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Review Article
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Single-cell multi-omics technologies are rapidly evolving, prompting both methodological
advances and biological discoveries at an unprecedented speed. Gene regulatory
network modeling has been used as a powerful approach to elucidate the complex
molecular interactions underlying biological processes and systems, yet its application in
single-cell omics data modeling has been met with unique challenges and opportunities.
In this review, we discuss these challenges and opportunities, and offer an overview of
the recent development of network modeling approaches designed to capture dynamic
networks, within-cell networks, and cell–cell interaction or communication networks.
Finally, we outline the remaining gaps in single-cell gene network modeling and the out-
looks of the field moving forward.

Introduction
Network modeling has long been employed as a powerful tool to understand and interpret complex
biological systems, with networks themselves serving both as a computational framework and a major
data type. Networks depict biological systems as nodes and edges, where nodes represent biological
entities such as genes, proteins, metabolites, phenotypic traits, cells, environmental exposures, or even
gut bacteria, and edges represent the relationships between nodes such as regulator–effector connec-
tions, statistical correlations, physical binding, and enzymatic or metabolic reactions (Figure 1A). As
the amount and types of biological data continue to grow at an exponential rate, so too do the
number and types of biological networks including protein–protein interaction networks [1], meta-
bolic networks [2], genetic interaction networks [3], gene/transcriptional regulatory networks (GRNs)
[4], and cell signaling networks [5]. While different network models possess inherent strengths and
limitations depending on their underlying assumptions, they share the common feature of being
graphical models which describe information flow in biological systems to help understand and inter-
pret the underlying biological processes.
Network modeling has seen extensive applications over the past decades to help understand key

biological processes and regulators of health and disease. In particular, the enormous complexity of
human physiology and pathophysiology demands a systems level understanding of how biological
molecules interact within individual cells and tissues and between cells and tissues to maintain
homeostasis, and how perturbations of these interactions lead to diseases. The omnigenic disease
model, which states that all genes interacting in networks can contribute to complex diseases, is
increasingly recognized and accepted [6]. These conceptual frameworks match perfectly with the cap-
acity of network biology, and, therefore, it is not surprising to witness the increasing use of network
modeling approaches in essentially all fields of biology. For example, many genetic variants can
influence disease, each through very small effects which make biological interpretation difficult.
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These convoluted genetic effects can be better understood through their relationships in transcriptional and
signaling networks and biological pathways [6,7]. Our group and others have leveraged network models for the
interpretation of genetic causes of complex diseases [8–20]. Similarly, networks can be used to understand the
molecular cascades involved in various environmental causes of diseases [21–23]. For example, by integrating
genetic association with tissue-specific GRNs, Chella Krishnan et al. [20] found that numerous genetic variants
associated with nonalcoholic fatty liver disease affect diverse biological pathways ranging from lipid metabol-
ism, immune system, cell cycle, transcriptional regulation to insulin signaling, Notch signaling, and oxidative
phosphorylation that interact in GRNs in the liver and adipose tissues. Based on network topology, they identi-
fied key regulators involved in mitochondrial function at the center of disease pathways and subnetworks.
In another study, network modeling of genetic risks of cardiovascular disease and type 2 diabetes using
tissue-specific GRNs revealed shared and disease-specific networks and regulators [10]. In a systematic effort,

Figure 1. Overview of molecular networks and single-cell network modeling approaches.

(A) Various types of network nodes and edges (connections) in a molecular network. (B) Concepts and example methods of

current single-cell network modeling approaches. Transcriptomes of single cells from tissue samples are first processed and

clustered using dimension reduction techniques, followed by cell identity determination using known cell markers. Cell

populations in various dynamic states can be ordered using pseudo-time and trajectory analyses, and the pseudo-time

information can be used in dynamic network modeling. Gene networks within a given cell population and cell–cell

communication networks can also be reconstructed based on various assumptions and algorithms.
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Greene et al. [16] constructed 144 tissue/cell-specific networks and used these networks to predict and under-
stand lineage-specific responses to IL1B stimulation, tissue-specific activities and functions of LEF1, connection
of Parkinson’s disease with other diseases, and the tissue context and genes involved in hypertension.
While network-based approaches have furthered our understanding of complex diseases, it is important to

note that the majority of the network methodologies and applications have primarily relied upon omics data
derived from bulk tissues. At the bulk tissue level, many methodologies and algorithms have been developed
for network modeling, primarily focusing on predicting GRNs within [24–28] and between tissues [29–31]
with reasonable accuracy. However, bulk tissues like non-parenchymal cells in the liver are comprised of hetero-
geneous cell populations including Kupffer cells, sinusoidal endothelial cells, and hepatocyte satellite cells, all
with distinct functions associated with unique gene regulatory profiles [32]. Given the heterogeneous nature of
tissues, bulk tissue networks primarily represent the average activities of all cell populations which can be
dominated by the most abundant cell types. Therefore, tissue networks cannot capture the unique behaviors of
individual cell populations and how cells interact to perform higher-level tissue functions.
The recent explosion of high-throughput single-cell omics technologies brings exciting possibilities to model

dynamic, within-, and between-cell gene networks to elucidate the processes underlying cell development, func-
tional state, and cell–cell communications that are missing from bulk tissue networks. These single-cell omics
technologies give us the unprecedented ability to examine the transcriptional, protein, and epigenomic profiles
at single-cell resolution, which are necessary to tease apart the regulatory and functional relationships of bio-
molecules within individual cells or cell types, and between cell populations. In theory, similar framework and
methodologies that have been used for bulk tissue network modeling could be extended to single-cell data to
uncover the regulatory mechanisms governing functions within and between cells. However, as suggested by
Chen and Mar in their recent study [33], the models for bulk tissue may not be well suited to overcome the
unique challenges introduced by single-cell data.
Here, we discuss the existing network modeling approaches developed for bulk tissue omics data, the unique

challenges imposed by single-cell omics data for use in network modeling, the recent development of
approaches for network models which make use of single-cell data, and their key underlying algorithms, advan-
tages, and disadvantages. Lastly, we discuss the remaining gaps to be overcome and where we see the field
headed to achieve a more efficient and accurate modeling of gene regulatory networks based on single-cell
omics data.

Commonly used GRN modeling approaches for bulk tissue
data
Common GRN methods that have been developed and optimized for bulk tissue data are generally based on
correlation, regression, ordinary differential equations (ODEs), mutual information, Gaussian graphical models,
and Bayesian approaches [24–28]. For example, a correlation-based method named weighted gene coexpression
network analysis (WGCNA) is the most commonly used methodology [34,35]. WGCNA is used to find clusters
(or modules) of genes which are highly correlated and usually represent tightly regulated genes involved in
similar biological pathways or functions. Although coexpression-based methods are computationally efficient
and less dependent on assumptions, these methods mainly group genes involved in similar functions or under
similar regulation, but cannot infer directionality or direct regulatory relations and require integration with
other information to facilitate interpretability [28]. Regression-based methods such as GENIE3 resolve net-
works by determining the most predictive subset of genes for each network gene based on regression models
[36]. These methods perform well for linear cascades but not for feed-forward loops. For methods based on
mutual information, such as ARACNE [37] and CLR [38], network structure is determined by the degree of
dependencies between pairs of genes. These mutual information-based network methods can infer directional-
ity and potential causality, and can predict feed-forward loops more accurately but have limited performance
with linear cascades. Bayesian network (BN) modeling approaches offer flexible frameworks to incorporate and
integrate multi-omics data as prior information to infer causal and directional gene–gene interactions [39,40].
A BN encodes conditional dependencies between genes, where each gene is determined by the values of its
parent nodes. To improve accuracy, BNs search through the multivariate space of possible graphs which comes
at the expense of higher computation cost [25,41] and the lack of guarantee that optimal topology can be
detected. The different commonly used GRN inference algorithms come with different pros and cons, and the
integration of multiple methods can compensate for the disadvantages inherent to each method and provide a
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better interpretation of the data [27]. It is important to note that these methods were optimized for bulk tissue-
level data that generally conform to standard data distributions and have few missing values.

Single-cell technologies and data structures
Leveraging the recently developed single-cell technologies, we are now able to examine the transcriptional
(DropSeq [42], inDrop [43], 10× Genomics, SmartSeq v4, Mars-Seq [44], Seq-Well [45], SPLiT-seq [46],
sci-RNA-seq [47]), protein (CITE-seq [48]), and epigenomic profiles such as open chromatin (scATAC-seq
[49]) and methylation landscapes [50]. These single-cell technologies bring about exciting possibilities to
explore biology at an unprecedented resolution and scale. The most popular and widely available technologies
for interrogating single cells in a high-throughput manner are single-cell RNA sequencing (scRNAseq).
Typically, these high-throughput single-cell transcriptome technologies are based on counting transcript frag-
ments from the 30-end which are then aligned to reference genomes. The resulting data structure which aggre-
gates gene counts for each single cell is called a digital gene expression (DGE) matrix. For other data types,
similar cell by marker (e.g. protein, chromatin location, and methylation sites) matrices form the main data
structures. Although the projection of single-cell epigenome onto single-cell transcriptome [51] has been per-
formed, the integration of multi-omics data for GRN modeling has not been attempted to our knowledge and
is a future direction for methodological development. Multi-omics data can be incorporated in many ways,
including constructing a single network with edge confidence extrapolated across omics layers and multiple
networks from individual omics layers with interactions between the layers drawn from correlative relations or
known functional relevance. For example, open chromatin located in the promoter or enhancer regions of par-
ticular genes would allow a directed edge to be drawn between the scATAC-seq and scRNAseq layers; proteome
data may help infer interactions between proteins and provide information on regulatory proteins such as tran-
scription factors (TFs) and epigenomic regulators that regulate the transcriptome and epigenome. In this
review, we will focus on scRNAseq data as these are the most abundant single-cell data type investigated for
GRN modeling.

Performance of existing GRN approaches designed for bulk
tissue data in single-cell network modeling
Recently, Chen and Mar [33] evaluated the ability of five generalized network reconstruction methods that
were commonly used for bulk tissue data in network construction using both empirical and simulated single-
cell data. The methods used in their analyses included partial correlation, BN, GENIE3, ARACNE, and CLR
[36–38,52]. Using precision-recall and receiver operating characteristic curves to evaluate whether each method
can accurately recapitulate a reference network, it was found that all methods failed to perform significantly
better than random generation in both simulated and experimental single-cell datasets. Additionally, there was
limited overlap in network predictions between methods. These findings suggest a lack of generalizability and
applicability of the existing methods for network construction based on single-cell data. However, caution is
needed to interpret such comparison results as the validity of the gold standard reference network used and the
quality evaluation metric can significantly influence the comparison results.

Unique challenges, opportunities, and considerations in
network modeling of scRNAseq data
The potential lack of performance of existing methods can result from the unique challenges related to data
sparsity, distribution, and increased data dimension and capacity [53–55]. First, for scRNAseq using recent
high-throughput platforms, due to the miniscule amount of mRNA present in a single-cell and current techno-
logical limitations, most entries in DGE matrices are zeros which result in a very sparse matrix, making the
direct extension of methods designed for bulk tissue data difficult. Importantly, although these zeros can be a
result of stochastic gene expression in individual cells (biological zeros), they do not necessarily mean the
absence of mRNA molecules but rather the result of low technical sensitivity for moderate to lowly expressed
genes, termed dropouts. Of note, read count-based scRNAseq is zero-inflated, whereas scRNAseq incorporating
unique molecular identifier (UMI) counts has been found to possess ‘non-zero-inflated’ features resulting in
different distributions compared with the read count-based technologies [56]. The discrepancies in the under-
lying data distributions in read count and UMI-based scRNAseq demand the implementation of novel
methods that consider these different technologies in the future [57,58].
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In an attempt to assign values to dropouts, many single-cell imputation methods such as MAGIC [59],
scImpute [60], DrImpute [61], SAVER [62], BISCUIT [63], ScUnif [64], PBLR [65], and deepImpute [66] have
been developed in recent years; however, the performance of these methods varies significantly [67]. In bench-
marking, scImpute and DrImpute succeeded in simulated data but failed when faced with non-collinear empir-
ical data, while both SAVER and BISCUIT could only consistently impute dropouts with near-zero values [67].
Additionally, the primary metrics used to measure performance (e.g. rand index or mutual information) bench-
mark the ability of these methods to define cell clusters; it is unclear how these imputed values may affect
network structures. Without a consensus and experimental validation of the results from these imputation
methods, caution is needed when using imputed data for network construction. A straightforward and intuitive
approach taken by Han et al. [68] used subsets of cells from the same cell type and averaged the non-zero
values of each gene across cells from each subset to derive a ‘supercell’ gene expression matrix, which is less
inflated with zero values and may prove more biologically relevant. It is important to note that this practice
will reduce the cell numbers and sacrifice statistical power.
A second challenge, related to the dropout issue in single-cell data, is the nonstandard data distribution pat-

terns. The high number of dropout values significantly skews the data distribution from unimodal such as a
Gaussian distribution to multimodal distributions, which violate the statistical assumptions underlying most of
the classic GRN modeling approaches. Careful assessment of the data distribution patterns and tailoring of
appropriate statistical methods are needed for single-cell network construction. Several statistical methods such
as zero-inflated factor analysis (ZIFA) [69] and ZINB-WaVE (Zero-Inflated Negative Binomial-based Wanted
Variation Extraction) [70] have been developed to specifically model the zero-inflated single-cell data distribu-
tion. ZIFA is a dimensionality reduction method based on the assumption that lowly expressed genes are more
likely to result in dropouts than those that are highly expressed. ZIFA extends factor analysis by incorporating
a model of the dropout rate as an exponential decay based on the mean non-zero expression. However, there
are limitations to ZIFA in that it models strictly zero measurements and cannot account for near-zero values.
Additionally, ZIFA has an underlying linear transformation framework; however, nonlinear dimensionality
reduction techniques like t-SNE and UMAP have been demonstrated to be useful in the interpretation of
single-cell data, so the extension of zero-inflation modeling to these nonlinear approaches could be useful.
ZINB-WaVE is another dimensionality reduction technique which uniquely models the count nature of
scRNAseq data and offers normalization using a sample-level intercept and flexible gene-level and sample-level
covariate incorporation to address batch effects and sequence composition effects (e.g. gene length or GC
content). To address the zero inflation and overdispersion of the data, ZINB-WaVE modifies a standard nega-
tive binomial distribution which does not fit the data well, with a term that gives the probability of observing a
0 instead of an actual count. Although ZINB-WaVE is primarily demonstrated as a dimensionality reduction
technique for single-cell data, the authors suggest that the low-dimensional representation can be used in
downstream analyses like clustering or pseudo-time. Recently, Townes et al. [58] found that multinomial
methods outperform other current practices in feature selection and dimension reduction. Consideration of
these alternative statistical methods in GRN inference may prove useful. It should be noted that these statistical
methods have been developed for read count data and may not be suitable for UMI-based single-cell datasets
as they have different underlying data distributions which are not zero-inflated.
Thirdly, it is essential that the field masters the ability to correct for confounding factors and extrapolate

data acquired from multiple experiments into one common atlas. Challenges arise as the composition of cellu-
lar data remains variable across batches and studies, and even when batches contain the same cell types, the
cell number and transcriptional states of individual cell types can vary significantly due to procedural noise
(tissue dissociation, sorting, and reagent batches), scRNAseq platforms (e.g. 10× Genomics vs. Dropseq), and
chemistry versions (version 2 vs. 3 of 10× Genomics). Much like using batch correction within the bulk tissue
setting to adjust confounding factors, the integration of data sets produced by different experiments or even
labs are invaluable, as it bolsters the statistical strength and reproducibility. Methods originally developed for
bulk tissue batch correction such as limma [71] and ComBat [72] have been applied in the batch correction of
single-cell data [73–76]; however, there have been studies which demonstrate the limitations of applying these
methods developed for bulk data to both simulated and real single-cell data [77]. Recently, significant progress
has been made in this area, yielding methods developed specifically for single-cell batch correction such as
canonical correlation analysis (CCA) [78] and mnnCorrect [77] and methods for cell-type identification based
on a labeled reference dataset such as scmap [79] and singleR [80]. However, it is important to proceed to
downstream analyses like GRN construction with caution after applying a batch correction method to single-
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cell data, and it is necessary to understand the underlying algorithms and assumptions. Methods like CCA and
mnnCorrect only leverage the highly variable genes which are shared across datasets for integration and return
a corrected gene expression matrix which only contains the variable genes used for integration. These genes
primarily define cell-type-specific markers, and the process of CCA inherently introduces dependencies
between genes and violates the assumptions of statistical tests used for downstream analysis like differential
expression, so the authors of CCA caution against using CCA for more than conserved cell-type identification
across datasets. Broadly speaking, batch correction methods developed for bulk data perform more poorly in
batch correction, whereas methods developed for single-cell data are more accurate at clustering cell types from
different batches but may not be extended to downstream analyses. Therefore, there is a need for the develop-
ment of methods which can do both.
Lastly, compared with bulk tissue data which usually consists of experimental group IDs, sample IDs, and

feature measurements, single-cell data also present increased dimensionality and data volume by adding tens of
cell types and thousands of cells from each sample. Such increases in dimensionality and data volume not only
make network modeling more complex and computationally expensive, but also bring new possibilities from
the biological perspective that are beyond the capacity of existing methods. In addition to the typical question
of how genes are organized and interacting in a network, one can address many new provocative questions. For
example, what defines a cell type? How are genes organized in each cell type? How different are the network
architectures between cell types? What are the relationships between cells — do they come from the same or
different lineages and how do the lineages evolve? Are there different states of the same cell type? What gene
regulatory circuitry determines a cell state? How do cells transition from one state to another? Which cells
communicate with one another to determine higher-level functions, and through which genes and pathways do
they communicate? Many of these new questions are not considered or readily addressable by the existing
methods designed for bulk tissues. In addition to offering the opportunities to answer these important ques-
tions, the cell–cell variability or heterogeneity in the large numbers of cells measured in each sample also pro-
vides sufficient information to construct within-sample or profile-specific networks [55]. Such networks
describe the GRN of a single biological sample, which is not possible for bulk tissue profiling data. In other
words, the ability to exploit the large cell number dimension allows GRNs to be constructed for each sample
based on its constituent cell profiles, which can be used to derive consensus networks across samples to
enhance accuracy.

Recent methods for scRNAseq GRN modeling
Recognizing the need for new GRN modeling methods for single-cell data, many approaches have been recently
developed primarily based on scRNAseq data. We categorize these methods based on fundamental biological
questions (dynamic modeling, within-cell networks, and cell–cell interaction networks; Figure 1B), followed by
the specific biological assumptions (e.g. TF to target interactions, ligand–receptor interactions) and algorithms
(e.g. coexpression, regression, ODEs, Bayesian, and Boolean), as summarized in Table 1.
The most straightforward algorithm is coexpression in which the likelihood of a gene interacting with

another depends on the strength of their pairwise correlation coefficients. Though computationally tractable,
most of these methods do not provide directionality and likely infer functional relatedness rather than direct
regulation. More complex methods include ODEs, Boolean networks, and BNs, each with advantages and lim-
itations, as discussed earlier. Boolean networks require discretization of gene expression values and apply
Boolean functions to describe regulatory interactions, which likely result in oversimplification. ODE-based
methods involve using linear, nonlinear, or piecewise differential equations to model the dynamic nature of
mRNA content in a continuous, rather than discrete, manner. A BN is a directed acyclic graph (DAG) that
integrates prior information to guide its gene–gene interaction predictions and is probabilistic in nature. Lastly,
information theory measures describe statistical dependencies between biological entities and include entropy,
the notion that information is quantified based on the uncertainty of a random variable, and mutual informa-
tion, in which the observation of one random variable can inform on or reduce the uncertainty of another
random variable. This measure produces more general correlations that allow capturing of nonlinear dependen-
cies and is commonly employed in network inference.
Of note, with new methodologies being developed at rapid speed, it is not possible to exhaustively document

all available methodologies. Here, we highlight the broad categories for single-cell GRN modeling and discuss
example methods to illustrate the concepts and make note of their advantages and potential limitations. We
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Table 1 Summary of single-cell network modeling approaches Part 1 of 3

Category
Example
methods

Underlying biological
assumption Algorithmic basis Advantages Limitations

Dynamic network
(extensively
reviewed in refs
[53–55])

SCNS [81] Single-gene changes
between cell transition
states can inform on gene
regulatory relations

Boolean Does not rely on prior knowledge.
Has a web UI. Resulting models
are executable and can be used to
make predictions

Need data discretization; limit to
small numbers of genes; regulatory
relations need to follow Boolean
rules

SCODE [82] TF expression dynamics
(pseudo-time) and TF
regulatory relations (GENEI3)

ODE; Bayesian model selection Estimate relational expression
efficiently using linear regression;
reduction of time complexity; fast
algorithm

Need dimension reduction first for
computing speed and memory
feasibility; assumes that all cells are
on the same trajectory;
optimization is computationally
intractable

GRISLI [83] Variability in scRNAseq data
caused by cell cycle, states,
etc. allows the inference of
pseudo-time associated
with each individual cell

ODE Makes no restrictive assumption
on the gene network structure;
can consider multiple trajectories;
fast algorithm

Has to estimate the velocity of each
individual cell using information
from neighbors

SINCERITIES
[84]

Changes in the expression
of a TF will alter the
expression of target genes

Ridge regression and partial correlation
analysis

Low computational complexity and
able to handle large-scale data

Requires scRNAseq data at
multiple time points. Restricted to
TFs and their targets to infer edges

Scribe [85] Cell ordering can be
improved with time-series or
cell velocity estimations

RDI Outperforms other pseudo-time
methods given time-series data.
Can be applied to any data type if
the data structure is appropriate

Requires time-ordered gene
expression profiles or velocity
estimation from introns and exons

AR1MA1-VBEM
[40]

The cell differentiation
process or response to
external stimulus reveals the
hierarchical structure of the
transcriptome

First-order autoregressive moving-average
and variational Bayesian
expectation-maximization

Weighted interactions between
genes along psuedotime. Model
used accounts for noisy data

Data are expressed as fold
changes between timepoints/
conditions or scaled by
housekeeping genes

SCINGE [86] Learned target regulator
genes can be used to
assign each cell to their
progress along a trajectory

Granger causality Smooths irregular pseudo-times
and missing expression values

Near random performance for
predicting targets of individual
regulators

SoptSC [87] Similarities between whole
transcriptomes of single
cells can be used to order
them

Cells ordered by minimum paths on
weighted cluster-to-cluster graph derived
from cell similarity matrix

Includes comprehensive single-cell
workflow; leverages information
from other parts of the workflow to
improve performance

Cannot be run with other tools,
have run the full workflow to get
pseudo-time inference

Within-cell or cell
population network

SCENIC [88] TF target-based regulation Combining TF regulatory relations
(GENIE3) with TF-binding motif analysis

Robust against dropouts, get a TF
score for individual cells (no
averaging of cells).

Limited to TF-based relations

Continued
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Table 1 Summary of single-cell network modeling approaches Part 2 of 3

Category
Example
methods

Underlying biological
assumption Algorithmic basis Advantages Limitations

Pina et al. [89] TFs drive lineage
commitment

Odds ratio for on/off gene associations
and spearmen correlation for expression
levels associations

Robust to dropouts Based on single-cell multiplex
qRT-PCR, may be difficult to
extend the method to sparse
single-cell data (selected 44 genes
to test)

Iacono et al. [90] Coexpression is regulated
by TFs, cofactors, and
signaling molecules which
can be captured with gene–
gene correlations

Pearson correlation using
z-score-transformed counts

Can compute correlations at the
single-cell level and it is robust to
dropouts and noise inherent to
single-cell data

Networks are very dense (some
have millions of significant edges)

PIDC [39,91] Gene regulatory information
reflected in dependencies in
the expression patterns of
genes

Partial information decomposition using
gene trios

Compared with correlation,
captures more complicated gene
dependencies

Networks are influenced by data
discretization, choice of mutual
information estimator, method
developed for sc-qPCR data, may
not be extendable to higher
throughput and sparser scRNAseq
data

Jackson et al.
[92]

Deletion of TFs combined
with experimental conditions
allows for the inference of
gene relationships

MTL to leverage cross-dataset
commonalities and incorporate prior
knowledge

Does not require sophisticated
normalization of single-cell data or
imputation. Able to combine
multiple conditions/datasets for
more accurate inference. TF
deletions give strong causal link to
affected genes

Requires single-cell data with TF
deletions and/or environmental
perturbations

Wang et al. [93] Gene perturbations allow for
inference of causal
relationships

Scoring of conditional independence test
to identify optimal DAG

Gives causal relationships between
genes

Requires interventional data. No
loops allowed in DAG

ACTION [94] Functional identity of cells is
determined by a weak, but
specifically expressed set of
genes which are mediated
by TFs

Kernel-based cell similarity and geometric
approach to identify primary functions

Robust to dropout and does not
require averaging. Identifies
functions unique to cell types

Requires TFs and their targets.
Only provides TF-driven networks

SINCERA [95] TF target-based regulation First-order conditional dependence on
gene expression to construct a DAG

Key TFs identified using multiple
importance metrics

Only considers TFs and their
targets. Requires genes/TFs to be
DEGs or expressed in >80% of
cells

Continued
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Table 1 Summary of single-cell network modeling approaches Part 3 of 3

Category
Example
methods

Underlying biological
assumption Algorithmic basis Advantages Limitations

Cell–cell
communication
network

iTALK [96] Ligand–receptor interactions Threshold ranked list of genes from two
cell types for ligand–receptor pairs

Allows for the inference of
directionality of interaction

Requires curation of ligand–
receptor interactions (not all
interactions are known). Average
expression at the cell-type level (no
longer single cell). Cannot reveal
novel interactions beyond known
ligand–receptor knowledge

Zhou et al. [97] Ligand–receptor interactions Expression of ligand and corresponding
receptor more than three standard
deviations greater than the mean

Allows for the inference of
directionality of interaction

Requires curation of ligand–
receptor interactions (not all
interactions are known). Average
expression at the cell-type level (no
longer single cell)

Kumar et al. [98] Ligand–receptor interactions Product of the average expression of
ligand and corresponding receptor

Allows for the inference of
directionality of interaction.
Interaction score gives the strength
of interaction (rather than just
significance)

Requires curation of ligand–
receptor interactions (not all
interactions are known). Average
expression at the cell-type level (no
longer single cell)

Arneson et al.
[99]

Ligand to downstream
signaling

Coexpression of ligand genes in source
cells with other genes in target cells

Use secreted ligands as a
guidance for directional inference
between cell populations

Gene expression is summarized to
the cell population level and
coexpression is at the sample level,
requiring large sample sizes

SoptSC [87] Ligand–receptor interactions Likelihood estimate of the interaction
between two cells based on expression of
the ligand, receptor, and downstream
pathway target genes (including
expression direction). Consensus signaling
network derived from all cells in each
cluster

Incorporates target genes of
pathways and their directionality.
Computes interaction likelihood at
the single-cell level and
summarizes across all cells in the
cluster for higher confidence

Requires curation of ligand–
receptor interactions and their
downstream pathways

scTensor [100] Ligand–receptor interactions Tensor decomposition with cell–cell
interactions as hypergraphs

Allows L–R pairs to function
across multiple cell-type pairs (not
restricted to a single-cell-type pair),
which is more reflective of
underlying biology

Requires curation of ligand–
receptor interactions. Averages
single cells to the cell-type level
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also exclude methods that were developed based on data from older low-throughput single-cell platforms such
as single-cell qPCR, which do not share the same challenges as sparse high-throughput scRNAseq.

Dynamic networks
To date, the majority of the scRNAseq-based GRN modeling approaches were designed to address dynamic
cell-state transition (Figure 1B), as scRNAseq data contain information from asynchronous cell populations
which show temporal dynamics, allowing for the mapping of cellular transitions on a pseudo-time scale
[101,102]. Common models for expression dynamics or pseudo-time estimates assume that cellular changes
(i.e. development, activation, and deactivation) progress along a continuous curve or an idealized tree and that
each intermediate stage is short and captured through the sequencing of large numbers of cells. Under these
assumptions, computational modeling can infer the trajectories of cellular dynamics, which can be derived
based on known regulatory relations such as TF target information, similarities in gene expression, and RNA
velocity represented by immature and mature mRNA content [60]. However, it is important to note that the
simultaneous presence of various cellular states at a given snapshot does not represent real time course for the
inference of sequential or lineage information. Therefore, incorporating pseudo-time may not necessarily
improve GRN construction.
To date, more than 50 methods have been developed for trajectory inference to derive pseudo-time information,

and these have been reviewed and compared previously [101,102]. Pseudo-time ordering lends directionality and
interaction-type information for dynamic GRN modeling [40,82,83,85,86,103,104]. Such pseudo-time information
is integrated with commonly used network construction algorithms outlined above such as correlation [88,94,95],
ODE [82,83,103,104], Boolean [105,106], BN [39,40], information theory [91], and other methods [107].
Many of the dynamic GRN methods have been extensively reviewed by others [53–55], and we only discuss

a few examples of the different categories here. A Boolean network method, SCNS, is based on single-gene
changes between ordered cells where cells have been discretized into an on/off state [81]. Another method
SCODE uses a linear ODE, a pseudo-time estimation that assumes all cells are on the same trajectory, and a
TF-based framework to model TF dynamics that captures regulatory relationship between genes [82]. Building
on this, GRISLI was recently developed, which uses a similar approach to SCODE, but considers multiple cell
trajectories, does not assume a network structure, and has faster computation times [83]. GRISLI first estimates
the velocity of each cell, followed by solving a sparse regression problem to relate the gene expression of a cell
to its velocity profile to estimate the GRN. An information theory-based method, SINCERITIES, utilizes
Granger Causality for directionality information and quantifies temporal changes in the expression of each
gene between two subsequent (pseudo)timepoints [82]. Changes in TF expression are used to predict changes
in corresponding genes in the next time window using ridge regression, with edge direction and sign inferred
using partial correlation analysis on the expression of every gene pair. SCINGE also uses kernel-based Granger
Causality regression on ordered single-cell data to predict regulator-target gene interactions and then ranks the
predicted interactions by aggregating the regression results [86]. An additional method is PIPER [107], which
uses local Poisson graphical modeling to more effectively capture network changes during cellular differenti-
ation and highlight the key TFs that drive these changes. A BN inference approach, AR1MA1-VBEM
(Variational Bayesian Expectation-Maximization), applies a first-order autoregressive moving-average
(AR1MA1) model to fit the time-series with a linear model that represents observations as combinations of the
data at the previous timepoint and a noise term, and uses a VBEM framework that utilizes variational calculus
to optimize the marginal likelihood and posterior distributions of network models [40]. Scribe [85] is another
recently developed method, which uses restricted directed information (RDI) [108] to infer causal GRNs by
borrowing linked time-series data or inferred cell velocity from intronic (indicative of immature RNA) and
exonic reads. The authors demonstrate that Scribe outperforms other pseudo-time methods when true time-
series data are available; however, the performance of all methods suffers dramatically when temporal informa-
tion for the measurements is lost. Interestingly, Deshpande et al. [86] recently compared various methods and
found that incorporating pseudo-time does not always lead to better performance but can hurt network recon-
struction in certain cases. As discussed earlier, this is likely due to issues in the assumptions of pseudo-time
methods.

Within-cell population networks
The second category of methods focuses on modeling GRNs within-cell populations without considering cell
trajectories or dynamics. These methods include coexpression and TF-based [88,94,95], coexpression and
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TF-independent [89,90,109], and information theory [91] (Table 1 and Figure 1B). This is in line with the
basic concepts underlying GRN modeling of gene–gene interactions for a tissue, except here single-cell data are
modeled for specific cell populations.
Similar to dynamic network modeling, the simplest approach for modeling GRNs within-cell populations is

based on coexpression. Here, the coexpression methods are divided into two groups: those which utilize prior
information in the form of TFs and those that do not. For the methods which are TF-independent, the likeli-
hood of a gene interacting with another depends on the strength of their pairwise correlation coefficients and
all possible gene pairs are considered. In the TF-based methods, genes are grouped into modules based on
those with the strongest pairwise correlation coefficients with the different TFs or are segregated into potential
interactions based on prior literature or motif evidence. A more sophisticated approach for defining GRNs
within-cell populations, which can capture nonlinear gene dependencies, is partial information decomposition
which is derived from information theory. Here, the information provided by pairs of genes is used to quantify
unique, shared, and synergistic information about a third gene across all sets of three genes to infer a network
structure.
Several correlation-based methods have been developed that compare the gene expression patterns between

known or predicted TFs and target genes, or between all genes. For instance, SCENIC couples gene coexpres-
sion with TF-binding motif analyses of modules of coexpressed genes to identify GRN modules, predict TF reg-
ulators, and identify single-cell level activity of putative TF targets (called regulons) [88]. The activity of the
regulons can be used to cluster cell types, compare network conservation, and identify important cell states and
GRNs involved in disease. Another method SINCERA is a full analytical pipeline for processing scRNAseq
data. It first identifies candidate TFs and their targets for each cell type [95]. The interactions between two TFs
or a TF and a target gene are then determined using first-order conditional dependence on gene expression
[110], and the key TFs in each GRN are identified by integrating six different node importance metrics. An
additional coexpression-based GRN method, ACTION, uses a novel archetype orthogonalization approach to
construct cell-type-specific GRNs based on the key assumption that the functional identity of a cell is deter-
mined by a set of weak, but specifically expressed genes which are mediated by a set of TFs [94]. ACTION
describes each cell as a set of ‘cellular functions’ in high dimensional space and the number of these functions
is determined using a non-parametric approach. The genes which are unique to each cellular function are
determined using orthogonalization and the role of TFs in controlling the genes in these cellular functions is
assessed. The TF and associated target genes within a cellular function serve to constitute the network.
Pina et al. [89] and, more recently, Iacono et al. [90] also utilize coexpression but build global GRNs that are

not limited to TF target relations [89,90]. The former calculates pairwise Spearman rank correlations between
all sets of genes across cells within a cell type to infer cell-type GRNs in hematopoiesis, and significant pairwise
associations were identified using the odds ratio of linearly transformed expression data. Iacono et al. [109]
used a Pearson correlation-based method which first transforms the expression values using bigSCale to derive
a z-score for each gene using a probabilistic model to account for noise and variability inherent to single-cell
data. Pairwise correlations of z-scores are used to construct GRNs. The use of z-scores boosts the number of
significant gene-to-gene correlations.
To reveal complex gene dependencies not afforded by simpler correlation strategies, GRN inference methods

have employed techniques from information theory. Specifically, PIDC uses partial information decomposition
to find the unique information provided by any pair of two genes across all other possible genes [80]. The con-
fidence of an edge between two genes is the sum of the scores of those genes across all other genes in the set.
This multivariate information approach makes use of the large sample size present in single-cell analyses to
identify nonlinear dependencies between pairs of genes by leveraging a third gene.

Cell–cell communication networks
The basic functions of a given heterogeneous tissue are determined not only by the activities of individual cell
types within the tissue, but also by the intimate communications and coordination among cell populations. For
instance, neurons and astrocytes interact to ensure essential brain functions [111], and immune cells interact
with adipocytes in the adipose tissue to regulate energy metabolism and thermogenesis [112]. As such, cell–cell
communication is a critical biological question yet has not been comprehensively addressed due to the previous
lack of high-throughput, high-resolution singe-cell data. The unique ability of single-cell approaches to simul-
taneously capture numerous cells of diverse cell types makes it feasible to model cell–cell communication net-
works (Table 1 and Figure 1B). The underlying assumption for modeling such networks is that
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communications between cells can be captured by molecular patterns measured in individual cell populations.
For example, a pair of communicating cells may express genes and proteins involved in a particular function
(e.g. one expressing a ligand and another expressing the corresponding receptor to trigger signaling pathways)
in a coordinated fashion.
Early attempts to model cell–cell communication networks have been primarily based on the concept of

gene coexpression with or without the consideration of ligand–receptor interaction information. The under-
lying assumption is that gene correlation patterns between cells reflect true biological interactions. The validity
of this assumption has been supported by evidence at the level of tissue–tissue interactions. For instance, gene
coexpression between brain regions can recapitulate the functionally derived interactions of the mouse brain
connectome [113], and gene coexpression between five different mouse tissues revealed novel endocrine factors
mediating the communications which are subsequently validated with experiments [30].
Coexpression methods were quickly adapted to single-cell data when Han et al. built cell–cell connections

based on the similarities in gene expression profiles across cell types [68]. However, such networks more likely
reflect the similarities between cell types rather than interactions or communications. To modify the classical
coexpression framework, ligand–receptor-based methods have been proposed which rely on the assumption
that a significant portion of cell–cell communication occurs via the release of chemical molecules from one cell
that bind to receptors of another cell. Utilizing this assumption allows ligand–receptor-based methods to con-
struct reliable biology-based directed networks. However, it comes at the expense of heavily limiting the set of
potential genes in an inherently sparse data modality. It is important to note that coexpression-based analyses
typically utilize Pearson’s correlation coefficient, which may not be suitable for read-based single-cell datasets
due to the zero-inflated nature and unique distribution patterns. When using coexpression-based analysis on
single-cell data, it is important that data transformation and appropriate statistics are taken into consideration.
There are several methods illustrating cell–cell communication via ligand–receptor interactions. Zhou et al.

[97] curated a list of >25000 known ligand–receptor pairs to examine their changes in the transcriptomes of
∼4000 melanoma cells. To determine if a pair of cells were communicating, the ligand and corresponding
receptor had to be expressed above a certain tunable threshold in the two cell types. Similarly, Kumar et al.
[98] focused on ∼1800 literature-based ligand–receptor pairs, but implemented a different scoring scheme that
considers the product of average receptor expression and average ligand expression in the respective cell types
under examination. Ported as an R package with a data visualization tool, iTALK is another new ligand–recep-
tor interaction-based network construction method [96]. iTALK identifies ligand–receptor pairs (from a data-
base of >2600 pairs) between two cell types by interrogating the list of ranked genes derived from average
expression (single timepoint/condition) or differentially expressed genes (multiple timepoints/conditions) for
each cell type and the list of ligand–receptor pairs in the iTALK database. Additionally, iTALK is able to use
metadata (e.g. timepoints, groups, and cohorts) to find cell–cell interaction changes by identifying differentially
expressed ligand–receptor pairs. Similarly, Smillie et al. [114] have used thousands of literature-supported
receptor–ligand interactions from the FANTOM5 database to identify cell–cell interactions by requiring that
genes are cell marker genes or differentially expressed genes to call significant interactions between cells. In
most ligand–receptor approaches, ligand–receptor pairs are restricted to communicating cell types; however, in
scTensor, Tsuyuzaki et al. [100] took a more flexible approach where no such restrictions are made. In
scTensor, cell–cell interactions are represented as hypergraphs which describe directed edges of ligand–receptor
pairs determined using tensor decomposition. A recent method proposed by Vento-Tormo et al. [115] also
considers secreted molecules as well as cell-surface molecules and uses a permutation-based approach to find
enriched ligand–receptor pairs between cell types. To achieve this, the authors developed CellPhoneDB, a
public repository of ligand–receptor interactions curated from public resources of protein–protein interactions,
which includes the subunit composition of ligands and receptors to fully represent their interactions. For pro-
teins which are comprised of multiple subunits, expression of all subunits is required to infer accurate
interactions.
The above methods all focus exclusively on ligand–receptor pairs which heavily limit the putative genes to

sets of literature-curated gene pairs which can inform on cell–cell communication. Previously, a less restrictive
modeling approach that dissects tissue–tissue communication networks [30] based on the coexpression of
genes encoding secreted peptides from a source tissue and all genes in a target tissue has been developed.
Arneson et al. [99] adopted this concept to build cell–cell communication network maps in the hippocampus
of sham mice versus mice with traumatic brain injury, revealing extensive rewiring of networks in brain injury.
This method infers connections between cells based on the assumption that one cell communicates with
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another cell by secreting signaling molecules that bind to their receptors on the target cell to trigger down-
stream molecular events in the target cell. As such, it is likely that coexpression exists between the genes that
encode secreted signaling molecules (i.e. the ligands) in the source cell type and the receptors as well as the
downstream pathway genes in the target cell type. Additional methods can broaden the scope of cell–cell inter-
actions beyond ligand–receptor-based relationships by considering the patterns among all expressed genes
between cell types, although the biological interpretation of this approach is less straightforward.

Hybrid methods
Although most GRN methods tackle either dynamic or within-cell or between-cell networks, Wang et al. [87]
have proposed SoptSC, a unifying framework to conduct single-cell analysis starting from gene expression matri-
ces to basic analytical workflows (e.g. normalization, clustering, dimensionality reduction, and identifying cell
marker genes) and subsequently to infer both cell–cell communication networks and pseudotemporal ordering/
lineage. The key premise underlying SoptSC is that the structured cell-to-cell similarity matrix can help improve
the network inference steps. The similarity matrix is also used for pseudotemporal ordering by finding the short-
est path between cells on a weighted cluster-to-cluster graph. To infer cell–cell signaling networks, the likelihood
estimate of the interaction between two cells is calculated based on the expression of ligand–receptor pairs and
the directionality of downstream pathway target genes. A consensus network between clusters/cell types is gener-
ated by summarizing the probability of signaling between all cells of any two cell types.

Gene perturbation networks
All of the above methods utilize assumptions regarding information flow such as TF cascades and ligand–
receptor relationships, without direct causal information. Single-cell data containing gene perturbation informa-
tion are extremely useful for providing causal information for GRN construction, as targeted perturbation of a
gene is the source or trigger of downstream responses of other genes. A method proposed by Jackson et al. [92]
leverages gene deletion mutants. Specifically, they pooled 72 different yeast strains across 12 different genotypes
(TF deletions) and 11 different conditions to generate scRNAseq data for 38 000 cells. In addition to the
expression data, this method uses prior information from TF targets and biophysical parameters like TF activity
and mRNA decay rates to construct a GRN using a multitask learning (MTL) framework [116]. This allows for
the integration of information across different conditions and experiments that explains the relationships
between the TF perturbations and the observed gene expression changes. By directly deleting TFs, the authors
have created a valuable dataset which could serve as a useful benchmark for other single-cell network inference
methods. Leveraging single-cell data from Perturb-seq [117], which combines CRISPR/Cas9-mediated gene per-
turbation with single-cell sequencing to generate high-throughput interventional gene expression data, Wang
et al. [93] proposed an algorithm for inferring causal DAGs. The algorithm is based on Greedy SP which
restricts the permutation-based DAG search space, and potential network scores are evaluated using the Greedy
Interventional Equivalence Search [118]. To further extend this research on causal network inference, Wang
et al. [119] introduced a method which could identify differences between DAGs inferred from different data-
sets. The same group has also demonstrated that soft interventions used in Perturb-seq, such as those that
cause partial disruption of gene dependencies (e.g. RNAi or CRISPR-mediated gene activation), provide the
same amount of causal information as hard interventions (e.g. CRISPR/Cas9-mediated gene deletions), which
result in complete disruptions, despite being less invasive [120].

Performance assessment of single-cell GRN modeling
methods
Chen and Mar recently applied a few single-cell network modeling methods including SCENIC [88], SCODE
[82], and PIDC [39,91] to both simulated and empirical single-cell datasets to assess their ability to capture
known network interactions. They found that there was low agreement between methods. However, as each
method has unique assumptions and may not be designed to capture similar interactions, agreement between
methods is not necessarily appropriate to assess performance. Another comparison study that examined the
performance of multiple network inference methods that incorporate pseudo-time information, such as
SCINGE, SCODE, and SINCERITIES, also indicates that many regulator-target predictions can be near
random for each of the methods tested [86].
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These findings call for the refinement of single-cell network modeling approaches and comprehensive revalu-
ation of the performance of existing single-cell GRN methods. On the other hand, the ligand–receptor frame-
work that is driven by a biological assumption along with data-driven gene coexpression appears to be
promising for cell–cell communication network modeling. For example, modeling with this approach to
scRNAseq data recapitulated known cell–cell interactions within the hippocampus [99].

Remaining gaps and future directions
Single-cell multi-omics profiling technologies are rapidly evolving, bringing revolutionary forces to improve our
understanding of the basic unit of life, the cell, as well as the cross-talks between cells in physiological and
pathological conditions. Major progresses have been made to more accurately classify cell types, correct for con-
founding factors, and delineate cell lineages and cell-state transitions. However, these advances are not suffi-
cient to bring a complete understanding of the regulatory machinery underlying the functions of individual cell
populations and cell–cell interactions that determine higher-level tissue functions. Existing methodologies to
model gene networks that were optimized for bulk tissue data either perform poorly for single-cell data or
cannot accommodate the new biological questions brought about by single-cell data, and methods that effi-
ciently and accurately model the outpour of single-cell data into comprehensive GRN maps are still in infancy.
In particular, novel network methods that are designed to address the unique challenges of single-cell data,
such as data sparsity, multimodal distribution, and higher dimensionality, are still in great need. The data
sparsity issue can be addressed through the improvement of single-cell technologies to enhance signal capture,
or by more accurate imputation methods that are supported by strong experimental validation data. These
efforts will help mitigate the issues associated with nonstandard data distribution that limits the utilization of
existing network methodologies. Alternatively, methods built on more appropriate statistics and algorithms that
can better accommodate dropout values and the unique data distribution are warranted.
Another critical and less highlighted gap in network modeling of single-cell data is the missing spatial infor-

mation to restrain the modeling space. Many of the current high-throughput single-cell sequencing methods
lack the ability to maintain the spatial identity of individual cells, which reduces one’s ability to resolve cell net-
works accurately, particularly during development where development layers are in close proximity. Various
high-throughput fluorescence in situ hybridization (FISH) methods have been developed as tools to resolve
spatial information [121–128]. The spatial distances between pairs of single cells can be used as a prior to con-
struct more sophisticated and accurate network models under the assumption that cells which are located
closer together are more likely to communicate. This assumption is supported by the recent discovery of local-
ization of ligand-producing cells directly adjacent to target cells expressing the corresponding receptor [129].
Another key advantage of single-molecule FISH-based methods is that they are extremely quantitative and do
not suffer from dropouts which plague high-throughput single-cell sequencing-based methods. The absence of
dropouts allows for accurate single-cell level interrogation of network predictions. With the spatial single-cell
methods, it is also possible to combine phenotypes (i.e. behavior) with cellular activation (i.e. cFos) to integrate
into the model under the assumption that cells which are active during a particular phenotype or stimulus are
more likely to be communicating. This approach has been previously used by Moffitt et al. [130] to identify
sets of neurons activated during parenting. Therefore, coupling single-cell sequencing approaches with high-
throughput single-molecule imaging has enormous potential to improve network modeling at single-cell reso-
lution. Despite the potential, there are limitations and complications involved in using spatial data to construct
GRNs. First, cell segmentation of single-molecule FISH-based methods is non-trivial and GRN construction is
impossible without it. Additionally, a single image carries limited representation of the dynamic cellular land-
scape. In fact, many of these technologies can only achieve the imaging depth of a single cell, so it is essentially
a two-dimensional snapshot at a given time which may not capture cellular dynamics outside of the imaged
plane and time frame.
At present, the majority of the methods are designed for scRNAseq, and methods incorporating other single-

cell omics scales (genetic, epigenetic, and protein) are needed [55]. This faces the same challenge that has been
encountered by bulk tissue GRN inference, and recent progresses in multi-omics integration and modeling may
offer guidance for single-cell multi-omics modeling [131–134].
Lastly, the accuracy of predicted networks from empirical data is difficult to assess, as high-throughput valid-

ation through perturbing predicted regulators in single cells in vivo is more challenging than that for whole-
body knockout or knockdown. On a positive note, new high-throughput gene perturbation technologies such
as Perturb-seq in combination with scRNAseq have the potential to generate insight into true casual
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relationships between genes and cells. Data from such platforms can serve as more appropriate benchmarking
datasets to assess the predictions of existing network methods by testing how well each method can retrieve the
true regulatory or interactive relations known from the perturbation-response experiments. Along the same
line, use of known, experimentally validated gene–gene, cell–cell circuits from the literature can be used to
benchmark the methods. Even in the absence of validated network connections, a community-based approach
can be employed to improve the network performance in silico by combining multiple inferred networks from
various methods to obtain consensus networks. This approach has been shown to be invaluable for improving
the quality of the predicted networks [27,91,135,136].
In summary, we are entering a golden era where biological discoveries can be made at an unprecedented

resolution and throughput. Network modeling of single-cell multi-omics data represents one of the key tools to
unlock the convoluted molecular mechanisms underlying pathophysiology and guide precision medicine.
Despite numerous challenges, the field is rapidly evolving and ample opportunities for methodological innova-
tions await to more accurately depict the molecular maps of cells in health and disease.

Summary
• Single-cell omics data offer unique challenges and opportunities for molecular network

modeling.

• Significant progress has been made to dissect the dynamic, within-cell, and between-cell
gene regulatory networks.

• Performance of current methods await further evaluation.

• Significant gaps remain in the development of network modeling approaches that can accom-
modate unique statistical challenges, diverse omics domains, and spatial information.
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