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ABSTRACT
Hierarchical statistical models are important in applied sciences
because they capture complex relationships in data, especially when
variables are related by space, time, sampling unit, or other shared
features. Existing methods for maximum likelihood estimation that
rely on Monte Carlo integration over latent variables, such as Monte
Carlo Expectation Maximization (MCEM), suffer from drawbacks in
efficiency and/or generality. We harness a connection between
sampling-stepping iterations for such methods and stochastic gra-
dient descent methods for non-hierarchical models: many noisier
steps can do better than few cleaner steps. We call the resulting
methods Hierarchical Model Stochastic Gradient Descent (HMSGD)
and show that combining efficient, adaptive step-size algorithms
with HMSGD yields efficiency gains.We introduce a one-dimensional
sampling-based greedy line search for step-size determination. We
implement these methods and conduct numerical experiments for
a Gamma-Poissonmixturemodel, a generalized linearmixedmodels
(GLMMs)with single and crossed randomeffects, and amulti-species
ecological occupancy model with over 3000 latent variables. Our
experiments show that the accelerated HMSGD methods provide
faster convergence than commonly used methods and are robust to
reasonable choices of MCMC sample size.
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1. Introduction

Hierarchical statistical models are widespread in the applied sciences because of their abil-
ity to capture complex relationships in data. In ecology, hierarchical models of species
abundance through space and time have been applied to estimate species distributions and
dynamics [62]. In political science, hierarchical models are used to estimate underlying
preferences from data on policymaker decisions [35], while in epidemiology such models
are used to estimate disease prevalence across space and time [46]. These models are diffi-
cult to estimate largely because the likelihood requires integration over the latent variables
e.g. true occupancy across many sites for many individuals, political preferences of many
states or policymakers, or the relative risk of disease across many areas, which is typically
a high-dimensional problem with no closed-form solution [14,15].
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Partly because of the difficulty of the likelihood integration problem, Bayesian analysis
via computational tools such asMarkov chainMonte Carlo (MCMC) has become themain
practical path for analysis of many hierarchical models [16,33]. However, many lines of
statistical reasoning would be enabled by a similarly general computational approach for
maximum likelihood estimation [20]. Onemight seek to apply likelihood ratio tests, model
selection byAkaike information criterion (AIC), goodness-of-fit asmeasured bymaximum
likelihood or other metrics, cross-validation, or other approaches. Although statisticians
sometimes emphasize the philosophical incompatibility of Bayesian and frequentist results,
practitioners are quite willing to study results from each side-by-side. Even when one seeks
a Bayesian analysis, maximum likelihood results can provide a sanity check on theMCMC
posterior and the influence of prior distribution assumptions. Statisticians have argued
that the future will hold a combination of both Bayesian and frequentist methods [27],
yet for general hierarchical models, practitioners in the applied sciences are often limited
to Bayesian results. Amid this rich space for statistical innovation, the need for improved
MLE methods for general hierarchical models is vital.

A variety of methods have been proposed for MLE estimation of general hierarchical
models, but none has gained the kind of general traction thatMCMChas for Bayesian esti-
mation. One set of methods are stochastic variants on the expectation maximization (EM)
algorithm [24], such asMonte Carlo EM (MCEM, [71]), stochastic EM (SEM, [12,13]), and
stochastic approximation EM (SAEM, [11,23,43]). These suffer from the potentially slow
convergence path of EM, and methods to ensure convergence involve costly increases in
sample sizes to achieve smallerMonteCarlo variance as the algorithmproceeds [9].Despite
these issues, MCEM is one of the most widely applied methods because of its generality. A
second approach, Monte Carlo Newton-Raphson (MCNR, [44]), also requires increasing
Monte Carlo sample sizes to ensure convergence, although theory and application of this
method appear lesswidespread. A third approach, data cloning [47] or State-Augmentation
for Marginal Estimation (SAME, [36]), uses MCMC with many duplicate latent states,
making the problem similar toMCMC but harder. A fourth approach,Monte Carlo Kernel
Likelihood (MCKL, [19]), can require iterated application of MCMC.

Due to the various challenges in applying these methods, they are not used as widely
as they might be. Specialized methods have been created for specific problems, such
as stochastic approximation EM coupled with approximate Bayesian computation for
state-space models (SAEM-ABC, [56]), stochastic approximation EM with a Metropolis-
Hastings sampling procedure that is based on a multidimensional Gaussian proposal
for nonlinear mixed effects models (f-SAEM, [38]), sequential Monte Carlo paired with
stochastic approximation EM for working with functional data [48], and stochastic gradi-
ent MCMC for Gaussian Process computations [1], but these fail to cover a wide range of
latent variable model scenarios and require specialized implementation of the algorithms.
Finally, we note that there has been interest in distributional approximation methods such
as Integrated Nested Laplace Approximations (INLA) [63] and variational Bayes [5,67] for
the related Maximum Posterior Estimation problem, but we focus on problems where the
goal is exact MLE, limited only by small Monte Carlo error.

In this paper, we make several contributions to the hierarchical model maximum like-
lihood problem. First, we exploit a connection to stochastic gradient descent methods (for
non-hierarchicalmodels) that sets up transferal of thosemethods to hierarchicalmaximum
likelihood estimation. This expands the range of available methods for this important class
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of problems. We refer to the methods in this new context as Hierarchical Model Stochas-
tic Gradient Descent (HMSGD). Second, we place the new (for this context) methods
and existing methods in a unified framework of iterative sample-move steps. This allows
systematic comparison and potential combination of methods. Third, we show that Adap-
tive Moment Estimation (Adam) [41], a state-of-the-art step-size adaptation method from
stochastic gradient descent problems, performs best in a set of case studies. Since stochas-
tic gradient descent methods have been almost entirely unused and, to the best of our
knowledge, Adam has never been used for hierarchical model maximum likelihood esti-
mation, this establishes a highly competitive method that is new to this problem space.
Fourth, we introduce a new method, called iterative 1D sampling, that also performs very
well in comparisons. Fifth, we compare numerous methods, both well-known and newly
exploited, to a series of empirical examples increasing in data size and model complexity.
We find that Adam and the iterative 1D sampling methods – both newly adopted and/or
developed here – perform best overall, giving efficiency improvements that range from
5-fold to 10-fold. Sixth, we give a simulation study comparing methods across a range
of data sizes and the Monte Carlo sample sizes used iteratively within algorithms. This
allows us to investigate how estimation precision and computational efficiency are related
to these dimensions. Finally, we provide general implementations of all the methods in R
package NIMBLE (Numerical Inference for statistical Models for Bayesian and Likelihood
Estimation) [21,22].

Stochastic gradient descent problems and hierarchical maximum likelihood problems
both involve large samples, but the samples are in different parts of the relevant models. In
typical stochastic gradient descent problems, one has a non-hierarchical model for mas-
sive datasets (‘big data’, for example, more than a million observations) used in machine
learning applications such as image recognition. For example, the loss function for neural
network parameters is a sum of many terms, and the computation of its exact gradient to
take an optimization step is costly [6,7]. It turns out to be more efficient to calculate a gra-
dient from a stochastic subset of the data at each iteration and to use a running average of
steps to smooth over the stochasticity [6,31,32]. In essence, many fast, noisy steps converge
more efficiently than few slow, deterministic steps.

In a hierarchical model, the relevant gradient is an expectation over latent states, often
approximated by Monte Carlo. In this context, the large sample is not the data but rather
the Monte Carlo sample of latent states given parameters and data. Existing approaches
represent different ways of taking approximately deterministic steps at the cost of large
Monte Carlo sample sizes. The connection to stochastic gradient descent methods sug-
gests that many faster but noisier steps may work better. We take advantage of the fact that
highly developed step-size schedules from the stochastic gradient descent literature are
directly transferable to the hierarchical model maximum likelihood problem in ways that
have not been done before. The general view of the problem also leads us to propose the
iterative 1D sampling method, a new method based on a greedy line search in an approxi-
mate gradient direction. This turns out to be better than previous methods but not best in
our computational experiments.

While the connection between maximum likelihood estimation of hierarchical mod-
els and stochastic gradient descent of non-hierarchical models has been noted before in
the computer science and machine learning literature [65,66] and discussed in the specific
context of Hidden Markov Models [3,10], it has hardly been exploited at all. By placing
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methods in a common framework, we can see them as variants on how to iterate between
sampling latent states given data and current parameters and making a step to update
parameters. Themethods differ in sample-size and step-size choices, whichwe show can be
improved by drawing on advances in stochastic gradient descent methods. (Despite that
the likelihood is being maximized, we stick with the established label ‘descent’, viewing
the negative log likelihood as a loss function to be minimized.) In addition to methods
mentioned above, we include fixed step-size schedules in comparisons.

The new method we propose, called iterative 1D sampling, emerges naturally as a
combination of the gradient-descent view of the problem and the Monte Carlo Kernel
Likelihood idea. The essential idea is to draw MCMC samples of the latent states and
parameters, but with parameters constrained to move in the direction of the approximated
gradient at the values from the previous maximization. The new maximizer in this direc-
tion is then approximated using kernel density estimation (Figure 1). This can be viewed
as a greedy line-search method. Section 3.3.3 describes this approach in detail.

We implement all of these methods in NIMBLE, [21,22]). NIMBLE is an R package that
allows for flexible hierarchical model specification and writing algorithms such as MCMC
or themethods proposed here. The system is extensible and automatically generatesmodel-
and algorithm-specific C++ for fast execution. We used a pre-release version of NIMBLE
with support for automatic differentiation, from which all derivatives below are obtained,

Figure 1. Visualization of the 1-dimensional sampling. The ellipses represent the contours of the like-
lihood surface. The blue crosses indicate the MCMC samples and the blue curves represent the density
estimates. Eachof the red circles indicates theparameter estimate at an iterationof the algorithms,which
is computed as the mode of the estimated density.
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which has subsequently been released as of NIMBLE version 1.00. This implementation
can be straightforwardly used by practitioners requiring only a model specification to
define their own latent variable problem of interest.

The rest of the paper is organized as follows. In Section 2, we establish notation for a
general hierarchicalmodel. In Section 3, we placeMCEM,MCNR, andHierarchicalModel
Stochastic GradientDescent in a common framework and introduceAdam as a viable step-
size schedule.We also introduce the iterative 1D samplingmethod. In Section 4, we discuss
computational considerations, and in Section 5 we present computational experiments
from four examples. The examples include a Gamma-Poissonmixturemodel of pump fail-
ure times, a logistic Generalized Linear Mixed Models (GLMM) with random intercepts
for seed germination, a logistic GLMM for salamander mating success with crossed ran-
dom effects (these present a challenge to many numerical methods), and a multi-species
occurrence model with more than 3000 latent variables. Additionally, for the salamander
example, we present simulation experiments for varying MCMC sample sizes and scien-
tific sample sizes. Results show that Adam and the newly proposed iterative 1D sampling
can achieve reasonably accurate estimates even with modest MCMC sample sizes, leading
to improvement in computational time. Section 6 provides discussion and directions for
future work.

2. Data-Generating process for hierarchical model

Suppose we have n observations y = (y1, . . . , yn) ∈ Y ⊂ R
n, drawn from probability dis-

tribution p(y | θ), where θ = (θ1, . . . , θD) ∈ � ⊂ R
D are the model parameters. We intro-

duce the latent variables x = (x1, . . . xK) ∈ X ⊂ R
K , which are considered unobserved

random variables. The general latent variable model structure is as follows: x | θ ∼ p(x | θ);
y | x, θ ∼ p(y | x, θ).

The (marginal) likelihood of θ is L(θ) := p(y | θ) = ∫
p(y | x, θ)p(x | θ) dx and our goal

is to find θ̂ML := argmaxθ∈� log p(y | θ). We are often interested in the scenario where the
dimension of the latent variables is much larger than the dimension of the parameters; i.e.
when D � K. When the dimension of the latent variables K is large, it is computationally
infeasible to approximate the integral using a grid-based numerical integration. On the
other hand, if D is small (say D = 2), it is tempting to use the naive Monte Carlo approx-
imation 1

S
∑S

i=1 p(y | x(s), θ) based on x(s) ∼ p(x | θ) for a grid of values of θ and find the
maximizer. However, this rarely works well due to high variance, since the x(s) are drawn
from a distributionwithout information from the data y. To remedy the high variability, the
sample size S has to be large, which in turn increases the computational cost dramatically.

3. A general framework for sampling-based optimization approaches

We begin by giving the general framework within which MCEM, MCNR, and gradient
descent are special cases.

Given a current iterate θ(t), each of the algorithms performs the following two steps:

(1) Sample Step: Generate MCMC samples x(t) = (x(t),1, x(t),2, . . . x(t),S) from
p(x | y, θ(t)).

(2) Move Step: Update θ(t+1) = f (x(t)).
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where the choice of f is different for each algorithm. The notation we use emphasizes
the dependence of f on the MCMC sample x(t), but f can also depend on any quantities
involved in the computation up to iteration t.

For the sample step, it is important to note that MCMC sampling of latent states, with
parameters held fixed, is typically much faster and better mixing that MCMC sampling of
latent states and parameters jointly, i.e. when doing fully Bayesian estimation.

For the move step in most sampling-based approaches, gradient computation of the
marginal log-likelihood is required. This can be seen from from Fisher’s identity [26]:

d
dθ

log p(y | θ) = EX∼p(x | y,θ)
[
d
dθ

log p(X, y | θ)
]
. (1)

Computation of the gradient of the complete log-likelihood (inside the expectation) can
be done efficiently via an autodifferentiation package, and the expectation can be approxi-
mated via a Monte Carlo method. Specifically, the average of the gradient of the complete
log-likelihood over a sample from p(x | y, θ) (obtained by MCMC or another method)
approximates the gradient of the marginal log-likelihood.

Higher-order derivatives can be computed in a similar fashion [10]. For example, the
Hessian of the log-likelihood admits the following representation

d2

dθdθT
log p(y | θ) = EX∼p(x | y,θ)

[
d2

dθdθT
log p(X, y | θ)

]

+ EX∼p(x | y,θ)

[(
d
dθ

log p(X, y | θ)
) (

d
dθ

log p(X, y | θ)
)T

]

−
(

d
dθ

log p(y | θ)
) (

d
dθ

log p(y | θ)
)T

, (2)

which is often known as Louis’ identity [49]. This will prove useful in MCNR as discussed
in Section 3.2.

Whenderivatives are not available, one canuse a finite-element approximation of (1) [2]:

d
dθ

log p(y | θ) = 1
p(y | θ)

d
dθ

p(y | θ)

≈
⎛
⎝ p(y | θ+δe1)

p(y | θ) − 1

δ
, . . . ,

p(y | θ+δeD)
p(y | θ) − 1

δ

⎞
⎠ ,

where ei denotes the unit vector in the ith coordinate and δ denotes a very small value, say
10−4. This suggests that the key to the approximation is to estimate the ratio p(y | θ+δei)

p(y | θ) .

Since 1
p(y | θ) = p(x | y,θ)

p(x | θ)p(y|x,θ) for any x, we can express a likelihood ratio as

p(y |ψ)
p(y | θ) = 1

p(y | θ)
∫

p(x |ψ)p(y | x,ψ) dx =
∫

p(x |ψ)p(y | x,ψ)
p(x | θ)p(y | x, θ) p(x | y, θ) dx.

This can be approximated by an average of p(x |ψ)p(y | x,ψ)
p(x | θ)p(y | x,θ) over a sample from p(x | y, θ). Let-

ting ψ = θ + δei for i = 1, . . . ,D provides approximation of the likelihood ratios needed
for the finite-element approximation of the gradient.
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Unfortunately, finite-element approximations of higher-order derivatives require divi-
sion by extremely small values and hence are numerically unstable. In a preliminary version
of this work, we used finite-element approximation for Hessians in MCNR and found that
the algorithm often diverged very quickly in our numerical studies. In particular, param-
eters often jumped to the boundary of the search space in early iterations. Numerical
instability of finite-element approximation of Hessians have been observed in the liter-
ature (for example, [55]). This issue is no longer present once derivatives are calculated
accurately, which is done here via automatic differentiation.

Now we present MCEM, MCNR, and Stochastic Gradient descent and show how they
fit into this unifying framework. Each method uses the same sample step, but the function
f for the move step varies. We will refer to GMC(θ , x) and HMC(θ , x) as the Monte Carlo
approximation of (1) and (2) at θ based on a sample x.

3.1. Optimization as themove step

The MCEM algorithm [71] replaces the expectation in the E-step of the traditional EM
algorithm [24] with a Monte Carlo approximation. The corresponding move step is

f (x(t)) = argmax
θ

1
S

S∑
i=1

log p(x(t),i, y | θ). (3)

3.2. Second ordermove step

Monte Carlo Newton-Raphson (MCNR) uses Monte Carlo estimates of the gradient and
the Hessian of log p(y | θ) for Newton-Raphson updates [44,51]. The corresponding move
step is

f (x(t)) = θ(t) − [HMC(θ
(t), x(t))]−1GMC(θ

(t), x(t)). (4)

3.3. First ordermove step

The first-ordermove step is obtained by replacing theHessian in (4) with a step-size choice
α. To allow each component to have its own step-size, we consider α to be aD-dimensional
vector, where D is the number of components in the parameter vector. Denoting the
Hadamard (component-wise) product as �, the first order move step can be written as

f (x(t)) = θ(t) − α � GMC(θ
(t), x(t)). (5)

We will now describe three ways to select the step-size: fixed step-size, Adam, and one-
dimensional greedy line search.

3.3.1. Fixed step-size
The fixed step-size method suggests the use of a fixed learning rate for each component.
Tuning the size for a particular problem can be tricky to automate, so we appeal to other
choices of α that rely less on a user explicitly tuning the method in the following sub-
sections.
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3.3.2. Adam
Adam [41] uses bias-corrected moment estimates of gradients. Instead of using the
estimated gradient GMC(θ

(t), x(t)) at the current iterate, the move is governed by an
adjusted gradient. For i = 1, . . . ,D, define the running averages of first and second-
ordermoment estimates of the gradient:m(t+1)

i = β1m
(t)
i + (1 − β1)[GMC(θ

(t), x(t))]i and
v(t+1)
i = β2v

(t)
i + (1 − β2)([GMC(θ

(t), x(t))]i)2, where β1,β2, α and ε are predetermined
fixed scalars, andm(0)i and v(0)i are set to zero. The α term controls the step size; if chosen
to be too big, we might not achieve convergence; if too small, it might take many steps to
achieve convergence. Choosing β1,β2 ∈ [0, 1) controls the exponential decay rates ofmov-
ing averages of gradients and squared gradients in the algorithm. If both β1, β2 are chosen
to be very close to 1 (i.e.: small decay rates), the first and second moment estimates can be
stuck near 0. Following the recommendations in [41], we set β1 = 0.9 and β2 = 0.999 by
default. While [41] recommends setting α = 0.001 and ε = 10−8, we default α = 0.3 and
ε = 10−3 to ensure faster convergence and more stable estimate trajectory.

Define bias-corrected first and second-order moment estimates: m̂(t+1)
i = m(t+1)

i
1−βt+1

1
;

v̂(t+1)
i = v(t+1)

i
1−βt+1

2
. The Adam update step is f (x(t)) = θ(t) − αadam � G(t)MC,adj with

αadam =
⎡
⎢⎣ α√

v̂(t+1)
1 + ε

, . . . ,
α√

v̂(t+1)
D + ε

⎤
⎥⎦

and G(t)MC,adj = [m̂(t)1 , . . . , m̂(t)D ].
In the context of stochastic gradient methods, convergence results are often stated in

terms of bounds on the average regret, defined as 1
T [

∑T
t=1 ft(θt)] − minθ ′ 1

T [
∑T

t=1 ft(θ
′)]

with ft being a sequence of convex loss functions. [41] shows that Adamachieves an average
regret bound of O(1/

√
T) under mild conditions, one of which is the convexity of the

objective function. While in general a hierarchical model might not be globally convex,
provided that the sample size (of y) is large enough, often the likelihood surface is locally
similar to a Gaussian shape near the optimum and hence locally convex.

3.3.3. One dimensional greedy line search
The idea of using an adaptive step-size has been explored in stochastic approximation and
gradientmethods [57,75].We introduce a novel adaptive step-sizemethod called 1D greedy
line search that has its roots in Monte Carlo likelihood estimation by weighted posterior
kernel densities (MCKL, [19]). The idea is to step to the maximum in the direction of the
gradient by solving the following optimization problem,

cmax
t = argmax

c
p(y | θ(t))+ cGMC(θ

(t); x(t)), (6)

where c is a scalar multiplying the current gradient with respect to θ . In essence GMC is
a single new parameter axis, along the current gradient, and c is the coordinate on that
axis. Hence cmax

t is the one dimension MLE in that axis. Then there is an update step:



JOURNAL OF APPLIED STATISTICS 603

θ(t+1) = f (x(t)), where

α
(t)
1D = [cmax

t , . . . , cmax
t ]

and f (x(t)) = θ(t) + α
(t)
1D � GMC(θ

(t); x(t)).
In essence we are always choosing the ‘best’ step-size in the sense that we pick the one

that provides the most progress. To approximately solve the optimization problem, given
(x(t), θ(t)), we sample jointly in (x, γ ) from p̃(x, γ | y) ∝ p(x, θ(t) + γGMC(θ

(t); x(t)) | y).
We are again reducing the parameter space to a single axis along the current gradient,
here with coordinate γ , and now obtaining a posterior sample for (x, γ ). The unre-
stricted samples of γ approximate a one-dimensional slice of the marginal distribution.
We approximate the maximizer on the line using a kernel density estimate of the MCMC
samples.

The advantage of using a 1D line search is the potential of aggressivemoves at the start of
the algorithm. The downside of 1D line search is the computational cost incurred by addi-
tionalMCMCsampling at each step. In addition, the number ofMCMCsamples needed for
the greedy line search has to be reasonably large in order for the kernel density estimation
(and hence the mode estimation) to be reliable.

Algorithm 1 Gradient descent via 1D Greedy Line Search
• Input: θ(t), g(t) := GMC(θ

(t); x(t)).
1: Run an MCMC sampler to sample (x(t), γ (t)) from p̃(x, γ | y) ∝ p(x, θ(t) + γ g(t) | y).
2: Perform a 1D kernel density estimate for the sampled γ (t) and compute themode γ̂ (t).
3: Set θ(t+1) = θ(t) + γ̂ (t)g(t).

3.3.4. Other potential approaches
We note that two common step-size choices are not useful for our problem. The first
is an inexact line search based on Wolfe conditions. Wolfe conditions guarantee suffi-
cient improvement in the iterate and a decrease in the magnitude of the gradient [72].
Unfortunately, checking Wolfe conditions in our context is computationally costly, since
it requires multiple evaluations of the marginal likelihood at each iteration. The second is
the Robbins-Monro step-size schedule [60], a popular step-size schedule for root finding,
applications in regression [40], probability density estimation [39], and stochastic gradient
methods in training neural networks. However, we found in our preliminary experiments
that the Robbins-Monro step-size in our context leads to slow convergence compared to
the alternative step-size schedules we considered and requires careful tuning.We therefore
omit the Robbins-Monro results below.

4. Computational considerations

4.1. Burn-In andwarm start

For each iteration, we set the burn-in of the sample step to be half of theMCMC samples to
be conservative (Section 6.5 of [8]). Since diagnostics require considerable amount of time
to run and assess, it is more beneficial to run more samples (and conservatively remove
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the first half of the samples) rather than worry about tracking diagnostics throughout each
step. We also implement a ‘warm start’ where the last draws from the previous iteration’s
sample step are the starting point for the next iteration. This idea is used in many con-
texts [18,61,70] and in our case should also help ensure that the burn-in period is adequate.
We leverage the progress from the previous iteration, taking advantage of the proximity of
the parameter estimates between two adjacent iterations.

4.2. Kernel and bandwidth for the 1D sampling approach

For the kernel density estimation involved in the 1D sampling, we find that almost any
standard choice of kernel (e.g. Gaussian, Epanechnikov, etc.) and the bandwidth (e.g. Sil-
verman’s rule-of-thumb [64]) yields similar final maximum likelihood estimates. It has
been noted that the differences in statistical efficiency among these kernels are small [69].
For the numerical experiments, the kernel choice is defaulted to be Gaussian and the (opti-
mal) bandwidth is computed based on the effective MCMC sample size instead of the
nominal sample size, accounting for the fact that the usual optimal bandwidth is derived
based on an independently identically distributed (i.i.d.) assumption [64].

4.3. MCMC sample sizes

Just as the number of MCMC samples that we use for the gradient estimation is a tuning
parameter, analogous to the batch size in stochastic gradient descent, so is the number of
MCMC samples for 1D sampling. For the 1D sampling, a larger MCMC sample size could
potentially be necessary due to the slow mixing of joint sampling of the parameters and
latent variables. In our experiments, the MCMC sample size choice1 of 300 seems to work
reasonably well for both gradient estimation and 1D sampling. In one of our case studies,
reasonably accurate performance can still be achieved with only a sample size of 20.

4.4. Convergence criteria

For stochastic gradient descent and its variants, the convergence is often checked by pre-
dictive performance in machine learning applications. This is not appropriate in our MLE
context since we are not solving a prediction problem. Within MCNR, [44] uses a formal
hypothesis testing procedure where the variance of the updates are deduced based on a
bootstrapping procedure. This is not applicable to our framework since the sample sizes
involved in our algorithms tend to be too small for proper variance estimation. Lastly, a
less formal option for convergence check is to plot the trajectory of the iterates and see
if the trajectory for each parameter roughly fluctuates around a particular number [9].
This requires users to study the trajectory plots, which is not ideal for an automated MLE
algorithm.

Our approach is to quantify the fluctuation and flatness of the estimate trajectory, lead-
ing to the development of a two-step test for convergence. This approach is chosen to be
ad hoc but fast. Once the two-step test is passed, the algorithm is terminated. For the
first step, we use the Wald-Wolfowitz runs test [68] to determine whether the trajectory
is close to beingmonotonic, an indication of non-convergence. More specifically, at the tth
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iteration of the algorithm, check if the number of runs, groups of consecutively increas-
ing or decreasing coordinate values, in (θ(t−w+1)

j , θ(t−w+2)
j , . . . , θ(t)j ) are at least r = 4 for

a block size w = 20. (The choices of r and w are somewhat arbitrary here and can be
tuned.) If this is not the case for every coordinate, continue the algorithm. If all the coor-
dinates have runs of at least r, we proceed to the next test. For the second step, we carry
out a t-test to compare the average of iterates in the most recent 20 iterations with that
in the preceding 20 iterations. If we fail to reject the null hypothesis at a certain signifi-
cance level (say 30%), we terminate the algorithm and conclude convergence. Note that
a larger significance level means we are being conservative, and therefore we will favor
running more iterations. In some examples, our ad hoc test is conservative, not deter-
mining that convergence has occurred and hence making methods look slower than they
might be.

We remark that for MCEM in our numerical experiments, we use the implementation
in NIMBLE, which is based on work by Caffo [9]. The implementation gradually increases
the MCMC sample sizes, unlike our proposed approach of fixing a small MCMC sample
size. Since the gradient estimates are reliable for large MCMC sample size, this allows the
simple convergence check: check whether the approximated gradient is within a certain
tolerance. This MCEM approach increases computation time, and in general convergence
criteria are an important area for further research.

5. Numerical experiments

We experiment with the algorithms using four examples: a conjugate Gamma-Poisson
hierarchical model (referred to as pump), two GLMMs (referred to as seeds and salaman-
der) and a multi-species occurrence model with a large number of latent variables. These
examples were chosen to assess the performance of our approach across a range of poten-
tial pitfalls that practitioners may encounter. The first three examples can be solved by
specialized methods to give a correct MLE for comparison from the much more general
methods studied here. For gradient and Hessian computations, we use automatic differ-
entiation instead of finite-element approximation for better speed and higher accuracy.
We run each algorithm for 300 iterations and report the execution times. In addition, if
the algorithm passes the convergence test within 300 iterations, we report the convergence
time and the number of iterations to convergence. To obtain the final estimates, we take
the 20% trimmed mean of the last 20 iterates. The averaging is to smooth out any ‘bounc-
ing around’ the optimum towards the end of the path, and the trimming is to make the
estimate more robust to occasional deviations on the path. Similar stabilizing approaches
exist in the stochastic gradient descent literature such as taking the average of the last α
proportion of iterates, called α-suffix averaging [59].

For every algorithm in each example, we report the CPU execution time (for 300 itera-
tions), the CPU time to convergence (that is, how long it takes until the convergence test
passes), and the log-likelihood difference, compared to the benchmark estimates. We also
compute the root-mean-squared error (RMSE) of the estimates of each of the HMSGD
methods based on 30 random initializations to evaluate the robustness of each method.
Detailed numerical results can be found in the Appendix. In some examples, we also
qualitatively assess robustness of methods to different starting values based on estimate
trajectories.
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5.1. Case studies of differentmodels

5.1.1. Case study: pump (Gamma-Poisson hierarchical model)
The pumpmodel [30] is a classic example fromWinBUGS [50]. It is a conjugate Gamma-
Poisson hierarchical model, so the marginal likelihood can be analytically derived. The
MLE can be found by a standard deterministic optimization procedure2. The model
specification is as follows: for i = 1, . . . ,N, θi |α,β ∼ Gamma(α,β); λi = θiti; xi | λi ∼
Poisson(λi), where xi is the number of failures for pump i, θi is the failure rate for pump i,
and ti is the length of operation time for pump i. We treat x1, . . . , xN as the observed ran-
dom variables, t1, . . . , tN as fixed constants, and θ1, . . . , θN as latent variables. The pump
reliability dataset is originally from [28]. It consists of data about ten power plant pumps
(N = 10).

To investigate the sensitivity of the algorithms to initial values, each of the algorithms is
testedwith two different starting points (α(0),β(0)) = (10, 10), relatively far from theMLE,
and (α(0),β(0)) = (10, 2), unbalanced in its distance from theMLE.We observe that all the
algorithms except the smaller fixed step-size (0.005) are able to get close to the benchmark
MLE. Figure 2 shows that the 1D sampling approach makes aggressive moves initially, so
it gets close to the optimum in fewer iterations. The smaller fixed step-size (0.005) follows
the shape of the likelihood surface more closely at the cost of many more steps. Adam’s
final iterations concentrate more tightly around the optimum. The methods are in gen-
eral robust to both different initial values and different MCMC sample sizes. The latter
robustness allows us to reduce the computational time by not relying on as many MCMC
samples to assure good performance. From the RMSE perspective (Tables A5 and A6),
Adam, Newton-Raphson, and 1D sampling provide more accurate estimates compared
to the two fixed step-size schedules. MCEM takes far fewer iterations but a much longer
computational time to reach the optimum.

5.1.2. Case study: seeds (logistic regression with random effects)
Our next example, seeds, is a logistic regression model with random effects. These types of
models are common in social sciences and medicine as many longitudinal studies have
a binary outcome [54]. The seeds example has appeared in [50] as a classic WinBUGS
example, and the dataset is originally from [17].

Themodel specification is as follows: β2i ∼ N(0, σ 2
RE); logit(pi) = β0 + β1xi + β2i; ri ∼

Binom(ni, pi), where ri is the binary outcome of interest for individual i, the xi are the
explanatory data collected per individual i, the ni are the number of replications per indi-
vidual i, and the β2i are the unobserved random effects for individual i. We treat x1, . . . , xN
as the observed random variables, n1, . . . , nN as fixed constants, and the β2i and pi as latent
variables. The parameters of interest are β0, β1, and σRE. Our dataset consists of twenty one
individuals (N = 21).

We experiment with two sets of initial values, (β0,β1, σRE) = (0, 0, 1) and, further from
the MLE, (β0,β1, σRE) = (−1,−1, 4), as well as two different MCMC sample sizes, 20 and
300.WithMCMC sample size 300 and initial value (−1,−1, 4), Newton-Raphson seems to
be stuck at the boundary constraints and fails to get close to the benchmarkMLE, showing
that Newton-Raphson could be sensitive to initial values.

Figure 3 displays the trajectories of the iterates for each algorithm with MCMC sam-
ple size 300 and initial value (0, 0, 1). The larger fixed step-size is sensitive to large
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Figure 2. Estimate trajectories for the pump example. Zoomed-in trajectories are based on the final 100
iterations of the algorithms. The true MLE is (α̂, β̂) = (0.823, 1.262).

gradients, leading to erratic jumps. Contrasting with the pump example, here the smaller
step-size is preferable, suggesting that the fixed step-size method might require a care-
ful step-size choice to achieve well-behaved trajectories. All of the other methods appear
to converge within a narrow band around the true parameters fairly quickly. Adam and
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Figure 3. Estimate trajectories for the seeds example. Zoomed-in trajectories are based on the final 100
iterations of the algorithms. The fixed step-size (0.05) trajectories are dropped in the zoomed-in plots for
better resolution of the othermethods. The lme4 estimates suggest that a decentML estimate should be
around (β̂0, β̂1, σ̂RE) = (−0.548, 1.310, 0.249).

Newton-Raphson still perform well with MCMC sample sizes of 20 (Table A7), but both
the small fixed step-size and the large fixed step-size approaches have trouble with a small
MCMC sample size (Table 3).

Comparing Table A9 with Table A7, we observe that for smaller MCMC sample sizes
more iterations are typically needed to reach convergence. Adam arrived at a solution
several times faster than 1D sampling or MCEM (Tables A7 and A9). The smaller fixed
step-size approach also does fairly well. From the RMSE perspective (Tables A11 and A12),
with MCMC sample size 300, both Adam and 1D sampling provide more accurate esti-
mates compared to the fixed step-size schedules. On the other hand, Newton-Raphson
diverges for certain random initializations, showing lack of robustness to starting values.
In this case we can also compare to the results given by the specialized method in the lme4
package [4] in R, and we see close agreement in the estimates.

5.1.3. Case study: salamander (crossed random effects model)
Our next example, salamander [37], features a GLMMwith crossed random effects, which
lead to challenging estimation of the random effects’ variances. Let yi be the observed
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outcome of whether salamander pair i successfully mated or not. For pair i, we use
F(i) and M(i) to denote the corresponding female and male. Let REFF(i) and REMM(i)
denote the random effects for female F(i) and male M(i). The model specification is
as follows: REFF(i) ∼ N(0, σ 2

F ); REMM(i) ∼ N(0, σ 2
M); logit(θi) = β1 isRRi + β2isRWi +

β3isWRi + β4 isWWi + REFF(i) + REMM(i); yi ∼ Bern(θi), where isRR, isRW, isWR, and
isWW encode which population the female (first letter) and male (second letter) are from
in each pair with R denoting ‘rough-butt’ and W denoting ‘whiteside’; θi is the probabil-
ity of mating for each pair i. We consider the random effects REFF(i), REMM(i) as latent
variables. The top level parameters of interest are β1,β2,β3,β4, σ 2

F , and σ
2
M . Data from 360

pairs of salamanders (N = 360) is available in the glmm package [42] in R.
We experiment with two initial values of the six parameters (β1,β2,β3,β4, σ 2

F , σ
2
M),

(2, 2, 2, 2, 2, 2) and, further from theMLE, (4, 4, 4, 4, 4, 4). Our benchmark estimate is from
the lme4 package [4] in R. In addition, we also compare our estimates with the ones from
the glmm package [42]. We take the advice in the documentation of glmm to increase
the Monte Carlo sample size to 105 from the default of 104 in order to get more reliable
estimates of the parameters. We also study the robustness of starting values by randomly
initializing 30 starting values. From the RMSE perspective (Table A15), fixed step-size
(0.05), Adam, and 1D sampling perform favorably compared to fixed step-size (0.005);
Newton-Raphson diverges for certain initializations.

From Figure 4, we observe that all the methods arrive at a stable estimate of the β val-
ues quickly when the initial value is (2, 2, 2, 2, 2, 2). In particular, Newton-Raphson and 1D
sampling get close to the benchmark MLE within ten iterations. We compute the approxi-
mate log-likelihood values at the various MLEs via lme4. As shown in Tables A13 and A14
in the Appendix , the sampling based approaches yield MLEs close to the ones given by
glmm and lme4 in terms of both log-likelihood differences and RMSE, regardless of the
initial values. However, the convergence criteria did not perform well and remain an area
for future research.

5.1.4. Case study: multi-species occurrencemodel
Our final example is a multi-species, single-season occurrence model withmore than 3000
latent variables and 20 parameters. This type of high-dimensional problem often has slow
MCMC mixing. The full model specification can be found in (A3)-(A5) in Appendix 1
of Ponisio et al. [58], while the original analysis and data are from Zipkin et al. [76]. To
ensure the parameter trajectories do not go out of range for the HMSGD methods, we
apply an inverse-logit transformation for parameters with range [0, 1] and an exponential
transformation for parameters with range (0,∞) so that the range for each transformed
parameter is (−∞,∞).

For the HMSGD methods, we initialize all the transformed parameters to 0. From
Tables A16, A17 and A18, fixed step-size (both 0.05 and 0.005) and Adam yield MLEs
close to the one given by MCEM but with much shorter computational time. On the other
hand, 1D sampling runs into trouble with the MCMC sampling after a few iterations and
Newton-Raphson gives poor estimates for some variance components.

However, when the transformed parameters are randomly initialized, the enormous
RMSEs of fixed step-size approaches indicate that the methods diverged far from the MLE
(Tables A19 and A20). For example, the RMSEs of σuCATO for fixed step-sizes 0.05 and 0.05
are 4.5 × 109 and 454.217 respectively, illustrating that an ill-chosen step-size can lead to
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Figure 4. Estimate trajectories for the salamander example with MCMC sample size 300. Newton-
Raphson and 1D sampling get close to the benchmark MLE within ten iterations, despite the fact that
they do not pass the ad-hoc convergence criterion. The glmm estimates suggest that a decent ML
estimate should be around (β1,β2,β3,β4, σ 2

F , σ
2
M) = (1.023, 0.335,−1.908, 1.006, 1.326, 1.221), while

the lme4 estimates suggest that a decent ML estimate should be around (β1,β2,β3,β4, σ 2
F , σ

2
M) =

(1.008, 0.306,−1.896, 0.990, 1.174, 1.041).

very poor estimates; as a comparison, for the adaptive step-size approach Adam, the RMSE
of σuCATO is only 19.31. Upon inspection of some estimate trajectories, we found that the
variance estimates were often trapped at large values, most likely due to the underlying
likelihood being close to flat in those regions. Results for this example again show a need
for more refined stochastic convergence criteria.

5.2. Cases studies of varyingMCMC sample sizes and scientific sample sizes

To understand the effect of varying MCMC sample sizes Nmcmc and scientific sample sizes
Nobs, we conduct further simulation studies for the salamander example (Section 5.1.3;
crossed random effects model). Recall that in the example Nmcmc = 300 and Nobs = 360.
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We now varyNmcmc ∈ {50, 100, 200, 300} andNobs ∈ {180, 360, 720, 1440}. To reduceNobs
from 360 to 180, we keep only the observations for the first 30 female salamanders. To
double or quadruple Nobs from 360 to 720 or 1440, we clone the existing data and assign
new indexes for the cloned observations. This holds the MLE unchanged while giving a
sharper likelihood surface.

As the MCMC sample size Nmcmc decreases, the estimate trajectories have larger fluc-
tuations, and hence convergence becomes less apparent (Figure 6). As expected, there is
a linear relationship between the MCMC sample size and the execution time (Figure 5).
However, the rate of change in execution time over MCMC sample size is higher for
Newton-Raphson and 1D sampling than for fixed step size and Adam, due to the more
involved computations needed for Newton-Raphson (Hessian matrix) and 1D sampling
(kernel density estimation).

Figure 5. Execution times for varying MCMC sample sizes Nmcmc ∈ {50, 100, 200, 300} and scientific
sample sizes Nobs ∈ {180, 360, 720, 1440} in the salamander example.
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Figure 6. Estimate trajectories for varying MCMC sample sizes Nmcmc ∈ {50, 100, 200, 300} and scien-
tific sample sizes Nobs ∈ {180, 360, 720, 1440} in the salamander example.

As the scientific sample size Nobs increases, the estimate trajectories look very similar
(Figure 6). From the execution time perspective (Figure 5), the observations for varying
Nobs are similar to to those from varyingNmcmc: a linear relationship betweenNobs and the
execution time, and a larger rate of change in execution time for Newton-Raphson and 1D
sampling.

Notably forNobs = 180 and smallNmcmc (top left of Figure 6), the 1D sampling estimate
trajectories are highly volatile. The volatility might be due to kernel density estimation typ-
ically requiring a decently large sample size to be precise. We recommend that running 1D
sampling with a reasonably large but modest MCMC sample size (that is, Nobs = 300) to
ensure trajectory stability, or running 1D sampling for fast initial moves and then switch-
ing to other approaches. On the other hand, for Nobs = 1440 (bottom right of Figure 6),
the large fixed step size estimate trajectories have large fluctuations around the correct
MLE, suggesting that performance of fixed step sizes can be sensitive to sharpness of the
likelihood surface.
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6. Discussion and future work

We presented a unifying framework for various sampling-based MLE algorithms and
proposed various extensions for fitting general hierarchical models with a large number
of latent variables. In particular, we have experimented with the use of adaptive step-
size schedule Adam in the context of MLE for hierarchical models, and introduced the
1D sampling approach as a viable step-size determination procedure. Our numerical
experiments have shown promising results for various algorithms, especially Adam and
1D sampling, in terms of achieving short computational time and obtaining reasonable
parameter estimates.

In preliminary work, we experimented with other adaptive step-size schedules, Ada-
grad [25] and Adadelta [74]. We found that Adagrad decays the step-size too aggressively
and results in slow convergence; Adadelta often ends in highly oscillating behaviors near
convergence. Hence we do not include the results fromAdagrad andAdadelta in this work.
We found that automatic differentiation not only speeds up gradient computations but also
helps stabilize theNewton-Raphsonmethod. Empirically, the stochastic gradient approach
is robust to small MCMC sample sizes. We conjecture that this robustness is due to the fast
mixing behavior of the MCMC when we are sampling the latent variables given the data
and the top-level parameters.

With the use of a ‘warm start’ the algorithmsmight afford to have a much smaller burn-
in, rather than half of the MCMC samples, since the starting point is reasonably close to
the high density region of the stationary distribution. It would be interesting to formalize
the benefits of a ‘warm start’ in the MCMC sampling part of the algorithms. An alter-
native approach suggested by a reviewer is to run several MCMC chains in parallel with
random initializations and evaluate convergence based on the R̂ diagnostic suggested by
Gelman [29]. This approach is likely to yield better MCMC convergence at the cost of
additional computations.

It is difficult, to establish theoretical comparisons among different sampling-basedMLE
approaches in terms of computational time. Due to difficulties in theoretical comparisons,
we conducted experiments to investigate the performance of algorithms. Our experiments
have twomain limitations. The first limitation is that the conclusionsmight not be general-
izable to all latent variable models. Except for themulti-species occurrence model, we have
chosen examples where a benchmark MLE can be computed via specialized methods. For
the pump example, we can explicitly find the marginal likelihood and compute the MLE;
for the two GLMM example we use the results from lme4 as benchmarks, although lme4
relies on Laplace approximation and hence the results might not be accurate. The second
limitation is that it is impossible to conduct experiments with all possible tuning parame-
ter configurations for each of the MLE algorithms. Further work on tuning parameters for
each of the methods could be useful.

However, we observe in numerical experiments that HMSGD with Adam and 1D
sampling typicallyworkwell with default tuning parameters. In addition, their estimate tra-
jectories are relatively stable compared toHMSGDwith fixed step-size. A hybrid approach,
such as running 1D sampling initially and then switching to MCNR or Adam, might be
beneficial, although determining when to switch to the other algorithm can be tricky to
automate. Similarly, we can view Algorithm 1 as a ‘warm start’ to make aggressive moves
towards theMLE, and then switch to other algorithmswith concrete theoretical guarantees.
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Table 1. Current challenges for existingMLEmethods and their solutions viaHMSGD-basedapproaches.

Method Challenge(s) HMSGD-based solution

EM Analytical derivation of E-step and/or M-step is
required.

HMSGD-based solutions do not require analyti-
cal derivation.

MCEM Fully-automated MCEM is computationally
slow due to increasingly large MCMC sizes.

HMSGD with Adam can work reasonably well
with small MCMC sample sizes.

HMSGD with fixed
step-size

It is sensitive to tuning andoften leads to erratic
estimate trajectories.

HMSGD with Adam/1D sampling typically
works well with default tuning parameters and
estimate trajectories are less susceptible to
erratic jumps.

MCNR Approximate Hessian is required and can be
ill-conditioned. It might be sensitive to initial
values.

HMSGD with Adam/1D sampling does not
require Hessian and is less sensitive to initial
values.

We summarize the challenges of existing MLE methods and their solutions via HMSGD-
basedmethods in Table 1. In general, gradient-descent-based approachesmight not be able
to find the global optimum if the objective function is nonconvex or close to being flat in
certain regions. Since HMSGD is based on gradient descent, we also expect HMSGD to
break down for nonconvex or almost flat likelihood functions.

There have been recent approaches to improving and understanding the performance
of adaptive step-size algorithms like Adam, including approaches to tuning the step
size [34,45,73]. Thanks to the unifying framework of this paper, those advances can be
straightforwardly applied to the likelihood estimation for general hierarchical model set-
ting. We provide access to these algorithms in an easy-to-use implementation that is still
customizable, and we hope these techniques can be valuable to practitioners in many fields
and speed up computations that would otherwise be infeasible.

Notes

1. The number of samples used in the gradient approximation or the 1D sampling is only 150, since
the first half of the samples are discarded. Similar comments also apply for a different choice of
sample size.

2. We use optim() in R.
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Appendix. Numerical results

In the following tables, Exec.(s) refers to theCPU time for 300 iterations in terms of seconds; Conv.(s)
refers to the CPU time to convergence in terms of seconds; Conv.(iter.) refers to the number of
iterations to convergence; loglik diff. refers to the log likelihood difference between the resulting
estimate and the benchmark estimate; NA in Conv. means that the convergence test is not passed
within 300 iterations.

For each of the case studies, we also randomly initialize 30 parameter values based on certain
distributions (see the captions of the respective tables for the exact distributions), and compute the
root-mean-squared deviation (RMSE) between the resulting estimates and the benchmark estimate.

In all of the examples, for MCEM, the MCMC sample sizes are not fixed; they are adaptively
increased as described in [9] for convergence reasons.

Table A1. Numerical results for the pump example with MCMC sample size 300 and initial value
(10, 10). The benchmark MLE (0.823, 1.262) can be obtained numerically.

α β Exec.(s) Conv.(s) Conv.(iter.) loglik diff.

Fixed (0.05) 0.858 1.360 1.612 NA NA 0.00731
Fixed (0.005) 4.676 11.251 1.551 NA NA 9.91000
Adam 0.821 1.242 1.521 0.817 162 0.00049
Newton-Raphson 0.825 1.270 2.167 0.439 59 0.00005
1D Sampling 0.954 1.530 6.526 1.245 57 0.06283
MCEM 0.834 1.311 0.368 0.368 5 0.00216

Table A2. Numerical results for the pump examplewithMCMC sample size 300 and initial value (10, 2).
The benchmark MLE (0.823, 1.262) can be obtained numerically.

α β Exec.(s) Conv.(s) Conv.(iter.) loglik diff.

Fixed (0.05) 0.821 1.263 1.658 NA NA 0.00007
Fixed (0.005) 2.505 6.236 1.542 NA NA 4.50666
Adam 0.826 1.266 1.519 1.237 245 0.00005
Newton-Raphson 0.822 1.252 2.141 0.344 47 0.00010
1D Sampling 0.828 1.191 6.602 1.085 47 0.01253
MCEM 0.821 1.257 0.640 0.640 10 0.00002
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Table A3. Numerical results for the pump example with MCMC sample size 3000 and initial value
(10, 10). The benchmark MLE (0.823, 1.262) can be obtained numerically.

α β Exec.(s) Conv.(s) Conv.(iter.) loglik diff.

Fixed (0.05) 0.863 1.374 7.708 NA NA 0.00941
Fixed (0.005) 4.677 11.253 7.230 NA NA 9.91292
Adam 0.822 1.264 7.784 5.410 212 0.00002
Newton-Raphson 0.824 1.262 12.811 2.466 58 0.00001
1D Sampling 0.820 1.254 21.061 5.719 84 0.00005
MCEM 0.834 1.311 0.368 0.368 5 0.00216

Table A4. Numerical results for the pump example with MCMC sample size 3000 and initial value
(10, 2). The benchmark MLE (0.823, 1.262) can be obtained numerically.

α β Exec.(s) Conv.(s) Conv.(iter.) loglik diff.

Fixed (0.05) 0.823 1.262 7.835 7.199 276 0.00000
Fixed (0.005) 2.505 6.236 7.386 NA NA 4.50628
Adam 0.824 1.261 7.664 NA NA 0.00002
Newton-Raphson 0.822 1.256 12.634 2.152 51 0.00003
1D Sampling 0.826 1.263 20.193 9.416 138 0.00007
MCEM 0.821 1.257 0.640 0.640 10 0.00002

Table A5. Root-mean-squared errors (RMSEs) for the pump example with MCMC sample size 300
(except for MCEM, which chooses the MCMC sample sizes adaptively) with 30 random initializations
based on (α(0),β(0)) ∼ Unif[0.05, 15] × [0.05, 15].

α β

Fixed (0.05) 0.365 1.16
Fixed (0.005) 3.38 8.52
Adam 0.0768 0.238
Newton-Raphson 0.00340 0.221
1D Sampling 0.0499 0.104
MCEM 0.00468 0.0126

Note: The benchmark MLE (0.823, 1.262) can be obtained numerically.

Table A6. Root-mean-squared errors (RMSEs) for the pump example with MCMC sample size 3000
(except for MCEM, which chooses the MCMC sample sizes adaptively) with 30 random initializations
based on (α(0),β(0)) ∼ Unif[0.05, 15] × [0.05, 15].

α β

Fixed (0.05) 0.474 1.58
Fixed (0.005) 3.27 7.73
Adam 0.00419 0.0156
Newton-Raphson 0.000876 0.00315
1D Sampling 0.0158 0.0399
MCEM 0.00468 0.0126

Note: The benchmark MLE (0.823, 1.262) can be obtained numerically.
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Table A7. Numerical results for the seeds example with MCMC sample size 20 and initial value (0, 0, 1).
The lme4 estimate (in bold) should be viewed as the benchmark for theMLE estimate. The glmer package
relies heavily on the Gaussian assumption for random effects and leverages special case computations
to drastically reduce the computational time.

β0 β1 σRE Exec.(s) Conv.(s) Conv. (iter.) loglikdiff .

Fixed (0.05) 0.183 1.709 3.077 0.683 NA NA 15.63014
Fixed (0.005) −0.527 1.332 0.297 0.800 0.419 146 0.09083
Adam −0.516 1.342 0.385 0.706 0.534 231 0.48930
Newton-Raphson −0.552 1.296 0.060 0.806 0.184 58 0.88618
1D Sampling −0.526 1.328 0.257 5.949 NA NA 0.03303
MCEM −0.547 1.309 0.253 5.540 5.540 33 0.00051
glmer (lme4) −0.519 1.019 0.307 0.100 0.100 NA 0.00000

Table A8. Numerical results for the seeds example with MCMC sample size 20 and initial value
(−1,−1, 4). The lme4 estimate (in bold) should be viewed as the benchmark for the MLE estimate.

β0 β1 σRE Exec.(s) Conv.(s) Conv. (iter.) loglik diff.

Fixed (0.05) 0.036 2.687 9.477 0.637 NA NA 26.41578
Fixed (0.005) −0.601 1.382 0.306 0.738 NA NA 0.13226
Adam −0.495 1.207 0.297 0.742 0.705 283 0.15175
Newton-Raphson −1.031 −0.931 10.000 0.902 NA NA 27.08173
1D Sampling −0.590 1.388 0.326 6.050 1.700 81 0.19080
MCEM −0.550 1.315 0.252 3.888 3.888 53 0.00038
glmer (lme4) −0.519 1.019 0.307 0.100 0.100 NA 0.00000

Note: The glmer package relies heavily on the Gaussian assumption for random effects and leverages special case compu-
tations to drastically reduce the computational time.

Table A9. Numerical results for the seeds examplewithMCMC sample size300 and initial value (0, 0, 1).
The lme4 estimate (in bold) should be viewed as the benchmark for the MLE estimate.

β0 β1 σRE Exec.(s) Conv.(s) Conv. (iter.) loglik diff.

Fixed (0.05) −0.530 1.367 0.572 1.239 0.232 58 1.87545
Fixed (0.005) −0.545 1.312 0.261 1.367 0.968 208 0.00493
Adam −0.541 1.294 0.246 1.268 0.529 118 0.00255
Newton-Raphson −0.547 1.304 0.248 1.776 0.929 148 0.00040
1D Sampling −0.539 1.313 0.264 7.201 5.596 233 0.00937
MCEM −0.547 1.309 0.253 5.540 5.540 33 0.00051
glmer (lme4) −0.519 1.019 0.307 0.100 0.100 NA 0.00000

Note: The glmer package relies heavily on the Gaussian assumption for random effects and leverages special case compu-
tations to drastically reduce the computational time.

Table A10. Numerical results for the seeds example with MCMC sample size 300 and initial value
(−1,−1, 4). The lme4 estimate (in bold) should be viewed as the benchmark for the MLE estimate.

β0 β1 σRE Exec.(s) Conv.(s) Conv. (iter.) loglik diff.

Fixed (0.05) −1.946 0.916 3.838 1.287 NA NA 18.39451
Fixed (0.005) −0.532 1.275 0.248 1.308 NA NA 0.01063
Adam −0.552 1.289 0.258 1.217 0.271 64 0.01439
Newton-Raphson −0.996 −1.000 10.000 1.875 NA NA 27.08599
1D Sampling −0.539 1.300 0.271 6.895 4.490 196 0.01645
MCEM −0.550 1.315 0.252 3.888 3.888 53 0.00038
glmer (lme4) −0.519 1.019 0.307 0.100 0.100 NA 0.00000

Note: The glmer package relies heavily on the Gaussian assumption for random effects and leverages special case compu-
tations to drastically reduce the computational time.
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Table A11. Root-mean-squarederrors (RMSEs) for the seeds examplewithMCMCsample size20 (except
for MCEM, which chooses the MCMC sample sizes adaptively) with 30 random initializations drawn
independently from β0 ∼ Uniform[−10, 10], β1 ∼ Uniform[−10, 10], and σRE ∼ Uniform[0.05, 15].

β0 β1 σRE

Fixed (0.05) 1.27 1.30 4.46
Fixed (0.005) 4.26 5.20 6.62
Adam 0.904 1.09 1.53
1D Sampling 0.566 1.50 0.782
MCEM 4.53 4.25 5.83

Note: The benchmarkMLE is based on the lme4 estimate. Newton-Raphson diverges for certain initializations and hence the
corresponding RMSEs are omitted.

Table A12. Root-mean-squared errors (RMSEs) for the seeds example with MCMC sample size
300 (except for MCEM, which chooses the MCMC sample sizes adaptively) with 30 random ini-
tializations drawn independently from β0 ∼ Uniform[−10, 10], β1 ∼ Uniform[−10, 10], and σRE ∼
Uniform[0.05, 15].

β0 β1 σRE

Fixed (0.05) 1.97 1.45 4.08
Fixed (0.005) 3.41 4.76 6.52
Adam 0.0333 0.301 0.441
1D Sampling 0.0327 0.290 0.0445
MCEM 4.53 4.25 5.83

Note: The benchmarkMLE is based on the lme4 estimate. Newton-Raphson diverges for certain initializations and hence the
corresponding RMSEs are omitted.

Table A13. Numerical results for the salamander example with MCMC sample size 300 and initial value
(2, 2, 2, 2, 2, 2).

β1 β2 β3 β4 σ 2
F σ 2

M Exec.(s) loglik diff.

Fixed (0.05) 1.006 0.310 −1.933 0.992 1.358 1.211 15.036 0.09266
Fixed (0.005) 1.078 0.355 −2.007 1.044 1.634 1.412 14.626 0.38769
Adam 1.052 0.332 −1.916 1.013 1.417 1.338 14.636 0.20656
Newton-Raphson 1.028 0.320 −1.946 0.979 1.406 1.207 26.113 0.11465
1D Sampling 1.089 0.314 −1.951 0.977 1.539 1.250 71.891 0.22921
MCEM 1.011 0.325 −1.957 1.026 1.201 1.130 14.095 0.16727
glmm 1.023 0.335 −1.908 1.006 1.326 1.221 1181.430 0.08856
glmer (lme4) 1.008 0.306 −1.896 0.990 1.174 1.041 0.100 0.00000

Note: The lme4estimates (inbold) shouldbeviewedas thebenchmark for theMLEestimate. Fixed step-sizes, Adam,Newton-
Raphson, and 1D sampling did not pass the convergence criterion within 300 iterations.

Table A14. Numerical results for the salamander example with MCMC sample size 300 and initial value
(4, 4, 4, 4, 4, 4).

β1 β2 β3 β4 σ 2
F σ 2

M Exec.(s) loglik diff.

Fixed (0.05) 1.036 0.330 −1.932 1.005 1.392 1.257 14.719 0.12994
Fixed (0.005) 1.748 0.835 −2.041 1.722 3.754 3.545 14.938 6.59630
Adam 1.008 0.291 −1.946 0.968 1.343 1.301 14.569 0.15004
Newton-Raphson 1.005 0.288 −1.911 0.972 1.265 1.260 26.109 0.10397
1D Sampling 1.125 0.385 −2.021 1.053 1.625 1.578 73.098 0.54268
MCEM 1.024 0.330 −1.935 0.996 1.178 1.110 23.432 0.11645
glmm 1.023 0.335 −1.908 1.006 1.326 1.221 1181.430 0.08856
glmer (lme4) 1.008 0.306 −1.896 0.990 1.174 1.041 0.100 0.00000

Note: The lme4estimates (inbold) shouldbeviewedas thebenchmark for theMLEestimate. Fixed step-sizes, Adam,Newton-
Raphson, and 1D sampling did not pass the convergence criterion within 300 iterations.
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Table A15. Root-mean-squarederrors (RMSEs) for the salamander examplewithMCMCsample size300
(except for MCEM, which chooses the MCMC sample sizes adaptively) with 30 random initializations
drawn independently from β1 ∼ Uniform[−10, 10], β2 ∼ Uniform[−10, 10], β3 ∼ Uniform[−10, 10],
β4 ∼ Uniform[−10, 10], σ 2

F ∼ Uniform[0.05, 15], and σ 2
M ∼ Uniform[0.05, 15].

β1 β2 β3 β4 σ 2
F σ 2

M

Fixed (0.05) 0.0276 0.0219 0.0571 0.0220 0.236 0.218
Fixed (0.005) 1.19 1.12 1.50 1.30 7.44 6.80
Adam 0.0535 0.0375 0.119 0.0563 0.356 0.620
1D Sampling 0.0436 0.0398 0.0812 0.0416 0.328 0.283
MCEM 0.0184 0.0244 0.0587 0.0190 0.224 0.218

Note: The benchmarkMLE is based on the lme4 estimate. Newton-Raphson diverges for certain initializations and hence the
corresponding RMSEs are omitted.

Table A16. Numerical results (mean components only) for the multi-species occurrence example with
MCMC sample size 300 and initial value 0 for each of the parameters.

μuCATO μuFCW μvCATO μvFCW μa1 μa2 μa3 μa4 μb1 μb2

Fixed (0.05) 0.432 0.58 0.175 0.244 0.991 0.52 −0.198 1.743 −13.749 15.585
Fixed (0.005) 0.319 0.442 0.197 0.259 0.427 0.014 −0.204 0.131 −0.139 0.01
Adam 0.412 0.506 0.17 0.227 0.533 −0.128 −0.157 0.143 −0.123 0.096
Newton Raphson 1.000 0.067 0.004 1.000 1.294 −1.297 −0.167 1.83 −0.811 12.563
MCEM 0.353 0.465 0.186 0.248 0.457 0.005 −0.154 0.127 −0.133 0.086

Note: TheMCEM estimates (in bold) should be viewed as the benchmark for the MLE estimate. Fixed step-sizes, Adam, and
Newton-Raphson did not pass the convergence criterion within 300 iterations. 1D sampling ran into trouble for MCMC
sampling and failed to yield a parameter estimate.

Table A17. Numerical results (variance components only) for the multi-species occurrence example
with MCMC sample size 300 and initial value 0 for each of the parameters.

σuCATO σuFCW σvCATO σvFCW σa1 σa2 σa3 σa4 σb1 σb2

Fixed (0.05) 5.131 5.042 1.509 1.405 1.208 1.369 0.473 2.584 11656.74 2194570.04
Fixed (0.005) 3.122 2.725 1.307 1.179 0.622 0.14 0.092 0.23 0.23 0.306
Adam 3.589 2.918 1.376 1.276 0.666 0.032 0.033 0.259 0.188 0.03
Newton Raphson 29.91 2.137 1.918 56.644 0.867 1.038 0.374 0.029 4.496 0.003
MCEM 3.259 2.728 1.328 1.192 0.637 0.243 0.171 0.251 0.2 0.048

Note: TheMCEM estimates (in bold) should be viewed as the benchmark for the MLE estimate. Fixed step-sizes, Adam, and
Newton-Raphson did not pass the convergence criterion within 300 iterations. 1D sampling ran into trouble for MCMC
sampling and failed to yield a parameter estimate.

Table A18. Execution time for the multi-species occurrence example with MCMC sample size 300 and
initial value 0 for each of the parameters.

Exec.(s)

Fixed (0.05) 1410.891
Fixed (0.005) 1382.729
Adam 1396.477
Newton-Raphson 1416.499
MCEM 9859.548
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Table A19. Root-mean-squared errors (RMSEs) for the multi-species occurrence example (mean com-
ponents only) with MCMC sample size 300 with 30 random initializations drawn independently from
Uniform([−1, 1]20).

μuCATO μuFCW μvCATO μvFCW μa1 μa2 μa3 μa4 μb1 μb2

Fixed (0.05) 0.333 0.21 0.082 0.046 1.594 0.4 4.816 4.69 18.633 23.598
Fixed (0.005) 0.477 0.161 0.099 0.086 1.59 7.374 0.117 20.569 0.007 0.232
Adam 0.522 0.351 0.083 0.09 2.865 3.077 2.062 1.9 0.009 0.022

Note: The benchmarkMLE is based on theMCEM estimate. Newton-Raphson diverges for certain initializations; 1D sampling
frequently encounters MCMC issues; MCEM often reaches non-finite log-likelihood in its iterations and fails to continue.
Hence their corresponding RMSEs are omitted.

Table A20. Root-mean-squared errors (RMSEs) for the multi-species occurrence example (variance
components only)withMCMC sample size300with 30 random initializations drawn independently from
Uniform([−1, 1]20).

σuCATO σuFCW σvCATO σvFCW σa1 σa2 σa3 σa4 σb1 σb2

Fixed (0.05) 4.5 × 109 1.9 × 106 1.6 × 104 0.826 3.7 × 106 7.0 × 106 0.292 2.2 × 109 3.0 × 107 9.0 × 107

Fixed (0.005) 454.217 229.01 0.564 0.38 117.251 169.306 0.291 263.85 0.037 0.438
Adam 19.31 13.806 0.386 0.305 4.85 5.505 1.857 9.229 0.019 0.022

Note: The benchmarkMLE is based on theMCEM estimate. Newton-Raphson diverges for certain initializations; 1D sampling
frequently encounters MCMC issues; MCEM often reaches non-finite log-likelihood in its iterations and fails to continue.
Hence their corresponding RMSEs are omitted.
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