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Abstract

One of the most fundamental and striking limitations of hu-
man cognitive function is the constraint on the number of
control-dependent processes that can be executed simultane-
ously. However, the sources of this capacity constraint re-
main largely unexplored. Previous work has attributed the con-
straints on control-dependent processing to the sharing of rep-
resentations between tasks in neural systems. Here, we exam-
ine how shared representations interact with two other factors
in producing constraints on control-dependent processing. We
first demonstrate that the detrimental effects of shared repre-
sentations on multitasking performance are contingent on the
amount of conflict that is induced by the tasks that share rep-
resentations. We then examine how the persistence of shared
representations between tasks affects processing interference
during serial task execution. Finally, we discuss how this set of
mechanisms can account for various phenomena in neural ar-
chitectures, including the psychological refractory period, task
switch costs, as well as constraints on cognitive control.

Keywords: cognitive control; capacity constraint; dual-
tasking; psychological refractory period; neural networks

Introduction

Despite the powerful abilities that cognitive control affords,
and its ubiquitous engagement in daily life (e.g., mentally
planning a grocery list, or navigating a new route to work),
the capacity for controlled processing appears to be strikingly
limited (e.g., the inability to plan and navigate at once). This
limitation has been literally paradigmatic in defining cogni-
tive control: it has been used to distinguish it from automatic
processing (Posner & Snyder, 1975; Shiffrin & Schneider,
1977), and is used universally to operationalize it in the lab-
oratory (i.e., diagnose it experimentally) in the form of dual
task interference (Meyer & Kieras, 1997a; Welford, 1952).
A widely accepted view is that constraints in the capacity
for control-dependent processing arise from structural limita-
tions inherent to the control system itself. One of the earliest,
and still most influential views, is that cognitive control relies
on a centralized, limited capacity mechanism that imposes
a seriality constraint on processing (Posner & Snyder, 1975;
Shiffrin & Schneider, 1977). However, alternative (“multiple-
resource’”) accounts (Allport, 1980; Meyer & Kieras, 1997a;
Navon & Gopher, 1979; Salvucci & Taatgen, 2008) have
suggested that the capacity constraints reflect properties of
the processes that are being controlled. This proposes that
control-demanding tasks, like any others, rely on a constel-
lation of “local” resources; that is, task-specific representa-
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tions, and that the inability to perform more than one task
at a time may reflect the conflict that arises when the tasks
involved demand that the same set of representations be used
for different purposes, rather than reliance on a single central-
ized control mechanism. From this perspective, the very pur-
pose of cognitive control is to prevent interference by limiting
the number of task processes that make use of shared repre-
sentations (Cohen, Dunbar, & McClelland, 1990; Botvinick,
Braver, Barch, Carter, & Cohen, 2001).

One may argue that the constraints that shared represen-
tations between tasks impose on multitasking are negligibly
small in a processing system as large as the human brain.
However, simulation studies (Feng, Schwemmer, Gershman,
& Cohen, 2014), followed by analytic work (Musslick et al.,
2016) have studied the multitasking capability of two-layer
neural networks as a function of the sharing of representa-
tions among tasks and found that the multitasking capability
of a network drops precipitously with an increase in shared
representations, and is virtually invariant to network size.
Moreover, neural architectures appear subject to a tradeoff
between learning efficiency and generalization that is pro-
moted through the use of shared task representations, on the
one hand, and processing efficiency and multitasking capa-
bility that is achieved through the separation of task represen-
tations, on the other hand (Musslick et al., 2017). This sug-
gests that limitations in multitasking may reflect a preference
of the neural system to learn tasks more quickly (Musslick et
al., 2017; Sagiv, Musslick, Niv, & Cohen, 2018).

The studies above were based on the assumption that
shared representations between tasks always cause interfer-
ence. However, the amount of processing interference re-
ceived by a single task has been shown to depend on the pro-
cessing strength (automaticity) of the interfering task (Cohen
et al., 1990; MacLeod & Dunbar, 1988). Another assumption
made by these neural network studies is that multitasking can
only be achieved by processing tasks concurrently. However,
this assumption does not capture processing interference ob-
served in the sequential execution of multiple tasks (Pashler,
1984; Welford, 1952), task switching effects (Alport, Styles,
& Hsieh, 1994), nor multitasking behavior along a continuum
from pure parallelism, through rapid task switching, to pure
sequential processing (Salvucci, Taatgen, & Borst, 2009) .

In this work, we examine the interactive effect of (a) shared
representations between tasks, (b) the conflict induced by



shared representations and (c) the persistence of representa-
tions on the constraints on control-dependent processing in
two-layered, feed-forward, non-linear networks. Our findings
suggest that the detrimental effect of shared representations
on multitasking interference is only present if the tasks that
share representations induce a sufficient amount of conflict
between each other, and that persistence of those representa-
tions can lead to delays in the serial execution of two tasks.
Finally, we discuss how this set of mechanisms may provide
a unifying account of various cognitive phenomena in neural
architectures, including the psychological refractory period,
task switch costs, as well as constraints on cognitive control.

Neural Network Model

For the simulations described in the paper we focus on a net-
work architecture that has been used to simulate a wide array
of empirical findings concerning human performance (e.g.
Cohen et al., 1990; Gilbert & Shallice, 2002), including limi-
tations in multitasking (Musslick et al., 2016). In this section
we lay out the architecture of this network, its processing, as
well as the task environments used to train it.

Network Architecture and Processing

The network consisted of the following layers (Figure 1): an
input layer with two partitions, one of which represented the
current stimulus (nine units) and projected to an associative
layer, and another that encoded the current task (five units)
and projected to both the associative and output layers; an as-
sociative layer (100 units) that projected to the output layer;
and an output layer (nine units) that represented the network’s
response. Input units were grouped by the stimulus dimen-
sions relevant to performing each task (three units per dimen-
sion), and used a one-hot encoding (i.e., a single unit in a
stimulus dimension was used to represent the current stim-
ulus feature; the current stimulus feature was clamped to 1
and all others were clamped to 0). The task input units used
a similar one-hot encoding, with one unit used to represent
each task. Output units were grouped by response dimen-
sions, and trained (see below) using a one-hot encoding for
each response within a dimension. Each response dimension
of the output layer projected to a leaky competitive accumu-
lator (LCA, Usher & McClelland, 2001) layer (described be-
low), which determined the response for that dimension.

The network was instructed to perform a given task by
specifying the current stimulus and task to be performed in
the input layer. These stimulus and task input values were
multiplied by a matrix of connection weights from each par-
tition of the input layer to a shared associative layer, and then
passed through a logistic function to determine the pattern
of activity over the units in the associative layer. This pat-
tern was then used (together with the set of direct projections
from the task layer) to determine the pattern of activity over
the output layer.

The final response within a given response dimension of
the network was determined by an LCA (Usher & McClel-
land, 2001) layer, implementing the assumption that the net-
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Figure 1: Feedforward neural network used in simulations.
The input layer is composed of stimulus vector %/ and task
vector x;. The activity of each element in the associative
layer yj, € )72 is determined by all elements x; and x;, and their
respective weights wy; and wy, to yy,. Similarly, the activity of
each output unit y, € )73 is determined by all elements y; and
x;, and their respective weights w,;, and w, to y,. A bias of
0 = —2 is added to the net input of all units y;, and y,. Blue
shades in the input and output units (circles) correspond to
unit values of 1 and illustrate an example input pattern with
its respective output pattern: The second task requires the net-
work to map the vector of values in the first three feature units
to one out of three output units (white shade).

work could only provide one response per dimension (e.g.
the network cannot say RED and GREEN at the same time).
One LCA layer was assigned to each response dimension k,
which was comprised of a set of units 7; that received as their
input the activity of corresponding units in that response di-
mension. The winning response was determined by the accu-
mulation of activity by each LCA unit, and the competition
among them, the dynamics of which were given by

dr,-_[y(,—7nri+0€f(”i)_Bzf<rj)]cﬂi|:t+§i\/% M
J#i

where y, is the activity of the corresponding response unit
in response dimension k, A is the decay rate of r;, o is the
recurrent excitation weight of r;, B is the inhibition weight
between LCA units, T is the rate constant, and & is noise
sampled from a Gaussian distribution with zero mean and
standard deviation 6. The activity of each LCA response
unit was lower bounded by zero via a threshold such that
f(ri) =r; for r; > 0 and f(r;) = 0 for r < 0. The response
for response dimension k£ was determined by the unit within
the corresponding LCA layer, the activity f(r;) of which first
reached threshold z. The accuracy for each response dimen-
sion k corresponded to the probability of generating the cor-
rect response for that dimension P(correct); across 100 sim-
ulations of the LCA, and the reaction time (RT) for that di-
mension was the average number of time steps required for
the response to reach threshold, scaled by a factor of 0.1. The
following parameter values were used for all reported simula-
tions: A=0.4,0=0.2,3=0.2,6=0.1, and 7 for each LCA
layer was chosen as the threshold that maximizes reward rate
(P(correct);/(ITI+ RTy)) for that dimension, where ITI cor-
responds to an inter-trial interval of 1s.



Task Environment

Stimulus input units are structured according to stimulus di-
mensions (subvectors of the stimulus pattern), each of which
was comprised of three feature units with only one feature
unit activated per dimension. A task was defined as a map-
ping from the three stimulus features of a task-relevant stimu-
lus dimension to three output units of a task-specific response
dimension, so that only one of the three relevant output units
was permitted to be active (see Fig. 1). For each simulation
we considered the tasks A-E shown in Figure 2. Tasks A, B
and C each map a different stimulus dimension to a differ-
ent response dimension. Task D shares a stimulus dimension
with Task A and shares a response dimension with Task B.
Conversely, Task E shares a stimulus dimension with Task B
and shares a response dimension with Task A.

Networks were initialized with a set of small random
weights and then trained using the backpropagation algo-
rithm (Rumelhart, Hinton, & Williams, 1986) to produce the
task-specified response for each stimulus in each task, while
suppressing all other responses (both within the task-relevant
output dimension, and all task-irrelevant output dimensions).
The network was trained in epochs, with each epoch contain-
ing all training patterns in random order. The error term used
for training was the mean squared error (MSE) of the pat-
tern of activities in the output layer with respect to the correct
(task-determined) output pattern. The weights of the network
were adjusted with a learning rate of 0.3 after presenting each
training pattern within an epoch (online training) until the net-
work reached an MSE of 0.001.

Shared Representation and Conflict

Multitasking limitations have been attributed to shared repre-
sentations between tasks as they engender interference. How-
ever, the amount of interference introduced by shared rep-
resentation is known to depend on how much conflict they
transmit (Cohen et al., 1990; MacLeod & Dunbar, 1988). To
illustrate this, consider the simultaneous execution of Tasks
A and B depicted in Figure 2. The network can execute a
task by limiting processing to the representations involved
for that task. For instance, the network can execute Task A
by allocating control to the representation that encodes the
task-relevant stimulus features for Task A in the associative
layer and to the task-relevant response units for Task A in the
output layer. Executing Tasks A & B simultaneously would
require allocating control to the representations for both tasks
in both layers. However, allocating control to Task A would
engage Task D if the two tasks share a representation at the
associative layer. Once Task D is engaged, it interferes with
Task B at the output layer. Similarly, allocating control to
a shared associative representation between Tasks B and E
would introduce interference with Task A. Shared represen-
tations between Tasks A and D, as well as between Tasks B
and E therefore introduce a functional dependence between
Tasks A and B (Figure 2; Musslick et al., 2016). In contrast,
no such interference is expected when the network performs
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Tasks A & C at the same time.
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Figure 2: Illustration of dependencies between tasks. (1)
Tasks A & B are considered functionally dependent due to
shared representations with Tasks D and E, whereas (2) Tasks
A & C are considered independent (see text).

In the example above, the amount of conflict introduced
by Tasks D and E should decrease if the processing strength
of both tasks is weak compared to the processing strength
of Tasks A and B. Previous studies have demonstrated that
extensive training on a task increases its processing strength
which can induce greater conflict with other tasks (Cohen
et al.,, 1990; MacLeod & Dunbar, 1988). This suggests a
dilemma: While training on Tasks D and E should improve
performance for each individual task, it should also lead to
greater interference when dual-tasking seemingly unrelated
Tasks A & B. However, dual-tasking performance for the two
independent Tasks A & C should be unaffected. Here, we in-
vestigated the tradeoff between improvements in single task
performance for Tasks D and E, on the one hand, and im-
pairments in dual-task performance for Tasks A & B, as well
as Tasks A & C, on the other hand, by varying the amount
of training that a network receives for Tasks D and E. We
were particularly interested in the amount of training that is
required to cause impairments in dual-tasking performance.

We started by initializing 20 networks per training condi-
tion. In each condition, we sampled 100 patterns for each of
the three Tasks A, B and C per training epoch. However, we
varied the number of sampled training patterns for Tasks D
and E from 0 (0% task strength) to 150 (150% task strength)
across conditions. We then trained every network until it
reached performance criterion for Tasks A, B and C. After
training, we evaluated whether the network learned shared
representations between Tasks A and D, and Tasks B and E
in the associative layer of the network. In order to assess the
similarity of learned task representations we focus our analy-
sis on the weights from the task units to the associative layer,
insofar as these reflect the computations carried out by the
network required to perform each task. For a given pair of
tasks we compute the learned representational similarity be-
tween them as the Pearson correlation of their weight vectors
to the associative layer. Finally, we assessed the multitasking
accuracy for performing Tasks A & B and the multitasking
accuracy for performing Tasks A & C, as well as the single
task accuracies of Task D and Task E.

Figure 3.1 shows the correlation between learned task rep-
resentations in the associative layer of the network, averaged
across all networks. As expected, Task A developed a shared
representation with Task D in the associative layer since both
tasks rely on the same set of stimulus features, as is the case
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Figure 3: Effects of shared representation and conflict. (1)
Average correlations between learned task representations in
the associative layer. (2) Multitasking performance for Tasks
A & B and Tasks A & C as a function of training on Tasks D
and E. Error bars show the standard error of the mean across
20 simulated networks.

for Tasks B and E. Critically, dual-tasking performance for
Tasks A & B decreased with the amount of training on Task
D and Task E while dual-tasking performance for Tasks A &
C was virtually unaffected by the training condition. Even
small amounts of training on Tasks D & E (30%) improve
performance on these tasks at the expense of impaired multi-
tasking performance of Tasks A & B. Altogether, these results
suggest that shared representations alone do not impose con-
straints on control-dependent processing, but they do so in
combination with conflict.

Shared Representation and Persistence

In the network model described above, limitations in multi-
tasking can be circumvented by executing the individual tasks
in series. However, a large body of evidence suggests that
humans are subject to dual-task interference, even if they ex-
ecute two tasks one after another (Welford, 1952). To illus-
trate this, consider the serial execution of two tasks in the
psychological response period (PRP) paradigm (Figure 4). A
trial in this paradigm begins with the presentation of a stim-
ulus relevant to the first task, followed by a stimulus for the
second task. The time between the onset of the first and sec-
ond stimuli is referred to as stimulus onset asynchrony (SOA)
and serves as an independent variable. Participants tend to re-
spond slower to the second stimulus when the SOA is reduced
(Welford, 1952). The additional amount of time that it takes
to respond to the second task in the presence of a short SOA
is referred to as the PRP and serves as the dependent variable.

Symbolic architectures explain the PRP effect in terms of
processing bottlenecks that delay execution of the second task
while the first task is still being executed (Meyer & Kieras,
1997a; Navon & Gopher, 1979; Salvucci & Taatgen, 2008;
Pashler, 1994). While some accounts, such as the EPIC
model (Meyer & Kieras, 1997a, 1997b) or the ACT-R/PM
model (Byrne & Anderson, 2001) attribute the PRP partly to
structural limitations in perceptual processing or motor exe-
cution, other accounts claim that the bottleneck is located at
a “central” processing stage for response selection (Pashler,
1994) that is preceded by sensory processes and followed by
processes for motor execution. However, to date, there is no
account of this effect in neural network architectures. For in-
stance, in the feed-forward model considered above, tasks can
either be executed concurrently, with the risk of multitasking
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interference, or in serial, without any risk of interference.

Task 1 S""‘l"'us Processing Task 1 Res"l""se
Stimulus N Response|
Task 2 [*— SOA 2 PRP Processing Task 2 2

Reaction Time
for Task 1

Reaction Time
for Task 2

Figure 4: Psychological refractory period paradigm.

A crucial computational feature of neural systems is the in-
tegration of information over time, through persisting patterns
of activity. Persistence characteristics can account for se-
quential processing of stimuli (Elman, 1990), working mem-
ory (Miyake & Shah, 1999), reconfiguration costs associated
with switching tasks (Gilbert & Shallice, 2002) and many
other cognitive phenomena. Persistence may also provide a
mechanism for how the detrimental effects of shared repre-
sentation on dual-task interference extend to the sequential
execution of two tasks: the more a shared representation of
a previously executed task persists in time, the more it may
interfere with a subsequent task.

Here, we examine how shared representations interact with
the persistence of activity in producing the PRP effect. To ex-
amine the PRP effect as a function of both, we first trained 10
networks on Tasks A-E until each network reached the perfor-
mance criterion across all tasks. After training, we introduced
persistence! in the computation of the net input of a unit 7 in
the associative and output layers,

net! = (1—p)-net’ +p-net;’ ', )

where nez;’ ! corresponds to the time averaged net input
from the previous time step, net! corresponds to the instan-
taneous net input and p determines how much the time av-
eraged net input of the current time step nTet,-T depends on the
time averaged net input from the previous time step. Thus, the
higher p, the longer activity persists over time. For each net-
work, we considered different values for p € {0,0.5,0.8,0.9}.

We then simulated the PRP paradigm for two pairs of tasks,
A & B, as well as A & C. As demonstrated in the previous
section, Tasks A & B are functionally dependent and inter-
fere with each other when executed simultaneously whereas
Tasks A & C are independent and interfere less. In both cases,
the network was instructed to perform Task A second. Thus,
we first presented the network with a feature from the stim-
ulus dimension relevant to Task B or Task C, by activating
the corresponding unit in the input layer and by keeping all
other input units inactivated. After a number of time steps
(determined by the SOA), we presented the network with a
feature from the stimulus dimension relevant to the second
task (Task A), by activating a unit in the input dimension rel-
evant to that task while the stimulus feature for the first task

'Note that persistence in neural networks is typically imple-
mented in the form of recurrent connections between the processing
units. Here, we chose, for simplicity, to implement persistence by
explicitly integrating processed information over time.



(Task B or Task C) was still present. PRP studies commonly
instruct participants to give priority to the first task (Koch,
Poljac, Miiller, & Kiesel, 2018). We therefore activated the
task layer unit for the first task at the beginning of each trial®
and then determined the optimal onset of the task layer unit
for the second task such that the joint reward rate for both
tasks is maximized,

P (CorreCt)ﬁrst task P (COI‘I’CCt) second task

Reward Rate =
(ITI + RTtolal)

3

where P(correct)first task, P(COITect)second task correspond to
the accuracies of the first and the second task, respectively,
ITI corresponds to an inter-trial interval of 1s , and RT;4 is
the reaction time of the last executed task, measured from the
onset of the trial. We then assessed RTs for the first (Task B
or Task C) and the second task (Task A) as a function of SOA,
by varying the SOA from Is to 8s in steps of 1s. Finally, we
repeated the same analysis for 10 networks that were trained,
within each epoch, on 100 patterns of dual-tasking Tasks A
& B, as well as 100 patterns for dual-tasking Tasks A & C,
in addition to being trained to perform all single tasks as de-
scribed above. As in the previous section, we also assessed
learned representational similarity between tasks as the Pear-
son correlation of their weight vectors to the associative layer.
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Figure 5: RTs of (1) the first and (2) the second task in the
PRP paradigm as a function of persistence p and task. Error
bars show the standard error of the mean across 10 simulated
networks trained only on single tasks.

Simulation results indicate that higher persistence prolongs
the reaction time for both the first and the second task (Figure
5). Moreover, the model replicates the PRP effect, showing
a delay of the second task as a function of SOA (Figure 5.2).
The delay in RT is overall higher after executing Task B com-
pared to Task C, indicating that Task B interferes more with
the subsequently executed Task A. This observation matches
simulation results from the previous section, indicating that
shared representations between Tasks A & D, as well as Tasks
B & E lead to processing interference. However, shorter
SOAs still affected RT's for Task A after executing Task C, in-
dicating that there is processing interference between Tasks A
& C that is not captured by shared representations in the asso-
ciative layer alone. Interestingly, higher persistence amplifies
the RT difference between Task A followed by a functionally
dependent task and Task A followed by an independent task.
In line with prior observations (Marill, 1957; Pashler, 1994),

ZWe assumed that the task layer unit for the first task becomes
deactivated as soon as the model responded to the first stimulus.
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the RT of the first task remained unaffected by the SOA, irre-
spective of whether the first task was functionally dependent
or independent of the second task. This observation reflects
the embedded strategy of the model to first execute the task
associated with the first stimulus. Finally, we observed that
dual-task training reduces the amount of shared representa-
tion between tasks that rely on a common stimulus dimension
(Tasks A and D, as well as Tasks B and E; see Figure 6.1),
compared to training the network on single tasks only (cf.
Figure 3.1). In addition, training on both dual-task conditions
yielded significant reductions in the PRP effect despite high
levels of persistence (Figure 6.2). For intermediate levels of
persistence (p < 0.5), dual-task training eliminated the PRP
entirely. Such “virtually perfect time sharing” has been ob-
served by Schumacher et al. (2001) after training participants
extensively on dual-tasking.

1 Learned Task Similarity in Aséoclallve 2 Task 2
Layer after Dual-Task Training
3 B Task B, p =09
A g 0.6 ,
g 08 QE) w TaskB,p=0.8
B £ F < Task B, p = 0.5
2 SMos g5 x04 Task B,p=0
g° S =3 —F—TaskC,p=0.9
[ S C =
21004 8T ool T Sl | —T-TaskC,p=08
D 5 D5
g 02 o e Task G, p=0.5
E S 0 \ TaskC,p=0
A B C D E 0 2 4 6 8
Tasks SOA (s)

Figure 6: Effects of dual-task training. (1) Average correla-
tions between learned task representations in the associative
layer. (2) RT of the second task in the PRP paradigm as a
function of persistence p and task. Error bars show the stan-
dard error of the mean across 10 simulated networks.

General Discussion and Conclusion

One of the most fundamental limitations of human cognitive
behavior is the constraint on the number of control-dependent
processes that can be executed simultaneously (Posner &
Snyder, 1975; Shiffrin & Schneider, 1977). The multiple-
resource hypothesis explains such limitations in terms of
shared representations that prevent the interference-free ex-
ecution of multiple control-demanding tasks (Allport, 1980;
Navon & Gopher, 1979). While recent neural network studies
provided computational and analytic arguments for the detri-
mental effects of shared representations on the capacity for
control-dependent processing, they were either based on the
assumption that shared representations always induce conflict
or that tasks can only be executed concurrently (Alon et al.,
2017; Feng et al., 2014; Musslick et al., 2016).

In this work, we examined the interactive effect of shared
representations and two other factors on limitations associ-
ated with control-dependent processing. We first demon-
strated that the detrimental effect of shared representations
on multitasking interference is present only if the tasks that
share representations induce a sufficient amount of conflict.
This observation extends previous work, showing that perfor-
mance of single tasks decreases with the amount of conflict
induced by a competing task (Cohen et al., 1990; MacLeod
& Dunbar, 1988). In both cases, the conflict induced by the
competing task scales with the amount of training on that



task. This suggests that training on a task can improve its
performance but may come at the cost of inducing interfer-
ence with another task that shares a representation.

We also demonstrated that the limitations induced by
shared representations can extend to situations in which tasks
are executed sequentially. The detrimental effect of shared
representation scales with the amount of persistence in the
network: the more the representation of a task persists in
time, the longer it interferes with other tasks. These obser-
vations provide a mechanistic interpretation of the psycho-
logical refractory period in neural systems. Symbolic archi-
tectures explain this effect in terms of a shared resource that
can only be accessed by one task at a time (Anderson, 2013;
Navon & Gopher, 1979; Meyer & Kieras, 1997a; Salvucci &
Taatgen, 2008). In contrast, the neural network model sug-
gests that tasks may always be processed in parallel but that
the outcome of a task process may be strategically delayed to
prevent interference from persisting representations of previ-
ously executed tasks, yielding a PRP.

The neural network model may also have virtue in explain-
ing findings that central processing bottleneck models strug-
gled to explain. For instance, the second task in the PRP
paradigm can be prolonged (relative to single task execution)
even if the stimulus for the second task was presented after
the participant already responded to the first task (Welford,
1952; Marill, 1957). A central processing bottleneck alone
cannot account for a delayed execution of the second task
in this situation because a bottleneck should no longer be
occupied after executing the first task (Pashler, 1994). The
neural network model, however, shows that processing in-
terference induced by shared representation with a previ-
ously executed task can persist, irrespective of whether a re-
sponse for that task has already been generated. Furthermore,
modality-specific PRP effects have challenged the notion of a
domain-general (amodal) central processing bottleneck: Pairs
of tasks with compatible stimulus-response mappings (e.g. a
visual-manual task paired with an auditory-vocal task) show
greater dual-task interference than two tasks with incompat-
ible stimulus-response mappings (a visual-vocal task paired
with an auditory-manual task), lending support to cross-talk
models that explain dual-task interference in terms of repre-
sentational overlap between tasks (Liepelt, Fischer, Frensch,
& Schubert, 2011; Hazeltine, Ruthruff, & Remington, 2006).
Similarly, our simulation results suggest that functional de-
pendence between tasks induced by representational overlap
can lead to higher dual-task interference. Finally, empirical
work demonstrated that the PRP can be eliminated with dual-
tasking practice, suggesting absence of a central processing
bottleneck. (Schumacher et al., 2001). The simulation results
presented here suggest that dual-task training may promote
the learning of separated, task-dedicated representations that
promote interference-free processing.

One of the most robust findings in the cognitive literature
is the performance cost associated with the sequential execu-
tion of different tasks (Alport et al., 1994). One prominent
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account of such switch costs is task-set inertia, according to
which the task-set of the previously executed task carries over
to the next (Alport et al., 1994). Similarly, the findings de-
scribed here suggest that persistence of task representations
lead to a carry over of task interference. The successful se-
quential execution of two dependent tasks would then afford a
temporal switch cost in order to minimize interference-based
costs in dual-tasking accuracy. From this perspective, the de-
pendence between tasks induced by shared representation, the
amount of conflict, as well as persistence of task representa-
tions may all contribute to the performance costs associated
with task switches. This suggests that the PRP effect and the
costs associated with task switching may originate from the
same set of mechanisms in neural systems.

While shared representations may account for limitations
in the number of control-demanding tasks that can be exe-
cuted at a time, they do not directly explain limitations in
the amount of control that can be allocated to a single task
(Shenhav et al.,, 2017). That is, once a commitment has
been made to perform a given task (i.e., allocate cognitive
control to it), and that precludes the performance of others,
then the opportunity cost has already been paid, so why not
allocate control maximally to the selected task? Musslick,
Jang Jun, Shvartsman, Shenhav, and Cohen (2018) explored
the hypothesis that constraints on control intensity (i.e., en-
coded as cost) reflect, at least in part, an optimal solution to
the stability-flexibility dilemma: Allocating more control to
a task results in greater activation of its neural representation
but also in greater persistence of this activity upon switching
to a new task, yielding switch costs. By considering the prob-
lem in terms of the parameterization of a nonlinear dynamical
system, in which control signals are represented as attractors,
Musslick et al. (2018) showed that constraints on the amount
of cognitive control allocated to a task can promote cogni-
tive flexibility at the expense of cognitive stability. While this
dilemma provides a rationale for why humans should limit
the amount of control allocated to a single task it is based
on the implicit assumptions that tasks cannot be executed in
parallel due to constraints in multitasking capacity and that
task representations persist in time. This suggests that both
the number of control-demanding tasks that can be executed
simultaneously, and the amount of control that can be allo-
cated to a single task may be subject to constraints that arise
from (a) the shared use of representation between tasks, (b)
the conflict induced by shared representations and (c) persis-
tence of task representations in time.
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