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ABSTRACT

Dynamic and Stochastic Routing Optimization:

Algorithm Development and Analysis
By
Xiangwen Lu
Philosophy of Doctor in Civil Engineering
University of California, Irvine, 2001

Professor Amelia C. Regan, Chair

The last several years has witnessed a sharp increase in interest in stochastic and dynamic
routing and scheduling. Because many systems contain inherently stochastic factors,
decisions must often be made before all necessary information is available. To a certain
degree, algorithm development has lagged behind implementation. In order to fully
leverage advances in information technologies, algorithms which explicitly consider
dynamic and stochastic factors should be examined. Or, if static algorithms are to be
applied in these dynamic environments, proper attention should be given to examining
the conditions under which these perform well. This is the primary theme of this

research.

This dissertation examines several key dynamic and stochastic routing and scheduling

problems: the probabilistic traveling salesman problem, the dynamic traveling salesman

xii



problem and the dynamic traveling repair problem. In addition, as part of our research on
the dynamic traveling salesman problem, we examine a related M/G/1 queueing problem
with switching costs. These problems arise in pickup and delivery operations, repair fleet
operations, and emergency vehicle and police operations in addition to many computing,

telecommunications and manufacturing applications.

As part of our research, we demonstrate that heuristics which rely on partitioning the
service region into smaller regions can be very effective for dynamic routing problems.

Using a partitioning scheme we show that if a constant guarantee algorithm exists for the
k - capacitated median problem, then a constant guarantee algorithm exists for the
probabilistic traveling salesman problem. For the DTRP, we show that a partitioning

algorithm is asymptotically optimal when the traffic intensity is high.

We show that robust a priori algorithms can be developed for dynamic routing problems.
For the M/G/1 with switchover cost, we show that an a priori cyclic polling algorithm
works very well using both theoretical and simulation analysis. Cyclic polling algorithm
also works well for dynamic traveling salesman problem. For these both problems, we
identify certain conditions under which the a priori (cyclic polling) solution is close to
optimal. We demonstrate that the existence of the connection between the static and
dynamic vehicle routing and scheduling problem that have been observed by earlier

researchers.

xiii



CHAPTER 1 RESEARCH OVERVIEW

1.1 Introduction and Motivation

The last several years has witnessed a sharp increase in interest in stochastic and dynamic
routing and scheduling. Several factors are driving this trend. The first is increasing
opportunities to use on line decision techniques to take full advantage advances in the
computer and communication technologies in the area of transportation,
telecommunications and logistics. Steadily increasing computational power and the
availability of information technologies capable of providing dispatchers with real-time
updates on the status and location of vehicles and customers as well as traffic network
conditions make real time decision making feasible. A second factor is an increase in
customer service expectations, driven in part, by the promises made by a few aggressive

companies (FedEx, Cox Cable, for example).

Because many systems contain inherently stochastic factors, decisions must often be
made before all necessary information is available. Stochasticity in these systems takes
many forms. In freight and fleet management systems the timing, location and level of
demand may vary; the availability of resources available to meet demand can also vary
due to traffic conditions, breakdowns, service times and dockside waiting times; and,
operations in one zone, regions or area of operation can impact those in other zones.
Once made, these decisions must be modified as new information is known. Increases in

customer service expectations, the availability of real-time information on traffic network



conditions and the emergence of on-line freight marketplaces have all led to a dramatic
rise in the number of freight and fleet management systems operating under explicitly
dynamic conditions. To a certain degree, algorithm development has lagged behind
implementation. Typical real-time fleet management systems employ static algorithms
developed in the 1980’s and early 1990’s. In order to fully leverage advances in
information technologies, algorithms which explicitly consider dynamic and stochastic
factors should be examined. Or, if static or a priori algorithms are to be applied in these
dynamic environments, proper attention should be given to examining the conditions
under which these perform well on dynamic problems. Such an examination is the key

theme of this research.

There are two main classes of dynamic and stochastic routing and scheduling models.
The first class relies on a priori optimization in which solutions are generated for
stochastic problems prior to the receipt of information regarding the realization of their
random elements. The general approach is to generate an a priori solution that has the
least cost in the expected sense. The second class of models involves making decisions

and observing outcomes on a continuous, rolling horizon basis.

This dissertation examines several key dynamic and stochastic routing and scheduling
problems. We examine both classes of models. The focus of this study is more
theoretical than applied, though theoretical analyses of this sort can often lend significant
insight to the development of practical applications. The main problems examined in this

research are the probabilistic traveling salesman problem, the dynamic traveling salesman



problem and the dynamic traveling repair problem. In addition, as part of our research on
the dynamic traveling salesman problem, we examine a related dynamic network
problem, the M/G/1 queueing problem with switching costs. These problems arise in
pickup and delivery operations, repair fleet operations, and emergency vehicle and police
operations in addition to many computing, telecommunications and manufacturing
applications. These problems are network optimization problems and are at the very

heart of research on dynamic and stochastic logistics systems analysis.

1.2 Problems Examined

1.2.1 The Probabilistic Traveling Salesman Problem (PTSP)

We consider the following situation: A company (UPS, FedEx, for example) has a large
number of delivery customers. Each driver is responsible for a given delivery region.
The driver’s knowledge of the route is an important factor affecting his or her efficiency
and the level of customer service provided. In each service area there are many potential
customers. However, in each day, only a subset of these potential customers require a
delivery. The probabilistic traveling salesman problem is to design an a priori route for
each driver, in which the route is followed exactly, simply skipping customers not

requiring a visit. The goal is to find a priori tour with the least expected cost.

The PTSP is a very important problem. It represents a strategic planning model in which
stochastic factors are considered explicitly. These types of problems are of central

importance in many logistics and transportation planning applications in which heuristics



which perform well over a wide range of demand realizations are required or where re-
optimization may be infeasible either for computational or operational reasons. In
addition, of key interest is the examination of the robustness of optimal solutions for
deterministic problems when the instances upon which these problems have been solved

are modified.

The PTSP is well known to be NP-hard. In this dissertation we develop and examine a
new class of heuristics for this problem. Depending upon the methods used to solve
necessary sub-problems, these heuristics can have polynomial or quasi-polynomial
performance. We show that one of the quasi-polynomial heuristics is a c-approximation
heuristic. We demonstrate that it has good average case performance and that its worst

case performance is bounded.

1.22 The Dynamic Traveling Repairman (DTRP) and Dynamic Traveling

Salesman Problems (DTSP)

Assume that a utility firm (electric, gas, cable TV etc.) is responsible for maintenance
over a large, geographical area. Failures occur over time throughout the geographic
region. The firm operates a fleet of repair vehicles and technicians. Routing decisions
are made over time based on real time information about the location of known failures
and some prediction about future outages. The vehicles travel to customer locations to
provide on site service. On site repair times are stochastic. The objective of the firm is to

minimize the average waiting time experienced by customers.



A closely related application is real time product delivery (furniture, industrial gasses,
home heating oil, etc.) in which delivery vehicles are dispatched with the objective of
minimizing some combination of the delivery cost and customer waiting times. Another
important application in the transportation area is the dispatch of highway patrol vehicles,
where the highway patrol is assumed to be responsible for the control of a large freeway
network. Estimates of the proportion of freeway delay in the U.S. attributable to the non-
recurring (incident related) congestion range up to 60% and it is believed that this
proportion is increasing (Lindley, 1987). Incidents occur at random over both time and
space. Response time is critical for the clearance of incidents. The dispatcher’s decision
concerns the optimal location of the patrol vehicles if there is no incident, and, which
patrol vehicles to dispatch if there is an incident. The objective is to minimize response

time.

Additional important examples can be found in goods distribution and freight
consolidation. Consider, for example, the freight consolidation problem of less-than-
truckload carriers and package delivery services. The dispatch centers receive parcel
loads designed for specific locations in service region. These parcel loads are queued and
consolidated into full truckloads for delivery. Operators face the challenge of balancing
operating costs (travel cost plus vehicle and driver cost) and service levels (the waiting
time for service). In order to reduce customers’ waiting time, vehicles should be
dispatched more frequently at a higher cost; to reduce operational costs loads should be
allowed to accumulate in the dispatch center so that denser delivery routes can be

developed, resulting in higher customer waiting times.



The dynamic traveling salesman problem, is similar to the dynamic traveling repair
problem, except that customer locations are limited to a set of known nodes, rather than
any point in the Euclidean space. Please note that these are the historical definitions of
these problems, which are generally accepted by the transportation research community.
Some researchers have made different distinctions between these problems, for example,
arguing that the dynamic traveling repair problem involves a mobile service fleet with
non-zero service times over any metric space and that the dynamic traveling salesman
problem involves a mobile fleet with instantaneous services times over any metric space.
In our research, we adopt the historical (albeit imperfect) definitions which separate these

two problems based on their discrete (DTSP) or continuous (DTRP) metric spaces.

1.2.3 The M/G/1 Queueing System with Switchover Costs

Consider the following situation: a single server provides service to n locations. At any
point in time, each location may or may not have one or more waiting customers. The
server can provide service to only one location at a time and must spend some time

traveling between locations, thereby incurring a switchover cost.

Traffic control provides one example of an application of M/G/1 queueing systems with
switchover costs. In order to minimize the average waiting time of the customers in the
system, the controller must decide when to switch and where to switch to. Switching here
means the signal switches from red to green or green to red. The problem is how long to
allow the green and red time in each direction. Each time the light switches from red to

green or green to red, there is a cost incurred during the time in which all directions are



temporarily set to red. More frequent switching decreases the service level of all drivers.
On the other hand, less frequent switching can increase the waiting time of drivers in one
direction or the other. More obvious examples of applications arise in
telecommunications and computing systems. For example, a time-shared computer
system consists of n terminals connected to the center computer. Data must be
transferred between the terminals and the computer. The objective is to provide good
service to all the terminals. In many manufacturing environments, a single facility may
produce several different products. At any given time, the facility can produce only one
product. A set-up cost is incurred each time it changes between products. Decisions
about when to switch between products and in what order to switch affect the
performance of the system. To model all these kind of situations, we consider the M/G/1

queueing system with switchover costs.

1.3 Literature Review

1.3.1 Vehicle Routing and Scheduling

Vehicle routing and scheduling involves finding a set of one or more routes to various
demand or activity locations, in order to minimize a cost function (minimizing routing
costs or a combination of fixed costs and routing costs). Vehicles may have capacity
constraints. If the problem has unit demands, a single vehicle without capacity
constraints, and the objective function is to minimize the total travel cost, then the vehicle
routing problem reduces to the well known Traveling Salesman Problem (TSP). Fisher

(1995) presents a recent review of the routing and scheduling literature while Desrosiers,



Dumas, Solomon and Soumis (1995) examine the special case in which time windows are

considered.

The TSP is the probably the most extensively studied combinatorial optimization
problem. For detailed comprehensive reviews of research, results and applications of the
TSP, please refer to Lawler, Lenstra, Rinnooy Kan and Shmoys (1985) or to Laporte

(1992). Two different research approaches are typical for the TSP and its variants.

On the side of exact methods, there has been a vast literature aimed at the development of
various integer programming-based approaches. Typical research begins by presenting
an integer programming formulation for the problem. The various formulations differ
with respect to the sub-tour elimination methods used. The next step in solving these

formulations is to develop appropriate relaxation and branch and bound schemes.

Heuristics for the TSP are typically classified as tour construction procedures or tour
improvement procedures. Tour construction procedures involve building a solution by
adding nodes to a partial tour. The best known tour construction heuristics are nearest
neighbor and insertion heuristics. Tour improvement procedures involve improving a
feasible solution by performing various exchanges. The best known of these are the 2-
opt and 3-opt and 1-shift heuristics. In recent years, effective composite heuristics have

been developed, see for example, Golden and Steward (1985).



For the general vehicle routing problem, typical solution approaches is to modify math
programming based methods developed for the TSP or to use cluster first and route

second heuristics, route first and cluster second heuristics.

One class of methods used to analyze the performance of heuristic algorithms is worst-
case analysis. Worst case performance analysis is known as competitive analysis in the
on-line algorithm literature (see for example Irani and Karlin, 1997). These techniques
consider every possible input to the algorithm. The goal is to compare the ratio between
the cost of the output of the heuristic algorithm and the cost of the output of the optimal
algorithm. If the ratio of these costs can be bounded from above by some constant

number c, we call the algorithm a ¢ - constant guarantee algorithm or ¢ - approximation

algorithm.  For example, the Christofides’ TSP algorithm is %—approximation

algorithm. Recently, Arora used a very complex partitioning scheme to obtain a
(1+ £)—approximation algorithm for the Euclidean TSP. This is a fully polynomial time
approximation scheme. For any ¢, the running time is a polynomial function of 1/& and
the cost of the output of the algorithm is within (l+£) of the optimal. This is the best
worst case bound to date for heuristics for the TSP. Worst case analysis provides a
guarantee on the maximum relative difference between the solution of the heuristic
algorithm and the optimal solution for any possible problem instance, even those
instances that are not likely to occur in practice. It does not always accurately reflect the

typical performance of algorithms. To overcome this drawback average case analysis is

performed. In average case analysis, problem instances are generated based on some



probabilistic distributions and comparisons of the performance of the heuristics relative
to that of the optimal methods or to other heuristics are performed. For the literature on

this type of analysis for the TSP please refer to Karp and Steele (1985).

In practice, a third kind of performance analysis is also important, namely empirical
analysis. Empirical analysis relies on examining the performance of heuristics on a set of
classical or typical problems. One surprising result of empirical analysis of heuristics for
the TSP is that one of the best algorithms is very simple - simply use a nearest neighbor

tour construction procedure and then perform various local tour improvement procedures.

In the real world, many factors have a random component. Therefore, there is a need to
analyze the influence of these stochastic factors in routing and scheduling solution
methods. Routing and scheduling vehicles in the face of the uncertainty of demand is not
new. The earliest explicit treatment of stochastic demands in the design of the vehicle
tours is found in Tillman (1969) which presented a modified Clarke-Wright savings
heuristic for Poisson-distributed demands. Later Stewart and Golden (1983) formulated
the stochastic vehicle routing problem using both a chance-constrained and penalty
function approach. Both formulations rely on stochastic programming.  Stochastic
programming has some inherent difficulties. Chance constrained formulations have some
serious limitations. These are formulations in which the parameters of the problems are
random variables and for which a solution must satisfy the constraints in the probabilistic
sense. In our opinion, this leads to solutions generated from restrictive (pessimistic)

assumptions. Penalty function formulations suffer from the size limitations and also
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require the selection of a problem dependent penalty function. An excellent review of
both chance constrained and penalty function formulations can be found in Dror, Laporte

and Trudeau (1989).

1.3.2 Problems Examined in this Dissertation

Our research involves explicit consideration of the uncertainty of demand. The PTSP,
DTSP and DTRP are fundamental dynamic and stochastic network problems. There are
other well known dynamic and stochastic network problems. For example, the dynamic
shortest path problem (Cooke and Halsey, 1966); the stochastic shortest path problem
(Psarafits and Tsitsiklis, 1993); the dynamic vehicle allocation problem (Powell, 1986);

and the dynamic traffic assignment problem (Friesz, Luque, Tobin and Wie, 1989).

In the PTSP we assume that n nodes are spread over a bounded area. Each node has a
given probability of requiring a visit. We refer to the probability of requiring a visit as
the coverage probability. We assume service requirements are independent across nodes.
The goal is to find an a priori tour with the least expected length. The a priori tour is one
in which the nodes are visited in the order given by the tour, and those not requiring a
visit are simply skipped. This problem was first defined and examined by Jaillet (1985,
1988). Later, it was examined by Bertsimas, Jaillet and Odoni (1990), Bertsimas (1992),
Bertsimas and Howell (1993), Jaillet (1993), Bertsimas, Chervi and Peterson (1995).
Bertsimas (1989) also examines the related probabilistic traveling salesman location
problem. For a survey of research on these problems, please refer to Jaillet and Odoni

(1988), Powell, Jaillet and Odoni (1995) or to Bertsimas and Simchi-Levi (1996).
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Probabilistic analysis of the TSP, which is closely related to the PTSP has been extensive.
In probabilistic analysis of the TSP problem, it is assumed that node locations are
independently generated according to a common probability distribution. The objective
is to analyze the length of the optimal TSP tour. The most important result of this kind
was developed by Beardwood, Halton and Hammersley (1959). Later their method was
generalized by Karp and Steele (1985). Both groups of researchers used partitioning

schemes to examine the length of the optimal TSP tour.

The dynamic traveling salesman problem concerns the development of a routing policy
for a single mobile server providing service to customers whose positions are known.
Service requests are generated according to a Poisson process which is uniform across
customer locations. The DTSP was first introduced by Psaraftis (1988). Bertsimas and
van Ryzin (1991) studied a similar problem, the dynamic traveling repairman problem in
which customer locations are either uniformly distributed in a bounded area in the

Euclidean plane or distributed according to a distribution with probability density
function f(x). This problem was intensively examined by Bertsimas and van Ryzin

(1991, 1992, 1993) and reviewed by Bertsimas and Simchi-Levi (1996) and Powel, Jaillet

and Odoni (1995).

To facilitate the analysis of the DTSP, our research examines a closely related queueing
system, the M/G/1 queue with switchover cost. Previous research on this problem has
mainly focused on the examination cyclic polling algorithms and the characterization of

the optimal algorithm for this problem. Under cyclic polling algorithms, nodes are visited
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according in a predetermined cycle. Cooper, Niu and Srinivasan (1996) developed an
explicit expression for the average waiting time under gated or exhaustive policies. Hofri
and Ross (1987) studied the case of two queues and conjectured that the optimal
algorithm will be of a threshold type. Liu, Nain and Towsley (1992) and Duenyas and

van Oyen (1996) partially characterized the optimal algorithm.

Note that in the on line literature, Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, M.
Talamo (2001) examined the on line travelling salesman problem with arbitrary input to
minimize the makespan (the time at which the tour is completed). They give a 2.5-
constant guarantee algorithm for all continuous metric spaces. Irani, Lu and Regan
(2001) perform an analysis of the DTRP with uniform time windows over arbitrary inputs
in which the objective is to serve as many customers as possible and in which the on site
service time is zero or near zero. That paper presents several heuristic algorithms and
their worst case analysis. In addition they show that a simple algorithm for the DTRP

with uniform time windows is a constant guarantee algorithm.

1.4 Research Approach

Our research begins with an examination of the probabilistic traveling salesman problem.
We develop a quasi-polynomial ¢ - approximation algorithm for this problem. We use
probabilistic analysis to examine the performance of our heuristic algorithm and the

relationship between the PTSP and the k —median problem. We show if there exists a
¢, —approximation algorithm for the k- capacitated median problem, then we can

identify a c, —approximation algorithm for the PTSP where ¢, isa function of ¢,.

13



We then move to an examination of the dynamic traveling salesman and repairman
problems. For these problems, we are concerned with when to visit each node and how
long to remain during each visit, in addition to which node(s) to use as a depot when no
demands are in the system. The goal of the decision maker in these problems is to strike
a balance between the present (known demands) and the future (uncertain demands) to

minimize the average waiting time for the customers.

We combine stochastic optimization, queuing theory and deterministic optimization to
develop and analyze the performance of algorithms for the DTSP and DTRP. Our
analysis provides bounds for the average waiting time for customers under various
heuristics. We provide lower and upper bounds on the average waiting time in these
systems for the DTSP, DTRP and the M/G/1 queueing model with switchover costs, and

on the average distance traveled per demand served for the DTRP.

Asymptotic analysis of algorithms for vehicle routing and scheduling has become a
commonly accepted approach. It has been demonstrated in many cases that algorithms
which perform well in the limit also perform well under typical conditions with respect to
congestion and problem size. However, these methods are not without their critics (see
for example Psaraftis, 1984). For example, the rate of convergence to the optimal
solution can be very slow. For this reason, we compliment our analytic results, which
are the key contribution of this dissertation, with simulation based analysis of algorithms

for the dynamic traveling salesman problem and the M/G/1 queueing system with
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switchover costs. We demonstrate for these problems that algorithms with good

asymptotic properties also have good empirical performance.

1.5 Fundamental Insights

In this dissertation research, we demonstrate that partitioning algorithms are very useful for
solving complex problems. These methods reduce large problems to a series of smaller
problems, which can often be solved optimally. When the size of the problem is very large,
the loss due to partitioning, relative to the globally optimal solution, can be quite small. In
fact, Karp (1985) showed that for the TSP, by partitioning the region and then using
dynamic programming to obtain the optimal TSP solution for each small problem and

combining these solutions leads to a near optimal solution. Later Arora (1997) developed a
(1+ £)—approximation partitioning based algorithm for the Euclidean TSP problem.

Spaccamela, Rinnooy Kan and Stougie (1984) demonstrated that a partition based heuristic is
asymptotically optimal for a class of hierarchical vehicle routing problems. In these
problems the first level involves the decision about the number of vehicles needed based on
probabilistic information about the locations of future customers. The second level decision
is to route the vehicles to provide service after customers have materialized. The goal is
minimize a combination of the vehicle acquisition costs and the length of the longest route
assigned to any vehicle. In our research we show that if a constant guarantee algorithm
exists for the k — capacitated median problem, then a constant guarantee algorithm also exists
for the PTSP. We base this claim on a partitioning algorithm. In addition, for the DTRP, we

show that a partitioning algorithm is asymptotically optimal.
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Another important finding is that robust a priori algorithms can be developed for dynamic
routing problems. We show that for the M/G/1 with switchover cost, a cyclic polling
algorithm works very well using both theoretical (mathematical) analysis and simulation
modeling. We also show that cyclic polling works well for the dynamic TSP. We identify
certain conditions under which the a priori (cyclic polling) solution is close to optimal. The
fact that dynamic problems, under certain condition(s) the a priori solution is close to
optimal, provides an indication of the connection between the static and dynamic solutions to

dynamic or on-line problems.

Our research indicates that if we use static vehicle routing methods properly, we can obtain
good or even near optimal solutions for dynamic problems. For the dynamic traveling
repairman problem, we show that partition based heuristic that lets the customer accumulate
in a region and uses a optimal TSP tour to serve the customers within the region is
asymptotic optimal algorithm. This is very encouraging since it implies that the exact and
heuristic algorithms and insights that have been developed over years for static vehicle
routing and scheduling problems can be used to solve and analyze dynamic routing and
scheculing problems. The problem becomes how to identify the best methods for each

dynamic problem.

1.6 Organization of the Dissertation

In chapter 2, we examine the probabilistic traveling salesman problem. We introduce the
problem, present previous results and the relevant literature and then present our heuristic

and its properties. The dynamic traveling salesman problem is the subject of chapter 4.
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To facilitate our examination, we first examine the related M/G/1 queueing system with
switchover costs. Because these results are of independent interest, we present these
separately in chapter 3. In that research we develop a lower bound on the average
waiting time for the optimal algorithm. We also get an upper bound on the average
waiting time for the optimal algorithm from Cooper, Niu and Srinivasan (1996). Then,
we identify circumstances in which our lower bound is tight under heavy traffic intensity,
implying that the cyclic polling algorithm is near optimal under some circumstances. We
also provide an algorithm for low traffic intensity and show that the proposed algorithm
is near optimal under those conditions. In chapter 4, we apply results obtained in the
analysis of the M/G/1 queueing system with switchover cost to the DTSP. We examine
special networks in which the optimal TSP tour and the minimum spanning tree involve
only links of equal length. For these special networks, we obtain lower and upper bounds
for the average waiting time for optimal algorithms. The ratio of the upper bound and
lower bound is bounded by approximately 2. There are situations in which the ratio is
near 1. Then, for general networks, we provide different lower and upper bounds on the
average waiting time for service. For light traffic conditions, we identify an alternative
algorithm and demonstrate its asymptotic optimality. This result has implications for the
optimal location of emergency vehicles. In chapter 5, we focus on the dynamic traveling
repairman problem. We prove the asymptotic optimality of a specific algorithm for this
problem. Chapter 6 provides a conclusion and discusses potential future research on

dynamic and stochastic network optimization problems.
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CHAPTER 2 A HEURISTIC FOR THE EUCLIDEAN

PROBABILISTIC TRAVELING SALESMAN PROBLEM

2.1 Introduction

The Probabilistic Traveling Salesman Problem is a fundamental stochastic network
problem. Assume that n nodes are spread over a bounded area. Each node has a given
probability of requiring a visit. We refer to the probability of requiring a visit as the
coverage probability. We assume service requirements are independent across nodes.
The goal in this problem is to find an priori tour with the least expected length. The a
priori tour is one in which the nodes are visited in the order given by the tour, and nodes
not requiring a visit are simply skipped. This problem was first defined and examined by

Jaillet (1985, 1988). It is well known to be NP-hard.

In our research, we examine good heuristic algorithms for this problem. First we
concentrate on a special case in which all nodes have the same coverage probability for a
while. This is only for the reason of easy explanation. Our research on this topic focuses
on the general case. Many good heuristic algorithms for the Traveling Salesman Problem
(TSP) have been developed over the years. It is well known that when the coverage
probability is high, that these can produce a good PTSP tour. However, when the
coverage probability is low, heuristics for the TSP produce poor PTSP tours. Bertsimas,
Jaillet and Odoni (1990) show that for some problem instances, the ratio of the expected

length of the PTSP tour produced using the optimal TSP tour and the expected length of
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the optimal PTSP solution approaches infinity as np approaches infinity (n here is the
number of nodes and pis the coverage probability). The rate at which this ratio
approaches infinity is O(n). Later Bertsimas and Grigni (1989) studied the performance

of spacefilling algorithms for the TSP and show that the ratio between the expected

length of the tours produced using these heuristic algorithms and the expected length of

the PTSP solution will approach infinity at the rate of O(log(n)). For the worst case,

the bound of O(log(n)) can be achieved.

As before, if for any input, the cost of the output of a heuristic algorithm can be bounded
by a constant ¢ times the cost of the output of the optimal algorithm, we say that the

heuristic algorithm is a constant guarantee algorithm or ¢ -approximation algorithm. The
terminology algorithm also applies to the non-constant bounds, i.e. O(log(n))-

approximation algorithm. The existence of a constant guarantee algorithm for the PTSP
remains an open question. I[n this paper, we address the existence of ¢ -approximation
algorithms for the PTSP. We show that if there exists ac -approximation algorithm for
the capacitated k -median problem, we can find a c-approximation algorithm for PTSP.
Our primary contribution is to show that there exists a reduction from the PTSP problem
to the k -median problem. Garey and Johnson (1979) provides a thorough discussion of

the development of reductions from one NP-hard problem to another.

The PTSP problem is a very important issue for both theoretical research and practical

practice. It provides one way to explicitly explore the structure of the problem and the
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effect of the stochastic factors. As stated by Jaillet (1993) and Bertsimas et al. (1993),
there are two main motivations for the examining the PTSP problem. The first is the
desire to formulate and analyze models that are appropriate for real world problems, in
which randomness is not only present but a major concern. The second is an interest in
investigating the robustness of optimal deterministic solutions to applied to stochastic
problems. There are also many other probabilistic combinatorial optimization problems

in which the PTSP plays a fundamental role.

This chapter is structured in the following way: first we present the formal definition of
the problem followed by the heuristic for the PTSP and its properties. Later we give the

proof of the results and the conclusion.

2.2 Notation

Let S be the set of all the nodes representing the potential customers. In each problem

instance, only the nodes that belong to a subset s need to be visited. The probability that

the set s requiring a visit is exactly given by p(s). Assume we have an priori tour 7,
let L,(s) be the length of the tour in which we visit all the nodes in s according to the

order of the priori tour, skipping nodes that do not require a visit. E[L,] represents the

expected length of the a prior tour 7, E[L, (S)] = p(s)L,(s). E[Lp] represents

€S

the expected length of optimal a prior tour, by definition, E[L,;y» | =min, {EL}.
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Letting E[L, ] represent the expected length of the tour produced using a heuristic
algorithm H, Ly, (s) represent the length of the optimal TSP tour over nodes in s,

E[E] represent the expected length of the tour produced using a re-optimization

technique in which the optimal TSP tour is produced after the problem instance is known,

E[2}= 2 P e (5).

For a given heuristic algorithm H , if there exists a constant ¢ such that for any set S,

E|L - -
[ ”] <c, we call the heuristic H a constant guarantee heuristic.

the following holds, <
E[Lpr]

2.3 A New Heuristic

Before we introduce the new heuristic, we first introduce the & - (Capacitated) median

problem. Then we present the heuristic and analyze its properties.

2.3.1 The Related k - Median Problem (capacitated and un-capacitated)
The k — median problem
There exist n nodes each with demand d, that must be served by one or more service

facilities. The problem of finding the optimal locations for the k service facilities, when

the set-up cost for the facilities is zero, is known as the k —median problem.
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If we select medians {l,2,-~,k} , the total cost to serve all the demands is given by
{Z d;; MiNg, o iy c,j}, where d, ; is the size of the demand from node j served from
J

median i (Zd,.' ,=d;)and ¢, is the distance from median i to node j. To find the best

k medians to minimize the cost to serve the all the nodes is called & —median problem.

k — Capacitated Median Problem

If each median (facility) i has a capacity constraint C; ( i.e. Zd,._ ,<C,, where d,  is the
1

size of the demand from node ; served from median /). The problem of finding the best

k such medians is called k — Capacitated Median Problem. The objective is to select k&

locations to build the facilities and serve all the demands at the minimum cost.

Both of these two problems are NP-hard problems. As mentioned earlier, if we let

C"(S) be the optimal cost for the optimal algorithm on the problem instance S and

C, (S)be the cost under heuristic algorithm A for the problem S. If there exists c,

CulS)

such that for problem instance S, if C'(S)

<c¢ always holds, then we call the heuristic

algorithm H a c constant guarantee heuristic algorithm or ¢ — approximation algorithm.
Arora et al. (1998) obtain a (1+ &£)—approximate algorithm for the k — median problem.

Charikar et al. (1999) present a 4-approximation for k- median problem. For the

k — capacitated median problem, there are no known polynomial timecconstant
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approximation algorithms. Arora et al. (1998) obtain a quasi-polynomial time

(1+ £)—approximate algorithm for the k — capacitated median problem.

2.3.2 Returning to the PTSP: Analysis of the Optimal A Priori Tour

2.3.2.1 Clustering According to An Optimal A Priori Tour

First, suppose we know the optimal PTSP solution over n nodes which is an a priori tour

r' = (X,,X,, - X,, X;) with corresponding coverage probabilities p, p,,": p, .

We select a parameter 8 which is bigger than one. We cluster the nodes according to

their order in the a priori tour and their coverage probabilities in the following way:

ZP:‘

!

Step 1. Let m= max 5 ,1}, where |x| represents the largest integer not

exceeding x (commonly called the floor function).

Step 2. If Z p, < B, all the nodes are clustered in one group, otherwise we follow step

three.
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i=j= Zpl i=f Zpl i= ZPI
Step 3. Select k£ nodes until il p; <——and Z: p;2—+—,if ZI: p; >——, we split
4 m : m

i=l i=l i=l

Zpi i=j=1
X, into two nodes X;and X;. The coverage probability for X, is p,=——- > »p
m

i=l

- 2P
while the coverage probability for X, is p, =Z p, ————. Repeat this procedure for the
m

i=l

rest nodes of X ;,u-X _ until we have m groups of nodes. We use G, to represent the

i—thgroup we get, i =1,2,---,m.

For convenience, for the purposes of developing our proof, we arbitrarily assign this
parameter 8 to be equal to 4. This is without loss of generality. Results presented from

now on make this assumption.

Zpi

Note that the sum of coverage probability over all the nodes within the group is —
m

2P . pW
Ipri24,we have 4 < - SSorlep,s4 then -~ =Zp,.

Using the procedure outlined above, the demand at a node may be split between two

clusters. For a split node X, we do the following. Create two new nodes X, and X L

The coverage probabilities for these nodes are p; and p; . However, only one of these

nodes can actually require a visit. We call the new tour with split nodes .
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The expected length of the optimal a priori tour z* is equal to the expected length of tour

7 . We make the following observation:
Observation 2.1 E[ L. ] =E[ L. |.

2.3.2.2 The Radii of the Groups
For tour z , we continue to use G, to represent the groups (clusters) (i =1,2,---,m). Let
E[L;. (i )] represent the expected length of the a priori tour among members in the group

G,.

'

From now on, we try to build the connection between the expected length of the optimal
the a priori tour 7~ and the sum of the length of the radius of the group G;, i=1,2,--,m.

For the radius of the group G,, we will give it later.

We build the connection by analyzing the E[[‘;‘ (1)] , the radius and the expected length

of the optimal the a priori tour 7 . We express this idea in three steps, where the first two
steps are used to give the definition of the radius of the group and step three to build the

connection.

Step 1. Let 4, define the event in which {Z, 22}, where Z, is the number of nodes

from group G, that have requests in a specific problem instance.
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Step 2. We define ;':= min {d (X.G, )} as the radius of group G,, where X is a point

in the Euclidean plane and d(X,G,;)= P _a(x ,X') which represents the
q9

9€G(i)p z Pa

aeG(i),

average distance between a point X in the Euclidean plane and the nodes in the group
G, . In other words, E is the minimum average distance from any point in the Euclidean

space to the nodes in the group G;.

Step 3. If more than two nodes in group G, require a visit, we select two nodes from
group G, at random where the likelihood of selection is proportional to their coverage

probability. This is equivalent to randomly selecting two nodes from group G, according

to their coverage probability if there are at least two nodes having requirements of visits.

With this in mind, we obtain the following:

i=m

E[L;.]?_,:(E[L;. (i)])zisz{A,.}E[L;.(i)lA,]ZZ(P{A,};,). @.1)

=l =l

In lemma 2.1, we provide a lower bound for P(4;) when z p; 24. Remember, as

stated earlier that we could provide such a bound for any S >1 where § a parameter.

We use the value 4 for convenience of developing our proof.
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Combining lemma 2.1 and (2.1), leads us to observation 2.2 which is the connection

between the sum of the length of the radius of all the groups and the expected length of

the optimal a priori tour z°.

Lemma2.l If ) p, 24, P(4)2a, where a=—';'—(l—e“‘).

Observation 2.2 Z;, < %L"], where a = —2-(1 -e™ ) .

2.3.3 A New Algorithm for the PTSP

First we introduce a sweep algorithm then define a k—median problem that is sub
problem in our algorithm. Next we introduce our algorithm and its properties. In fact,
the heuristic algorithm is a cluster-first and route-second heuristic. These are very
common for solving vehicle routing problems. We use a heuristic algorithm for the

k — (capacitated) median problem to generate the clusters and then use a sweep algorithm

to provide the routes.

2.3.3.1 Sweep Algorithms
Assume that customers are located at points in the plane and thatC,is the Euclidean

distance between points i and j. A customer is chosen at random in a polar coordinate
system with the origin at the center of the region and the ray from a customer to the

center is “swept” either clockwise or counter clockwise (see for example Fisher,1995).
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2.3.3.2 Thek - Median Problem ®

Zpi-l

i

Let m=max —T—J,l . Assume that there are n customer locations (nodes) which are

represented by {X Xy X ,,} . For node X,, the size of its demand is equal to the node

coverage probability p,. The distance between any two points is the Euclidean distance.

zpi

The capacity for any median is for the capacitated version of the problem.

2.3.3.3 A New Heuristic Algorithm H

Step 0. Pre-Processing

M If —<Z D <—0 and max,(p,) 2= [z 2 ), we select the node with highest

coverage probability as the center and connect all the other nodes directly to the center.
The expected length of the a priori tour generated in this way can be bounded by 2 times
the expected length of optimal priori tour, please see the proof of lemma 2.3, case 3 for

the detailed explanation.
. 9 11 2 .
D)  If neither m < Z D < m nor max,(p;)2 3 y holds, we use a (capacitated)

k — median heuristic to solve problem ® and let ¥,,1,,---Y, be the m medians selected

by the heuristic algorithm.
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Step 1. Clustering

Cluster the nodes according to the median from which it is serviced. Referring to the

i — thmedian as Y,, we call the group served by Y, group G(i),, -

Step 2. Routing the Groups

We select the median locations Y,Y,,--¥, as the representatives of the groups
{G(i) gk = 1,2,---m} and then we use the well-known Christofides heuristic to construct

a tour over all the representatives ¥,Y,,---Y,. The Christofides heuristic relies on the

development of a minimum spanning tree and then solves a matching problem. [ts
performance is known to be guaranteed to be within 3/2 of the optimal TSP solution. We
can also use other good heuristic algorithms for the TSP. One good example is provided

by Arora (1997).

Step 3. Routing the Nodes within the Groups

Connect each node to its representative and form a loop or use a sweep algorithm to

construct an a prior tour within each group.

Note that in step 2, we get a tour through the representatives of the groups and in step
three, we get the tour through the nodes within the group. Thus if we first start from a
representative and visit all the nodes within group and follow the tours of the
representatives to visit the next representative and the nodes within the same group and
so on, we will get an a priori tour through all the nodes. We can further use the local

improvement technique to the obtained an improved a priori tour.
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2.3.4 Properties of Algorithm H

Now we will show that if we have a ¢, —approximation algorithm for the k — capacitated
median problem, then the above algorithm is a ¢, —approximation algorithm for the

PTSP for some constant ¢, . In practice, we can use any good heuristic algorithms for

the k — median (capacitated or un-capacitated) problem to solve ®.

We use E[L,,] to represent the expected length for the tour developed using the specified

steps.

Let p,= P{G(i) , requires a visit} where G(i),, requires a visit means there are at least
one node from group G(i) ,, requiring a visit.

We call ;, the coverage probability for group G(i), . When the coverage probability is

very high, it is very easy to find a heuristic algorithm with a constant guarantee. When

the coverage probability is low, we transform the original problem into a new problem

such that ;;, is very high by increasing the number of nodes in the groups.

We define E[L,, (R)] is the expected length of the tour generated by the heuristic
algorithm over the representatives with the covering probability p, and E[L,, (intemal)]

is the expected length of the tour within each group, {G (0, -i=L 2,---m} . We have the

following fact,
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E[L,] <E[L,(int)]+E[L, (R)].

When the total sum of the coverage probabilities over all the nodes within each group is

at least four and if we have a ¢ — approximation algorithm for the capacitated version of

problem @, we prove that both theE[LH (intemal)] and E[L,, (R)] can be bounded by a

constant times E[L,y ]. This is the lemma 2.2.

When the sum of the probabilities over the all the nodes are less than four, we analyze the
special step for this case and show directly that E[L, ] can be bounded by E[L,y,]. This

leads us to lemma 2.3. Combining the lemma 2.2 and 2.3, we get theorem 2.1.

Please note that the number four here is selected for ease of presentation of our proof.

Any number greater than one would be fine.

Lemma 2.2. When Zp,. >4, if we have c, —approximation algorithm for @, then

c 2zpi
E[LH]S 12+ 24+~ E[L,,m,].
a m

Lemma 2.3. When Y p, <4, E[L, ] <134E[L,p].
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Theorem 2.1. If we have c, —approximation algorithm for the k —capacitated median

problem, the for our heuristic algorithm H for the PTSP which is based on the solution

to the k-capacitated median problem @, E[L,]<cE[L,y] where

¢, =max 134,12 +-1| 24+ —
a m

Note that Arora (1998) provides us with a quasi-polynomial algorithm for the
k - capacitated median problem which is bounded by (1+¢) times the optimal solution.

Therefore we obtain corollary 2.1.

Corollary 2.1. We have a quasi-polynomial time ¢ — approximation algorithm for PTSP,

l+e 2.

where ¢ =max{134,12+—| 24 +—
a m

From step 3, we can see that our algorithm will generate a solution which is like a star in
each group. Interestingly, Bertsimas et al. (1993) obtained near optimal solution for
several hundred nodes with equal coverage probability and found that the near optimal

solution is star like.
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2.3.5 Proof of the Lemmas
Proof of lemma 2.1

We will consider only one particular group. Let k& be the number of nodes in this group

i=k
and y = Zp,. . Remember that y is at least four (y 2 4).

i=l

First we show that P{X =0} <e™”.
Let @ =max{IT,(1-p,)}, st >.p=y(y24).

We know that P{X =0} <w.

After applying the standard optimization technique, we know that when all the p,’s are

equal, the maximum is obtained.

k
Therefore @ = (l - %) .

k
It can be shown that f(k)=( —%) .(k>y) increases over k and f(k)—>e™ as

k — o, therefore @ = f(k)<e™. 2.2)

From (2.2), we know that @ <e™” . Finally, we have an upper bound for P {X = 0} ,

P{X=0}<wse™. 2.3)
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Now we compare P{X =2}and P{X =1}.

P(X=2)-—2-Z[ PP, (1- pk))

=) 1 pll p_[

=_[n (1- pk)]Z(l P - [1 P,D

LRI

‘ Fill

z%[n,‘ (1-p, )]Z(I—L;;,]%P(X =1). 2.4)

Combining (2.3) (2.4), we know that
P(X =1)+2 P(X =1)< P(X =1)+ P(X =2)
<1-P(X =0)

:P(X:l)s%(l—P(X=O)).

Therefore,

P(4)=P(X22)21-P(X =0)—%(1—P(X =0))

2%(1—(0)2%(1 )2 i(1 —et)=a.

M
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Proof of Lemma 2.2

After using a ¢, —approximation algorithm for the capacitated k —median problem @,
we obtain the median locations such that the cost can be bounded by the cost of the

optimal median locations times c,.

For the PTSP solution, we obtain k groups, each with the same average demand. This is
one possible solution for the capacitated & — median problem ® and its total cost is no

less than the optimal solution.

First, we will prove two claims separately and then we use the two claims to prove

lemma 2.2.

W2
Claim 2.1. E[L, (intenal)] <2¢,| +—

— .ii‘.ﬁl, where E[L,,(intemal)] is the

expected length of the total distance traveled within each group under the tour provided

by the heuristic algorithm given by steps 0 to 3.

Claim 2.2. E[ L, (R)]S12E[Z(R)], where E[L, (R)] is the expected length of the a
priori tour over the representatives and E[E(R)] is the expected length of the tour

generated by the re-optimization over the representatives with coverage probability ;, .
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We prove these two claims and then use them to prove lemma 2.2. From now on, we

focus the proof of claim 2.1.

Let ¥',Y,,---Y. be the optimal solution for problem® and G(i),. be the corresponding

groups obtained from ¥,Y;,--Y,. Let Y,1,,--Y, be the solution obtained from the

heuristic algorithm.
= d(X,.Y, = d(X,.Y") -
Let = ). PAX,T) and r = P27 Note we use 71 to represent
X, €Gli),, Z Px X, €Gi), Z P
X,eG(),, X eG(s )"-

the radius of the group we get from the optimal a priori tour .

The cost associated with selecting 1,,Y,,---¥, as the medians is

Z Z pdlY,X,)= Zr <c r

'
i=l X, eG(i), i=l isl

- Zp. o Zp, (,.m_)

iam= izm _ E L .
From observation 2.2, we know Y r/ <)'r, < [a' ] .
i=l 1=|

For our heuristic algorithm, the expected length within the groups can be bounded by

}:,p. .

Zr This leads us to claim 2.1.

]

m 1=l
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Now we provide the proof of claim 2.2. There are two main steps as follows.

Step 1. First, we can see for any given problem instance, after we obtain the TSP tour
over the nodes that require a visit, we select one node at random, proportional to its
coverage probability from the node(s) within the same group that require a visit. Then
we begin a round-trip from the selected node to its representative. This lead to a tour

through all the present representatives. From this, we can see that,
E[z]+2Xr, 2E[2(R)] 2.5)

Step 2. We compare the length of the minimum spanning tree over all the representatives

to E[Z(R)], where E[Z(R)] is the expected length of the re-optimization over the

representatives with coverage probability of ;, . For the definition of ;, , please refer to

the section 2.3.4.

Let ¥ be the set of representatives, {Y,,Y,,---,Y,}, where m is the number of the total

representatives. If there are at least one nodes from group G(i) ,, that requires a visit, the

representative will appear. Thus by this way, we can see that the coverage probability for

the representatives are p,, i=1,2,---,m.
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Selecting ([L;-]H) representatives randomly (uniformly) from V. We call the set of
selected nodes'¥,. We focus the set of ¥, by selecting one node randomly from ‘¥,

adding it to W/¥,. Thus ¥, is the set of random selected ([%]-&-l] nodes from ¥

and W, is the set of random selected (m—['—;-]) nodes from the set V. Note the set of

¥, and ¥, don’t dependent on the group coverage probability

Let Ly (V). Ly (¥)), Ly (¥,) be the length of TSP tours over ‘¥,'¥,, ¥,

respectively.

Letting L, (A) be the length of minimum spanning tree over the nodes in 4, we use

E[L‘W(‘P‘)] and E[Lw,(‘{’l)] to represent the expected length of the minimum

spanning tree over randomly selected ‘¥,,'¥, (this doesn’t related to the coverage

probability).

We know the following:

Observation 2.4. Ly, (¥)2 max{Ly, (‘¥,), Ly (¥, )} and Ly (‘¥)) S Ly (\F)) - (26)

The fact that the minimum spanning tree over ¥, and ¥, will form a connected graph

over ¥ leads us to observation 2.5.
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Observation 2.5. L, (¥)< Ly (W) + Lisr ('F2)- Q.7

From (2.7), we know that max {E[ Ler (¥,)].E[ Luer (¥.)]} 2 %LMST(‘P) :

Assume that E[Lw (¥, )] > E[Lm., (¥, )] > —;-LMST (W) without losing generality.

Let A be the event in which at least ([L;—]H) representatives are present. Let

E[Z(R)IA] represent the optimal TSP tour over the nodes appearing when at least

m, =([ﬁ]+ 1) nodes require visits.
2

Let Ly,(A) be the length of the optimal TSP tour over node set 4. If Bc 4,

Ly (4)2 L5, (B). We call the property of the optimal TSP tour as the monotone

property of the optimal TSP tour.

Now assume A happens, if more than m, nodes appear, we randomly select m, nodes

and drop the rest nodes. By this way, when A happens, we have two facts.

Fact 1.When A happens, we always can obtain the node set '¥,.
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Fact 2. The length of the optimal TSP tour over the selected nodes is less or equal to the

length of the original optimal TSP tour by the monotone property of the optimal TSP

tour.

Combing these two facts, we have

E[£(R)IA] 2E[Luse (¥,)]2E[Lusr (¥1)] 2%LMST(‘P).

We will show later that P(A)2 T’IJ_- . Therefore:
1
E[Z(R)]ZE[Z(R)I A]P(A)ZZLMST(‘P) : 2.8)

This leads to observation 2.6.

Observation 2.6. For any set ¥,,Y,,--¥,,if m>2, let E[Z] is the expected length of the

re-optimization over Y,1,,---¥, with the coverage probability ;, , i=1,2,---,m, we have

1
E[Z]ZZLMST(Y“YZ,---,Y ).

m

Now, we finish the proof of claim 2.2.

Two cases are possible:
Case 1.m =1. We know that E[ L, (R)]=E[Z(R)]=0.

Case 2. m=>2. Using Christofides’ heuristic algorithm in step 3 of our algorithm, we

know the following:
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3
E[LH (R)] SEIﬂSP(Ynst“"Ym) <3Lysr (Yl’Yl’”'*Ym)'
From observation 2.6, we know E[L,, (R)] <12E [E(R)] .

Combining case 1 and case 2 together, we have E[LH (R)]leE[Z(R)]. This

completes the proof of claim 2.

Now we use the two claims to prove the lemma 2.2.

Using (2.5), Claim 2.1 and Claim 2.2 and Observation 2.2, we have the following,

E[Ly]<E[ Ly (intenal) | +E[ L, (R)]

< E[L,, (intemal)] + IZE[Z(R)]

<E[L, (intemal)]+l2(E[Z]+2Z:)

22.p E[L,]
<S12E[Z]+¢ | 24+ — L=
m a

2Y) p.

<t 1245 244 —— | |E[ Loy ]-
a m

Now we show that P(A)2 -;— )

15

From (2.3), we know p, 21—e™ = G’ i=1,2,---,m.
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We know that X is the number of nodes having requirement of m nodes with coverage

probability of 7, 21% (i=1.2,.m).

Let Y be the number of the number of nodes having requirement of m nodes with

coverage probability of -ll% (i=1,2,---,m) and Y be independent with X .

It is easy to see that, P(X 2 j) 2 P(Y 2 j).

The above relationship between X and Y is known as stochastic bigger, please refer to

Ross (1983) for detail.

Because P(A)=P(X2m)2P(Y2m), to prove P(A)Z-;-, we only need to show
1

P(Yz2m)= 3

From now on, we show P(Y 2m,) 2

N j—

We know that P(Y=i)=(f’)(%)' (%)m ()15 (%)m

pr=mi=(r) 2] () < ()
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So we have P(Y=0) < P(Y =m), P(Y=1)< P(Y=m-1) and

P(Y=i)s P(Y=m-i), i=1,2,--,m.

When m is odd, assume m=2q+1, then m, =[§]+l=q+l.

[tiseasytosee P(Y2m)=P(Y2q+1)2P(Y<q)= P(YZm,)Z%.

If m is even and assume m =24, then m, =[%]+l=q+l.

We compare the difference betweenP(Y=-’—;-—l) and P(Y=%+l] with P(Y=ﬂ) as

follows.
P(Y:—”ln)-P(Y:i"--l)
2 2

- S‘gn)'&) (-157)

(29)! ( 1 ) 4(15Y)

g-1)Y(g+1)\16

L GO (Y iy
* @) (16) (15")=P(Y =g).

Now we have P(¥Y 2m)=P(Y 2q+1)2P(Y <q) = P(YZm,)Zl.

(3]
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Thus P(A)=P(X2ml)2P(Y2ml)2%.

This concludes the proof of lemma 2.2.

Proof of Lemma 2.3

Let X be the number of nodes present and let y = Z p,; - When there are 1, 2 or 3 nodes

E[L, | X =i]

present, we can see that -
E[Lm., | X = z]

=1. We consider four cases.

11
Casel. —< =y<4,
m Zp. y

10
First, we show that p(X22)2§lT(l—e ”).

P(X =2) =%Z(P,-P,nk-uaj (1-p ))

inj

__.[n (1- p,)]Z[l ,,,[,,,1 p)]

Z%Z("_"(X‘—"ﬁ(n,(n- p,))].

l_pi

Because :—%SZp, =y, we have y-p, 21—16. So we have

P(X= 2)>20 (—”—(n (1- p,))]=21—0P(X=1).

1-p,



From (2.3), we know that P(X =0)<e™ and % < Z p;=y<4,we have,

P(X=O)Se—l‘9'.
P(X 22)=1-P(X =0)=P(X =1)21-P(X =0)-20P(X =2)

10

= 21P(X22)21-P(X=0)21-¢ "'
Finally we have the following lower bound for the P(X 22),
1 ke
P(X22)z2—|1-e ' |.
(x22)241-¢7 ]
ELpp 2 P{X 22} E[ Ly, | X 22]22P(X 22)r and EL, SZ[Zp,);, so we have

ZP,)
ELH < ( Yy < Yy < 84 o 3134
EL.. = 2P(4)  P(X22) P(X22)

l1-¢ n

Case 2. 7 ¥ p, <15 and max,(p) 3.

P(X=2) =%Z(p,»p,-l'lhm, (1-2))

f=f

yZ( ( 1= P/))]

1-p,

=%P(X=l).
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9

From (2.3), we have P(X =0)<e” <e 0.

In a similar way as we have done in case 1, we can show that

2
P(Xzz)z%(l-e '°).

o(Ze)
EL, < F < y < 77

For the same reason as in case 1, < < <
EL, 2P(A) P(XZZ) 10(1 —i]

9 11 2
Case3. —< ) p,<— andmax,(p,)2—y.
e3 10 Z 710 ,(p,) 3y

By definition of the algorithm for this specific case (step 0), we know the following:

EL, <2) pd(X,X,) and EL,, z%}’z pd(X,.X,)

Case4.2p,s%.

First, we know EL, <2yr-2P(X =1)rand EL,y, 22P(X 22)r =

ELyrs B P(XZZ) B Z(pipj (nksi.ksj (I‘Pk)))

inf
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2Z(pi (y-p)) i 202(17,-(}'—1’.-)) i}
" 2(pp,(1-y)  2lply-p) )

inj

20.

Combining these cases we demonstrate that lemma 3 holds.

Proof of Theorem 2.1

EL, <c,EL,, follows from lemma 2.2 and lemma 2.3.

2.4 Conclusion

Stochastic network optimization plays an important role in the real problems and in
theoretical research. The probabilistic traveling salesman problem is an important
problem in this class. In this chapter we have shown that, for some constant ¢, if there
exists a c, —approximation algorithms for k - capacitated median problem, for some
constant ¢, we can find a c¢—approximation algorithm for PTSP. As a corollary, we
developed a quasi-polynomial algorithm which is a c—approximation algorithm for

PTSP. We can also use the standard route improvement scheme to improve the tour.
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CHAPTER 3 THE M/G/1 QUEUE WITH SWITCHOVER COSTS:AN

EXAMINATION OF ALTERNATIVE HEURISTICS

3.1 Introduction

Many systems can be modeled as M/G/1 queues with switchover costs. For example, in
many production systems, it is common that a facility is responsible for replenishing
inventories of several items and that a switchover time is incurred whenever a switch is
made. If only one server is responsible for providing service to customers at different
locations, a travel cost will be incurred when the server switches from one location to
another. We need an explicit way to consider the influence of switchover costs on the

performance of these systems.

In this chapter, we consider the M/G/1 queue with switchover costs. This model involves
n identical independent queues, each fed by Poisson arrivals with identical parameter A.
A single server provides service to all customers. The server can provide service to only
one queue at a time. A constant switchover cost is incurred each time the server switches
nodes. A decision strategy or policy for this problem specifies the action to be taken at
each decision instance. The server may remain working at the present queue, remain idle
at the present queue or switch to another queue. Decision instances include the arrival of
a customer, the completion of service for a customer, and may also occur any time the
server is idle. The objective is to minimize the overall average waiting time for each

customer.
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Previous research in this area has had as its focus the characterization of the best service
algorithms or examination of such systems under various kinds of cyclic polling
algorithms. Much of the research on cyclic polling systems has focus on the analysis of
the waiting time or queue length under various service policies. For example, Cooper,
Niu and Srinivasan (1996) developed an explicit expression for the average waiting time
under gated or exhaustive policies. Srinivasan, Niu and Cooper (1995) extended those
results to describe the relationship between the waiting time distributions in systems with
zero and non-zero switchover costs when a gated or exhaustive service discipline is
enforced. Recently, Borst and Boxma (1997) extend that research to the general case in
which algorithms satisfy a more general discipline referred to as a branching property.
Eisenberg (1994) analyzed the polling system in which the server comes to a stop when
the system is empty rather than continuing to cycle. That work examines a variety of
stopping and starting rules. Later, Srinivasan and Gupta (1996) consider the
circumstances under which the server should be patient (which means to stop when the
system is empty). They show that while the patient server mechanism is generally better
than the roving server mechanism, there do exist cases where roving is better. In all of
these studies, the assumption is that if customers exist in the system that the server will

not be idle.

To date, neither the optimal algorithm nor the explicit expression of average waiting time
for the optimal algorithm is known for the M/G/1 queue with switchover cost. Hofri and
Ross (1987) studied the case of two queues and conjectured that the optimal algorithm

will be of a threshold type. Liu, Nain and Towsley (1992) and Duenyas, and van Oyen
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(1996) have partially characterized the optimal algorithm. We discuss this

characterization in detail in the first section of this chapter.

Our research provides a lower bound for the waiting time in an M/G/1 queue with
switchover cost. From Cooper, Niu and Srinivasan (1996), we know the average waiting
time for the M/G/1 queue under cyclic polling. This average waiting time provides an
upper bound for the optimal algorithm. Comparing our lower bound to this upper bound,
we can see that in general it is not very tight. However, under certain conditions, worst
case analysis of the cyclic polling algorithm shows that its competitive ratio (the ratio of
the average waiting time under cyclic polling to the optimal) is close to 2. We also
identify circumstances under which our lower bound is very close to the cyclic polling
upper bound which implies that under certain conditions the cyclic polling algorithm is
close to optimal. In this way, we partially identify the optimal algorithm and provide
additional justification for the popular cyclic polling algorithm. We also compare the
average waiting time for the cyclic polling algorithm and the longest queue first
algorithm (here the longest queue first means when the server switches to the other

queue, it selects the queue with longest queue).

This chapter is organized as follows. In section 3.2, we discuss the definition of the
problem and the properties of the optimal algorithm, we also provide the notation needed
later. In section 3.3 we provide a lower bound for the optimal algorithm. In section 3.4
we provide a new lower bound for the light traffic intensity case. In section 3.5, we

provide some simulation analysis. Finally we end with some conclusions.
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3.2 Problem and Notation

The M/G/1 queue with switchover costs involves n identical independent queues, each

fed by Poisson arrivals with identical parameter 4. A single server provides service to

all customers. The service time is a random variable with first and second moments s

|

and s?, respectively. The server can provide service to only one queue at a time. A

constant switchover cost, —, is incurred each time the server switches to node i. Neither
v

the service of a job nor the process of switching to a different queue can be interrupted

prior to its completion.

A decision strategy or policy for this problem specifies the action to be taken at each
decision instance. The server may remain working at the present queue, remain idle at
the present queue or switch to another queue. Decision instances include the arrival of a

customer, the completion of service, and may also occur any time the server is idle.

For the case of uniform switchover costs over all the nodes, from Liu, Nain and Towsley
(1992) we know that the best algorithm will remain at its current location as long as there
are unserved customers at the current location. An algorithm satisfying this property is
said to be exhaustive. When it transfers to another queue, it will choose the queue with
the largest number of waiting customers, this property is known as longest queue criteria.
For the general case, from Duenyas, and van Oyen (1996), we know that the best
algorithm will remain working instead of idling in the current location if jobs remain at

the current location. Algorithms satisfying these conditions are differentiated only by the
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switching rule employed. That is, the server must decide whether to wait at a node after
it has completed all the jobs waiting at that node or whether to switch to another node and
also when to switch to another node. We refer to the following condition as the
continuous condition: if there are customers in the system when the server completes
service at a single arrival process, the server will depart its current location for a location
where there are unserved customers. Without providing proof, we conjecture that as p
approaches 1.0, the optimal algorithm will have this property (In that case the probability
that the system is idle will be very small). If this conjecture is true, the optimal algorithm
must be exhaustive, continuous and must also satisfy the longest queue criterion. Taken
together, these completely specify the optimal algorithm. In addition, we note that under
the special case of zero switchover costs, our system reduces to an M/G/1 queueing

model.

Notation

Let

n represent the number of sub-queues in the system,

5 and s* represent the fi-3t and second moments of the on-site service time respectively,
A the parameter for the Poisson process at each sub-queue,

p=nis and p, = As the fraction of time the server spends providing on on-site service

to all sub-queues and the fraction of time spent in on-site service for a single sub-queue,

respectively,
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— nis’

1= m——), the average waiting time in an M/G/1queue with arrival rate nd, service
-P

rate u= L and no switchover costs. This is known as Pollaczek-Khinchin(P-K) formula.
s

Please see Bertsekas and Gallager (1992) for a discussion of the P-K formula.

3.3 Lower and Upper Bounds on the Average Waiting Time for the Optimal Algorithm

In this section we develop separate lower bounds for algorithms that obey and do not
necessary obey the continuous condition. We combine these to obtain a lower bound for
the optimal algorithm. There are two reasons that we address the two cases separately.
The first is that the examination of the lower bound for algorithms obeying the
continuous condition is of independent interest. The second is that proof of the lower

bound for the first case leads to the proof of the lower bound for the second case.

3.3.1 A Lower Bound for Algorithms Obeying the Continuous Condition

To develop our lower bound we begin by selecting an arbitrary algorithm obeying the
continuous condition. Further we require the algorithm to perform in such a way as to
ensure that all customers eventually receive service. We use a simple, but important
concept in the development of this lower bound. The total waiting time for all customers
served during a single visit to a node must be greater than the total waiting time
experienced by customers already at the location when the server arrives. In addition, the
total waiting time experienced at the moment when the server arrives must be greater

than *he total waiting time experienced at the moment of the arrival of the last customer
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that arrives prior to the arrival of the server. This last quantity can be estimated and is

used to provide bounds for the other two.

Remember that W, is the average waiting time for M/G/1 queue model and without

nis’

switchover costs, W=—.
2(1-p)

Let W. represent the average waiting time for an arbitrary algorithm satisfying the

continuous condition.

Let = (1-p) (Z\/—J N U Pl.

2nv(1-p)

Lemma 3.1: W. 2> max {Wl,wl} .

Proof of lemma 3.1

Select an arbitrary algorithm satisfying the continuous condition. Under steady-state
conditions, let Z, be the number of customers served during one visit to node i and z; be

the number of customers waiting at the node i when the server arrives.

In an M/G/1 queue in which the arrival rate is A and the service rate is =, the expected
s

P

l(l_pl).

service time of one demand a to be the children of @. We define the grandchildren of a

length of a busy period is We define the customers that arrive during the
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to be those customers that arrive during service to a's children. We refer to the children,
grandchildren and later generations of & as the descendants of a.

Now we let the server serve the first customer in the queue and all of its descendants in
the order of their arrival; the second customer in the queue and all of its descendants in
the order of their arrival; the third customer in the queue and all of its descendants in the
order of their arrival; and so on until the last customer in the queue and all its descendants
have been served. We observe that the service time for a customer and all of its
descendants is an i.i.d. random variable as is the number of descendants. Furthermore,
the number of descendants of a single customer is distributed in the same way as the

number of new customers served during a single busy period in a classical M/G/1 queue.

Observation 3.1: (A lower bound for E[z,])
The expected number of descendants of a single customer is less than or equal to

P _ P

A :
A(l-p) 1-p

If there are z, customers present at the beginning of service, the expected number of

descendants for all z, customers is equal to lip‘— This implies that the following,
~ P

Z

E[Z1z]< 2 + 2B A
I-p  1-p

Because E[E[Z,| z,]]=E[Z,], we know that,

?-Ez—;}zs[z,.] ie. E[z]2(1-p)E[Z] G.D
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Observation 3.2: (A lower bound for the total waiting time)
The total waiting time for all customers served is greater than or equal to the total waiting

time experienced by the customers that arrived prior to the arrival of the server. At stable

state, Z, is the number of customers served during one visit to node i and z is the
number of customers waiting at node i when the server arrives. Let s; be the set of
customers waiting at node i when the server arrives. The number of elements in set s; is
z,. Assume that the inter-arrival times between successive customers arriving at location

i belonging tos, are given by ¥*,1;",---¥*. A lower bound for the total waiting time

=2,
experienced by customers in the set s, , is given by Z (j-nr-.
=

Because our customers arrive according to a Poisson process, the expected length of the

f=5 z{z —
interarrival period, E[Y:’]:—}I, Therefore El:Z(j_l)Yf: :l: "'(21,1 l) )

=1

Define W' to be the waiting time of a random selected demand from the customers
served at node i. Now, first we randomly select a served customer. We know that the

customers are uniformly distributed over the n nodes, so the probability that the selected
. . .1

customer is at any specific node is —. Then, we select a customer randomly from the
n

customers served at the selected node. Let W, be the waiting time of such a selected

customer. Therefore:
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E[W]-—-ZE[W' ZE[E[W‘ |z, =k]]

i=l k=2

> ‘i"z”s[uz [2(1 )y; )lz - ]P{ }

Using these observations:

i) From (3.1), we know that —— [Z]_‘—pl
i) Let Z, =z, +x,, where x; is the number of descendants of the z, customers in set s, .
Note that {Yl,Yz,Y} are dependent only on the arrival process before time t (the

moment of the arrival of server to node i) and the x,’s are dependent only on the arrival

process after t and the process of serving after time t. This implies that the variables

{Y," D ANEE & } are independent of x, given z,. This gives us the following equation:

E[u( — )[Z(J-‘)Y ]'Z ]" [2A(k @:(] R )'z_ }

o k(k-1)
24 E[k+x,1z =k [E“ )Y} 24 E[Z,|z, =K

Therefore we obtain the following:

I'

N
»|
N
~

A z’z{ k(k-1) P{z,.=k}]>%’"kml_p‘k(k—l)P{z,:k}

n izl k=2 24 E[Z,-|Z,=k]

lf:(l—p,)ﬁ[z,. -1] =l"z"(1-Px)E[Z.»] _l-p,

T ns 24 né 22 24
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Which leads to our lower bound for E[,], which is,

= (1-p,)E|z;
ni. 2}-
Observation 3.3: (A lower bound for E[z,.])
The average switchover cost per customer served is given by —-Z E[d—z’] (3.3)
ia] v i
For X 20, from Schwarz's Inequality, we know that E[ l ] E[IX]
From (3.1), we know that,
1 1 1-p
E|=-|2 2 3.4
7] .

From (3.3) and (3.4), we can see that the average switchover cost is bounded from below
< (1 - P )di
b —.
Y ;[ vnE[z,]
Remember here that we assume that our system is stable. A necessary condition to reach

- ~ - & (1-p)d,
steady state is that p<1. Inour system p= nﬂ{s + Z((——&'—)]LD
vnE{ z,

i=l

- i=n 1 —_ d
Therefore n}.[s + Z[(——p—‘)—’n must be less than 1.
&\ vnE[z]

Remembering that p =nAs and p, = As , respectively.
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The following algebraic manipulation gives us

=i (-p)d, ¢ (1-p)d, ich imoli
nls+m12( — [lz] SEYTHY vnE[lz <1- p which implies that

i=l ist

S dA 1-p
A 3.5
,g.vE[z,] 1-p, 3:3)

From (3.2) and (3.5), we know that

minimizing f((l — /;l )f[zi])_ 1 ;fl
n

i=l

subject to: ivg[ ] I;Z—
i=l 1

leads us to a lower bound for Wc.

Using classical methods to solve the above problem, we obtain, W20,
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Another obvious lower bound can be obtained from an M/G/1 queueing model with zero

switchover cost, W,. Combining this lower bound with the previous one, we prove

lemma 1.

332 A Lower Bound for Algorithms which do not (necessarily) Obey the

Continuous Condition

For algorithms that do not (necessarily) obey the continuous condition we must make
some observations and define two new variables. First we observe that in these systems,
a server may arrive at a node, provide continuous service to customers until the sub-
queue is empty. We call this the initial busy period. The server may then remain idle at
the current location until a new customer arrives at that location. At that time it enters
into what we refer to at a subsequent busy period. In principle, a server may have many
of these subsequent busy periods (later we show that only poor algorithms would allow

this). Let p represent the fraction of customers that arrive during the initial busy periods

and(1- p) represent the fraction that arrive during the either the idle periods or the

subsequent busy periods.

Let A4 represent the set of 2n—tuples (a,,a,,...&,, Py P»--r P, ) Which satisfy the

following constraints:
I=lll i=n
Dy ——— dp'(l 2) - p-(n-p)(1-p). iD ZP' =p,and i), p, <lforany { (3.6)

i=l n iz
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*

i=l

Now letw, = min, {iin[(l'pl p.a; :]}_ P(l -pl)

2nd 24

3

’

=[ np’(1-p)" ) n_| p(l-p)
2v(1-p-(n-p)(1-p)) Zdi 21

and o, = n(l-p) || _n iad
*l2v(1-p) Z_l_ 21
=4,

Now let W represent the average waiting time for an algorithm that does not satisty the

continuous condition.

Lemma 3.2: W . ?.max{W,,min,,{wz}} Zmax{W,,minP{a)J}} > max {¥,,0,} .

Proof of lemma 3.2

Observation 3.4: (A lower bound for # . based on E[z,])
E[Z,] is the average number of customers served during the initial busy period per visit
to node i. Let p, represent the fraction of customers served at node i during an initial

busy period and let (1- p,) represent the fraction of customers served at node i during

subsequent busy periods. As we have shown in the proof of lemma 3.1, if we only

consider the customers served during the initial busy periods, the average waiting time
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i (1-p)(E|z]-1
for these customers is bounded from below by Z(( p‘)g_n,[{z'] )}and a lower bound

i=l

(-p)(E[z]-1)

for the average waiting time for the customers at the node i is 1

Therefore, a lower bound for the average waiting time in the system is given by

2nd 2nA 24

f[p’(l'p')(E[z’]_l)]=f( (- pl)s[z,])_ p(1-p)

i=] i=l

subject to lz Di=PD. 3.7
n

inl

Observation 3.5: (A constraint for E[z,|based on p,)

The average switchover cost per demand served is E ——dL— if the demand is from
v (Z L+ X))

node i, where X, is the number of customers served during the subsequent busy periods.
Because at steady-state, on average, a fraction of the total customers equal to p, comes
E| X - D -p
from Z, and (1~ p,) comes from X,, —[—-'l=l—ﬂ=> E[X,] =l—p‘-E[Z,] .
E[Z'] p i p i

E[ d, :\ > 4,
v(Z,+X,) | E[v(Z +X)]

d d __p4

]

E[v(z,+X)] VEZ+X] VE[Z]
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Combining with (3.1), we have :E[

d, }>pi(l—pl)di.

v(Z,+X,)| VE[z]
Now we have a lower bound for the average switchover cost per demand served:

1 izz"pi(l—pl)di

n& vE[z] G-5)

Now we make the following observation: the average idle time per demand served during

each subsequent busy period is bounded from below by %(l—-p‘). This comes from

dividing the average interarrival time by the average number of customers served during

a single busy period in an M/G/1 queue. So a lower bound for the average extra-cost due

to idle periods per customer served for customers at node i is %(l -p)(1-p,)and the

average extra-cost due to idle periods per overall demand served is bounded by

i=n

%Z[(l P,) (1 Pl)]=72(1 Pl) (3.9)

r=l

From (3.8) and (3.9), we know that the average extra-cost due to switching and idling is

< pr(l—pl)di 1-p
t least 1-p). 3.10
at leas ,}:T‘ wE[z] +— (1-9) (3.10)

1=n — d —
Because our system is in steady-state nA [S+2p,(1Ef?l)] ’+1 lp(l-pl)}d.
i=l zi

izn d . l_
Algebraic manipulation leads to Z[QL(—EQ:\ <l-p-(n-p)(1-p). (3.11)

vE [z,.]

i=l
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Observation 6: (A lower bound for W,.c)

In order to find a bound on the average waiting time in the system we solve a
minimization problem where E[z,.]and p,; are variables, the objective function is given

by (3.7) and the constraints are implied by (3.11). We show this problem below.

.. Epd-pa) P(1-
Muumlzlng Z(p'(zn{;‘)a )—p(zipl)

i=l

subject to f[w]d—p—(n—p)(l-p)

o va,

leads to us a lower bound for # . based on p.

If p=1, this leads to the continuous case and we obtain the same result as before; for

p <1, we cannot obtain an explicit expression. Therefore, we relax some constraints,

which means we obtain a looser but explicit lower bound.

2nd 22

1=l

The lower bound is @, , defined earlier to be @, = min , {2[(l-p,)p,a,]}_ p(l-p)

Relaxing the constraints that p, <1,Vi and minimizing the Z[f%%‘ﬁ:‘ leads us to
n

i=l

the following lower bound based on p. We observe that this is equal to ®,, defined

earlieras{ "pz(l-p‘)z ) n -P(I'Px)
2v(1-p~(n-p)(1-p)) Zdl 2%



If we minimize @, and w; over the range of p, we get W 2min, {,} 2min, {a,}.

When the number of nodes n>2, we can show that "p
2v(1-p-(n-p)(1-p))

- 1- _
" and because =2 Zp( p‘),wehave W 2 0,.

>
2(1-p) 24 22

Another obvious lower bound is W, 2W,. Combining these, we have proven lemma

3.2

3.3.3 General Lower and Upper Bounds for the Optimal Algorithm

Let W be the average waiting time for optimal algorithm.

Theorem 3.1 # 2max{ l,min[:a),,minp{a)z}]} > max {¥,,,} .

Proof of theorem 3.1

—

W 2 max{W,,min[V_V-c,W.,c]} , from lemmas 3.1 and 3.2, we prove theorem 3.1.

— — nd(1-o0Y 1-
Theorem 3.2 When d, =d,,Vi, W 2 max W.,— (1-p) -5 :
2v(1-p) 22

Proof of theorem 3.2

— d(1-p) 1-
In this case, @, = @, , from theorem 3.1, we know # 2> max W‘,n (1-a) _1-p :
w(l-p) 24
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From Cooper, Niu and Srinivasan (1996), we know that the average waiting time for the

M/G/1 queue with switching costs under cyclic polling, W oyiic . is the following:

— (l =P ) Z di
Theorem 3.3 (Due to Cooper, Niu and Srinivasan, 1996) W gcic =W, +—ﬁ.
v(i-p

Further W. Schclic .

2

Consider the case where d;, =d . Let x= v (the ratio of As? to the switching cost for

a single switchover). We compare the average waiting time under cyclic polling with

that of the optimal algorithm in the corollaries below. Corollary 3.2 explains corollary 3.1

in words.
Corollary 3.1: If d, =d, forall i and if x <1, then liml,_,l W‘“’_ic_._W < 7 P +Xx;
w =P

W ey W 1-p

~

If x>1, lim__,
W x

Corollary 3.2: For the special case in which switchover costs are uniform, as p goes to
1, if x is very large, the cyclic polling algorithm is asymptotically the same as the
optimal; if x is very small, when n is very large, the cyclic polling algorithm is also

asymptotically the same as the optimal.
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n(1-£y
n

In fact, we can interpret —————
2(1- p)v

as the contribution of the switchover to the total cost

and W, as the contribution of the randomness of the arrival process and service time.

3.4 Lower and Upper Bound for the Optimal Algorithm Under Light Traffic

If the arrival rate A is very low, we develop an alternative lower bound. We introduce a
heuristic algorithm that locates the server at the node with the longest set-up time. In this
way, some of the set-up time is absorbed into the system idle time. When 41— 0, this
algorithm achieves the alternative lower bound. Under light traffic this algorithm is
approximately optimal. First we introduce the heuristic algorithm and then provide the

result in Theorem 3.4.

A New Heuristic
Let d, represent the switching cost incurred in switching to node /. Note that this is
independent of node that the server switches from. Sort d, in non-decreasing order as

d

n <4

) <.sd,, and locate the server at the node with the longest set-up time d,,.

When a customer arrives at a node, the server switches to that node and provides the
service to that customer. Immediately after completing service server switches back to its

original location.

Let the average waiting time for this algorithm be Wh.
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i=n~1 i=n~|

Z d(i) . —_ ,2_; d(i)
<dy<..<d, and lim, ,,Wwu = ‘nv .

Proof of theorem 3.4
We consider the waiting time for customer i. We divide this waiting time into two
components: the waiting time due to the server’s travel prior to serving customer i, and

the waiting time due to the on-site service time of customers served prior to customer /.

W, and W, represent the two components, respectively. Because we use ideas very
close to those of Bertsimas and van Ryzin (1991) to obtain our first bound we use

notation identical to theirs in this section. We have the following relationship,

W, = W;I +W, . Taking expectations and letting i approach infinity

1—da0

(W‘l =lim,_ E[W:I]and W' =lim, E[W'f]) we obtain W =W +W " .

A lower bound for W' is the expected travel time between the optimal location of the

1an-| i=n-1

_ Z d(") _— d")

server and the location of a random demand, W > -=-— therefore W 2 -=——.
nv nv

In order to complete our proof we need to calculate the average waiting time for the
heuristic algorithm. Because the server returns to the same location after every service

completion, we can use an M/G/1 queueing model to calculate the average waiting time

—

w.
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Because the on-site service time is independent of the travel time, we know that the first

o - 2,
and second moments of the service time are bounded from above by s + — and
v

= 4d} . . N
5T+ ;"’ , respectively. Using the classical Pollaczek-Khinchin (P-K) formula,
v
W = Eﬁls‘:—) where the subscript ¢ represents the classical definitions for the second
=P

moment of the service time and the utilization factor, we obtain

. s 4nid? - 2nid
Wy < ni s + 2 wherep=p+—n SNy

2(1-7) (1-7) v

Letting e be the event that when a new customer arrives in the system the server is busy,

we obtain the following

Wi < P{e}E[W!|e]+ P{E}E[W," |E] <(1-p)t—+2p G

nv 14

n,{? +4n,1 d(Z")
2(1-5) v(l-[y)

i=n=1

_ 24y

Therefore lim,_ Wy < -=—
nv

p—>0,p>0 Wy <

—-0as i->0.
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i=n-1

. 24y

Because lim, ,W >-=— our upper and lower bounds for lim,_, W are identical.
nv

i=n=-1

2y

Therefore we obtain Wy - =2——as 1 5 0.
nv

3.5 Simulation

3.5.1 The Simulation Model

The simulation model was developed in C++. The run lengths for the simulation are very
long. It is well known that even simple queuing systems require very long periods to
reach steady state behavior. Empirical analysis of our system showed that this was much
more true than we could have imagined. However, we found that including a warm up
period, however long, had no impact on the long run averages of the performance
measures of the system. This is because even for rather high values of p, the fraction of
time the server is busy, the system returns periodically to an empty state. We present
results obtained from serving one million consecutive customers. Because our simulation
run times are so long, we do not present confidence intervals for the performance
measures of interest. Instead, we present these performance measures directly. The two
performance measures of interest are the average wait time for service and the average
number of customers in the system. We compare the following policies: cyclic polling
with exhaustive service, cyclic polling with gated service and longest queue first with

exhaustive service. These results assume that the service times are exponential.
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3.5.2 Simulation Results

We begin by presenting a comparison of closed form results for cyclic polling systems in
which switchover costs are constant verses our simulation results. We show this in figure
3.1. The cyclic polling systems examined here assume that the servers are “impatient”.
This means that they keep moving when the system is empty. One can see that the results
of our simulation model are virtually identical to those predicted by the closed form

solution for the number of customers in the system under exhaustive cyclic polling.

80
70 |
60 | .
50 f. .

4 1 . . . [
30 | — N —

20|

10 | n S

—_g— Closed Form
Exhaustive CP

Average wait time for service

P

Figure 3.1 Closed Form Solution vs. Simulation Results

We next examine the relative performance of three heuristics for the M/G/1 queue with
switchover cost. As predicted, longest queue first out-performs the others when the

switching costs are constant. Figure 3.2 presents those results. However, we find that for

high values of p, the performance of cyclic polling is very close to that of longest queue
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first. Figure 3.3 presents their relative performance for values of p between 0.95 and

0.99.
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Figure 3.2 A Comparison of Three Heuristics when the Switching Costs are Constant
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Figure 3.3 The relative performance of cyclic polling and longest queue first for p
Approaching 1
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Now we examine the benefits of allowing a “patient” server to wait if there are no

customers in the system. We assume that the server waits at its current location until a

service request arrives in the system. Then it begins to move again. While the gains over

the case with the impatient server are small, they are non-zero. The intuition here is that

since arrivals occur according to the same Poisson process at each node, the next arrival

is equally likely to occur at any node. It will definitely not occur between nodes, which

is where an impatient server will be when the next customer arrives.

o O =N o©
0o O O O

= N W
o O O

Average # of customers in the system
o

H
o

Patient Server CP

02 03 04 05 06 07 08 09
p

Figure 3.4 The benefit of allowing the server to be patient when no customers are in the

system.
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3.6 Conclusion

We examine the M/G/1 queueing model with switchover costs. We develop a lower
bound for the waiting time in these systems under any arbitrary algorithm, including
those that are optimal. We point out that in general this is not a very tight bound. Next
we examine systems in which service is provided according to a cyclic polling algorithm.
We show that for the special case where the switchover costs are identical and traffic
intensity is high, the average waiting time of cyclic algorithm is bounded by

approximately 2 times the average waiting time of optimal algorithm. We also show that

for this special case when p—1 and x ( the ratio of As? to the switching cost for a

single switchover) is very small or when p—1 and x and n, the number of individual
queues in our system, are both very large, cyclic polling is also close to optimal. Under
the special case of very low demand intensity, cyclic polling performs poorly. In this
case we provide an alternative heuristic and a lower bound for the average waiting time
of optimal algorithm. When 4 — 0, our heuristic algorithm is approximately optimal.
The simulation results indicates that the exhaustive longest queue first policy is better
than the exhaustive cyclic and gated cyclic. In addition, letting the server be patient is

slighter better continuing to cycle when no customers are present in the system.
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CHAPTER 4 THE DYNAMIC TRAVELING SALESMAN

PROBLEM: AN EXAMINATION OF ALTERNATIVE HEURISTICS

4.1 Introduction

The dynamic traveling salesman problem concerns the development of a routing policy
for a single mobile server providing service to customers whose positions are known.
Service requests are generated according to a Poisson process which is uniform across
customer locations. We assume that the mean service time is known and its variance is
bounded. Service time is independent of customer location. This problem, called the
Dynamic Traveling Salesman Problem (DTSP), was first introduced by Psaraftis (1985).
Bertsimas and van Ryzin (1991) studied a similar problem, the Dynamic Repairman
Problem (DTRP), in which customer locations are either uniformly distributed in a

bounded area in the Euclidean plane or distributed according to a distribution with

probability density function f(x).

In this chapter we begin by examining a special case of the DTSP. The special case
involves networks in which the optimal TSP tour and minimum spanning tree across
customer locations involve only links of equal length (see Figure 4.1 for some examples).
For this special case, through analysis of a related queueing system, we show that the

average waiting time when the server follows the a priori tour generated by the well

known “cyclic polling” algorithm is approximately bounded by #— times the average

=P
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waiting time of the optimal algorithm where p,, the fraction of time spent in on-site

service time for a single node, is less than -1- Note that when n is large f— P is close to
h — A

2, and —?-——e‘- is always bounded by 3. We also identify circumstances under which our
~ P

bound is very tight. This implies that under certain conditions the cyclic polling

algorithm is close to optimal.

Next, we introduce a heuristic algorithm for the DTSP on a general graph. We provide a
lower bound on the waiting time for the optimal algorithm. From Cooper, Niu and
Srinivasan (1996), we know the average waiting time of the cyclic polling algorithm.
This provides us with an upper bound for the average waiting time under the optimal
algorithm. Finally, when the arrival rate is very low, we provide an alternative heuristic
and show it is approximately optimal as the arrival rate approaches zero. We also present
some simulation result for randomly generated six nodes network which shows that the

cyclic polling algorithm is robust for these networks.
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Figure 4.1. Example networks
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4.2 The DTSP on Networks in which the Optimal TSP Tour and Minimum Spanning

Tree Involve Only Links of Equal Length

We assume here that the length of each link involved in the minimum spanning tree is 1

. 1. .. . .
and the travel speed is v, so — is the minimum switchover time between any two nodes.
v

4.2.1 Notation
Let

n represent the number of nodes in the network,

¥ and s* represent the first and second moments of the on-site service time for each
demand served, respectively,
A the parameter for the Poisson process at each node which is uniform over all nodes,

p=nis and p, =1 s the fraction of time the server spends providing on on-site

service to all nodes and the fraction of time spent in on-site service for a single node,

respectively,

_ 2

W= 26’“ ) , the average waiting time for the classical M/G/1 without switchover cost,
-P

—

W = the average waiting time for the optimal algorithm,

W ociic = the average waiting time for cyclic algorithm,
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In the next sub-section, we examine the DTSP on graphs in which the TSP tours and

minimum spanning trees include only links with equal length.

4.2.2 The DTSP on the Special Graph

— — - — — nli=o0V 1-
Theorem 4.1: Wmlic=Wl+M and W 2>max Wl,n( p,) _I=n .
2v(l - p) 2v(1- p) 22

Proof of theorem 4.1

If we regard the switchover time as the time between the time when the server leaves a

- . . 1
node until it reaches another node then the switchover time must be at least —. From
v

Theorem 3.2, we have a lower bound for the average waiting time for the optimal
algorithm. From Theorem 3.3, we know the average waiting time for the cyclic

algorithm. Together these give us theorem 4.1.

For the case in which d, =1, let x=v4 § (the ratio of 4 s* to the switching cost for a

single switchover), we compare the average waiting time under cyclic polling with that of

the optimal algorithm in the corollaries below. Corollary 4.2 explains corollary 4.1 in

words.

Corollary 4.1: If d, =1, for all i and if x<I, then lim W‘“f'::w <P ixiaf
w 1-p

x>1, lim__, W""'L—W oA

W X
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Corollary 4.2: For the special case in which switchover costs are uniform, as p goes to
1, if x is very large, the cyclic polling algorithm is asymptotically the same as the
optimal algorithm; if x is very small, when n is very large, the cyclic polling algorithm is

also asymptotically same as the approximately optimal.

4.3 The DTSP on a General Graph

4.3.1 A Heuristic Algorithm

First, find a TSP solution for all nodes in the network and then visit the nodes along the

TSP tour, providing exhaustive service at each node and skipping nodes with no

demands. This is essentially a cyclic polling algorithm, we use W ciic to represent the

average waiting time for this algorithm.

4.3.2 Properties of the Heuristic Algorithm

We develop a lower bound for the average waiting time for the optimal algorithm from
the Theorem 3.1. We also obtain the average waiting time in our system from the work of

Cooper, Niu and Srinivasan (1996).
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n(1- P|)-[ n_| 1-p d

Let @ =— - p)L'f:—l— where d,=min,,{d,}and d, is the distance
d

between nodes j and i .

Theorem 4.3: W oeic <W, +( g‘ ) L’;" where L, is the length of the optimal TSP
2v(1-p

tour over all the nodes and W >max {Wl,w,} .

Proof of theorem 4.3

We can see the switchover time for a whole cycle is —— L"" , from lemma 3, we know the

~

d . .. . .
first part of the theorem. Because — is the minimum distance traveled to reach node i,
v

it therefore provides a lower bound on the switchover cost to node i. From theorem 3.1

we know the result.

4.4 The DTSP on the General Graph under Light Traffic Intensity

First we define a median of a graph as a location such that the average distance to all

nodes is minimized, let B represent the bounded region:

—Z“X - X [|=min,,, {1 gux-x, ||} where |X, - X, || is the Euclidean distance

n sy

between X, and X .
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If the arrival rate A is very low, we introduce a heuristic algorithm that locates the server
on the median of the graph, whenever there is demand, the server leaves the median and

goes directly to the node to provide service. After the demand is served, it returns

immediately to the median. Let the average waiting time for this algorithm be Wh.

i=l

Theorem 4.2: W 2 mingy {;‘;i"XO -X ,||} and W x — miny {%iu,\’o -X ,||}
i=l

as 4A—>0.

Proof of theorem 4.2

We consider the waiting time for demand i and we divide the waiting time into two
components: the first is the waiting time due to the server’s travel prior to serving i, and

the second is the waiting time due to the on-site service times of demands served prior to
—_— — . .

demand i. W, ,W. represent the two components, respectively. We have the following
. - - . . . . s

relationship, W,=W, +W,. Taking expectations and letting i approach infinity,

W =lim, . E[W?’] and 7' =lim,__ E[W? ] We have 7 =" +¥".

Essentially, the proof is saying that we have chosen X, to minimize travel distance.

Since demand is low, there will be no demands waiting at the queue when a new request

arrives.
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A lower bound for W’ is the expected travel time between the optimal location of the

server and the location of a random demand. Since W' > mm{‘,oea}{ Z"X -X, ||}

—

. 1 i=n
7' 2 it - S~ -

In order to complete our proof we need to calculate the average waiting time for the
heuristic algorithm. Because the server returns to the median every time it finishes a
demand and it begins service from the same location every time, we can use an M/G/1
queue model to calculate the average waiting time due to the on-site service time of

demands served prior to demand i (This idea is due to Berman, Larson and Chiu, 1985).

Because the on-site service time is independent of the travel time, the first and second

23 |, Xoll

moments of the service time are bounded from above bys+—=!
v

b )

s> +4| =

respectively. This is obtained from the

v v
_ 2
classical result of the P-K formula: W =-2—(-1'3'f£—), where the subscript ¢ represents the
=P

classical definitions for the second moment of the service time and the utilization factor.

Let Wn represent the average waiting time due to the on-site service time of customers

served prior to the selected customer.
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where p=p + =l . .

We observe thatas 4 >0, Wy —0.

Next we examine the average waiting time due to the server’s travel prior to serving the

selected customer.

—d . ppr s = . 1 &
Let Wu represent this average waiting time. #»=min, . {EZ”X o= X, ||} :

(]

Because Wu=Wu+Wn as A0, therefore, W n — min, . g {L"Z"X o =X ||} :
nv 4

4.5 Simulation Results

The same simulation framework discussed in chapter 3 is used for this simulation. The
model was developed in C++. The run lengths for the simulation are very long to ensure

steady state results.

We compare the performance of the three heuristics for randomly generated networks

where the locations of nodes are generated uniformly in a unit square. Then, the relative
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positions of the nodes are maintained but their locations are uniformly scaled so that the
length of the optimal TSP tour on these nodes is equal to exactly six time (space) units.
The simulations are then run on twenty of these random networks and the values obtained

for the twenty (one million customer) runs are averaged.

In this case, the cyclic polling tour follows the optimal TSP tour across the customers.
The travel time in this case is proportional to distance. Figure 4.2 shows some examples
of these networks. The cyclic polling solution, which corresponds to following the a
priori generated TSP tour outperforms longest queue first for large values of p. Figure
4.3 presents those results. Of particular interest is the value of p after which cyclic
polling outperforms longest queue first. Figure 4.4 presents more detailed simulation
(smaller step size for p) for the region from p = 0.75 to 0.94. We can observe that cyclic

polling consistently outperforms longest queue first for p > 0.85.
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Figure 4.2. Randomly generated six node networks with length of optimal TSP tour of 6
units
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Figure 4.3. A Comparison of Three Heuristics when the Switching Costs are Proportional
to Distance (randomly generated 6 node networks)
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Figure 4.4. An examination of the point at which Cyclic Polling outperforms Longest
Queue First when travel time is proportional to Distance (randomly generated 6 node
networks)
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4.6 Conclusion

In this chapter we examine a very difficult problem, the dynamic traveling salesman
problem. We examine both a special case and the general case. For the special case we
examine the performance of a specific algorithm. For the general case we provide

bounds on the performance of the best on-line algorithms.

Psaraftis (1985) discusses some basic unanswered questions about the DTSP. We repeat
these here and then partially address each of these. (1) If the on-site service time is zero,
what is the best algorithm? (2) Under what circumstances is the myopic policy, which
optimizes over known demands only, best? (3) Does is make sense to let demands
accumulate before the vehicle departs?

We address question (1) for the special case of networks in which both the optimal TSP
tour and the minimum spanning tree contain only links of equal length. We show that
when the demand arrival rate is relatively high and when both the on-site service time
and its variance are very small and when the number of locations n is large, the cyclic
polling algorithm will be very close to optimal. That is, the server travels along the
optimal TSP tour and provides service to each node as it passes the node in its tour. This

is a direct result of corollary two.

We address question (2), in part by showing that for these graphs, when the arrival rate is
very low, a myopic algorithm is close to optimal. We show this by providing proof for
Psaraftis' conjecture that for the case of low demand, the best algorithm is to locate the

server on the median and to provide service by traveling from the median to the customer
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locations. The case of moderately heavy or moderately light traffic remains an open

question.

We address question (3) also in part. Though we do not prove conclusively that
algorithms obeying the continuous condition perform better than those which do not
(hence, allowing demands to accumulate), we do provide lower bounds on the waiting
time for service for both types of algorithms and show that the lower bound for
algorithms obeying this condition dominates the lower bound for those that do not.

Therefore, we conjecture that these perform better.

In a dynamic or on-line system, decisions are made over time, based on current
information. In a static or a priori system, decisions are made before demand is realized.
The fact that under certain condition(s) the a priori solution is optimal for the dynamic
problem provides another indication of the connection between the static and dynamic
solutions to dynamic or on-line problems. This connection has been mentioned by many

researchers during the last two decades.

We examine the performance of cyclic polling algorithm and the longest queue first
algorithm for a set of 20 randomly generated networks and found that when p is big

enough, the average performance of the cyclic polling algorithm is better than the longest

queue first algorithm.



CHAPTER 5 AN ASYMPTOTICALLY OPTIMAL ALGORITHM

FOR THE DYNAMIC TRAVELING REPAIRMAN PROBLEM

5.1 Introduction

The dynamic traveling repair problem (DTRP) is the following: m mobile servers are
positioned within a bounded region 4 in the Euclidean plane. The servers travel at a
fixed, constant speed vper time unit. Service requests arrive over time according to a
Poisson process with arrival rate 2. When requests arrive, they are distributed to the
bounded region A4 independently according to a uniform distribution. The server must
spend some time traveling to the customer locations and it must spend some time
providing on-site service. The on-site service time for each customer is independently

and identically distributed according to a probability distribution with mean 5 and
variance o?. The goal is to minimize the average waiting time of all customers. In this

chapter we examine this problem and address a conjecture about the asymptotic
optimality of a partitioning algorithm for sequencing service to customers made by earlier

researchers.

In a paper titled “Stochastic and Dynamic Vehicle Routing with General Demand and

Interarrival Time Distributions”, Bertsimas and van Ryzin (1993, p. 962) examined the

following GI/G/m service policy, which we refer as the BvR(n,k) algorithm:
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For a fixed integer k, the service area is partitioned arbitrarily into k areas of

equal size. Service requests are distributed uniformly over the whole area. When
n . - 4.
batches of T customer requests accumulate in a partition, these are deposited into

a queue in a first-come first-served manner as in a GI/G/m queue. In each
partition, customer requests are served according to the optimal TSP tour across

their locations.

We define the expected fraction of time the vehicle spends providing on-site service as

follows: p=A5/m. The researchers conjectured that there exists a function
g(k, p) which determines n, (n=g(k, p))such that as p—1 and k-, the
BvR(g(k,p),k) algorithm is asymptotically optimal. We refer to BvR(g(k.p).k) as

the optimal BvR(n,k)algorithm and use BvR(n,k) to denote it.

We consider a class of General Partition Algorithms which include the BvR(nk)

algorithms as sub-class and develop a lower bound on the average wait time under this
class of algorithms. We develop the lower bound for two different systems
configurations. In the first, the size of the partitions depends upon the number of
customers in the system. In the other, the partitions are fixed a priori. We refer to these
as small partition and fixed partition cases. We obtain exactly the same bound for

general partition algorithms applied to these systems. This lower bound matches the

upper bound on the average waiting time provided by BvR(n, k)' . Therefore, we show
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that BvR(n,k)‘ is optimal among algorithms in this class. Finally, we identify an
algorithm falling into this class whose asymptotic (heavy-traffic) performance is close to

optimal. Therefore, we also prove the asymptotic optimality of BvR(n,k)' .

5.2 Algorithms for Single Server Case

5.2.1 Definition and Notation

Bertsimas and van Ryzin showed that when p is less than one, there exists a function of
g(k, p)which determines n, (n=g(k,p))such that such that the BvR (g(k.p).k)

algorithm can satisfy all service requests. This implies that N, the expected number of

requests in queue is finite.

Assume for now that there is just a single server and that the service region is a unit

square. We number the demands according to the order in which they are served. Let 4,

be the distance traveled from (i—l)"' demand to i” demand. Let s, be the on-site

service time for demand i. The total service time includes the travel time — and the on-
v

site service time s,. If, for all times t, the number of waiting requests in the system is

bounded almost surely under a specific policy, we call this a stable policy. Using the

definitions and notation presented by Bertsimas and van Ryzin (1991, 1993), for a stable
policy, we let W, denote the waiting time for demand i. The waiting time is the time

between the arrival of demand i and the arrival of the server at the location of demand i.
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The steady state expected waiting time is defined as W =limE [W} ] , and the steady state
expected valve of d, is defined as d = limE[di] . The steady state expected number of

requests in the queue, is defined to be N =AW.

§5.2.2 Policies of Interest

Let W (x) be the expected waiting time for a randomly selected customer located at point
x. And, let W be the average waiting time under the algorithm of interest. We only

consider algorithms that satisfy the following condition: there exists @ and @, such that

0<gsW—(x)-sE 5.1
w

This is a technical requirement for our proof. If @ grows large and @ grows small,

constraint (5.1) becomes progressively less tight and the class of algorithms satisfying the

constraint increases.

Another requirement is that when the server finishes the service for a customer, it will go

to the next customer or go back to the depot.

This is also a technical requirement to ensure us to estimate the average waiting time over

the customers in a region based on the number of customers in that region.



5.2.3 General Partition Algorithms

We now define a class of algorithms for the single vehicle DTRP which we refer to as
General Partition Algorithms. These work as follows: using a grid, divide the area A4
into k partitions of equal size (Note that Bertsimas and van Ryzin used a sweep
algorithm rather than a grid. Any method to develop equal partitions will do. We use a

grid to facilitate the development of our proof ). A general partition algorithm will, for

each region, partition time into periods. Let ¢, ;denote the end of region i's j* period.

t,,is defined to be O for each region i. The server then serves the requests in a sequence

of visits. In each visit, the server selects a region to serve based on the accumulated

demand in each region. This is the only information considered in the sequencing
decision. In the j” visit to region i, the server will serve exactly those requests which
arrive in region i in the interval from ¢, through r, . The order in which the regions

are visited and the way that time is partitioned for each region will depend on the
particular partition algorithm applied. If the server travels across regions in which there
are no waiting customers, en route to a region in which there are waiting customers, we

say that the empty region has also been visited.
BvR(n,k)is a general partition algorithm in which a period ends for a region when %

new requests have accumulated in that region. The regions are visited in first-come-first-

serve order according to when each period ends.
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Note that it is not required that the current period for a region be completed when the
server arrives in that region. For example, the class of Exhaustive Partition Algorithms
will visit a region, will serve all waiting customers, and will also serve those customers
that arrive while service is being provided to waiting customers. Thus, the stopping

criterion for a period is when there are no outstanding requests in the region.

5.2.4 Properties of General Partition Algorithms
We will now show how a general partition algorithm gives rise to a distribution function
f which describes consecutive served requests are distributed over the area. Fix a

general partition algorithm and positive integers M and i. We are interested in the "

request through the (i+M -—l)"' request. However, for convenience, we would like to
focus on a sequence of requests which start and end at the boundaries of visits. Suppose

that the i” request is served in the middle of the [* visit. Let r, be the first request
served in visit /. (We use b for 'begin'). Now suppose that the (i+M —l)"' request is

served in the middle of the p” visit. Let r. be the last request served in visit p . (We use

e for end’). We will focus on requests #,,-,7. .

Suppose that requests r,,---,7, comprise g consecutive visits. Suppose that r distinct
regions are visited during these g visits. We call these R;,---,R; . Fix these ¢ visits, let
v,,,,++,V, be the first visit to region R,,---,R, and v,,,,+++,v, be the last visit to region

R .-+, R, belonging to these ¢ visits. Remembering that each visit consists of an arrival
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period and the each visit only clear the customers arrived during that period. For each
je{l,---,r}, Let ¢, be the beginning of v,. Let 1., be the end of v,. So
,.ena — !} 5egin 1S therefore the time interval associated with the Poisson arrival process for
region R, . Let Z; denote the number of requests served in region R; during the interval

U, pegin 10 Ui ong- Z; is exactly the number of requests that arrive in R, during the interval

t.

i begin 10 Ljng - We use IR') |to denote the area of partitionR, . Z; is therefore a Poisson

random variable with mean /llR,.' I(t Svend — 1 begin ) Since the partitions are of equal size,
|Rnli5 equal to -lk—, where k is the number of partitions. Thus, Z; is a Poisson random

A’ (tj.elnl - 'j.brgin )

variable with mean . Further, {Z )= l,---,r} are independent Poisson

random variables. The independence results from the fact that the regions are disjoint.

Next we generate a random permutation x,,---,x, of the set of consecutively served

requests 7,,--,7, where n is the number of requests. We observe the following: we have

r independent Poisson random variables, each representing the number of customers in

l('j.ml -‘Mexm)
p .

region R, , with mean Further, the locations of these requests are

1 xeR,

0 otherwise define an index function

uniformiy distributed in region R, . Let I, (x)={

over R, . The locations of the served requests, x,,--,X, , are a realization of i.i.d. random
J

variables with probability density function of the form
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flx)= SZ’;"’"’ ~tyon)l, ()
R,|

2t~ i egin)

Jj=l

(5.2)

5.2.5 The Small Partition Case
Let N represent the expected number of customers in queue. As before, let R be the
size of the partitions. For any fixed 6. and 6, we consider only those general partition

algorithms under which 6.2 NR 26, . Forany £>0,let M = N¢ and assume that M is

an integer. For a fixed general partition algorithm I", when the system is in steady-state,
for any randomly selected request i, we are interested in requests from request i through
the next M consecutively served requests. We expand the sequence of requests as

described in the previous sections so that this sequence begins and ends at the boundaries

of visits. Let O denote the random variable that indicates the number of requests in this

expanded sequence. Note that if the area of each partition is proportional to

(1-p)
this ensures that the probability that the number of request in a randomly selected region
is more than Ne is negligible. With very high probability, Ne<Q<3Ne¢, as p
approaches one. Let x,,X,,...,Xx, represent the locations of Q consecutively served
customers. Let the index represent the order in which service is performed. Now let
Y1sV2s-Y, be a random permutation of x,,%,.....%,,. Therefore, y,y,,...), are

distributed independently according to a distribution f;.(x) where f(x) is a piece-wise

(discontinuous) function. Let W (x) be the expected waiting time for a random selected
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customer i that is located at pointx. We present three propositions about f;(x) and

w(x).

Let W be the average waiting time for fixed algorithm I', we show that that the expected

waiting time for any M demands can be bounded by W'. This leads to a constraint (5.5)

on f;(x), the distribution of customer locations.

Proposition 5.1 If 8. 2 NR 26, , the expected waiting time for a customer located in X

: I of-(x) 1
W(x). Wh b W(x)2 - . 5.3
is W (x). When p is big enough # (x) YR (5.3)
s . : W(x) — :
Proposition 5.2 If we focus on policies under which 0 <@ < W <@, when p is
large enough , then f-(x) < 24——2— 5.4
£ &b,

Proposition 5.3 For any & >0, when time is sufficiently large, f (x) satisfies the following

(1+g)

constraint j 1 (x)dx < N (5.5)

Qo

1
1-24R, (5 +v2/v)

where o =



To obtain our lower bound for #, we analyze the average distance between consecutive

demands served. First, we obtain a lower bound for the distance traveled to serve all of
these selected M demands expressed in f; (x) which leads a lower bound on the average

distance traveled per customer served. This is shown in lemma 5.1. We obtain lemma 5.1

by generalizing the classical TSP result of Beardwood et al (1959) and applying a
smoothing technique to the distribution function f (x). Next, minimizing the lower bound

obtained under constraint (55) leads to our lower bound for the average distance traveled to
serve each customer (5.6.a). We use lemma 3 to obtain the lower bound (5.6.a). We then
provide a lower bound on the average waiting time for service (5.6.b) based on (5.6.a). For

the proof of theorem 51 and the related lemmas, please see section 5.5.

Lemma 5.1 Let d be the expected average distance traveled per demand served and let
N be the average number of customers awaiting service, R be the size of the partition

and O represent the number of consecutively served customers. We consider algorithms
for which for any £>0, we fix 6. and @, . For any general partition algorithms under
which 6,2NR>0,, for any £§>0 3p,, such that when p>p,,

Jod=(B-¢) L,/ fr(x)dx, where Bis the TSP constant defined by Beardwood et al

(1959).
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Lemma 5.2 Letting Z= min{z\/-;;A,} subject to ) x4 <1+& and D x4, =1,
i=l

i=l i=l

1
l+¢

Z2

g

Theorem 5.1 Let d be the expected distance traveled per demand served, N be the

expected number of customers awaiting service and R be the size of each partition. For
any fixed . and 8., for any general partition algorithm under which 6.2 NR 26,, the
following result holds:

lim, V2N d2p (5.6.2)

ABrA
22

lim,_,, {(1- p)’'W} 2 (5.6.b)

Note that when 8, is larger and 4, is smaller, the class of general partition algorithms

considered becomes broader. At some point, all general partition algorithms obey the

required conditions.

Finally, as p — | we find that if we want to minimize the average waiting time, under the

optimal algorithm among the class of algorithms considered, the distribution function
f(x) that describes the spatial distribution of M consecutively served customers will be

almost uniform in a small area and zero over all other areas. In fact, the lower bounds
(equations 5.6.a and 5.6.b) hold for a class of algorithms that satisfying the following

condition.
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For any &> 0, we consider M =N¢ consecutively served customers and let y,, y,,..., ¥y
be a random permutation of the locations. Consider algorithms under which y,,y,,..., ¥y,
are distributed independently according to a distribution f(x), where f(x) is required

to satisfy the following a — Lipschitz condition:

There exists @ such that | f(x)- f(¥)| < @]~ y|. where x| is the distance between

x and y. Note that a does not dependon p.

§5.2.6 The Fixed Partition Case

Up to this point, we have examined algorithms for which the number and size of the
partitions depends upon p. Now we consider algorithms for which the partitions are
pre-determined. We state the result for m servers case and the proof of theorem 5.2 is

also for m server case.

First use a grid to divide the unit square into fixed small partitions. Let A be the area of
each partition. When the server selects a partition to serve it will either finish all
customers waiting in the queue at the selected partition or finish all the customers

arriving during some arbitrarily selected period. We show that as A approaches zero, the

Ap 4 —, where m

average waiting time for service will be bounded from below by T—T—)
mv-(1- p)°

is the number of servers.
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Theorem 5.2 For any algorithm falling into the category mentioned above, when A is

2
small enough, lim, W(l-p)2 > 2;"? =. Note that this exactly matches equation
vim

(5.6.b), the bound for the small partition case.

5.2.7 An Asymptotically Optimal General Partition Algorithm
In this section we show the asymptotic optimality of a specific general partition

algorithm. Let P be the partition which divides the area into j*j squares and

OPT denote the optimal algorithm. For a specific arrival sequence, let o =#,n,
denote the order in which the requests are satisfied by OPT . Given a partition P of the
area, we will devise a General Partition Algorithm called 4, based on the behavior of

OPT . We take the sequence o and remove some of the requests to obtain another
sequence o as follows: Examine each 7, in tumn. Suppose that request 7, is located in
region R,. Suppose that at the time that r, is reached by OPT 's server, there are other

outstanding requests in R,. Remove these additional outstanding requests from & and
continue. The requests that were removed from o will be called extra requests. We

denote the sequence a'=r,.|,r,.z,.... The algorithm A4, will work as follows: for each
request 7, in o , visit region R", and satisfy r and any extra requests which are waiting
in R at the time OPT serves r, . In other words, the periods are chosen so that when

OPT serves arequest 7, from o , the current period for R, ends.
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J4

Proposition 5.4 (Bertsimas and van Ryzin, 1991) di>2—1X2 _ where y is a

VN+m/2

constant, y = 2 , m is the number of servers.
N2z

Proposition 5.5 For a fixed arrival rate 4, let d: denote the average distance traveled
per customer for the optimal algorithm. For any &, for the partition P, when jis large

enough, the average distance traveled per customer served for the algorithm defined
above is at most dx +J—;V.-, which implies the lower bound in theorem 1 applies-to the

optimal algorithm.

If we let di., be the average distance traveled per customer served, combining

propositions 5.4 and 5.5, we show that dip =d; +o(2:z )

5.2.8 The Optimality of BvR(n,k)‘ Among the General Partition Class

2
Lemma 5.3 (Bertsimas and van Ryzin) #" < 1'1,'6 A ; +0[ l 5 ,2}, where m is
2m*v* (1- p) (1-p)

the number of servers, p= s .
m
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Lemma 5.3 provides an upper bound for the average waiting time under
the BvR(n,k)' algorithm. Theorem 5.1 and proposition 5.5 provides a lower bound for the

optimal algorithm. As p —1 these bounds converge. Therefore, we show that under

high iraffic intensity, BvR(n,k). is asymptotically optimal among all algorithms.

5.3 The m-Server Case
Now we assume that instead of a single server that there are m mobile servers in the
Euclidean service region. The definition is for the #,,W, d,,d and N is similar as one

server case. If we only focus on the customers consecutively served by the same server,

we have the following theorem.

Theorem 5.3 Let d be the expected distance traveled per demand served, N be the

expected number of customers awaiting service and R be the size of each partition. For
any fixed 8. and 8, , for any general partition algorithm under which 8, > NR 26, ,the
following result holds:

lim_,v2N d2p

AptA

2V2

lim,_, {(1- o)’ W} 2 =

Now we define the following algorithm, which we refer to as BvR(n,k)-m,
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Divice the area into m sub-regions of equal size and assign each server to a single

sub-region, let each server works independently in their own assigned area

according to the BvR (n,k). .

In the similar way as what we have done for one server case, we can show that
BvR(n,k)-m is asymptotic optimal. Comparing the single server and multiple server

cases we find the following interesting result. If we the algorithm that is asymptotically

optimal for the single server case is also asymptotically optimal for m server case.

5.4 Proof of the Theorems

5.4.1 Proof of the Propositions and Lemmas

First, in section 5.4.1.1, we introduce a smoothing technique to prove lemma 5.1. In
section 5.4.1.2, we introduce the lemmas we need to prove lemma 5.1. We use lemma
5.1.1 and 5.1.2 to proof lemma 5.1. Using lemma 5.1.3 to proof lemma 5.1.1. In section
5.4.1.3, we provide the proof for the propositions and in the last section, we provide proof
for the lemmas. To prove lemma 5.1.1 and lemma 5.1.3, we borrow the method from the
classical paper by Beardwood et al (1959). To prove lemma 5.2, we rely on optimization

methods and algebraic techniques.
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5.4.1.1 The Smoothing Technique
To prove lemma 5.1, we require a smoothed version of f. A variety of smoothing

techniques will work. We choose one to make our discussion precise.

We select a parameter 7, for each area 4, on which f(x) is not zero, we define a new

area A which contains in the original one with the same center, the ratio of the

parameter of new area to the original one is 1-27.

First we define a g(x) basedon f(x) and 7: g(x)=—ffl—x)-[r]—d(x,z,)] when xe 4,.

We define f, (x) to be a smoothed version of f(x) as following: £, (x)= I_gf(:t))Tix
g(x
A

Note that as 7 gets small, f, approaches f in the limit. Furthermore. for any fixed
value of 77, we can find a constant & such that for any two points xand y in the area 4,

|1, (x)- £, ()| < alx-]

max {f(x)}

where [|x - y| is the Euclidean distance from x to y and & =—-—,’——.

Note that f; (x)is bounded and so after applying this smoothing technique, the smoothed

version of f; (x) will satisfy the @ — Lipschitz condition.
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5.4.1.2 Lemmas and Theorem BHM
Lemma 5.1.1 Let ,,.);,...sY,, be the iid. random variables with distribution
f,€Z,, where 2a={f|If(x)-f(y)lﬁa]]x-y“}- Let Ly (yl.y’yl_,“---yyn.u) be the

length of optimal TSP tour oVer y, ,,¥; s+ Y, ,» for any £>0, we can find N,, when

Lisp (Y10 Yor+ Vo) .
z \/;l- 2B ! £, (x)dx —¢, where Bis

n>N,, we have for any u, E

the TSP constant defined in Beardwood et al. (1959).

Lemma 5.1.2 Assume ,,...,),, are i.i.d. random variables with common distribution f
and z,,...,z,, are i.i.d. random variables with distribution f,. Let Ly, (»5---»yp) and
Ly (2---,2,;) be the length of the optimal TSP tour over y,...,y,, and z.....z,

respectively. For any & , when n is sufficient small and M is sufficient large, we have,

|E[L,s,, (yl,...,yM)-lm (215-+2 20 )]l <
M .

Lemma 5.1.3 Let {B,}'"* be a grid partition over A such that each B; has the same area.
Let f(x) be constant within B, and X|,X,,..X, be ii.d. random variables distributed

according to f(x). For any &>0, we can find N,(s,), when n> N, (&), we have

E[%(X‘:/{”"X")]Z ﬂf Jf(X)dX -¢&; holds forany f(x).
n A
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Theorem BHM: Assume that X,,X,,---, X, are i.i.d. random variables with distribution

f(x) and let L (X,,X,, -+, X,) be the length of TSP tour over X, X,,---, X

ne

: L (X,, X5, L. X,)
hmn_m{ T } = ﬂ! f(X)dX  as. (5.7

5.4.1.3 Proof of Propositions

Proof of propesition 5.1

We have O customers, the locations of these customers are i.i.d. random variables with
distribution f(x). We fix a region first, let it be R;, Assume f (x)=c, when xe R,.
Let n, be the number of customers located at R;. It is easy to know that the distribution

of n, is Binomial with parameter c, R,. Let W (x) be the expected waiting time for a

random selected customer located at x.

Assume from the moment that the server enters a region and begins to provide the service
and keeps working until there is no other customer in the current region, there are r
customers served totally. We estimate the average waiting time in the following way:

when the server finishes the last one, there are r customers in the region, the average
waiting time is bigger than —;— of the length of the total sum of (r—1) interarrival time

minus the length of the total stay period, which is less than the sum of r on site service

time and travel time (which is less than —2-) to provide service.
v
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We have,

W (x)=E[E[W,|n, =r]] ZE["‘ — —n{;+£ﬂ=M—Qf(x)Ri (§+ ‘5] =

2AR, v 2AR, v
1 - N2 1
Qf(I)[EI—R,- [S +§]]—-27R— .

Note that when p > 1, N >« implies R, >0 as p > 1.

For any NR such that zl?k,. (E»f[z-} and NR 28>0, we know, when p is big
\4

of(x) 1
44  24R

{4

enough, we have ¥ (x)2

Proof of proposition 5.2

From proposition 1, we know when p is big enough,

. . :fr(x)s4NW(x)+ N
2AR, W ~ 4N 2NR, WQ  2NRQ

2 1 W), o)

- W - -
If 9,2 NR 26, and 0<@ < é/x)StD,weknow fr(x).<_:4£+—2—.
£

Proof of proposition 5.3

First we try to give a lower bound on the expected total waiting time.
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Let Z denote the number of requests inR, . Let T, be the total waiting time for the
customers in R; . Let n; be the total number of customers served in R, .
Using the fact that the distribution of the Q requests is f(x), the distribution of these

random variables of Z,’s is given by the following muitinomial distribution:

P{Z =z, ..2, =z'}=1'_I(Q;)l;I(CI|Ri,D:/'

E[7,]=E[E[7,1n,]]2 E[%D—n, (n, _l)(§+_\/_—2_}j|=__Q(Q—l)ch,'

22

i+()=~1
Because E[W,]-—)W:E[i W,Cl—)W as i —>+w. So for any & >0, there exists

=i

=i

i+ —IW_
T >0, when ¢ >T, we have E[ﬁ —i:lslhsl.

2N(1+¢)

So when ¢ > T, we have the !frz(x)dx < 0o
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Proof of Proposition 5.5

The maximum diameter of a region under a given partition P; is —j_;, then each extra
J

22

request introduces a distance of at most —— to 4,. When ;> N, we know

Ji
22 1

\/.7 < N Thus, as the partitions become more fine, the additional distance
J

introduced by an extra request decreases. Furthermore, as the partitions become more
fine, the probability that any given request is an extra request also becomes smaller.
Using these two facts, we conclude that for any arrival rate 4, when j big enough, the
average distance traveled per customer served for the algorithm defined above is at most

— g
di+t——=.

N

5.4.1.4 Proof of Lemmas

Proof of lemma 5.1.1

Observation 5.1.There exists C, >0, such that sup .. L,/ f(x)ax<C,.

Forany f(x)eZ,,let f(y,)=min,, {f(x)}

Because Lf(x)dt:l,weknow: f(yo)D(A)SI:f(yo)sD—(lAj)za

max,, { f(x)} < f(3,)+aD(4) SF(IA—)HID(A), Where D(4) is the diameter of 4.
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Let [[4] be the area of 4 andC,=|4| \/3-(175+aD(A) , we have sup . LJ S (x)dx

<C,.

2
Observation 5.2. For any given 1>¢>0, let § =8—3, for any for any x and
a

y satisfying |x— y| <&, we have, I,/f(x) -,/f(y)' <g,.

The reason for it is as following: for any x,ysatisfying |x-y| <&, assume f(y)=r

and f(x)=r+¢& wherer 20, § 20, note that \/Z <&, we have,

7o -S| = l—2 ¢ .
l f(x)' f(y)'—l\/z‘—--l-E+\/; Smaxrzo{ﬁ*.\/;} \/2 S€3.

We divide 4 into grid partitions of identical size with diameter 3. As before, let B, be
the ;" partition in 4.

Let f(x)=min, . {f(»)}. xeB,.
From observation 5.2, we have observation 5.3.
Observation 53 [ f;(x)dx21-¢; and [NFs(x)axz | Jf(x)dx-&;.

We place ¥, into one of the two sets (€, ,) as follows:
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If £;(Y)=0, let ¥, e Q with probability one; otherwise, let ¥, e €, with probability

!

l—ﬁy"—)and Y € Q, with probability =1~ £ (1)

f(¥) f(x)

Let n, be the number of requests belonging to Q, and L, (£,) be the length of optimal

TSP tour over all the nodes belonging to €2, .

We can show that
() ——-)J‘j; x)dx as.as n—»>w.
(IT) The random variables in the set of Q, are i.i.d. random variables with the probability

density function of I—é&

[ £y (x)ax

Using lemma 5.1.3 and (II), we know that for any &,>0, there exists N,(&,), such that

when n,> N, (&,), the following holds,
ot
[ f(x

From (I), we know there exists n, >0, when n> n,, we have

N B -
P{ans(x)dx>l 53}>1 &.
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When n>max{no, l‘( )} we have

E[ﬁ”;\/(%ljlzﬂ(l—e'})L,/(l—sﬁj}(x)dx-e,2ﬂL,/j;(x)dx—2a3L,/f‘,(x)dx—s,

From observation 5.1, observation 5.3, we know

E{lﬂ—vg;@]zﬂLmdx—ﬂq—kﬁl —¢,.

Let &=¢,~26C, —¢,, because C, and S are constant and &,,¢, are arbitrary small

number, & is arbitrary. At last, we have

{2l

We finish the proof of lemma 5.1.1.

Proof of lemma 5.1.2

Step 1. We place Y, into one of the two sets (€2,,€2,) as follows:

2 (X;) : -
and Y, € Q, with probability

Iffn(Y;)sf(Y/) f(Y) 4

ALH)
)y’
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Step 2. Let 7= f(x)-1, (x))dx . Now we dispatch the elements in the set Q,

If (x)>£5(x) (

according to the

f(5)-1 ()

After these two steps, from y,,...,,,, We get z,...,z,,, Where z,...,z,, are iid.

random variables with distribution f,, .

Now we examine the number of elements in set ©Q,. Let n, be the number of requests
belonging to Q, and L, (Q,)be the length of optimal TSP tour over all the nodes

belonging to Q, .

To calculate the difference between E[Lm,, (2,.2,,...2,, )] and E[l,,,,.,,(Y,,Yz,...,)fw )],

we note the following fact,

O Lip (20 Zae-sZug) 2 Lip(€) a0d Ly (Vs Ky ) 2 L (€22).

(II) From lemma 2 in Karp and Steel (1985), we know there exists a tour whose length is

less than 2,/(M—n2) +2++/2 over M —n, nodes.

Combing these two facts together, we know
E[ Loy (Z0s Zyv--r 200 )]~ E Lrsp (o B )] E[Z,/(M—nz)+2+\/i]
<2,[E[M -n,]+2+2.
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It is easy to see that when 7 goes to zero, E[M - n, ] goes to zero too.

So for any &,, when 7 is sufficient small, M is big enough, we have

B Gt ) = o (23]
Vi )

Proof of lemma 5.1.3

We prove lemma 5.1.3 by induction based on the different values f(x) can hold.

First we assume that f(x) is equal to zero or any constant over all the B i.e.

flx)= Zc,l 5 (¥), I (x)= {:,Zhjff;,, and c, equals to zero or c.

Let m be the number of the partitions on which f(x) is c. The probability that any

demand falls into any specific partition on which f(x)=0 is L
m

Let L, be the length of optimal TSP subtour over all the demands belonging to the i"
piece of the partition on which f(x) is ¢. Let Ly, be the optimal TSP tour over all the

demands. Letx is the length of the circumference of the partition B;, For the optimal
TSP tour over all the nodes, we are interested in the points that lies in the optimal TSP
tour and the perimeter of the partition. For these points, we construct a tour through all
the points and select each. After these steps, for each partition, we have a connected

graph which each node has even degree. We know there exists one Euler tour that
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traverse all the links exactly once. Remembering that n, is the total number of partitions,

The length of this tour is less than L, +3n,x and is as least the same length of the

2 Ly, -

i

Finally, we obtain L, 2" Lig, —3n,x.

) X, X,,.X n,x
Now we try to estimate L '\/_2 "). Because %—)0 as n—» o, we focus on
n n

2. Lrs
N

To express the idea clearly, from now on, we focus only on the partitions that f (x) is c,

assume these partitions are B;, i €{1,2,---,m}.

Let r, be the number of nodes in B, let D, = {n,. > ﬁ—kl —'L} .
m m

Using Chebychev’s Inequality, P{D,} 21—%— (5.8)

1

By De Morgan’s rule, P{n,D;}=1-P{u,D}} ZI-Z[I- P{D}]

i
Finally, P{~,D,} 2 1-3 [1- P{D,}] 21-7:"7 —las k =(7"'l-)4 »® (5.9)

1
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Let |B| be the size of the area of any partition and |4|be the size of the whole area, we
use the result of Beardwood et al. (1959), please refer the (5.7) and combining with (5.8),

(5.9), for any &, >0, there exists n(&,)>0, when n, > n(&,), we have

P{QV\/",_—:>(,3-52)\/IE|}>1-82. (5.10)

P{[:/S;” >(,3_82)‘/|B|%}>1_£2 (5.11)

After some calculation, we know when n > max {l6m,m[n(zs2 )]4/3} , we have

n>= . kl\/E>n(ez). So when n>max{16m,m[n(sz)]m}, with at least P{n,D,}
m m

probability that all n, satisfies n, > n(¢,).

Because when n, > n(s,), we have ﬂ>l—-kl L (5.11)
n m nm

From (5.11), (5.12) and P(4B)2 P(4)+P(B)-1, we know,

(§2> (3-e) 2| 1o

i=l i=]

{’Z':' > (8- sz)m\/|3|(— : k\/;)}ﬂ_mz—l-%
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174
n
Because k, = (—) , o at last we have
m

{2['15P'>(,B sz)JmIBI{ ( )m}}>1-mgz—1-”j’;.
E[Tl"j'i;]z(l mez—l-—j%)(ﬂ &) \[m]Bl(l—(%)m].
Note that [ fdv=\[m|B], wehave .
[mer] (1-mgz-1-%)(ﬂ—ez)[Lﬁdx] Ll-(%)m].

il

3/2
m m
Because — -0, —0 and XX

. T J_aOasn»w Lm»ZZme ~3n,x and &, is

arbitrary, so for any &, >0, we can find N, (&;), when n> N, (&;), we have

E[["SP(X‘:/);(z"’X")]zﬂL\/—fT)(_)dx-es.

The above argument holds for any fixed m , when m goes from 1 to n,, we fix

n’ =max, n’(m), we know when n> n’, we have

E[Iﬂ'SP(XI:/IEZ""Xn)]ZﬂL ,f(X)dX‘6'3.
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The last step in this induction proof is to assume the lemma is true when f (x) has &

different values and to show that the lemma holds when f (x) have k +1 different values.

The proof is based on similar ideas and is rather tedious, so we omit the rest of proof

here.

Proof of lemma 5.1

We know that y,,),,...,¥,, are ii.d. random variables with distribution of £ (x). After

applying the smoothing technique, we know that the for any f(x)that satisfies the

do 2
dition of < —+
condition of f-(x) —+

£

+¢&, we can find common @ such that f,,(x), the

smoothing version of f(x)has the following two properties:

Property [: they satisfy the & Lipnizs condition;
Property II: Let z,,2,,+,z, be i.id. r.v.s with distribution of f, (x). From lemma 5.1.2,

we know forany &, >0, 3p,(&,)>0, when p> p,(s,), we have

ELiy (YoYi %) | Bl (222000%)
o T e :

From lemma 5.1.1 and property I, we know for any &, >0, 3p,, when p>max{p,p,},

Bl z\/—z 25o) > [ 7, ()e-e,

Because L,/f,, (x)dx 2(1—4q+4n2) L,/f,. (x)dx , and &,,&; are arbitrary,
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4o 2
SUp,. ) L,/j}(x)dxﬁ]Al %+-8-0—.

Using an argument similar to the one used in the proof of lemma 5.1.1, we can show that

for any £ >0, 3 p,, such that when p > p,, ,/de(ﬂ—sl)L fe(x)dx.

Proof of lemma 5.2

By adding some additional unbounded constraints we can show that the original problem

i=an

can be translated into the following problem: min {Z \/?, A,.'} subject to: Zx,.A,.' =1,

=l 1=1

i=n

Zx,zA,.' <l+& x,2g,Vi for some small number of &. The reason that the

1=l

constraints {x, > &} do not affect the solution of the problem when ¢, is small enough

im]

because these constraints are not bounded.

For this new problem, we use a standard optimization technique as follows:

i=n ian i=n

Let L(X,4,1,7) =i-z"\/}7A,.' +(AZX,A,.° -l]+p(l+e-2x,2A,')+Z}',(x, -g).

i=] i=l i=l =1

Considering the Kuhn-Tucker conditions we know that the optimal solution must satisfy

the following: oL =0 ,—ai =0 ,ﬂ'- =0, y,=0 Vi . Therefore, for the optimal solution

ox; oA ou

{

1 3
1 + 2Ax2 - 4ux2 = 0, Vi must hold.
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1 3
Considering the set of equations 1 + 24x,2 - 4ux2 = 0, Vi. From the theory of

algebraic equations, we know that one of the two cases listed below much apply.

Case One: The equations have the same nonnegative solution i.c. x, =x, forany i/, ;.

Case Two: There are at most two different position solutions.

Assume that the positive solutions are a and b respectively and that a<b. Let

Z = min{fJxTAf} subject to:

i=l

jan

inA,' =l'

i=l

i'znx,zA,-' <l+e¢

=l

x, €{a,b}

Z \/I;A,'} subject to

{iix,=b}

Z= min{ Y Jad’ +
{il;=a}

ad] + Y b4 =1

{ix, =a} {ix,=b}

a4+ Y b4 <l+e.
{itx, =a} {ilx, =b}

Soifwelet x= Z A,' and y = Z Ai',wehave,
{ilx,=a} fix =b}
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Z2 min{\/;x+\/3y} subject to:
ax+by=1
ax+b’y<l+e

a>0, b>0,b2a.

1

Therefore, Z 2 . This completes the proof of lemma 5.2.
Ji+e P P

5.4.2 Proof of the Smalil Partition Case
Proof of Theorem 5.1

From lemma 5.1, forany & >0, 3 p,, when p> p,,

)N fr(x)dx.

[572(8-) [ e = W=

AN(1+3c+¢)
Qo

b

From proposition 5.3, for the above fixed & >0, we have, I A (x)ax <
A

Where @ = ! >las pol.

1-2,1R(§+J5/v)

Using lemma 5.2, when p> g,

@ 1
mz(ﬂ—ﬂ),’m#ﬂ—ﬂ),zm-

1

Letting & —0, lim_, VNd > .
sng & =7 Mo A \2+39)
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Let £ > 0, we obtain (5.6.a): lim _,, V2Nd2p.

Now we show (5.6.b) based on (5.6.a).

Recall §+i is the actual average service time for each demand. In a stable system
v

A(§+§-J must be less than 1.
v

- B 1
We know that A{s+——+0
{ vW2N (JZN

)}<1 . Recalling that N = AW and that p = As, we

Ap*A

2v°

obtain, lim,,_, {(1- p)'W} 2

5.4.3 Proof of the Fixed Partition Case

Proof of theorem 5.3

We observe that in these systems, a server may arrive at a region, and provide continuous
service to customers until there are no customers in the region. We call this the initial
busy period. The server may then remain idle at the current region until a new customer
arrives. At that time it enters into what we refer to as a subsequent busy period. In

principle, a server may have many of these subsequent busy periods (later we show that

only poor algorithms will allow the server to remain idle). Let p represent the fraction
of customers that arrive during the initial busy periods and(1— p) represent the fraction

that arrive during the either the idle periods or the subsequent busy periods.
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Let Z, be the number of customers served during the initial busy period for region R;.
Define X, to be the number of customers served during the subsequent busy periods for

region R,. Let p; represent the fraction of customers served at region R, during the

initial busy period and (1~ p,) represent the fraction of customers served in region R,

during subsequent busy periods. At steady state we know that

E[X]_1-p L gryy-lop
Bzl pf’ E[X)] > E[Z].

From now on, we only consider the case in which p is relatively large ( p > i—).

Observation 5.4: (The constraints on E[Z,] and E[Z, + X,])

We show in the appendix that when we have at least two partitions (A < %), a necessary

condition for the system to be stable is p, > -;-

Wi(x) —
If we only consider the algorithms which satisfy the constraints that 0 <@ < é,r) <w,
we know that when p >3, E[Z,]Z—ng—Apl—:—l>i(gNA—l).
4 1-p,+p; 3

Let g(i)be the ratio of the average waiting time for partition R, to W. Z;+X, is the

total number of customer served during one visit to region R;.
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2g(i)NA

pi(l_pl).

E[X,+Z]<

Observation 5.5: (A Lower bound for the average distance traveled per customer served)

Given that the locations of demands in any given area is uniformly distributed, from

Beardwood, et al. (1959), we know, for any given & >0, there exists no(e) , such that

when n> ny(£),

E[%p(xﬁ.-,xn)}z soe.

If the demand is from region R,, The average travel distance per demand served is

E[tm(zﬁx,)}
(Z,+X,)

When Z,>no,weknowE[—LDi-(—?—+—Q|Z X] p-e

(Z,+X,) JZ+X,

Let &J—Z[

=n|Z, >no}] (Z,> A

A lower bound for the average distance traveled per customer served is

»(Z,+X;) L (Z,+ X,
R o amid
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From observation 5.4, we know E[X, +Z,]< 28()NA and E[Z ]2 %(ZQNA—I) .

14

From the definition of g(i), we know ) g(i)A=1.

Minimizing & under above constraints leads to lim _, V2Nd 2 \/ p(1-p)(B~¢).

Let £ - 0, we know limp_,,Ede\]p(l—p,)ﬂ. (5.13)

Observation 5.6: (the cost of remaining idle when the system is not empty)

Now we make the following observation: the average idle time per demand served during

each subsequent busy period(s) is bounded from below by -;—A(l - p,). This comes from

dividing the average interarrival time by the average number of customers served during

a single busy period in an M/G/1 queue. So the average extra-cost due to idle periods per
customer served for customers region R, is equal to ﬁ(l - p,)(1- p,;)and the average

extra-cost due to idle periods per overall demand served is bounded by

S (1-p) (- =E(1- ). (5.14)

From (5.13) and (5.14), we know that the average extra-cost due to switching and idling

isatleastﬂ—————“p(l_p')+o( : )*l;Tp(l—Pl)°

N WY
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Because our system is in steady-state, we have the following inequality,

il- BYp(l-p) 1), 1-
_\:s+—TzT—+o(—J2=N]+-Kp-(l—pl)j\<l.

m

2
Algebraic manipulation leads tolimp_’lW(l—p—m(l_p)S_p‘)) A’sz(l p,)
v'm?

AB8p(1-p)

2vzmz(1_p_m( -p)(1-p ))

We can show that when p =1, w(p)= - is minimized.

2 —
Finally, we know lim ,_, W (1- p) > i/-32—(212—p')—
vim

lﬂl

Because o, < A, when A is small enough, we have lim,,,, # (1- p)’ P
2v'm’

5.5 Conclusion

We construct a class of algorithms and demonstrate that BvR (n,k). is in this class and

that it is optimal among algorithms in this class. Then we show that an algorithm in this

class is asymptotically optimal. Therefore BvR(n,k)' is asymptotically optimal. If

BvR(n,k)‘ is asymptotically optimal for the single vehicle case, it is also asymptotically

optimal for the multiple vehicle case. Our results demonstrate the robustness of partition
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algorithms for routing and scheduling problems. These results mirror those developed

earlier for the traveling salesman problem (Karp, 1985).
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CHAPTER 6 CONCLUSION AND FUTURE RESERACH

6.1 Conclusion

Stochastic network optimization plays an important role in theoretical research and
application. Our research examines several key problems: the probabilistic traveling
salesman problem, the dynamic traveling salesman problem and the related M/G/1 queueing

system with switchover costs and, the dynamic traveling repairman problem.

For the PTSP, we developed a quasi-polynomial c—approximation algorithm.
Computational results suggest that solutions developed under our algorithm have the

structure of the optimal or near-optimal solutions. Further, we show that if there exists a
c, —approximation algorithm for the k- capacitated median problem, we can find a

¢, —approximation algorithm for PTSP. By reducing the PTSP to a well known
optimization problem, we know that any advancement in the development of solution

methods to that problem translate translated directly to the PTSP.

For the M/G/1 queueing model with switchover costs, we characterize the optimal algorithm.
By doing this, we identify a near optimal algorithm for problem instances with certain
characteristics. First, we develop a lower bound for the waiting time in these systems under
any arbitrary algorithm, including those that are optimal. Next we examine systems in which
service is provided according to a cyclic polling algorithm. We show that for the special case

where the switchover costs are identical and traffic intensity is high, the average waiting time
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of the cyclic polling algorithm is bounded by approximately 2 times the average waiting time

of optimal algorithm. We also show that for this special case that when p—1 and x (the

ratio of As® to the switching cost for a single switchover) is very small, then cyclic polling is
close to optimal. When p —1 and x and », the number of individual queues in our system,
are both very large, cyclic polling is also close to optimal. Under the special case of very low
demand intensity, cyclic polling performs poorly. For that case we provide an alternative
heuristic and a lower bound for the average waiting time of optimal algorithm. When

A - 0, our heuristic is approximately optimal.

As noted by earlier researchers (for example, Bertsimas and van Ryzin, 1991), dynamic
problems on a network are much more challenging than those on a metric space. Our
research provides analytical results for the DTSP on a network. First, we examine a special
case of networks in which in which the optimal TSP tour and the minimum spanning tree
across customer locations involve only links of equal length. For this special case, we show

that the average waiting time under the a priori cyclic polling algorithm is approximately

bounded by %:ﬂ times the average waiting time of the optimal algorithm. We also
=P

identify circumstances under which our bound is very tight. This implies that under certain

conditions, cyclic polling is close to optimal.
Next, we introduce a heuristic algorithm for the DTSP on a general graph. We provide a

lower bound on the waiting time for the optimal algorithm. We also identify an upper bound

for the average waiting time under the optimal algorithm. Finally, when the arrival rate is
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very low, we provide an alternative heuristic and show that it is approximately optimal as the
arrival rate approaches zero. We also present some simulation results for randomly
generated networks and demonstrate the robustness of the cyclic polling algorithm. By
examining the average performance over randomly generated networks, we find that when p
is sufficiently large, that cyclic polling algorithms perform better than the longest queue first
algorithm which is known to be optimal for networks in which the switching costs are

constant across nodes.

For the DTRP, we construct a class of algorithms and demonstrate that a partitioning based
algorithm is asymptotically optimal when the measure of traffic intensity, p, approaches
one. We also demonstrate that the asymptotically optimal algorithm for the single server
case can be easily extended to an asymptotically optimal algorithm for the m server case.
This is done by partitioning the service area into m sub-regions of equal size and assigning

one server to work independently in a single sub-region.

6.2 Future Research

For the PTSP, we need explore the performance of the proposed class of heuristic algorithms
using simulation based analysis. In addition, we need further investigate the related
k — capacitated median problem. Any advancement on the k - capacitated median problem

can be translated directly to the PTSP.
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For the M/G/1 with switchover costs, we would like to generalize our result to include more
general cases involving different arrival processes at nodes and node dependent switchover
costs.

For the DTSP, we make the following observation for the more general case in which there
exist i and jfor which 4, is not equal to 4,. One possibility is the following algorithm:
Use a clustering algorithm to identify a partition such that each piece of the partition holds
approximately the same expected demand; second, select the center of each partition as a
representative; third, obtain an a priori tour over the representatives; finally, travel according
to the a priori tour, providing service to each group according to a TSP tour over that group.
We conjecture that if implemented correctly, this algorithm should have very good

performance.

For the DTRP, further research should consider the situation in which customer locations are

generated according to a general probability distribution function instead of uniform

distribution.
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