Recombinant ephrin-B2 or ephrin-

B1 was reduced using Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) (Pierce) in 

200-fold molar excess and reacted at 4 °C for 5 minutes. Activated HA-EMCH was then 

added at desired molar ratios with reduced ephrin-B2 or ephrin-B1 and allowed to react at 4 

°C overnight. The ephrin-conjugated HA was dialyzed with 100 kDa MWCO tubing 

(Spectrum Labs) in pH 7.0 PBS containing 2 mM EDTA to remove unreacted ephrin. 

Purified ephrin and HA-conjugated ephrin protein concentrations were measured using a 

BCA assay, and valencies were verified using SEC-MALS as previously described21.

Antibody-clustered ephrin-B formation

To create clustered ephrin-B2 and ephrin-B1 complexes (Fc-ephrin-B), recombinant mouse 

ephrin-B/Fc chimera (R&D Systems) was incubated with goat anti-human IgG, Fc-fragment 

specific, (Jackson ImmunoResearch) antibody at a 1:9 ratio (w/w), which led to maximal 

activity of the resulting clusters (data not shown). After 90 min at 4 °C, complexes were 

used immediately.

Cell culture and differentiation

NSCs were cultured as previously described30. For differentiation studies, 8-well chamber 

slides were seeded with 2×104 cells per well in standard culture medium containing 0.1 

ng/mL FGF-2. For the subsequent 6 days, ephrin-B2 was added at the desired molar 

concentration, and daily 50% media changes were performed. EphB4 cluster properties were 

quantified using ImageJ.
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Immunostaining

Coronal brain sections (40 μm) were processed, stored, and stained as previously 

described31. Sections were then mounted on glass slides, and either stereological analysis 

(Stereo Investigator, MBF Biosciences) or confocal microscopy (LSM 710, Zeiss) was 

performed. In short, using an optical fractionator method, BrdU+ and DCX+ cells were 

counted in a Systematic Randomly Sampled (SRS) set of unbiased virtual volumes inside 

the subgranular zone and granular cell layer of both the left and right sides of the 

hippocampus. An estimate of the total number of DCX+/BrdU+ cells in the hippocampus 

was then generated.

Super-resolution microscopy

Cultures incubated with fluorescent conjugate were fixed and in some cases immunostained 

with Alexa 647 or Alexa 488 tagged antibodies, then incubated with 100 nm Tetraspeck 

fluorescent beads (Life Technologies) in PBS at a 1:2000 (v/v) dilution to act as reference 

points during imaging to later use for drift correction in image reconstruction. The sample 

coverslips were then placed in an Attofluor cell chamber (Life Technologies) and incubated 

in cold, freshly made pH 8.0 buffer containing 100 mM cysteamine (Sigma), 50 mM Tris, 

10 mM NaCl, 10% (wt/v) glucose, 560 μg/mL glucose oxidase (Sigma), and 34 μg/mL 

catalase (Sigma). Using a microscope (TE2000, Nikon) with adaptive optics for 3D 

localisation32, a piezoelectric stage, and highly inclined thin illumination capability33, 

photoactivatable localisation microscopy (PALM)24 was performed to detect EphB4-

Dendra223 simultaneously with direct stochastic optical reconstruction microscopy 

(dSTORM)25 to detect Alexa Fluor 647-tagged ephrin-B2 conjugates, as previously 

described24–25. Sub-diffraction limit images were then reconstructed using QuickPALM and 

quantified using ImageJ. To detect individual ephrin-B2 signals that co-localised with 

EphB4 signals, individual channel intensities were maximised, merged, then made into a 

binary image to display only co-localised pixels, indicating a proximity of signals within 16 

nm. EphB4 or ephrin-B2+ clusters were defined as any grouping of 10 or more positive 

pixels within a total diameter of 10 to 100 pixel widths.

Statistical analysis

Statistical significance of the results was determined using an ANOVA and multiple means 

comparison function (Tukey-Kramer method) in MATLAB with an alpha level of 0.05. All 

error bars are reported in s.d. from the mean, with n = 3 unless otherwise noted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Multivalent ephrin-B2 enhances neuronal differentiation of NSCs in vitro. (a) Chemical 

schematic of HA functionalisation and recombinant protein conjugation. (b) Schematic of 

protein (green) conjugation to 800 kDa linear HA (blue) and subsequent clustering of 

receptors (red) upon introduction to cells, inducing neuronal differentiation. The molecular 

structure represents an HA monomer subunit, of which there are approximately 2,111 (n) in 

800 kDa HA. The ratio of a:b represents the valency of HA molecules to covalently-bound 

protein subunits. (c) Comparative BCA vs. SEC-MALS analysis for a range of ephrin-B2 

bioconjugate valencies. (d) Representative images of cultured NSCs differentiated for 6 

days in media alone (naïve) or in the presence of unclustered ephrin-B2, antibody clustered 

Fc-ephrin-B2, or multivalent 1:22 HA:Ephrin-B2, then immunostained for the neuronal 

marker βIII-Tubulin (green) and total nuclei (blue). Scale bars, 100 μm. (e) Quantification of 

the total fraction of neurons after 6 days of NSC differentiation in the presence of ephrin-B2 

conjugates (dashed lines) or controls (solid lines), as assessed by immunostaining. * P < 

0.05 compared to Fc-ephrin-B2 at corresponding ephrin-B2 concentrations. (f) qPCR for the 

neuronal transcript Tubb3 after 6-day differentiation. * P = 0.0159, ** P = 0.0037. All error 

bars represent s.d. from the mean.
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Figure 2. 
Multivalent ephrin-B2 enhances receptor clustering. (a) Representative image of EphB4 

(red) and ephrin-B2 (white) clustering (white arrow heads) on the surface of NSCs (stained 

with the neural stem cell marker nestin, pseudo-coloured green, and outlined with white 

dashed lines) and hippocampal astrocytes (edges outlined with grey dashed lines), 

respectively, in co-culture. All cell nuclei are shown in blue. Scale bars, 10 μm. (b) EphB4 

(green) receptor clustering (white arrow heads) on the surface of multiple cells in the 

hippocampal subgranular zone (SGZ) in contact with ephrin-B2+ astrocytes (red). All cell 

nuclei are shown in blue. Scale bars, 10 μm. (c) Representative images of NSCs incubated 

with fluorescently labeled ephrin-B2 bioconjugates (white) for 4 hours at 4 °C and 

immunostained for their cognate receptor EphB4 (red), the neural stem cell marker nestin 

(green), and total nuclei (blue). White arrow heads indicate ephrin-B2/EphB4 co-

localization. Scale bars, 10 μm. (d) Quantification of total number of EphB4 puncta per cell 

after incubation with ephrin-B2, either antibody-clustered or a new preparation of conjugate. 

* P = 0.024 by ANOVA, n ≥ 10. (e) Normalised area per EphB4 punctum after incubation 

with ephrin-B2. * P = 5.33×10−9 by ANOVA, n ≥ 62. (f) Normalised mean EphB4 signal 

intensity per punctum after incubation with ephrin-B2. * P = 0.001 by ANOVA, n ≥ 62. (g) 
Immunostaining quantification of the total fraction of neurons after 6 days of NSC 
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differentiation in the presence of Alexa Fluor 647 tagged ephrin-B2 conjugates of varying 

HA backbone molecular weight and antibody-clustered Fc-ephrin-B2 control, all at 200 nM 

protein concentration. * P < 0.02 compared to Fc-ephrin-B2. (h) Representative 

reconstructed super-resolution images of EphB4-Dendra2 (red) NSCs incubated with 

fluorescently labeled ephrin-B2 bioconjugates (blue) for 4 hours at 4 °C and then 

immunostained for the neural stem cell marker nestin (green). Magnified images of 

representative EphB4/ephrin-B2 clusters are shown below whole cell images, with co-

localised pixels indicated in white. Large scale bars, 1000 nm; small scale bars, 100 nm. (i) 
Quantification of average inter-ligand spacing between individual ephrin-B2 signals that co-

localised with EphB4, with a constant value of 16 nm per pixel. * P = 1.80×10−6. ** P = 

0.0006. *** P = 1.22×10−6. (j) Quantification of total number of EphB4 clusters per cell 

after incubation with fluorescent ephrin-B2. * P = 0.0009. (k) Normalised area per EphB4 

cluster after incubation with fluorescent ephrin-B2. * P = 5.33×10−9. (l) Normalised number 

of co-localised EphB4-ephrin-B2 signals per nm2 after incubation with ephrin-B2. * P = 

0.0015. (m) Total number of co-localised EphB4-ephrin-B2 signals per cell after incubation 

with fluorescent ephrin-B2. * P = 0.0064. (n) Total number of EphB4 signals per cluster 

after incubation with fluorescent ephrin-B2. * P < 0.05. All error bars represent s.d. from the 

mean.
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Figure 3. 
Multivalent ephrin-B2 enhances downstream signaling. (a) Representative Western blot for 

active β-catenin and GAPDH, as a loading control, in NSC lysate after 24 hour incubation 

with ephrin-B2 bioconjugates. (b) Average levels of β-catenin activation normalised to 

GAPDH in n=3 blots. * P = 0.0217. (c) Quantification of β-catenin activation in NSCs after 

24-hour incubation with fluorescently labeled ephrin-B2 bioconjugates at 37 °C, as assessed 

by upregulation of the transgenic luciferase reporter for β-catenin activity. * P = 0.0267. (d) 
qPCR for the intermediate transcriptional target of neurogenesis NeuroD1 after 6 day 

differentiation. The RA/FBS group is described in detail in the Methods section. * P = 

0.0192. All error bars represent s.d. from the mean.
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Figure 4. 
Multivalent ephrin-B2 enhances in vivo neurogenesis. (a) Schematic of experimental 

timecourse. (b) Representative image of adult rat hippocampal sections 5 days after 

stereotactic injections, immunostained for BrdU (red) to label dividing cells, DCX (green) to 

label immature neurons, and DAPI to stain nuclei (blue). Scale bars, 100 μm. (c) 
Quantification of the overall fraction of newborn hippocampal cells that underwent neuronal 

differentiation using stereological estimation. * P = 0.0136, ** P = 0.0015. All error bars 

represent s.d. from the mean.
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Figure 5. 
Multivalent ephrin-B1 enhances neuronal and midbrain fates in differentiating hESCs. (a) 
Schematic of experimental timecourse. (b) RT-PCR analysis of midbrain-specific marker 

En1 expression vs. control G3PDH, from HSF6 hESCs differentiated for 15 days post-

embryoid body formation with ephrin-B1 conjugates or controls. (c) qPCR for the pan-

neuronal markerTubb3 and the dopaminergic marker TH after 15-day differentiation of H1 

hESCs with ephrin-B1 conjugates or controls. * P < 0.05 compared to SPIE for 

corresponding neuronal marker. (d) Representative images of cultured H1 hESCs 

differentiated for 18 days post-embryoid body formation with the SPI factors, heparin, and 

either Fc-ephrin-B1 or multivalent 1:36 HA:Ephrin-B1. Immunostaining for total neurons 

(green), dopaminergic neurons (red), and total nuclei (blue). Scale bars, 100 μm. (e) 
Quantification of the fraction of total neurons after differentiation of H1 hESCs in the 

presence of ephrin-B1 conjugates or controls, as assessed by immunostaining. * P = 0.0181, 

** P = 0.0029. (f) Quantification of the fraction of dopaminergic neurons after 

differentiation of H1 hESCs in the presence of ephrin-B1 conjugates or controls, as assessed 

by immunostaining. * P = 0.0328, ** P = 0.0004. (g) Quantification of the fraction of 

mitotic cells on various days over the 14 day course of HSF6 hESC differentiation in the 

presence of ephrin-B1 conjugates (dashed lines) or controls (solid lines). (h) Quantification 

of total dopamine levels in cultures of H1 hESCs differentiated for 4 weeks in the presence 

of ephrin-B1 conjugates or controls, as assessed by HPLC with electrochemical detection. 

All error bars represent s.d. from the mean.
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