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We develop a new approach to random walks on de Bruijn graphs over the alphabet A

through right congruences on Ak, defined using the natural right action of A+. A major

role is played by special right congruences, which correspond to semaphore codes and
allow an easier computation of the hitting time. We show how right congruences can be

approximated by special right congruences.
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1. Introduction

In graph theory, a k-dimensional de Bruijn graph over the alphabet A is a directed

graph representing overlaps between sequences of symbols [9,10]. The de Bruijn

graph has |A|k vertices, given by all words of length k in the alphabet A. There is

an edge from vertex a1 . . . ak ∈ Ak to vertex a2 . . . aka ∈ Ak for every a ∈ A. An

important question for cryptography and networking is that of de Bruijn sequences.

A de Bruijn sequence is a cyclic word of length |A|k such that every possible word

of length k over the alphabet A appears once and exactly once (see [16] for a review

on de Bruijn sequences). Obviously, a de Bruijn sequence corresponds to a Eulerian

path in the de Bruijn graph.

Here we are interested in random walks on the de Bruijn graph Γ. To an edge

v
a−→ w in Γ we associate a probability 0 ≤ π(a) ≤ 1, satisfying

∑
a∈A π(a) = 1.

This gives rise to the de Bruijn–Bernoulli process (see for example [5,2]): if we are at

vertex v at a given time, then with probability π(a) we go to vertex w where v
a−→ w

1
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is an edge in Γ. The transition matrix T = (Tv,w)v,w∈Ak encodes the transition

probabilities, that is, Tv,w = π(a) if v
a−→ w. Given a random walk, an important

question is to determine the stationary distribution, which intuitively is the state

that is reached after taking many steps in the random walk. Mathematically, the

stationary distribution is the vector I such that IT = I. In other words, I is the

left eigenvector of T with eigenvalue one. In the case of the de Bruijn–Bernoulli

random walk, the stationary distribution I ∈ Ak is multiplicative [5]

I =
(∏
a∈w

π(a)
)
w∈Ak

.

We can reformulate the random walk on the de Bruijn graph in algebraic terms.

Namely, let us define the right action of A on Ak by

a1 . . . ak.a = a2 . . . aka

for a1 . . . ak ∈ Ak and a ∈ A. This induces the action of the semigroup F (|A|, k) :=

A1∪A2∪· · ·∪Ak = A≤k of all words in A of length 1, 2, . . . , k with the multiplication

· being concatenation and taking the last k letters if the length is bigger than k.

For example, if A = {a, b} and k = 3, we have ab · ba = bba in F (2, 3). In this

formulation, it is clear that the walk in j steps given by a1 · · · aj acts as a constant

map (i.e., is independent of the initial vertex) if and only if j = k. We call such

elements resets.

Random walks on de Bruijn graphs are a “classical” subject. However, in appli-

cations it is right congruencesa [1,14,15,19] on Ak (denoted by RC(Ak)) under the

faithful action of F (|A|, k) and the associated random walks on their congruence

classes that are important. Intuitively, these are the finite semigroups for which

any product of k elements act like constant maps on Ak, but because of the right

congruence some products of length less than k might be constant. Right congru-

ences are a standard idea in finite state machines or finite automata theory [18].

In finite state machines, they are used in passing to the unique minimal automata

doing the same computation. For example, assume one has a stream of data (e.g.

chemical data on waste water being emptied into a river). Assume that there exist

a positive integer k, so that only the k most recent symbols of data matter. Then

there is a function f : Ak → D, where D is the data set. The function could be of

the form f(a1, . . . , ak) is ok or not ok (that is, D is a two element set) depending on

whether this recent k long data meets EPA standards. Then the function f gives an

equivalence relation ∼ on Ak given by s ∼ t if and only if f(s) = f(t). In addition,

there is a unique maximal refinement of ∼ which is a right congruence (that is, the

best lower approximation by a right congruence) R, namely sRt for s, t ∈ Ak if and

only if for all strings u ∈ A∗ we have s.u ∼ t.u or equivalently f(su) = f(tu). Here .

aAn equivalence relation is a right congruence if it preserves the right action of a semigroup. See

Definition 2.2 for more details.
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Fig. 1.1. The transition graph for the congruence of Equation (1.1).

is the multiplication in F (|A|, k). Then (Ak/R, F (|A|, k)) can compute the function

f since f factors through the R classes (take u to be 1). See [18] for more details.

Consider the right congruence in RC(A3) with A = {a, b} defined by the con-

gruence classes

{aaa, baa, aba}, {bba}, {aab, bab}, {abb}, {bbb}. (1.1)

It is not hard to check that if w, v ∈ A3 are in the same congruence class, then w ·z
and v · z for z ∈ F (2, 3) are also in the same congruence class, proving that (1.1)

is indeed in RC(A3). The transition graph is given in Figure 1.1 and the transition

matrix of the associated random walk is

T =


π(a) 0 π(b) 0 0

π(a) 0 π(b) 0 0

π(a) 0 0 π(b) 0

0 π(a) 0 0 π(b)

0 π(a) 0 0 π(b)

 .

By lumping [12,13], we can obtain the stationary distribution for T from the sta-

tionary distribution of the de Bruijn–Bernoulli stationary distribution by adding

the product distributions for each member of a congruence class. In our example

I = (π(a)3 + 2π(a)2π(b), π(a)π(b)2, π(a)2π(b) + π(a)π(b)2, π(a)π(b)2, π(b)3)

= (π(a)2 + π(a)2π(b), π(a)π(b)2, π(a)π(b), π(a)π(b)2, π(b)3),

where for the second line we used that π(a) + π(b) = 1.
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Recall that all elements in F (|A|, k) of length k are constant maps. We are

interested in the probability that an element of length 1 ≤ ` < k is a constant map

when F (|A|, k) acts on right congruences. This is intuitively related to the hitting

time (or waiting time) to constant map. As we will show in Section 6, there is a

lattice structure imposed on the set of right congruences with partial order being

inclusion. It turns out that we can approximate right congruences by special right

congruences as introduced in Section 7 using certain meets and joins in this lattice.

Special right congruences in turn are associated to semaphore codes as defined in

Section 4, on which it is easy to compute the hitting time (see Section 8). The hitting

time of the approximation (given by a semaphore code) and the right congruence

turn out to be the same, and the approximation is finer than the right congruence.

The stationary distributions of the two are simply related by “lumping”.

Let us now turn our attention to semaphore codes. For a fixed alphabet A, which

we assume to be a finite non-empty set, denote by A+ the set of all strings a1 . . . a`
of length ` ≥ 1 over A with multiplication given by concatenation. Thus (A+, A) is

the free semigroup with generators A (since every semigroup (S, ·) generated by a

subset A ⊆ S is a surmorphism of (A+, A) by mapping a1 . . . a` → a1 ·a2 ·. . .·a` ∈ S).

Furthermore, let A∗ = A+ ∪{1}, so that A∗ is A+ with the identity added; it is the

free monoid generated by A. The semigroup A+ has three orders: “is a suffix”, “is

a prefix”, and “is a factor”. In particular, for u, v ∈ A+

u is a suffix of v ⇐⇒ ∃w ∈ A∗ such that wu = v,

u is a prefix of v ⇐⇒ ∃w ∈ A∗ such that uw = v,

u is a factor of v ⇐⇒ ∃w1, w2 ∈ A∗ such that w1uw2 = v.

A suffix code C of A+ (or over A) is a subset C ⊆ A+ so that all elements in C are

pairwise incomparable in the suffix order [6].

A semaphore code [6] is a suffix code S over A for which there is a right action

in the following sense:

If u ∈ S ⊆ A+ and a ∈ A, then ua has a suffix in S (and hence a unique suffix of ua).

The right action u.a is the suffix of ua that is in S.

(1.2)

(The dual concept of prefix codes and left actions is often used in the literature, see

for example [6]). For example, S = {baj | j ≥ 0} =: ba∗ is an infinite semaphore

code with right action

baj .a = baj+1 and baj .b = b.

In practice, to check whether a suffix code is a semaphore code one merely needs to

check the first line of (1.2). For example, C = {a, bb} is a suffix code, but a.b has

no suffix in C, so that C is not a semaphore code.

Semaphore codes over A are inherently related to ideals of A+. A subset I ⊆ A+

is an ideal if uIv ⊆ I for all u, v ∈ A∗. Similarly, L ⊆ A+ is a left ideal if uL ⊆ L
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for all u ∈ A∗. In this setting, suffix codes over A are precisely the suffix minimal

elements of a left ideal L.

Now given an ideal I ⊆ A+ we construct a semaphore code as follows. Given

u = aj . . . a2a1 ∈ A+, check whether u is in I. If u 6∈ I, ignore u. If u ∈ I, we find

the (necessarily unique) index 1 ≤ i ≤ j such that ai−1 . . . a1 6∈ I, but ai . . . a1 ∈ I.

Then ai . . . a1 is a code word and the set of all such words forms the semaphore

code S =: Iβ`, as can be readily verified. It is easy to show that

I ←→ Iβ`

is a bijection between ideals I ⊆ A+ and semaphore codes over A, see Proposi-

tion 4.3. Hence semaphore codes are precisely the suffix minimal elements of an

ideal I ⊆ A+. Since ideals are ubiquitous in mathematics, so are semaphore codes!

As mentioned earlier, the set of right congruences RC(Ak) is a finite lattice

under the inclusion order on the congruence classes, where the meet is given by

intersection. We prove that RC(Ak) is semimodular, but not modular in general,

and thus satisfies the Jordan–Dedekind condition that all maximal chains are of the

same length. Also for |A| ≥ 2 and k ≥ 2, RC(Ak) is not generated by its atoms. See

Section 6 for more details.

Denote by Sem(Ak) the set of semaphore codes coming from ideals I ⊇ Ak. This

means that all codewords of Sem(Ak) have length less than or equal to k (so the

code is finite) and every member of Ak has a suffix in the code. Starting with a

semaphore code S and restricting the codewords of S to those of length ≤ k, might

not yield a finite semaphore code. But it is always possible to add codewords of

length k to this length restricted semaphore code to obtain Sk ∈ Sem(Ak). This

process of adding codewords of length k which have no suffix in the restricted words

is unique. For example, we have seen that S = ba∗ is a semaphore code. If we take

k = 3, we obtain {b, ba, ba2}. However, aaa has no suffix in this set, so it needs to

be added to obtain the restricted semaphore code S3 = {b, ba, baa, aaa}. In [22] we

show that if S is a semaphore code, then the finite semaphore code Sk converges to

S in some precise sense.

Now each semaphore code S ∈ Sem(Ak) gives a right congruence ρ ∈ RC(Ak)

as follows:

For two strings u, v ∈ Ak, we say u ∼S v if u and v have a common suffix in S.

(1.3)

It is not too hard to verify that ∼S defines a right congruence on Ak. For example,

for A = {a, b}

S = {aa, ab, aba, bba, abb, bbb} ∈ Sem(A3)

yields the right congruence in RC(A3)

{aaa, baa}, {aab, bab}, {aba}, {bba}, {abb}, {bbb}. (1.4)
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We denote all elements of RC(Ak) that arise from semaphore codes in Sem(Ak)

by SRC(Ak), the special right congruences of RC(Ak). We prove in Section 7 that

SRC(Ak) is a full (meaning that top and bottom agree) sublattice of RC(Ak), so

that each element ρ ∈ RC(Ak) has a unique largest lower (finer) approximation

denoted by ρ, namely ρ is the join of all elements in SRC(Ak) contained in ρ. We

will also prove in Section 7, and the reader can verify this, that the right congruence

in (1.1) is not a special right congruence, but the special right congruence in (1.4)

is the unique lower approximation.

As for the de Bruijn graphs, we have random walks on semaphore codes since

there is a right action of a semigroup on semaphore codes. If S is a semaphore code

over the alphabet A and π : A→ [0, 1] is any probability distribution on A, namely∑
a∈A π(a) = 1, then [6, Proposition 3.5.1]∑

s∈S
π(s) = 1,

where π(s) = π(a1) · · ·π(a`) if s = a1 . . . a`. This means in particular that S is a

maximal code with respect to inclusion.

We can now construct a random walk with state space given by the code words

in S using the right action given in (1.2). Defining the |S| × |S| monomial matrix

T (a) for each a ∈ A by T (a)s,s.a = 1 and 0 otherwise for all s ∈ S, we obtain the

transition matrix as

T =
∑
a∈A

π(a)T (a).

We prove in Theorem 8.1 that the stationary distribution I of T is given by I =

(π(s))s∈S . Furthermore, the probability that a word of length ` is a reset (or constant

map) is

P (`) =
∑
s∈S
`(s)≤`

π(s),

see Theorem 8.2. This probability is related to the hitting time to reset. For exam-

ple, for the semaphore code S = ba∗, all words w are resets unless w = a`. The

probability that a string of length 3 is a reset is P (3) = π(b)+π(b)π(a)+π(b)π(a)2 =

1− π(a)3. For more details see Section 8.

We are now able to give a more direct construction of the special right congruence

ρ for ρ ∈ RC(Ak), the best lower approximation of ρ in SRC(Ak). Define

Res(ρ) = {w ∈ A+ | w is a reset on Ak/ρ}.

Then we prove that Res(ρ) is an ideal of Ak ⊆ A+ and the special right congruence

associated to the semaphore code given by this ideal is ρ. An immediate consequence

is that ρ and ρ have the same hitting time to reset, but in general different stationary
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distributions. In general, ρ has more congruence classes than ρ, so the stationary

distributions cannot be the same. Note that both distributions are determined by

lumping from the product distribution of the de Bruijn random walk on Ak. In

applications a metric is placed on all distributions of RC(Ak). Then the probability

distribution π on A is chosen such that the distance between Iρ and Iρ is minimal.

This is called the principle of choosing a “correct” or “good” probability distribution

π on A.

The paper is organized as follows. In Section 2 we provide the algebraic back-

ground of the semigroups related to right congruences. The precise definition of

resets is given in Section 3. Semaphore codes are introduced in Section 4. In Sec-

tions 5 right congruence and their properties are studied, in particular the lattice

structure in Section 6. Special right congruences are the subject of Section 7. Ran-

dom walks on semaphore codes are studied in Section 8. Note that the semaphore

codes introduced in Section 4 can be infinite. The analysis in terms of random walks

in Section 8 is valid for both finite and infinite semaphore codes. In all other sections

we restrict to finite lengths words and codes.
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2. Algebraic foundations

2.1. Elliptic maps on rooted trees

Elliptic maps on finite trees were considered by Rhodes and Silva [17,20]. A tree

is a connected graph that does not contain a closed walk in which all vertices are

distinct. A leaf of a tree is a vertex of degree 1, that is, a vertex that connects to

exactly one edge. A rooted tree is a tree in which a particular node is designated as

the root. In this case, if a vertex u is on the path from the root to another vertex

v, we say that u is an ancestor of v, or equivalently, that v is a descendant of u. If

u and v are adjacent, we say that u is the parent of v, which is the child of u.

Given a rooted tree T , we denote by Vert(T ) the set of vertices of T . The distance

between two vertices is the minimum number of edges in a path between them.

An elliptic map on T is a mapping Vert(T ) → Vert(T ) preserving adjacency and

distance to the root. Equivalently, an elliptic map on T is a contraction (decreases
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Fig. 2.1. Rooted tree T (2, 3).

r0

v1 v2

v11 v12 v13 v21 v22 v23

7→

r0

v2 v1

v22

v23

v21 v11

v12

v13

Fig. 2.2. Elliptic map ϕ : Vert(T ) → Vert(T ) on T := T (2, 3) which maps r0 7→ r0, v1 7→ v2,

v2 7→ v1, v11 7→ v21, v12 7→ v21, v13 7→ v23, v21 7→ v12, v22 7→ v11, v23 7→ v11.

distances between vertices) while preserving distance to the root, or a mapping

fixing the root and preserving parenthood. We shall write functions on the right

since we will deal with right actions and compositions. Elliptic maps on a fixed

rooted tree form a monoid under composition.

Let T := T (n0, . . . , nN ) be a uniformly branching rooted tree, where all leaves

are at distance N + 1 from the root r0 and each vertex at distance (or level) k from

the root has nk children for k = 0, . . . , N . An example of a uniformly branching

rooted tree is given in Figure 2.1. An example of an elliptic map on this tree is given

in Figure 2.2.

There is another way to represent an elliptic map ϕ using component actions.

Namely, a given vertex v ∈ Vert(T ) at level k is completely specified by the unique

path r0 → w1 → · · · → wk = v from the root. Since elliptic maps preserve parent-

hood, the image of this path under the elliptic map r0 → (w1)ϕ→ · · · → (wk)ϕ =

(v)ϕ is again a path, this time from r0 to (v)ϕ. Hence ϕ can be defined recursively:

given the map from path r0 → w1 → · · · → wk−1 to r0 → (w1)ϕ→ · · · → (wk−1)ϕ,

we can define a map sw from the children of w := wk−1 to the children of (wk−1)ϕ.

The map sw is called the component action at vertex w. Graphically, we place sw
on the vertex w for every vertex w that is not a leaf. See Figure 2.4. The elliptic

map of Figure 2.2 is written using component actions in Figure 2.3.

As mentioned before, the product of elliptic maps is composition, which is an-

other elliptic map. We can formulate this in terms of the component actions. Let ϕ

and ψ be elliptic maps on the same rooted tree T with component action sv and tv
at vertex v ∈ Vert(T ) that is not a leaf, respectively. Then the component action

of ϕ ◦ ψ at vertex v is svt(v)sw , where w is the parent of v. An example is given in
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sr0

sv1 sv2

Fig. 2.3. Elliptic map of Figure 2.2 written with component actions: sr0 is the map v1 7→ v2,
v2 7→ v1, sv1 is the map v11 7→ v21, v12 7→ v21, v13 7→ v23, and sv2 is the map v21 7→ v12,

v22 7→ v11, v23 7→ v11.

sww

v1 v2 v3

Fig. 2.4. Component action at vertex w of an elliptic map on T (2, 3, 3). The component action sw
is a map on the children of w, namely on {v1, v2, v3}, and maps into the children of the image of
w under the elliptic map.

Figure 2.5.

Note that a child v of a vertex w can be uniquely specified by the edge e that

leads to it. Hence the path r0 = w0 → w1 → · · · → wk = v from r0 to v can

alternatively be encoded by a sequence e0 → e1 → · · · → ek−1 of edges, where ei is

the edge from vertex wi to wi+1. For us, it will be convenient to keep track of the

edges by labelling the n` edges leaving a given vertex at level 0 ≤ ` ≤ N bijectively

with elements from a set X` with |X`| = n`. The result is a labelled rooted tree. See

Figure 2.6 for an example. Note that there are lots of ways to label a rooted tree.

Labelling the rooted tree is equivalent to specifying a coordinate system. Once the

labelling L of T is fixed, a sequence e0 → e1 → · · · → ek−1 of edges is determined

by an element (x0, x1, . . . , xk−1) ∈ X0 ×X1 × · · · ×Xk−1.

Given a rooted tree T (n0, . . . , nN ) with labels in X = X0 × · · · × XN , elliptic

maps can now be expressed using the labels giving rise to the wreath product. The

component action at level k is described by a semigroup Sk acting faithfully on the

right on Xk, denoted (Xk, Sk). Then the wreath product (X0, S0) ◦ · · · ◦ (XN , SN )

is (X,S), where S is the semigroup with component action at level k in (Xk, Sk).

More precisely, Π = (Π0, . . . ,ΠN ) ∈ S if Π0 ∈ S0, Π1 : X0 → S1, and generally
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sr0

sv1 sv2
◦

tr0

tv1 tv2

=

sr0tr0

sv1t(v1)sr0
sv2t(v2)sr0

Fig. 2.5. Composition or product of two elliptic maps on the rooted tree in Figure 2.1.

2 1 3 1 2 3 3 1 2

1 3 2

1 2 3 3 2 1 1 2 3

1 2 3

1 2

Fig. 2.6. Labelled rooted tree T (2, 3, 3) with labeling sets X0 = {1, 2}, X1 = X2 = {1, 2, 3}.

Πk : X0 × · · · ×Xk−1 → Sk for 1 ≤ k ≤ N , so that for (x0, . . . , xN ) ∈ X

(x0, . . . , xN )Π =
(
x0.Π0, x1.(x0)Π1, x2.(x0, x1)Π2, . . . , xN .(x0, . . . , xN−1)ΠN

)
.

(2.1)

The semigroup element m := (x0, . . . , xk−1)Πk ∈ Sk is the component action in the

vertex (or component) specified by (x0, . . . , xk−1).

Remark 2.1. The above arguments show that elliptic maps on uniformly branching

trees and wreath products are the same thing (confirming [20, Proposition 3.3]).

Multiplication of wreath products is given by composition of the component ac-

tion (2.1). Graphically on the level of labelled trees directly, the product Πg ·Πf for

Πg,Πf ∈ (X,S) translates to the following:

(1) To determine the value of Πg · Πf at vertex x = (x0, . . . , xk−1) in the labelled

rooted tree, go to the corresponding vertex in the tree for Πg, keep track of all



May 4, 2016 9:2 WSPC/INSTRUCTION FILE paper˙I-final

Random walks on semaphore codes and delay de Bruijn semigroups 11

values at the vertices on the way and act with the corresponding elements on

the vertex vector:

xg =
(
x0.Π

g
0, x1.(x0)Πg

1, x2.(x0, x1)Πg
2, . . . , xk.(x0, . . . , xk−1)Πg

k

)
.

(2) Then the entry in vertex (x0, . . . , xk−1) of Πg · Πf is

(x0, . . . , xk−1)Πg
k(xg0, . . . , x

g
k−1)Πf

k .

One of the main questions is “how restrained can the component action be”?

See the first half of [18] and the introduction to [21].

The Prime Decomposition Theorem of Krohn and Rhodes [11] (see also [18]

and [21, Chapter 4]) states that every finite semigroup divides an iterated wreath

product of its finite simple group divisors and copies of the three element aperi-

odic monoid U2 consisting of two right zeroes and an identity. More precisely, a

semigroup S1 divides semigroup S2, written S1|S2, if S1 is a homomorphic image

of a subsemigroup of S2. In addition, U2 = {1, a, b} where xa = a, xb = b, and

1x = x1 = x for all x ∈ U2. A finite semigroup is aperiodic if all of its subgroups

are trivial. Alternatively, the Prime Decomposition Theorem says that the basic

building blocks of finite semigroups are the finite simple groups and semigroups of

constant maps with an adjoined identity.

We say that I ⊆ S is an ideal of the semigroup S if SI ∪ IS ⊆ I. We write

then I E S. The kernel of a semigroup S, denoted ker(S), is the unique minimal

nonempty ideal of S. If S is a monoid, its group of units is the subgroup formed by

all the invertible elements. Both kernel and group of units play a major role in this

context.

Let S1 and S2 be semigroups and let ϕ be a homomorphism of S1 into endo-

morphisms of S2. Then the semigroup S1 ×ϕ S2 is the semidirect product of S1 by

S2 with connecting homomorphism ϕ (see also [21, Section 1.2.2, pg. 23]). More

precisely, S1 ×ϕ S2 has elements in S1 × S2 with multiplication given by

(s1, s2) · (s′1, s′2) = (s1s
′
1, s2((s′1)ϕ) s′2) .

Notice that wreath products are a special case of semidirect products. In fact,

wreath products are “generic” semidirect products. Namely up to pseudovarieties,

semidirect products, wreath products, and elliptic products yield the same thing.

See [21] for all details.

A semigroup S is called irreducible if for all finite semigroups S1 and S2 and

all connecting homomorphisms ϕ, S | S1 ×ϕ S2 implies S|S1 or S|S2. Krohn and

Rhodes [11] showed that S is irreducible if and only if either (a) S is a nontrivial

simple group; or (b) S is one of the four divisors of U2.

A pseudovariety is a collection of finite semigroups closed under taking finite

direct products and divisors (that is, subsemigroups and quotients) [21]. The monoid

U2 is in the pseudovariety RZ1, where RZ = [[xy = y]] is the pseudovariety of right

zeroes, meaning that all elements x, y in S ∈ RZ satisfy the identity xy = y. In
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2

3 2

2 1 3 1 3 3

2 1 3 1 2 3 3 1 2

1 3 2

1 2 3 3 2 1 1 2 3

1 2 3

1 2

Fig. 2.7. Graphical presentation of an elliptic map with RZ component action using the same
labeling as in Figure 2.6. The black leaf has coordinates (1, 2, 2). Since it passes the constant maps

2,3,3 on its way, it gets mapped to the leaf with coordinates (2, 3, 3), denoted by the blue leaf.

other words, RZ is the pseudovariety generated by semigroups of constant maps.

We denote by RZ1 the pseudovariety generated by semigroups of transformations

consisting of constant maps plus the identity mapping. The elements in RZ1 are also

called left regular bands, indeed RZ1 = [[x2 = x, xyx = yx]] (cf. [21, Proposition

7.3.2]). Random walks on left regular band are an important new topic [7,8]. This

has recently also been generalized to random walks on R-trivial monoids [3,4].

In light of the Prime Decomposition Theorem, there are three main cases for

the component actions in Sk of the elliptic maps on T (n0, . . . , nN ). All of the next

three statements have the following form. First note that composition of elliptic

maps on a fixed tree with component action in a fixed pseudovariety is closed under

composition. Suppose that the component action Sk is selected to be in the pseu-

dovariety V. Then the pseudovariety generated by elliptic maps with component

action in V (in this case divisors of elliptic maps) is determined and is denoted

PV(component in V). It is the semigroups of PV(components in V) on which we

analyze their random walks:

(1) Sk is in the pseudovariety RZ with PV(component in RZ) which is de-

lay semigroups (see Section 2.2). In this case the component action consists

only of constant maps. If we label the branches from a vertex at level k by

Xk = {1, 2, . . . , nk}, then we can also label the vertices at level k by elements

in Xk. The label a ∈ Xk means the constant map that maps everything to a.

An example is given in Figure 2.7.

(2) Sk is in the pseudovariety RZ1 with PV(component in RZ1) which is aperiodic

semigroups (which means semigroups with trivial subgroups). In this case the

component action consists of constant maps and the identity; the component

monoids are aperiodic. If again the branches at level k are labelled by Xk =

{1, 2, . . . , nk}, then we can label the vertices by elements in Xk ∪{I}, where as

before a ∈ Xk denotes the constant map to a and I is the identity.

(3) Sk is any finite group plus

constant maps and PV(component in any finite group plus constant maps) is

all finite semigroups. In this case the vertices at level k are labelled by elements

in a finite group G which acts on the right on Xk and elements in Xk which
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give the constant maps. This yields a component semigroup with group of units

in G and kernel in RZ.

In this paper we will restrict to elliptic maps or wreath products with component

actions in RZ, that is constant maps (without identity) to answer the question about

resets. Future papers will deal with cases 2 and 3.

2.2. Delay pseudovariety

Let D be the pseudovariety of semigroups whose idempotents are right zeroes, also

called the delay pseudovariety. The pseudovariety D can be characterized (see [21,

pg. 248]) by

D =
⋃
k≥1

Dk,

where

Dk = [[x0x1 · · ·xk = x1 · · ·xk]] , (2.2)

meaning that any k + 1 elements x0, . . . , xk in a semigroup S ∈ Dk satisfy the

identity x0x1 · · ·xk = x1 · · ·xk.

The delay pseudovariety is also equal to RZN defined as

RZN = {S | S/ker(S) is nilpotent and ker(S) ∈ RZ} ,

where we recall that RZ = [[xy = y]]. A semigroup N with zero is nilpotent if

Nk = {0} for some k, or in other words, x1 · · ·xk = 0 in N . Thus, S ∈ D if and

only if S satisfies the pseudoidentity xyω = yω, where yω is the unique idempotent

in 〈y〉 ≤ S, or more succinctly

D = [[xyω = yω]] = RZN .

The pseudovariety D is also closed under semidirect products. For all details see [21].

A semigroup S is a subdirect product of S1 and S2, denoted S � S1 × S2, if S

is a subsemigroup of S1×S2 mapping onto both S1 and S2 via the projections [21,

pg. 34]. More concretely, S � S1 × S2 if and only if there exist surmorphisms

ϕi : S → Si for i = 1, 2, so that ϕ1 and ϕ2 separate points, that is, s, t ∈ S with

s 6= t implies that (s)ϕj 6= (t)ϕj for some j ∈ {1, 2}. The right letter mapping

congruence on a semigroup S ∈ D is defined by s ∼ t if zs = zt for all z ∈ ker(S),

that is, we identify two elements of S if they act the same on the right of ker(S).

Therefore ∼ is the kernel of the right Schützenberger representation of S on ker(S).

We denote by RLM: S � S the canonical morphism s 7→ s/ ∼, and denote its

image by RLM(S). (This definition agrees with the definition given in [21, Section

4.6.2]).

From this it now follows that if S ∈ D = RZN, then

S � S/ker(S)× RLM(S).
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This can be observed by letting ϕ1 : S → S/ker(S) be the Rees quotient map,

which maps s 7→ s if s 6∈ ker(S) and collapses ker(S) to a single element. Let

ϕ2 : S → RLM(S) be the map s 7→ s/ ∼. Hence ϕ2 is injective on ker(S), so that

ϕ1 and ϕ2 separate points. In our applications, we only care about RLM(S). Note

that a semigroup S ∈ D is nilpotent if and only if RLM(S) is the trivial semigroup

(0).

Observe that for S, T ∈ D we have ker(S), ker(T ) ∈ RZ and

if S � T then RLM(S)� RLM(T )

if S � T then ker(S)� ker(T )

RLM(RLM(S)) ∼= RLM(S).

(2.3)

The proofs are not difficult and all details can be found in [21, Section 4.6.2].

Definition 2.2. An equivalence relation τ on ker(S) is called a right congruence

if it preserves the right action of S on ker(S), that is, if zτz′ implies (zs)τ(z′s) for

all z, z′ ∈ ker(S) and s ∈ S. We denote by RC(ker(S), S) (or by RC(ker(S)) if S is

implicit) the set of all right congruences on ker(S).

We consider RC(ker(S)) (partially) ordered by inclusion. Since the intersection

of right congruences on ker(S) is still a right congruence, (RC(ker(S)),⊆) is a

(complete) ∧-semilattice. Thus (RC(ker(S)),⊆) is indeed a (complete) lattice with

the determined join, described by

∨Λ =
⋂
{ρ ∈ RC(ker(S)) | λ ⊆ ρ for every λ ∈ Λ}

for every Λ ⊆ RC(ker(S)).

It is routine to check each τ ∈ RC(ker(S), S) determines a congruence τ on

(ker(S),RLM(S)) defined by

(s ∼)τ(t ∼) if (zs)τ(zt) for every z ∈ ker(S),

where s ∼ denotes the equivalence class of s ∈ S under the right letter mapping

congruence ∼. Since S ∈ D, we have ker(S) ∈ RZ, and it follows easily that

zτz′ if and only if (z ∼)τ(z′ ∼) holds for all z, z′ ∈ ker(S). (2.4)

Thus right congruences on ker(S) and right letter mapping images of S are the

“same thing”.

2.3. Right zero component action

In this section, we specialize the elliptic maps on rooted uniformly branching trees

of Section 2.1 to the constant component action. That is, we restrict ourselves to

the case that the component action S` ∈ RZ = [[xy = y]] for all 0 ≤ ` ≤ N .

Let F (g, k) be the semigroup generated by Ag := {a1, a2, . . . , ag} modulo all

relations of the form

ai0ai1 . . . aik = ai1 . . . aik
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for i0, . . . , ik ∈ {1, . . . , g}. This semigroup admits a convenient normal form: we can

identify F (g, k) with A≤k \ {ε}, the set of all nonempty words on A of length at

most k (we denote the empty word by ε). Note that we may define length of an

element of F (g, k) as the length of the respective normal form in A≤k \ {ε}.
Given u ∈ A+, let uξk denote the suffix of length k of u if |u| ≥ k and u

otherwise. We define a binary operation ◦ on A≤k \ {ε} by

u ◦ v = (uv)ξk.

This binary operation on the normal forms corresponds to the product of F (g, k).

For example in F (2, 3) with A2 = {a, b} we have aba · a = baa, aba · bbb = bbb,

b · a = ba and so on.

It is immediate that F (g, k) satisfies the identity

x0x1 · · ·xk = x1 · · ·xk. (2.5)

Indeed, F (g, k) is the free pro-Dk semigroup over A (see [21, Subsection 3.2.2] for

details on free pro-V semigroups, for a pseudovariety V). Since F (g, k) is finite, it

follows that F (g, k) ∈ D. Note that we can identify ker(F (g, k)) with Ak, the set of

all words on A of length k.

It can also be interpreted in terms of elliptic maps on T := T (g, . . . , g︸ ︷︷ ︸
k

) as follows.

As in Section 2.1, we represent elliptic maps directly on the tree by denoting the

component action on the vertices. Define the generators ϕ1, . . . , ϕg through trees

of depth k with g branches at each level, where in level 1 ≤ ` ≤ k the vertices

are labeled a1, . . . , ag from left to right. The i-th generator has label ai at level 0.

Since the vertices at level k are not labeled, we will omit them for space reasons.

An example of the generators for F (3, 3) is given in Figure 2.8.

A label ai in a given vertex denotes the constant map to ai. If we label the edges

under each vertex also a1, . . . , ag from left to right, then we can multiply generators

on the labeled tree as in Section 2.1. See Figure 2.9 for the product of A and B

of Figure 2.8. Using the notation vj1...jk to denote the nodes below the root as in

Subsection 2.1, we have vj1...jkϕi = vij1...jk−1
and so

vj1...jkϕi`−1
. . . ϕi0 = vi0...i`−1j1...jk−`

for every ` ≤ k. In terms of component actions, this translates into a tree with ai0
on level 0, ai1 on all g vertices of level 1, and in general aij on all vertices of level

j for 0 ≤ j < `. It follows easily from

vj1...jkϕik−1
. . . ϕi0 = vi0...ik−1

= vj1...jkϕik . . . ϕi0

that ϕ1, . . . , ϕg generate a semigroup isomorphic to F (g, k).

This gives a simple proof of Stiffler’s Theorem [23] (see also [21, Theorem 4.5.7,

pg. 248]).

Theorem 2.3 (Stiffler). The smallest pseudovariety containing the 2-element

right zero semigroup that is closed under semidirect product (equivalently wreath

or elliptic products) is D.
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A =

a

a b c

a b c a b c a b c

B =

b

a b c

a b c a b c a b c

C=

c

a b c

a b c a b c a b c

Fig. 2.8. Generators for F (3, 3) on T (3, 3, 3) with A3 = {a, b, c}.

A ·B =

b

a a a

a a a b b b c c c

Fig. 2.9. Multiplication of elements A and B in F (3, 3). Note that the first two levels are constant
precisely as specified by A and B.

Proof. As discussed in Section 2.2, D is a pseudovariety that is closed under semidi-

rect product. By the arguments above, the free objects F (g, k) are elliptic products

with component action in RZ and since every member of D is a suromorphic image

of an appropriate free one, the theorem is proved. �

In the sequel, we will be interested in the classification of right congruences on

ker(F (g, k)) ∈ RZ.

3. k-reset graphs

k-reset graphs are finite state automata [18] with the additional property that

strings of length k are resets or constant maps. The formalism is such that the

definitions in the profinite case, when k tends to infinity, is very similar. Let us now

discuss the details.

Let A be a finite nonempty alphabet. An A-graph is a structure of the form

Γ = (Q,E), where:
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• Q is a finite nonempty set (vertex set);

• E ⊆ Q×A×Q (edge set).

A nontrivial path in an A-graph Γ = (Q,E) is a finite sequence of the form

q0
a1−→q1

a2−→· · · an−→qn
such that (qi−1, ai, qi) ∈ E for i = 1, . . . , n. Its label is the word a1a2 · · · an ∈ A+ =

A∗ \ {ε}, where A∗ is the set of words in the alphabet A and ε is the empty word.

A trivial path is a formal expression of the form

q
ε−→q.

An A-graph Γ = (Q,E) is:

• deterministic if

(p, a, q), (p, a, q′) ∈ E ⇒ q = q′

holds for all p, q, q′ ∈ Q and a ∈ A;

• complete if

∀p ∈ Q ∀a ∈ A ∃q ∈ Q : (p, a, q) ∈ E;

• strongly connected if, for all p, q ∈ Q, there exists a path p
u−→q in Γ for some

u ∈ A∗.

If Γ = (Q,E) is deterministic and complete, then E induces a function

Q×A → Q

(q, a) 7→ qa

defined by (q, a, qa) ∈ E. Conversely, every such function defines a deterministic

complete A-graph. Moreover, we can extend the function Q×A→ Q to a function

Q×A∗ → Q as follows: given q ∈ Q and u ∈ A∗, qu is the unique vertex such that

there exists a path

q
u−→qu

in Γ. This function is called the transition function of Γ.

Let Γ = (Q,E) and Γ′ = (Q′, E′) be A-graphs. A morphism ϕ : Γ → Γ′ is a

function ϕ : Q→ Q′ such that

(p, a, q) ∈ E ⇒ (pϕ, a, qϕ) ∈ E′.

If ϕ is bijective and ϕ−1 is also a morphism, we say that ϕ is an isomorphism. In

this case we write Γ ∼= Γ′.

Given A-graphs Γ,Γ′, we write Γ ≤ Γ′ if there exists a morphism Γ→ Γ′. This

is clearly a reflexive and transitive relation, hence a preorder on the class of all

A-graphs. Technically, this is not a partial order, but we have the following remark:

Lemma 3.1. Let A be a finite nonempty alphabet and let Γ,Γ′ be strongly connected

deterministic complete A-graphs such that Γ ≤ Γ′ ≤ Γ. Then Γ ∼= Γ′.
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Proof. Let ϕ : Γ → Γ′ and ϕ′ : Γ′ → Γ be morphisms. Write Γ = (Q,E) and

Γ′ = (Q′, E′). Fix some q0 ∈ Q and take q′ ∈ Q′. Since Γ′ is strongly connected,

there exists some path q0ϕ
u−→q′ in Γ′ for some u ∈ A∗. Since Γ is complete, there

exists some path q0
u−→q in Γ for some q ∈ Q. It follows from ϕ being a morphism

that there exists a path q0ϕ
u−→qϕ in Γ′. Since Γ′ is deterministic, we get q′ = qϕ,

hence ϕ is onto and so |Q′| ≤ |Q|. By symmetry, we get |Q′| = |Q|, thus ϕ is

bijective.

It remains to be proved that ϕ−1 is a morphism. Assume that (pϕ, a, qϕ) ∈ E′
for some p, q ∈ Q and a ∈ A. Since Γ is complete, there exists some (p, a, r) ∈ E.

Since ϕ is a morphism, we get (pϕ, a, rϕ) ∈ E′. Now Γ′ being deterministic yields

qϕ = rϕ, and so q = r since ϕ is bijective. Therefore (p, a, q) ∈ E and so ϕ−1 is a

morphism as required. �

We say that u ∈ A∗ is a reset word for the deterministic and complete A-graph

Γ = (Q,E) if |Qu| = 1. This is equivalent to say that all paths labeled by u end

at the same vertex. Let Res(Γ) denote the set of all reset words for Γ. For every

k ∈ N, let

Resk(Γ) = Res(Γ) ∩Ak.

We say that Γ is a k-reset graph if Resk(Γ) = Ak. We denote by RGk(A) the class

of all strongly connected deterministic complete k-reset A-graphs.

Given Γ ∈ RGk(A), let [Γ] denote the isomorphism class of Γ. Let

RGk(A)/ ∼= = {[Γ] | Γ ∈ RGk(A)}.

Given Γ,Γ′ ∈ RGk(A), write

[Γ] ≤ [Γ′] if Γ ≤ Γ′.

It is immediate that ≤ is a well-defined preorder on RGk(A)/ ∼=. Moreover, it follows

from Lemma 3.1 that:

Corollary 3.2. Let A be a finite nonempty alphabet and let k ≥ 1. Then ≤ is a

partial order on RGk(A)/ ∼=.

4. Semaphore codes

A detailed discussion on semaphore codes can be found in [6, Chapter 3.4].

Let A be a finite alphabet. We define three partial orders on A∗ by

• u ≤p v if v ∈ uA∗,
• u ≤s v if v ∈ A∗u,

• u ≤f v if v ∈ A∗uA∗.

We refer to them as the prefix order, the suffix order and the factor order on A∗.

If X ⊂ A∗ is a nonempty antichain with respect to ≤p (respectively ≤s, ≤f ), it

is said to be a prefix code (respectively suffix code, infix code). Note that our notions
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differ slightly from the standard notions since we admit {ε} to be a code of all three

types!

Given an ideal IEA∗, let Iβ denote the subset of elements of I wich are minimal

with respect to ≤f . Then I = A∗(Iβ)A∗ and Iβ ⊆ B whenever B ⊆ A∗ satisfies

I = A∗BA∗. We say that Iβ is the basis of I. Clearly, the correspondences

I 7→ Iβ, C 7→ A∗CA∗

establish mutually inverse bijections between the set of all ideals of A∗ and the set

of all infix codes on A.

We say that L ⊆ A∗ is a left ideal if L 6= ∅ and A∗L ⊆ L. We write then LE`A∗.
Given L E` A∗, let Lβ` denote the subset of elements of L wich are minimal with

respect to ≤s. Then L = A∗(Lβ`) and Lβ ⊆ B whenever B ⊆ A∗ satisfies L = A∗B.

We say that Lβ` is the left basis of L. Clearly, the correspondences

L 7→ Lβ`, S 7→ A∗S

establish mutually inverse bijections between the set of all left ideals of A∗ and the

set of all suffix codes on A.

Similarly, R ⊆ A∗ is a right ideal if R 6= ∅ and RA∗ ⊆ R. We write then RErA∗.
We relate now ideals to semaphore codes. The definition we use is actually the

left-right dual of the classical definition in [6, Section 3.5], but we shall call them

semaphores codes for simplification. We also admit ∅ and {ε} as (semaphore) codes,

but this generalization is compatible with the relevant results from [6].

A semaphore code on the alphabet A is a language of the form

XA∗ \A+XA∗,

for some X ⊆ A∗. If X 6= ∅, then XA∗ \ A+XA∗ is a maximal suffix code (with

respect to inclusion) by [6, Proposition 3.5.1]. Now [6, Proposition 3.5.4] provides

an alternative characterization of semaphore codes:

Lemma 4.1. [6, Proposition 3.5.4] For every S ⊆ A∗, the following conditions are

equivalent:

(i) S is a semaphore code;

(ii) S is a suffix code and SA ⊆ A∗S.

Let Sem(A) denote the set of all semaphore codes on the alphabet A. We define

a partial order ≤ on Sem(A) by S ≤ S′ if A∗S ≤ A∗S′.

Example 4.2. Let A = {a, b} and X = {b}. Then the semaphore code is infinite

S = XA∗ \A+XA∗ = {b, ba, ba2, ba3, . . .} = ba∗.

If on the other hand A = {a, b} and X = {a2, ab, b2}, then the semaphore code is

finite

S = XA∗ \A+XA∗ = {a2, ab, b2, aba, b2a}.
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We denote by I(A) (respectively L(A),R(A)) the set of all ideals (respectively

left ideals, right ideals) of A∗. If we order I(A) (or L(A) or R(A)) by inclusion, we

get a complete (distributive) lattice where meet and join are given by intersection

and union. The top element is A∗ and the bottom element is ∅. We can now prove

the following.

Proposition 4.3. Let A be a finite nonempty alphabet. Then

Φ: (I(A),⊆)→ (Sem(A),≤)

I 7→ Iβ`
and

Ψ: (Sem(A) ≤)→ (I(A),⊆)

S 7→ A∗S

are mutually inverse lattice isomorphisms.

Proof. Let I ∈ I(A). Then Iβ` is clearly a suffix code. Since (Iβ`)A ⊆ I = A∗(Iβ`),

then Iβ` ∈ Sem(A) by Lemma 4.1 and Φ is well-defined.

On the other hand, given S ∈ Sem(A), it is clear that A∗SE`A∗. Now SA ⊆ A∗S
by Lemma 4.1, hence A∗S is actually an ideal of A∗ and so Ψ is also well-defined.

Now IΦΨ = A∗(Iβ`) = I and SΨΦ = (A∗S)β` = S follows easily from S being

a suffix code, hence Φ and Ψ are mutually inverse bijections. Since S ≤ S′ if and

only if SΨ ⊆ S′Ψ holds for all S, S′ ∈ Sem(A), Φ and Ψ are actually mutually

inverse poset isomorphisms. Since (I(A),⊆) is a lattice, so is (Sem(A),≤) and so Φ

and Ψ are lattice isomorphisms. �

As we will see in Section 7, semaphore codes are related to special right congru-

ences.

5. Right congruences on the minimal ideal of F (g, k)

Now fix a nonempty alphabet A = {a1, . . . , ag} and a positive integer k. We re-

marked in Subsection 2.3 that A≤k \ {ε} is a set of normal forms for F (g, k), the

free pro-Dk semigroup on the set A = {a1, . . . , ag}. Moreover, we can identify Ak

with ker(F (g, k)). Since F (g, k) is generated by A, right congruences on Ak can be

described as equivalence relations ρ satisfying

uρv ⇒ (u ◦ a)ρ(v ◦ a)

for every a ∈ A, or equivalently,

uρv ⇒ ((ua)ξk)ρ((va)ξk)

for every a ∈ A.

Given R ⊆ Ak ×Ak, we denote by R] the right congruence on Ak generated by

R, i.e. the intersection of all right congruences on Ak containing R. Let u, v ∈ Ak.

Then (u, v) ∈ R] if and only if there exists some finite sequence w0, . . . , wn ∈ Ak
(n ≥ 0) such that:

• w0 = u and wn = v;
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• for every i = 1, . . . , n, there exist (ri, si) ∈ R and xi ∈ A∗ such that

{wi−1, wi} = {ri ◦ xi, si ◦ xi}.

It is easy to see that

∨Λ = (∪Λ)]

for every Λ ⊆ RC(Ak).

We now relate right congruences on Ak with the k-reset graphs introduced in

Section 3.

Given ρ ∈ RC(Ak), the Cayley graph of ρ is the A-graph Cay(ρ) = (Ak/ρ,E)

defined by

E = {(uρ, a, (u ◦ a)ρ) | u ∈ Ak, a ∈ A},

where uρ denotes the congruence class of u. In particular, if ρ is the identity relation,

then Cay(ρ) is a k-dimensional De Bruijn graph on |A| symbols.

Given Γ = (Q,E) ∈ RGk(A), let ζΓ be the equivalence relation on Ak defined

by

uζΓv if Qu = Qv.

Note that

Q((ua)ξk) = Qua (5.1)

holds for all u ∈ Ak and a ∈ A. Indeed, since Qua ⊆ Q((ua)ξk) and (ua)ξk is a

reset word, we must have equality and (5.1) holds.

Proposition 5.1. Let A be a finite nonempty alphabet and k ≥ 1. Then

Φ: (RC(Ak),⊆)→ (RGk(A)/ ∼=,≤)

ρ 7→ [Cay(ρ)]
and

Ψ: (RGk(A)/ ∼=,≤)→ (RC(Ak),⊆)

[Γ] 7→ ζΓ

are mutually inverse lattice isomorphisms.

Proof. Let ρ ∈ RC(Ak). It follows from the definition that Cay(ρ) is deterministic

and complete. For all u, v ∈ Ak, we have u ◦ v = v, hence there exists a path

uρ
v−→(u ◦ v)ρ = vρ

in Cay(ρ). It follows that Cay(ρ) is strongly connected and Ak ⊆ Resk(Cay(ρ)),

thus Cay(ρ) ∈ RGk(A) and Φ is well-defined.

On the other hand, it is clear that [Γ]Ψ does not depend on the chosen repre-

sentative for the isomorphism class [Γ].

Let Γ ∈ RGk(A). Let (u, v) ∈ ζΓ and a ∈ A. Then Qu = Qv implies Qua = Qva

and therefore (u ◦ a, v ◦ a) ∈ ζΓ in view of (5.1). Thus ζΓ ∈ RC(Ak) and so Ψ is

well-defined.

Let ρ ∈ RC(Ak) and write ρ′ = ζCay(ρ). If Q = Ak/ρ is the vertex set of Cay(ρ),

then Qu = {uρ} for every u ∈ Ak. Hence

uρ′v ⇔ Qu = Qv ⇔ uρ = vρ
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and so ΦΨ = 1.

Conversely, let Γ = (Q,E) ∈ RGk(A) and let Γ′ = Cay(ζΓ). We show that

∀q ∈ Q ∃uq ∈ Ak : Quq = {q}. (5.2)

We may assume that |Q| > 1. Since Γ is strongly connected, it follows that there

exists a loop q
w−→q in Γ with w 6= ε. Replacing w by a proper power if necessary,

we may assume that |w| ≥ k. Hence there exists some uq ∈ Ak such that q ∈ Quq.
Since uq is necessarily a reset word, we get Quq = {q} and so (5.2) holds.

We define a mapping

θ : Q→ Ak/ζΓ.

q 7→ uqζΓ

Note that

Qu = Qv ⇔ uζΓ = vζΓ (5.3)

holds for all u, v ∈ Ak, hence θ is well-defined and one-to-one. Since Γ is a k-reset

graph, θ is also onto. We show that θ is an isomorphism from Γ onto Cay(ζΓ).

Assume that (p, a, q) ∈ E. By (5.1), we get

Q(up ◦ a) = Qupa = pa = q = Quq.

Hence uqζΓ = (up ◦ a)ζΓ and so there exists an edge upζΓ
a−→uqζΓ in Cay(ζΓ).

Conversely, assume that upζΓ
a−→uqζΓ is an edge of Cay(ζΓ). Then uqζΓ = (up ◦

a)ζΓ and so

q = Quq = Q(up ◦ a) = Qupa = pa

by (5.3) and (5.1). Thus (p, a, q) ∈ E and so θ : Γ → Cay(ζΓ) is an isomorphism.

Therefore ΨΦ = 1 and so Φ and Ψ are mutually inverse bijections.

Let ρ, ρ′ ∈ RC(Ak) with ρ ⊆ ρ′. Then

θ : Ak/ρ → Ak/ρ′

uρ 7→ uρ′

is a well-defined surjective map. If uρ
a−→(u◦a)ρ is an edge of Cay(ρ), then uρ′

a−→(u◦
a)ρ′ is an edge of Cay(ρ)′, hence θ is a morphism from Cay(ρ) to Cay(ρ′) and so

Cay(ρ) ≤ Cay(ρ′). Thus [Cay(ρ)] ≤ [Cay(ρ′)] and so Φ is order-preserving.

Let Γ,Γ′ ∈ RGk(A) be such that [Γ] ≤ [Γ′]. Then there exists a morphism

θ : Γ → Γ′. Write Γ = (Q,E) and Γ′ = (Q′, E′). Suppose that (u, v) ∈ ζΓ. Then

Qu = Qv = {q} for some q ∈ Q. Hence qθ ∈ Q′u ∩Q′v. Since Γ′ is a k-reset graph,

we get Q′u = {qθ} = Q′v and so (u, v) ∈ ζΓ′ . Therefore Ψ is order-preserving.

Since Φ and Ψ are mutually inverse order-preserving mappings, they are isomor-

phisms of posets. Since (RC(Ak),⊆) is a lattice, then (RGk(A),≤) is also a lattice,

and Φ and Ψ are mutually inverse lattice isomorphisms. �
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6. Lattice-theoretic properties

We discuss in this section the lattice-theoretic properties of the lattice RC(Ak).

We recall some well-known notions from lattice theory. Let L be a (finite) lattice

with bottom element B and top element T . Given a, b ∈ L, we say that b covers a

if a < b and there is no c ∈ L such that a < c < b. If a covers the bottom B, we say

that a is an atom.

The lattice L is said to be:

• modular if it has no sublattice of the form

a

b

c d

e

(6.1)

• semimodular if it has no sublattice of the form (6.1) with d covering e;

• atomistic if every element of L is a join of atoms (B being the join of the empty

set).

Proposition 6.1. Let A be a nonempty set and k ≥ 1. Then RC(Ak) is semimod-

ular.

Proof. It suffices to show that RC(Ak) has no sublattice of the form

ρ

σ′

σ τ

λ

with τ covering λ in RC(Ak).

Suppose it does. Given x, y ∈ A∗, let lcs(x, y) denote the longest common suffix

of x and y. If x, y ∈ Ak are distinct, then |lcs(x, y)| < k and so

|lcs(x ◦ a, y ◦ a)| > |lcs(x, y)| (6.2)

for every a ∈ A.
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Let (u, v) ∈ τ \ λ with |lcs(u, v)| maximal. For every a ∈ A, we have

(u ◦ a, v ◦ a) ∈ {(u, v)}] ⊆ τ.

In view of (6.2), and by maximality of |lcs(u, v)|, we get

(u ◦ a, v ◦ a) ∈ λ. (6.3)

Note also that

λ ⊂ (λ ∪ {(u, v)})] ⊆ τ

yields

τ = (λ ∪ {(u, v)})] (6.4)

since τ covers λ.

Let (y, z) ∈ σ′ \ σ. Then (6.4) yields

(y, z) ∈ ρ = (σ ∨ τ) = (σ ∪ (λ ∪ {(u, v)})])] = (σ ∪ {(u, v)})]

and so there exists some finite sequence w0, . . . , wn ∈ Ak such that:

• w0 = y and wn = z;

• for every i = 1, . . . , n, there exist (ri, si) ∈ σ ∪ {(u, v)} and xi ∈ A∗ such that

{wi−1, wi} = {ri ◦ xi, si ◦ xi}.

Now by (6.3) we may assume that xi = ε whenever (ri, si) = (u, v). Since we may

assume that the wi are all distinct, the relation (u, v) is used at most once, indeed

exactly once since (y, z) /∈ σ and (ri, si) ∈ σ implies (ri ◦ xi, si ◦ xi) ∈ σ. We may

assume without loss of generality that u = wj−1 and v = wj for some j ∈ {1, . . . , n}.
Hence

y = w0 σ wj−1 = u, v = wj σ wn = z

and so

u = wj−1 σ
′ y σ′ z σ′ wj = v.

It follows that λ∪{(u, v)} ⊆ σ′. By (6.4), we get τ ⊆ σ′, a contradiction. Therefore

RC(Ak) is semimodular. �

Since a semimodular lattice of finite height (i.e. the length of chains is bounded)

satisfies the Jordan-Dedekind condition (i.e. all maximal chains have the same

length), we immediately obtain:

Corollary 6.2. Let A be a nonempty set and k ≥ 1. Then RC(Ak) satisfies the

Jordan-Dedekind condition.

We show next that we cannot replace semimodular by modular in Proposi-

tion 6.1.

Proposition 6.3. Let k ≥ 1 and let A be a set with |A| ≥ 4. Then RC(Ak) is not

modular.
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Proof. Let a, b, c, d ∈ A be distinct. Let λ be the identity relation on Ak and let

σ = λ ∪ {ak, bak−1}2;

σ′ = λ ∪ {ak, bak−1}2 ∪ {cak−1, dak−1}2;

τ = λ ∪ {ak, dak−1}2 ∪ {bak−1, cak−1}2;

ρ = λ ∪ {ak, bak−1, cak−1, dak−1}2.

It is routine to check that all the above relations are right congruences on Ak.

Moreover,

λ ⊂ σ ⊂ σ′ ⊂ ρ, λ ⊂ τ ⊂ ρ,

σ′ ∩ τ = λ, (σ ∨ τ) = ρ,

hence

ρ

σ′

σ τ

λ

is a sublattice of RC(Ak) and so RC(Ak) is not modular. �

We can also show that RC(Ak) can only be atomistic in trivial cases:

Proposition 6.4. Let k ≥ 2 and let A be a set with |A| ≥ 2. Then RC(Ak) is not

atomistic.

Proof. Let λ be the identity relation on Ak. Let a, b ∈ A be distinct and let

σ = λ ∪ {ak, b2ak−2, bak−1}2 ∪ {ak−1b, bak−2b}2;

τ = λ ∪ {ak, bak−1}2 ∪ {ak−1b, bak−2b}2.

It is routine to check that σ, τ ∈ RC(Ak). Moreover, λ ⊂ τ ⊂ σ. We show that

σ = {(xak−1, b2ak−2)}] (6.5)

for every x ∈ {a, b}. Indeed, let η = {(xak−1, b2ak−2)}]. Then (xak−1, b2ak−2) ∈ η
yields (ak, bak−1) ∈ η and so {ak, b2ak−2, bak−1}2 ⊆ η. Finally, (xak−1, b2ak−2) ∈ η
yields (ak−1b, bak−2b) ∈ η and so

σ ⊆ {(xak−1, b2ak−2)}].

Since (xak−1, b2ak−2) ∈ σ for x ∈ {a, b}, (6.5) holds.
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Now we claim that τ is the unique element of RC(Ak) covered by σ. Indeed,

assume that ρ ⊂ σ. In view of (6.5), we have (ak, b2ak−2) /∈ ρ and (bak−1, b2ak−2) /∈
ρ. Hence ρ ⊆ τ . Since σ is not an atom, it follows that

α ≤ σ if and only if α ≤ τ

for every atom α of RC(Ak). Thus σ cannot be expressed as a join of atoms and so

RC(Ak) is not atomistic. �

7. Special right congruences on Ak

To avoid trivial cases, we assume throughout this section that A is a finite alphabet

containing at least two elements. We define

Ik(A) = {I EA∗ | Ak ⊂ I},

Lk(A) = {LE` A∗ | Ak ⊂ L}.

If we order Ik(A) (or Lk(A)) by inclusion, we get a finite (distributive) lattice where

meet and join are given by

(I ∧ J) = I ∩ J, (I ∨ J) = I ∪ J.

The top element is A∗ and the bottom element is AkA∗.

Given L ∈ Lk(A), we define a relation τL on Ak by:

uτLv if u and v have a common suffix in L.

Lemma 7.1. Let L ∈ Lk(A). Then τL is an equivalence relation on Ak.

Proof. It is immediate that τL is symmetric. Since Ak ⊆ L, it is reflexive. Assume

now that u, v, w ∈ Ak and x, y ∈ L are such that x ≤s u, v and y ≤s v, w. Since

x and y are both suffixes of v, one of them is a suffix of the other. Hence either

x ≤s u,w or y ≤s u,w. Therefore τL is transitive. �

Being a right congruence turns out to be a special case:

Proposition 7.2. Let L ∈ Lk(A). Then the following conditions are equivalent:

(i) τL ∈ RC(Ak);

(ii) L ∈ Ik(A);

(iii) (Lβ`)A ⊆ A∗(Lβ`);

(iv) Lβ` is a semaphore code.

Proof. (i) ⇒ (iii). Let u ∈ Lβ` and a ∈ A. Since A∗(Lβ`) = L ⊃ Ak, we may

assume that |u| < k−1. Let b ∈ A\{a} and write m = k−|u|. Then (amu, bmu) ∈ τL,

hence

(am−1ua, bm−1ua) = (amu ◦ a, bmu ◦ a) ∈ τL.
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It follows that am−1ua and bm−1ua must share a suffix in L, and so ua itself must

have a suffix in L. Thus

(Lβ`)A ⊆ A∗L = L = A∗(Lβ`).

(iii) ⇒ (ii). We have

LA = A∗(Lβ`)A ⊆ A∗(Lβ`) = L.

It follows that LA∗ ⊆ L. Since L ∈ Lk(A), we get L ∈ Ik(A).

(ii) ⇒ (i). By Lemma 7.1, τL is an equivalence relation. Let u, v ∈ Ak be such

that uτLv. Then w ≤s u, v for some w ∈ L. We may assume that |w| < k. Let

a ∈ A. Since LEA∗, we have wa ∈ L. Since |w| < k, it follows that wa is a common

suffix of u ◦ a and v ◦ a. Therefore (u ◦ a)τL(v ◦ a) and we are done.

(iii) ⇔ (iv). This follows from Lemma 4.1, since Lβ` is always a suffix code. �

Note that we can easily produce examples of L ∈ Lk(A) \ Ik(A):

Example 7.3. Let A = {a, b}, k = 3 and L = A∗b ∪ A+Aa. Then L ∈ Lk(A) but

τL /∈ RC(Ak).

Indeed, b ∈ L but ba /∈ L, hence L /∈ Ik(A) and so τL /∈ RC(Ak) by Proposition

7.2. Note that in this case β` = {b, a3, ba2, aba, b2a}.

Inclusion among left ideals determines inclusion for the equivalence relations τL:

Lemma 7.4. Let |A| > 1 and L,L′ ∈ Lk(A). Then

τL ⊆ τL′ ⇔ L ⊆ L′.

Proof. Assume that L ⊆ L′. Let (u, v) ∈ τL. Then u and v share a common suffix

in L and therefore in L′. Thus (u, v) ∈ τL′ .
Assume now that L 6⊆ L′. Let w ∈ L \L′ have minimum length. Since Ak ⊆ L′,

we have |w| < k. Let n = k−|w|. Fix a, b ∈ A distinct and take (u, v) = (anw, bnw) ∈
Ak ×Ak. Since w ∈ L, we have (u, v) ∈ τL. Now w is the longest common suffix of

u and v. Since w /∈ L′, it follows that (u, v) /∈ τL′ . �

Note that Lemma 7.4 does not hold for |A| = 1, since |Ak| = 1.

Definition 7.5. We say that ρ ∈ RC(Ak) is a special right congruence on Ak if

ρ = τI for some I ∈ Ik(A). In view of Proposition 7.2, this is equivalent to say

that ρ = τA∗S for some semaphore code S on A such that Ak ⊂ A∗S. We denote

by SRC(Ak) the set of all special right congruences on Ak.

Note that not every semaphore code S satisfies the condition Ak ⊂ A∗S. How-

ever, it is easy to derive a semaphore code from S that does by considering

S′ = (S ∩A≤k) ∪ (Ak \A∗S). (7.1)
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S′ is a suffix code since the elements in S ∩ A≤k are incomparable in suffix order

since S is a suffix code, and by construction any element in Ak\A∗S is incomparable

with the elements in S ∩A≤k and vice versa. Furthermore, Ak ⊂ A∗S′ ⊇ A∗S and

SA ⊆ A∗S by Lemma 4.1. Thus S′A ⊆ A∗S′ and so by Lemma 4.1 S′ is a semaphore

code.

Proposition 7.6. Let |A| > 1. Then:

(i) τI∩J = τI ∩ τJ and τI∪J = τI ∪ τJ for all I, J ∈ Ik(A);

(ii) SRC(Ak) is a full sublattice of RC(Ak);

(iii) the mapping

Ik(A)→ SRC(Ak)

I 7→ τI

is a lattice isomorphism.

Proof. (i) By Lemma 7.4, we have τI∩J ⊆ τI ∩ τJ and τI ∪ τJ ⊆ τI∪J .

Let (u, v) ∈ τI ∩ τJ . Then there exist x ∈ I and y ∈ J such that x ≤s u, v and

y ≤s u, v. Since x and y are both suffixes of the same word, one of them is a suffix

of the other, say x ≤s y. Then y ∈ I ∩ J and so (u, v) ∈ τI∩J . Thus τI∩J = τI ∩ τJ .

Assume now that (u, v) ∈ τI∪J . Then there exists some x ∈ I ∪ J such that

x ≤s u, v. If x ∈ I, then (u, v) ∈ τI , otherwise (u, v) ∈ τJ . Therefore τI∪J = τI ∪ τJ .

(ii) Let I, J ∈ Ik(A). By part (i), τI∩J is the meet of τI and τJ in both RC(Ak)

and SRC(Ak). And τI∪J is the join of τI and τJ in both RC(Ak) and SRC(Ak).

Finally, τAkA∗ is the identity relation and therefore the bottom element of both

lattices. And τA∗ is the universal relation and therefore the top element of both

lattices.

(iii) This follows from Lemma 7.4. �

Given ρ ∈ RC(Ak) and C ∈ Ak/ρ, we denote by lcs(C) the longest common

suffix of all words in C. We define

Λρ = {lcs(C) | C ∈ Ak/ρ} and Λ′ρ = {lcs(u, v) | (u, v) ∈ ρ}. (7.2)

Lemma 7.7. Let ρ ∈ RC(Ak). Then A∗Λρ = A∗Λ′ρ ∈ Ik(A).

Proof. Let C ∈ Ak/ρ and let w = lcs(C). If |w| = k, then w = lcs(w,w). If

|w| < k, then by maximality of w there exist a, b ∈ A distinct and u, v ∈ A∗ such

that uaw, vbw ∈ C. Thus w = lcs(uaw, vbw) and so

Λρ ⊆ Λ′ρ. (7.3)

Therefore A∗Λρ ⊆ A∗Λ′ρ.
Conversely, let (u, v) ∈ ρ. Then lcs(uρ) is a suffix of lcs(u, v), hence Λ′ρ ⊆ A∗Λρ

and so A∗Λρ = A∗Λ′ρ.
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Clearly, A∗Λ′ρ E` A
∗. Since u = lcs(u, u) for every u ∈ Ak, we have Ak ⊆ Λ′ρ.

Hence it suffices to show that (Λ′ρ)A ⊆ A∗Λ′ρ.
Let (u, v) ∈ ρ and a ∈ A. We must show that (lcs(u, v))a ∈ A∗Λ′ρ. Since Ak ⊆ Λ′ρ,

we may assume that |lcs(u, v)| < k − 1. Then (lcs(u, v))a = lcs(u ◦ a, v ◦ a). Since

(u ◦ a, v ◦ a) ∈ ρ, we get (lcs(u, v))a ∈ Λ′ρ and we are done. �

Given ρ ∈ RC(Ak), we write

Res(ρ) = Res(Cay(ρ)).

We refer to the elements of Res(ρ) as the resets of ρ.

Lemma 7.8. Let ρ ∈ RC(Ak). Then:

(i) Res(ρ) = {w ∈ A∗ | uρv for all u, v ∈ Ak ∩ (A∗w)};
(ii) Res(ρ) ∈ Ik(A).

Proof. (i) Let w ∈ Res(ρ) and suppose that u = u′w ∈ Ak, v = v′w ∈ Ak. Since

w ∈ Res(ρ), we have paths

p
u′−→p′ w−→r, q

v′−→q′ w−→r

in Cay(ρ). It follows from the definition of Cay(ρ) that

uρ = (u′w)ρ = r = (v′w)ρ = vρ,

hence the direct inclusion holds.

To prove the opposite inclusion, we suppose that w ∈ A∗ \ Res(ρ). Then there

exist paths

p′
w−→p, q′

w−→q

in Cay(ρ) with p 6= q. If w has a suffix w′ of length k, then every path labeled by

w ends necessarily in w′ρ, hence we must have |w| < k. Since Cay(ρ) is strongly

connected by Proposition 5.1, there exist paths

p′′
x−→p′, q′′

y−→q′

in Cay(ρ) with |xw| = |yw| = k. But then

(xw)ρ = p 6= q = (yw)ρ

and we are done.

(ii) It is immediate that Res(ρ) E A∗. Since every path in Cay(ρ) labeled by

w ∈ Ak ends necessarily in wρ, we have Ak ⊆ Res(ρ) and so Res(ρ) ∈ Ik(A). �

We can now compare a right congruence with a special right congruence:

Proposition 7.9. Let |A| > 1, ρ ∈ RC(Ak) and I ∈ Ik(A). Then:

(i) ρ ⊆ τI ⇔ Λρ ⊆ I ⇔ Λ′ρ ⊆ I;
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(ii) τI ⊆ ρ⇔ I ⊆ Res(ρ).

Proof. (i) Assume that ρ ⊆ τI . Let (u, v) ∈ ρ. Then u and v have a common suffix

in I, hence lcs(u, v) has a suffix in I and so Λ′ρ ⊆ A∗I = I.

By (7.3), Λ′ρ ⊆ I implies Λρ ⊆ I.

Finally, assume that Λρ ⊆ I. Let (u, v) ∈ ρ and write w = lcs(uρ) ∈ Λρ ⊆ I.

Since w is a suffix of both u and v, we get (u, v) ∈ τI . Thus ρ ⊆ τI as required.

(ii) Assume that τI ⊆ ρ. Let w ∈ I and let u, v ∈ Ak ∩ (A∗w). Since u, v have a

common suffix in I, we get (u, v) ∈ τI ⊆ ρ. Thus w ∈ Res(ρ) by Lemma 7.8(i) and

so I ⊆ Res(ρ).

Conversely, assume that I ⊆ Res(ρ). Let (u, v) ∈ τI . Then we may write u = u′w,

v = v′w with w ∈ I ⊆ Res(ρ). Since u, v ∈ Ak ∩ (A∗w), it follows from Lemma

7.8(i) that (u, v) ∈ ρ and so τI ⊆ ρ. �

We can now prove several equivalent characterizations of special right congru-

ences:

Proposition 7.10. Let |A| > 1 and ρ ∈ RC(Ak). Then the following conditions

are equivalent:

(i) ρ ∈ SRC(Ak);

(ii) lcs : Ak/ρ→ A≤k is injective and Λρ is a suffix code;

(iii) ρ = τA∗Λρ ;

(iv) ρ = τA∗Λ′ρ ;

(v) ρ = τRes(ρ);

(vi) ρ = τ ]L for some L ∈ Lk(A);

(vii) Λρ ⊆ Res(ρ);

(viii) Λ′ρ ⊆ Res(ρ);

(ix) whenever

p
aw−→q, p′

bw−→q, p′′
w−→r (7.4)

are paths in Cay(ρ) with a, b ∈ A distinct, then q = r.

Proof. (i) ⇒ (ii). We start by proving that

lcs(uτI) ∈ I (7.5)

for all I ∈ Ik(A) and u ∈ Ak.

Indeed, for every w ∈ uτI , there exists some w′ ∈ I such that w′ ≤s u,w. Let

z be the shortest suffix among the w′. Then z ∈ I and z ≤s w for every w ∈ uτI ,
hence z ≤s lcs(uτI). Since I EA∗, it follows that lcs(uτI) ∈ I and so (7.5) holds.

Assume that ρ = τI for some I ∈ Ik(A). We prove that

lcs(uρ) ≤s lcs(vρ)⇒ (u, v) ∈ ρ (7.6)

holds for all u, v ∈ Ak. Assume that lcs(uρ) ≤s lcs(vρ). Since lcs(uρ) ≤s u and

lcs(vρ) ≤s v, it follows that lcs(uρ) is a suffix of both u and v. Now (7.5) yields
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lcs(uρ) = lcs(uτI) ∈ I and so u, v have a common suffix in I. Therefore (u, v) ∈
τI = ρ and (7.6) holds.

Now (ii) follows from (7.6).

(ii) ⇒ (iii). Write I = A∗Λρ. If (u, v) ∈ ρ, then lcs(uρ) ∈ Λρ ⊆ I is a suffix of

both u and v, hence (u, v) ∈ τI .
Conversely, let (u, v) ∈ τI . Then there exists some w ∈ Λρ such that w ≤s u, v.

Suppose that lcs(uρ) 6= w. Then lcs(uρ) <s w or w <s lcs(uρ), contradicting Λρ
being a suffix code. Hence lcs(uρ) = w. Similarly, lcs(vρ) = w. Since lcs : Ak/ρ →
A≤k is injective, we get uρ = vρ. Thus ρ = τI .

(iii) ⇔ (iv). This follows from Lemma 7.7.

(iii) ⇒ (vi). Write L = A∗Λρ. By (iii), we have τ ]L = ρ] = ρ. Since L ∈ Lk(A)

by Lemma 7.7, (vi) holds.

(vi) ⇒ (i). Let I = LA∗ ∈ Ik(A). Since L ⊆ I, it follows from Lemma 7.4 that

τL ⊆ τI , hence

ρ = τ ]L ⊆ τ
]
I = τI

by Proposition 7.2.

Now assume that (u, v) ∈ τI . Then there exist factorizations u = u′w and

v = v′w with w ∈ I. Write w = zw′ with z ∈ L. Then (w′u′z, w′v′z) ∈ τL and so

(u, v) = (u′w, v′w) = (u′zw′, v′zw′) = (w′u′z ◦ w′, w′v′z ◦ w′) ∈ τ ]L = ρ.

Thus τI ⊆ ρ as required.

(i) ⇒ (v). If ρ = τI for some I ∈ Ik(A), then I ⊆ Res(ρ) by Proposition 7.9(ii).

Since Res(ρ) ∈ Ik(A) by Lemma 7.8(ii), then Proposition 7.9(ii) also yields

τRes(ρ) ⊆ ρ = τI ,

hence Res(ρ) ⊆ I by Lemma 7.4. Therefore I = Res(ρ).

(v) ⇒ (vii) ⇔ (viii). By Lemma 7.8(ii), Res(ρ) ∈ Ik(A). Now we apply Propo-

sition 7.9(i).

(viii)⇒ (i). We have A∗Λ′ρ,Res(ρ) ∈ Ik(A) by Lemmas 7.7 and 7.8(ii). It follows

from Proposition 7.9 that

τRes(ρ) ⊆ ρ ⊆ τA∗Λ′ρ .

Since Λ′ρ ⊆ Res(ρ) yields A∗Λ′ρ ⊆ Res(ρ) and therefore τA∗Λ′ρ ⊆ τRes(ρ) by Lemma

7.4, we get ρ = τRes(ρ) ∈ SRC(Ak).

(viii) ⇒ (ix). Consider the paths in (7.4). Since Ak ⊆ Res(ρ) by Lemma 7.8(ii),

we may assume that |w| < k. Since Cay(ρ) is strongly connected, there exist paths

s
x−→p, s′

x′−→p′

such that xaw, x′bw ∈ Ak. Hence

w = lcs(xaw, x′bw) ∈ Λ′ρ ⊆ Res(ρ)

and so q = r.
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(ix) ⇒ (viii). Let w ∈ Λ′ρ. Since Ak ⊆ Res(ρ) by Lemma 7.8(ii), we may assume

that |w| < k. Then w = lcs(u, v) for some distinct ρ-equivalent u, v ∈ Ak. Hence we

may write u = u′aw and v = v′bw with a, b ∈ A distinct. Since uρ = vρ, it follows

that there exist in Cay(ρ) paths of the form

s
u′−→p aw−→uρ, s′

v′−→p′ bw−→vρ.

Now (ix) implies that w ∈ Res(ρ). �

Corollary 7.11. If ρ ∈ SRC(Ak) with |A| > 1, then Λρ is a semaphore code.

Proof. By Proposition 7.10(ii), Λρ is a suffix code. Furthermore, by Lemma 7.7 we

have A∗Λρ ∈ Ik(A), which in turn implies by Proposition 7.2 that (A∗Λρ)β` = Λρ
is a semaphore code. �

We can now prove that not all right congruences are special, even for |A| = 2:

Example 7.12. Let A = {a, b} and let ρ be the equivalence relation on A3 defined

by the following partition:

{a3, aba, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {b2a} ∪ {b3}.

Then ρ ∈ RC(A3) \ SRC(A3).

Indeed, it is routine to check that ρ ∈ RC(A3). Since lcs(a3ρ) = a and

lcs((b2a)ρ) = b2a, then Λρ is not a suffix code and so ρ /∈ SRC(A3) by Propo-

sition 7.10.

Let ρ ∈ RC(Ak) and let

ρ = ∨{τ ∈ SRC(Ak) | τ ⊆ ρ},
ρ = ∧{τ ∈ SRC(Ak) | τ ⊇ ρ}.

(7.7)

By Proposition 7.6(ii), we have ρ, ρ ∈ SRC(A∗).

Proposition 7.13. Let |A| > 1 and ρ ∈ RC(Ak). Then:

(i) ρ = τRes(ρ);

(ii) ρ = τA∗Λρ = τA∗Λ′ρ .

Proof. (i) By Lemma 7.8(ii), we have Res(ρ) ∈ Ik(A). Now the claim follows from

Proposition 7.9(ii).

(ii) Similarly, we have A∗Λρ = A∗Λ′ρ ∈ Ik(A) by Lemma 7.7, and the claim

follows from Proposition 7.9(i). �
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The next counterexample shows that the pair (ρ, ρ) does not univocally deter-

mine ρ ∈ RC(Ak):

Example 7.14. Let A = {a, b} and let ρ, ρ′ be the equivalence relations on A3

defined by the following partitions:

{a3, aba, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {b2a} ∪ {b3},

{a3, b2a, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {aba} ∪ {b3}.

Then ρ, ρ′ ∈ RC(A3), ρ = ρ′ and ρ = ρ′.

Indeed, we claimed in Example 7.12 that ρ is a right congruence, and the veri-

fication for ρ′ is also straightforward.

It is easy to see that

Res(ρ) = A∗A3 ∪ {a2, ab} = Res(ρ′),

hence ρ = ρ′ by Proposition 7.13(i).

Since

Λρ = {a, ab, ab2, b2a, b3}

and

Λρ′ = {a, ab, ab2, aba, b3}

we obtain

A∗Λρ = A+ \ {b, b2} = A∗Λρ′

and Proposition 7.13(ii) yields ρ = ρ′.

This same example shows also that ρ does not necessarily equal or cover ρ in

SRC(Ak). Indeed, in this case we have

Res(ρ) = A∗A3 ∪ {a2, ab} ⊂ I ⊂ A+ \ {b, b2} = A∗Λρ

for I = A∗A3 ∪ {a2, ab, ba} ∈ Ik(A). By Lemma 7.4, we get

ρ ⊂ τI ⊂ ρ.

8. Random walks on semaphore codes

As we have seen in Proposition 7.13, semaphore codes approximate right congru-

ences from above and below in the lattice structure. In this section, we will define

random walks (or more specifically Markov chains) on semaphore codes. The prop-

erty that makes this possible is that for a semaphore code S associated to the

alphabet A

SA ⊆ A∗S, (8.1)
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see Lemma 4.1. Namely, (8.1) implies a right action of A on S: for a ∈ A and s ∈ S,

the action s.a is t, if sa = wt with w ∈ A∗ and t ∈ S under (8.1).

To turn the action S × A → S into a random walk, we impose a Bernoulli

distribution on A∗, see [6, Section 1.11]. More precisely, we associate a probability

0 ≤ π(a) ≤ 1 to each letter a ∈ A such that
∑
a∈A π(a) = 1. The state space of the

random walk is S. Given s ∈ S, with probability π(a) we transition to state s.a in

one step. This gives rise to the transition matrix T with entry in row s and column

s′

Ts,s′ =
∑
a

with s′=s.a

π(a).

Since
∑
a π(a) = 1, it follows that the row sums of T are equal to one, so that T is

a row stochastic matrix. Taking ` steps in the random walk is described by the `-th

power of T , that is, the probability of going from s to s′ in ` steps is the (s, s′)-

entry (T `)s,s′ in T `. Under the Bernoulli distribution, the probability π(a1 · · · a`) of

a word of length ` is given by the multiplicative formula π(a1 · · · a`) =
∏`
i=1 π(ai).

A suffix code X on A∗ is maximal if it is not properly contained in any other

suffix code on A∗, that is, if X ⊆ Y ⊆ A∗ and Y is a suffix code, then Y =

X. Furthermore, X is called thin if there exists an elements w ∈ A∗ such that

A∗wA∗ ∩ X = ∅. By [6, Proposition 3.3.10], for a thin maximal suffix code X we

have π(X) =
∑
x∈X π(x) = 1 for all positive Bernoulli distributions π on X. A

Bernoulli distribution on X is positive if π(x) > 0 for all x ∈ X. As shown in [6,

Proposition 3.5.1], semaphore codes S are thin maximal suffix codes, so that

π(S) =
∑
s∈S

π(s) = 1. (8.2)

Hence any positive Bernoulli distribution on semaphore codes yields a probability

distribution.

A stationary distribution I = (Is)s∈S is a vector such that
∑
s∈S Is = 1 and

IT = I, that is, it is a left eigenvector of the transition matrix with eigenvalue

one. In the finite state case, by the Perron–Frobenius Theorem, the stationary

distribution exists. It is unique if the random walk is irreducible. See [13] for more

details. In our case, we prove next that a stationary distribution exists and give its

explicit form.

Theorem 8.1. The stationary distribution of the random walk associated to the

semaphore code S is given by

I = (π(s))s∈S .

Proof. Taking the s′-th component of IT = I reads∑
s∈S

∑
a∈A
s′=s.a

π(a)π(s) = π(s′). (8.3)
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Recall that s.a = s′ with a ∈ A and s, s′ ∈ S means that sa = ws′ for some w ∈ A∗.
In particular, this can only hold if a is the last letter of s′ and hence fixed by s′.

Claim: The set S′ = {w | sa = ws′, s ∈ S} for fixed s′ ∈ S with a ∈ A the last

letter of s′, is a thin maximal suffix code.

Indeed, if the claim is true, we have
∑
w∈S′ π(w) = 1 by [6, Proposition 3.3.10].

Using that π(a)π(s) = π(w)π(s′) we can hence rewrite (8.3)∑
s∈S

∑
a∈A
s′=s.a

π(a)π(s) = π(s′)
∑
w∈S′

π(w) = π(s′)

as desired. It remains to prove the claim.

First assume that S′ is not a suffix code. Then there must be two elements

w,w′ ∈ S′ that are comparable in suffix order. But then ws′ and w′s′ are comparable

in suffix order, contradicting the fact that S is a suffix code (since after removing

the last letter a the result must be in S). Next assume that S′ is not maximal.

This means there exists y ∈ A∗ such that S′ ( S′ ∪ {y} is a suffix code. But then

S ∪ {ys̃′} is a suffix code, where s̃′ is obtained from s′ by removing the last letter

a, contradicting the maximality of S (recall that all semaphore codes are maximal

by [6, Proposition 3.5.1]). Finally assume that S′ is not thin. That means that there

exists w ∈ A∗ such that A∗wA∗∩S′ 6= ∅. In particular uwv ∈ S′ for some u, v ∈ A∗.
Since by construction S′s̃′ ⊆ S, this would imply uwvs̃′ ∈ S, contradicting the fact

that S is thin. �

Given A = {a1, . . . , ag} and a right congruence ρ ∈ RC(Ak), we are interested

in the probability for nonempty words of length ` ≤ k to be resets on Ak/ρ. Since

Res(ρ) = Res(ρ) by Propositions 7.10 and 7.13, we can restrict ourselves to de-

termine the probabilities for resets of words of given length for ρ ∈ SRC(Ak), or

equivalently for semaphore codes Λρ by Corollary 7.11.

Theorem 8.2. Let ρ ∈ RC(Ak). Then the probability that a word of length 1 ≤ ` ≤
k is a reset on Ak/ρ is given by

P (`) =
∑
s∈Λρ
`(s)≤`

∏
a∈s

π(a) , (8.4)

where a ∈ s in the product runs over every letter in s and `(s) is the length of the

word (or suffix) s.

Proof. As mentioned above, Res(ρ) = Res(ρ) by Propositions 7.10 and 7.13

and in addition Λρ is a semaphore code. Define Res(`) = {w ∈ A+ | `(w) =

` and w is a reset on Ak/ρ} = Res(ρ) ∩A`. We claim that

Res(`) = {w ∈ A+ | `(w) = ` and w has a suffix in Λρ}.

Since Λρ is a suffix code, each word has precisely one suffix in Λρ. Hence the claim

immediately yields the formula for P (`) using that a letter a ∈ s for s ∈ Λρ occurs

with probability π(a).
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We prove the claim by induction on `. By Proposition 7.10(vii) we have that

Λρ ⊆ Res(ρ) = Res(ρ). Certainly, for ` = 1 the only words that are resets are the

words/suffixes of length 1 in Λρ. Now assume that the claim holds for all words of

length less than `. Since Λρ ⊆ Res(ρ), we deduce that

{w ∈ A+ | `(w) = ` and w has a suffix in Λρ} ⊆ Res(`) .

To prove the reverse inclusion let v = ai` . . . ai1 ∈ Res(`). If v ∈ Λρ, we are done.

If ai`−1
· · · ai1 ∈ Res(` − 1), then by induction v has a suffix in Λρ. Hence assume

that ai`−1
. . . ai1 6∈ Res(` − 1) and v 6∈ Λρ. This requires that ai` . . . ai2 is a reset,

so that again by induction ai` . . . ai2 has a suffix s in Λρ. Since Λρ is a semaphore

code and hence ΛρA ⊆ A∗Λρ, we have that if s ∈ Λρ, then sai1 ∈ A∗Λρ. In all cases

v has a suffix in Λρ. This concludes the proof of the claim. �

Example 8.3. Take the special right congruence ρ given by congruency classes

{aaa, baa, aba, bba}, {aab, bab}, {abb}, {bbb} with corresponding semaphore code

Λρ = {a, ab, abb, bbb}. The probability to have a reset for words of length ` is

P (1) = π(a)

P (2) = π(a) + π(a)π(b)

P (3) = π(a) + π(a)π(b) + π(a)π(b)2 + π(b)3 = π(a) + π(a)π(b) + π(b)2 = π(a) + π(b) = 1,

where for P (3) we have used repeatedly that π(a) + π(b) = 1.

Example 8.4. Take the semaphore code

{aa, aab, aba, abba, babb, aabb, bbab, abab, bbba, aabb, babbb, abbbb, bbbbb} ,

which corresponds to a special right congruence, which is easy to check by Propo-

sition 7.10. Then we have

P (1) = 0

P (2) = π(a)2

P (3) = π(a)2 + 2π(a)2π(b)

P (4) = π(a)2 + 2π(a)2π(b) + 3π(a)2π(b)2 + 3π(a)π(b)3 = π(a)2 + 2π(a)2π(b) + 3π(a)π(b)2

= π(a)2 + 2π(a)π(b) + π(a)π(b)2 = π(a) + π(a)π(b) + π(a)π(b)2

P (5) = π(a) + π(a)π(b) + π(a)π(b)2 + π(a)2π(b)3 + 2π(a)π(b)4 + π(b)5

= π(a) + π(a)π(b) + π(a)π(b)2 + π(a)π(b)3 + π(b)4

= π(a) + π(a)π(b) + π(a)π(b)2 + π(b)3 = π(a) + π(a)π(b) + π(b)2

= π(a) + π(b) = 1 ,

where again we repeatedly used that π(a) + π(b) = 1.

The probability P (`) to reach a reset in ` steps is related to the hitting time

(see [13, Chapter 10]). Namely, given a Markov chain with state space S, the hitting
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time tR of a subset R ⊆ S is the first time one of the nodes in R is visited by the

chain. We are interested in the hitting time tRes(ρ) for ρ ∈ RC(Ak). Set

p(`) = P (`)− P (`− 1) =
∑
s∈Λρ
`(s)=`

∏
a∈s

π(a) .

Then

tRes(ρ) =

k∑
`=1

`p(`).

Note that by Definition 2.2, we also have a right action of A on right congruences

ρ ∈ RC(Ak), namely ρ × A → ρ. Hence, as for semaphore codes, we can define a

random walk on ρ by assigning a probability π(a) for each a ∈ A. Recall that by

its definition in (7.7), ρ is a refinement of ρ. Let us relate these various random

walks. A step s.a = t for s, t ∈ Λρ and a ∈ A in the random walk on the semaphore

code Λρ is in one-to-one correspondence to a step cs.a = ct in the random walk on

ρ ∈ SRC(A∗), where cs, ct ∈ ρ are the unique congruences such that lcs(cs) = s,

lcs(ct) = t, respectively. Since ρ is a refinement of ρ, a step cs.a = ct on ρ implies a

step c.a = d on ρ whenever cs ⊆ c and ct ⊆ d. In particular, the transition matrix

T for the random walk on the semaphore code Λρ satisfies for a fixed d ∈ ρ∑
t∈Λρ
ct⊆d

Ts,t =
∑
t∈Λρ
ct⊆d

Ts′,t for all s, s′ ∈ Λρ such that cs′ ρ cs. (8.5)

This relation is precisely the condition for a Markov chain to be lumpable. Lumpa-

bility was first introduced by Kemeny and Snell [12], see also [13, Section 2.3.1].

This means that the transition matrix T ρ on ρ indexed by right congruence classes

c, d ∈ ρ can be expressed in terms of T as follows

T ρc,d =
∑
t∈Λρ
ct⊆d

Ts,t for any s ∈ Λρ such that cs ⊆ c.

The theory of lumpability (or projection) then gives us the stationary distribution

Iρ for T ρ.

Proposition 8.5. Let Iρ = (Iρc )c∈ρ be the stationary distribution for T ρ. Then

Iρc =
∑
s∈Λρ
cs⊆c

π(s).

Proof. By lumpability, we have

Iρc =
∑
s∈Λρ
cs⊆c

Is,

where I = (Is)s∈Λρ is the stationary distribution of T . By Theorem 8.1 we have

Is = π(s). �
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Remark 8.6. We could have derived an expression for Iρ also directly from the

stationary distribution of the delay de Bruijn random walk by lumping given as

Iρc =
∑
x∈c

π(x).
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