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Abstract

Retinal dystrophy in Bardet–Biedl Syndrome (BBS) is caused by defective genes that are expressed within ciliated cells such as pho-
toreceptors. The purpose of this study was to characterize and compare the retinal structure and lamination of two groups of patients,
carrying mutations in BBS1 or BBS10. Eight patients with BBS (ages 11.9–28.5 years) and mutations in BBS1 (4/8) or BBS10 (4/8) were
tested. A high-resolution hand-held probe Fourier-domain optical coherence tomography system (Fd-OCT) was used for retinal image
acquisition. Macular scans were evaluated with respect to structure, retinal layering and photoreceptor integrity. Micro-structural in-vivo
analysis showed abnormalities within retinal layers but preserved retinal lamination. Photoreceptor integrity was disrupted in all
patients. Macular scans from patients with BBS10 mutations most often showed ‘deposits’ adjacent and anterior to Bruch’s membrane.
Age, genotype and presence of macular changes did not correlate with the structural changes observed. Retinal dystrophy in BBS is
reflected by major changes in the outer retinal layers. This is the first report of in-vivo micro-structural analysis of retinal layers in
patients with BBS. Mutations in different BBS genes seem to be associated with similar micro-structural changes in retinal layers.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Bardet–Biedl Syndrome (BBS)1, first described by Bar-
det (1920) and Biedl (1922), is defined as an autosomal
recessive multi-systemic disorder. Cardinal features include
digit anomalies, obesity, cognitive impairment, hypogo-
nadism, kidney malformation or dysfunction and retinal
dystrophy (Churchill, McManamon, & Hurley, 1981; Scha-
chat & Maumenee, 1982). BBS is now thought of as a
‘ciliopathy’ with the underlying defects affecting the basal
0042-6989/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.visres.2007.08.024
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1 Abbreviations: BBS, Bardet–Biedl Syndrome; ERG, electroretinogram;
Fd-OCT, Fourier-domain optical coherence tomography; RPE, retinal
pigment epithelium; VA, visual acuity.
body of ciliated cells, such as the connecting cilium in the
outer retina (Ansley et al., 2003; Ross et al., 2005). Twelve
different genes have been associated with the disease, with
BBS1 and BBS10 being the most frequently involved
(Beales et al., 2003; Stoetzel et al., 2006).

The retinal dystrophy in BBS is progressive and shows
variable severity. Retinal layer analysis using time-domain
optical coherence tomography (OCT) in patients with
homozygous or compound heterozygous mutations in
BBS1 was performed by Azari et al. (2006). Definable lam-
ination was observed with no extreme retinal thickening
and a normal nerve fiber layer around the optic nerve for
most of the 10 patients tested. No genotype–phenotype
correlation or age-matched correlation was identified.

Fourier-domain OCT (Fd-OCT) permits faster retinal
image acquisition with significantly higher axial resolution
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than commercial time-domain OCT systems (Wojtkowski,
Leitgeb, Kowalczyk, Bajraszewski, & Fercher, 2002; Nassif
et al., 2004). Application of Fd-OCT in patients with reti-
nal diseases has provided an opportunity to delineate
details of retinal structure and lamination (Gerth et al.,
2007; Sun et al., 2007).

Here, we describe retinal structure characteristics using
a custom high-resolution imaging instrument in younger
patients with BBS1 or BBS10 mutations. We found pre-
served inner retinal layers but disrupted outer retinal struc-
ture without definable connecting cilium (inner/outer
segment junction) in most of the patients studied. Retinal
structure abnormalities were not correlated with either
genotype, age or disease severity.

2. Materials and methods

2.1. Subjects

Patients diagnosed with Bardet–Biedl Syndrome carrying either a
homozygous or compound heterozygous mutation in the BBS1 or
BBS10 genes were recruited through the Ocular Genetics Clinic at The
Hospital for Sick Children (Sick Kids) in Toronto, Canada. A comprehen-
sive ocular assessment as well as a detailed phenotype review of systems;
body mass index, kidney structure and function, liver function and digit
anomalies were completed. Presence of cognitive impairment was assessed
through parental interviews. Written informed consent and/or assent were
obtained from all participants and/or their guardians. The project was
approved by the Research Ethics Board at Sick Kids and conducted in
accordance with the Tenets of Helsinki.

2.2. Ocular function and morphology assessment

The comprehensive eye evaluation included dilated fundus examina-
tion, visual acuity (VA), kinetic perimetry and full-field electroretinogra-
phy (ERG). Best-corrected monocular distant visual acuity (VA) was
measured on the backlit Early Treatment Diabetic Retinopathy Study
Charts using a logMAR scale (Ferris, Kassoff, Bresnick, & Bailey,
1982). A VA of ‘counting fingers’ was converted into 1.85 logMAR (Schu-
lze-Bonsel, Feltgen, Burau, Hansen, & Bach, 2006). Monocular kinetic
visual fields (VF) were performed on the Goldman perimeter using test
target III-4e. VF area was measured as a solid angle using the VisFields
1.3.2. (Weleber & Tobler, 1986). Full-field electroretinograms (ERG) were
recorded according to the ISCEV standard (Marmor, Holder, Seeliger, &
Yamamoto, 2004) and compared with age-matched control data.
Fig. 1. Macular OCT imaging of a 16 year old control subject. 5 mm horizonta
ILM/NFL, internal limiting membrane/nerve fiber layer; INL, inner nuclear
limiting membrane; ONL, outer nuclear layer; OPL, outer plexiform layer;
membrane; VM, Verhoeff’s membrane.
2.3. Fourier-domain optical coherence tomography

In-vivo high-resolution retinal image acquisition was performed using
a Fourier-domain high-speed, high-resolution optical coherence tomogra-
phy (Fd-OCT) system (axial resolution: 4.5 lm; acquisition speed: 9
frames/second, 1000 A – scans/frame) constructed at the UC Davis Med-
ical Center (Alam et al., 2006; Zawadzki, Bower et al., 2005) with a sample
arm replaced by a hand-held scanner (Bioptigen Inc. Durham, NC). Hor-
izontal scans of 5 mm were obtained through the macular area. Images
were post-processed as described in detail elsewhere (Zawadzki, Bower
et al., 2005; Zawadzki et al., 2007).

Retinal layers were identified based on previously published data
(Zawadzki, Jones et al., 2005) and compared with control data as shown
in Fig. 1. We (Zawadzki, Jones et al., 2005) and others (Wojtkowski et al.,
2005; Wojtkowski et al., 2004) have identified three distinct bands in the
outer retina using high-resolution Fd-OCT, which are not visible with
lower-resolution systems. Direct overlay of OCT and histological sections
from the monkey retina (Macaca fascicularis), following correction for
shrinkage, led to positive identification of the inner/outer segment junc-
tion corresponding to the connecting cilia (Anger et al., 2004). Similar
results were found in the porcine retina (Gloesmann et al., 2003).

2.4. Mutational analysis

Mutation screening was performed for all coding exons and splice junc-
tions of BBS1 (NM_024649) and BBS10 (NM_024685). Mutational analy-
sis was performed by direct sequencing of purified polymerase chain reaction
(PCR) products amplified from genomic DNA, using standard protocols. A
complete list of primers used for PCR and sequencing is available upon
request. Sequence changes were verified with family segregation, when the
family was available. A minimum of 150 healthy control individuals were
screened to assess the allele frequency of novel sequence changes.
3. Results

Eight patients (5 females, 3 males) between ages 11.9
and 28.5 years with mutations in the BBS1 (n = 4) or
in the BBS10 gene (n = 4) were included in the study.
Systemic features of patients studied are summarized in
Table 1.

Results of ocular assessments are summarized in Table
2. Visual acuity ranged from 0.2 to 1.85 logMAR. Despite
their younger age, most of the patients carrying mutations
in BBS10 had more severely reduced VA and smaller visual
field areas than patients with mutation in BBS1.
l scan through the macula: CL, connecting cilia; GCL, ganglion cell layer;
layer; IPL, inner plexiform layer; ISL, inner segment layer; OLM, outer

OSL, outer segment layer; RPE/BM, retinal pigment epithelium/Bruch’s



Table 1
Genotype–phenotype Summary

Case # Gender Gene Mutation Age (years) Kidney anomaly Liver anomaly Digit anomaly Limb # Weight Cognitive impairment

2597 F BBS1 M390R/M390R 20.6 No No Polydactyly 1 Overweight Learning disability
2512 F BBS1 M1V�/M1V� 28.5 No No Brachydactyly NA Obese No
2301 F BBS1 D8D/R483X 15.8 Yes Yes Polydactyly 4 Obese Dev delayed
2293 M BBS1 M390R/N524del� 20.8 No No NA NA Obese Dev delayed
2296 M BBS10 C91W/A474fs483X 11.9 Yes No Polydactyly 4 Overweight Dev delayed/Autistic
2621 M BBS10 C91W/A474fs483X 13.6 Yes No Clinodactyly 2 Obese NA
2213 F BBS10 C91W/V707fs708X 13.5 Yes No Polydactyly 1 Overweight Dev delayed
2294 F BBS10 C91fs95X/R103fs110X� 15.5 Yes No Polydactyly 4 Overweight Dev delayed

�, novel mutation; Age, age at time of kidney and liver blood work assessment; Kidney anomaly, defined as either abnormal function as per electrolyte and elevated creatinine and urea levels and/or
abnormal kidney ultrasound; Liver anomaly, defined as either elevated liver enzymes and/or abnormal liver ultrasound; Weight, based on percentile for body mass index-for-age; Obese: >95th percentile
and Overweight: 85th–95th percentile; NA, not available; Limb#, refers to the numbers of limbs affected with a digit anomaly.

Table 2
Ocular phenotype and OCT findings

Case # Gender Age VA GVF ERG (age at
test)

Macula Fd-OCT

ILM
wrinkling

Inner retina layer
abnormal

Enlarged space within ONL
in fovea

ISL/OSL
present

RPE
thinned

Deposits above Bruch’s
membrane

2597 F 20.6 0.2 1.2 RCD (20.5) Abnormal + � + + + �
2512 F 28.5 1.6 0 NR (5.7) Abnormal � + � (+) + +
2301 F 15.8 0.54 0.23 NR (12.3) Abnormal � � � � + �
2293 M 20.8 0.6 1.7 RCD (20.5) Abnormal + � + + + �
2296* M 11.9 1.85� NT NT Abnormal � � + + + +
2621* M 13.6 1.6� 0.13 NR (8.1) Abnormal + � + (+) + +
2213 F 13.5 1.85� 0.01 RCD (11.4), NR

(13.5)
Normal � � � � + +

2294 F 16.6 0.6 0.08 RCD (4.4) Normal � � � (+) + +

*, siblings; VA, visual acuity (log MAR); �, nystagmus; GVF, Goldman visual field (III4e, solid angle); RCD, rod-cone dysfunction; NR, non-recordable; NT, not tested; ILM, inner limiting membrane;
ONL, outer nuclear layer; ISL/OSL, inner/outer segment layer; RPE, retinal pigment epithelium; +, yes; �, no.
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Fig. 2. Horizontal Fd-OCT scans (5 mm) (left panel) and corresponding fundus photograph (right panel) of patients with mutations in BBS1. Not
identifiable ISL or OSL in the Fd-OCT scan were associated with atrophic macular changes in patient #2301 (A). Present ISL/OSL layer, ILM wrinkling
and enlarged space within the ONL were visible in patient #2597 (B) and # 2293 (C) with clinically early maculopathy. Deposits above Bruch’s membrane
are visible in macular scan of patient #2512 (D).
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3.1. Retinal morphology

All patients with mutations in BBS1 showed some
degree of maculopathy, whereas this was present in only
2 of 4 patients in the BBS10 group. Fd-OCT image acqui-
sition was possible in all patients including those with nys-
tagmus and fixation instability associated with low VA.
Microstructural findings of retinal layers imaged are shown
in Fig. 2 (BBS1) and Fig. 3 (BBS10) and summarized in
Table 2.

Four cases were selected based on the genetic

heterogeneity:

BBS1: Case 2597, homozygous mutation in M390R

(Fig. 2B). This patient with polydactyly, obesity and reti-
nopathy was diagnosed with BBS at age 17.7 years and
was re-evaluated 3 years later. Examination first showed
a VA of 0.1 logMAR, slightly constricted visual field with
paracentral scotoma and an early maculopathy in both
eyes. Repeated ERG assessment demonstrated a progres-
sive rod-cone dysfunction. Ophthalmic examination
revealed stable VA and retinopathy at follow up visits
(Table 2, Fig. 2). Fd-OCT macular scan demonstrates
intact inner, but disrupted outer retinal layers. The space
within the ONL or the inner and outer layers in the foveal
area appears to be enlarged when compared with the con-
trol scan. Analysis of outer retinal layers was made difficult
because of the disruption and possibly layer re-organiza-
tion. It could not be determined whether the layer posterior
to the OLM was consistent with the inner or outer segment
layer because of non-visible connecting cilia. The photore-
ceptor inner or outer segment layer was only seen in the
foveal area with gradual thinning centrifugal of the fovea.
The RPE layer showed drastic thinning with a resulting
higher reflectivity from the choroid.

BBS1: Case 2512, homozygous mutation in M1V

(Fig. 2D). This patient with obesity, polydactyly, retinop-
athy and learning disability was diagnosed with BBS at age
5. Her ERG was non-recordable above noise at that time.
Visual function progressed from 0.3 logMAR at age 8 to
1.6 logMAR at age 28. VF constriction was progressive
from 20 degrees at age 13 to non-detectable with the III4e
test target by age 28. Her most recent fundus examination
showed an atrophic maculopathy, constricted vessels and
general retinopathy with some minor spiculae pigmenta-
tion. Unlike the other patients studied, analysis of inner
retinal layers demonstrated thinning. The outer retinal lay-
ers, including inner and outer segment layer, were not
definable. The subfoveal increase in reflectivity above the
RPE layer may have indicated a remaining inner or outer
segment layer. The RPE was thinner than in Case 2597.
Areas of increased reflectivity, almost like deposits, were
seen above Bruch’s membrane.

BBS10: Case 2213, heterozygous mutation in C91W and

V707fs708X (Fig. 3B). This patient demonstrated polydac-
tyly, overweight, polycystic kidneys, and learning disabili-
ties and a progressive retinal dysfunction. VA dropped
from 0.3 logMAR at age 9 to 1.85 logMAR at age 13.5,
when she developed nystagmus. Retinal function deterio-
rated over those 4 years from a recordable rod-cone dys-
function with an electronegative waveform at age 9 to
being non-recordable at age 13.5 years. VFs were
constricted to less than 5 degrees at that time. Fundus
examination did not show a maculopathy at her last visit.
Fd-OCT revealed defined inner retinal layers, but thinned
outer retinal layers and RPE layer. Inner and outer seg-
ment layers were not distinguishable. Multiple small round
‘deposits’ were localized adjacent and anterior to Bruch’s
membrane.

BBS10: case 2621, heterozygous mutation in C91W and

A474fs483X (Fig. 3C). This patient had clinodactyly, obes-
ity, polycystic kidneys, learning disability and retinopathy
and was diagnosed at age 8. VA dropped from 0.5 log-
MAR at the first visit to 1.6 logMAR at age 13.6. Nystag-
mus occurred from age 10 onwards. Fundus examination
demonstrated a moderate maculopathy, optic atrophy
and thinned retinal vessels. Retinal layer analysis demon-
strated internal limiting membrane wrinkling, intact but
thinned inner retinal layers and an enlarged space within
the outer nuclear layer. Inner and/or outer segment layers
appeared to be present within the fovea. ‘Deposits’ above
Bruch’s membrane were similar to the patient described
above.

4. Discussion

High-speed and high-resolution Fd-OCT allowed a
detailed analysis of retinal layers in all patients with BBS
tested. Unstable fixation or nystagmus did not interfere
with image quality. The common characteristics of the
macular scans were preserved inner retinal layers and outer
nuclear layer, disrupted inner and outer segment layer and
thinned RPE. Reduced, but present photoreceptor inner or
outer segment layer within the foveal area was identifiable
in most of the patients. A differentiation between inner and
outer segment layers was not always possible due to
reduced thickness and non-identifiable connecting cilium.
Data from younger patients with less advanced retinopathy
might yield insight into inner segment/outer segment pho-
toreceptor layer changes including the connecting cilia.

No significant genotype–phenotype correlation was
observed. To our knowledge, this is the first in vivo high-
resolution retinal layer analysis in patients with mutations
in BBS1 or BBS10. Preservation of inner retinal layers
agrees with the recent in-vivo study by Azari et al. (2006)
and with histopathological studies of a patient with BBS
(Lahav et al., 1977; Runge, Calver, Marshall, & Taylor,
1986). Our observation supports a retinal electron micro-
scopic study from an 18-year old patient demonstrating
nuclei and inner segments but no outer segments within
the macular area (Lahav et al., 1977). Animal models of
Bbs4 mice showed a general retinopathy, which was
detected earlier with histopathology than with ophthalmos-
copy. ERGs in these animals revealed a cone-rod dysfunc-
tion by week 4 (Eichers et al., 2006). Histopathology



Fig. 3. Horizontal Fd-OCT scans (5 mm) (left panel) and corresponding fundus photograph (right panel) of patients with mutations in BBS10.
Maculopathy is early to moderate in patient #2296 (A) and #2621 (C) but absent in the other 2 patients (B) (D). ISL/OSL are identifiable in all but patient
#2213 (B). Deposits above Bruch’s membrane are visible in all patients (A–D, left panel).
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demonstrated thinned photoreceptors with loss of nuclei
and shortening of inner and outer segment layer.

Deposits adjacent and anterior to Bruch’s membrane,
which were more often evident in patients with mutations
in BBS10 than with mutations in BBS1, might be similar
to the abnormal material described in patients with RP
(Brosnahan, Kennedy, Converse, Lee, & Hammer, 1994;
Duvall, McKechnie, Lee, Rothery, & Marshall, 1986).
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Those data from patients with autosomal dominant RP
depict deposits of abnormal material between the RPE
and inner collagenous layer of Bruch’s membrane contain-
ing PAS positive material, lipids, calcium and iron.
Whether the deposits are signs of more advanced retinopa-
thy or a faster rate of retinal layer degeneration is not
known. Clinical assessment of a larger patient cohort with
mutations in BBS1 and BBS10 indicate a parallel rate of
progression in the two groups, but a more advanced dete-
rioration at an earlier age in the BBS10 group (Héon,
Gerth, Elia, & Munier, 2007).

Internal limiting membrane wrinkling, which is not an
uncommon sign in early stages of retinal dystrophies, was
identified in 3 patients. The macula in those patients
showed an enlarged space within the outer nuclear layer
or the inner and outer layers in the foveal area. This effect
might be caused by retinal thinning and’collapsing’ of ret-
inal layers.

In summary, Fd-OCT allowed excellent imaging of ret-
inal changes seen in BBS and did not reveal any significant
difference between patients carrying mutation in BBS1 or
BBS10. Intraretinal ‘deposits’ seen mostly in BBS10 are
possibly related to retinal re-organization. More advanced
imaging techniques such as adaptive optics OCT
(Zawadzki, Jones et al., 2005) could help further character-
ize the nature of retinal changes in advanced retinal dystro-
phy associated with BBS mutations. The in-vivo imaging of
degenerative changes related to BBS will contribute to a
better understanding of the processes, which leads to pho-
toreceptor loss. Characterization of those changes is
important to best design novel therapeutic approaches.
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Héon, E., Gerth, C., Elia, Y., Munier, F. (2007). Ocular phenotype
comparison between patients with Bardet–Biedl Syndrome with
identified BBS1 and BBS10 mutations. Investigative Ophthalmology
& Visual Science, ARVO E-Abstract 3698.

Lahav, M., Albert, D. M., Buyukmihci, N., Jampol, L., McLean, E. B.,
Howard, R., et al. (1977). Ocular changes in Lawrence Moon Bardet
Biedl Syndrome: a clinical and histopathologic study of a case.
Advances in Experimental Medicine and Biology, 77, 51–84.

Marmor, M. F., Holder, G. E., Seeliger, M. W., & Yamamoto, S. (2004).
Standard for clinical electroretinography (2004 update). Documenta

Ophthalmologica, 108(2), 107–114.
Nassif, N., Cense, B., Park, B., Pierce, M., Yun, S., Bouma, B., et al.

(2004). In vivo high-resolution video-rate spectral-domain optical
coherence tomography of the human retina and optic nerve. Optics

Express, 12, 367–376.
Ross, A. J., May-Simera, H., Eichers, E. R., Kai, M., Hill, J., Jagger, D.

J., et al. (2005). Disruption of Bardet–Biedl syndrome ciliary proteins
perturbs planar cell polarity in vertebrates. Nature Genetics, 37(10),
1135–1140.

Runge, P., Calver, D., Marshall, J., & Taylor, D. (1986). Histopathology
of mitochondrial cytopathy and the Laurence–Moon–Biedl syndrome.
British Journal of Ophthalmology, 70(10), 782–796.

Schachat, A. P., & Maumenee, I. H. (1982). Bardet–Biedl syndrome and
related disorders. Archives of Ophthalmology, 100(2), 285–288.

Schulze-Bonsel, K., Feltgen, N., Burau, H., Hansen, L., & Bach, M.
(2006). Visual acuities ‘‘hand motion’’ and ‘‘counting fingers can be
quantified with the freiburg visual acuity test. Investigative Ophthal-

mology & Visual Science, 47(3), 1236–1240.



C. Gerth et al. / Vision Research 48 (2008) 392–399 399
Stoetzel, C., Laurier, V., Davis, E. E., Muller, J., Rix, S., Badano, J. L.,
et al. (2006). BBS10 encodes a vertebrate-specific chaperonin-like
protein and is a major BBS locus. Nature Genetics, 38(5), 521–524.

Sun, W., Gerth, C., Maeda, A., Lodowski, D. T., Van Der Kraak, L.,
Saperstein, D. A., et al. (2007). Novel RDH12 mutations associated
with Leber congenital amaurosis and cone-rod dystrophy: Biochemical
and clinical evaluations. Vision Research, 47, 2055–2066.

Weleber, R., & Tobler, W. (1986). Computerized quantitative analysis of
kinetic visual fields. American Journal of Ophthalmology, 101(4),
461–468.

Wojtkowski, M., Leitgeb, R., Kowalczyk, A., Bajraszewski, T., & Fercher,
A. F. (2002). In vivo human retinal imaging by Fourier domain optical
coherence tomography. Journal of Biomedical Optics, 7(3), 457–463.

Wojtkowski, M., Srinivasan, V., Fujimoto, J. G., Ko, T., Schuman, J. S.,
Kowalczyk, A., et al. (2005). Three-dimensional retinal imaging with
high-speed ultrahigh-resolution optical coherence tomography. Oph-

thalmology, 112(10), 1734–1746.
Wojtkowski, M., Srinivasan, V., Ko, T., Fujimoto, J. G., Kowalczyk, A.,
& Duker, J. (2004). Ultrahigh-resolution, high-speed, Fourier domain
optical coherence tomography and methods for dispersion compensa-
tion. Optics Express, 12, 2402–2422.

Zawadzki, R. J., Fuller, A. R., Wiley, D. F., Hamann, B., Choi, S. S., &
Werner, J. S. (2007). Adaptation of a support vector machine
algorithm for segmentation and visualization of retinal structures in
volumetric optical coherence tomography data sets. Journal of

Biomedical Optics, 12(4), 041206-1–041206-7.
Zawadzki, R. J., Bower, B., Zhao, M., Sarunic, M. V., Laut, S., Werner, J.

S., et al. (2005). Exposure time dependence of image quality in high-
speed retinal in vivo Fourier domain OCT. Proceedings of SPIE, 5688,
45–52.

Zawadzki, R. J., Jones, S. M., Olivier, S. S., Zhao, M., Bower, B. A., Izatt,
J. A., et al. (2005). Adaptive-optics optical coherence tomography for
high-resolution and high-speed 3D retinal in-vivo imaging. Optics

Express, 13, 8532–8546.


	Retinal morphology in patients with BBS1 and BBS10 related Bardet-Biedl Syndrome evaluated by Fourier-domain optical coherence tomography
	Introduction
	Materials and methods
	Subjects
	Ocular function and morphology assessment
	Fourier-domain optical coherence tomography
	Mutational analysis

	Results
	Retinal morphology

	Discussion
	Acknowledgments
	References




