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Abstract

An enantioselective alkoxylation/Claisen rearrangement reaction was achieved by a strategic 

desymmetrization of 1,4-dienes under the catalysis of (S)-DTBM-Segphos(AuCl)2/AgBF4. This 

reaction system was highly selective for the formation of 3,3-rearrangement products, providing 

cycloheptenes with various substitutions in good yield and good to excellent enantioselectivity. 

This transformation was further extended to bicyclic ring substrates, providing the opportunity to 

easily assemble 5,6- and 6,7-fused ring systems.
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Strategies involving rearrangement of vinyl gold intermediates generated from alkoxylation 

of alkynes have attracted intense research during the last dacade.[1] Varied architectures 
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including indenes, piperidines, cycloheptenes, indanones and cyclopenta[b]indoles have 

been rapidly assembled via these transformations. In particular, Toste et al. discovered that 

enantioenriched benzylic ethers undergo an alkoxylation/1,3-rearrangement to give indenes 

with highly efficient chirality transfer (Figure 1a).[1a,2] In a related study, Rhee and 

coworkers demonstrated that introducing steric hindrance at C1 resulted in an alkoxylation/

Claisen rearrangement reaction giving seven-membered rings (Figure 1b)[1d]. This 

transformation provides a straightforward route to cycloheptane skeletons that are 

commonly encountered in natural products and bioactive molecules.[3] On the basis of these 

precedents, we anticipated an enantioselective transformation to construct valuable 

multisubstituted seven member carbocycles would be possible.[4]

Mechanistically, the 3,3-rearrangement is thought to proceed through a concerted 

sigmatropic process that was expected to follow a similar chirality transfer to the previously 

reported 1,3-rearrangement. As depicted in Figure 2a, we initially found that under cationic 

gold catalysis, chiral ether 1 gave a mixture of 3,3- and 1,3-rearrangement products (2 and 

3) in a ratio of 1.8:1. Importantly, while enol ether 3 was formed with complete erosion of 

enantiomeric excess, we observed full chirality transfer during the formation of the 3,3-

rearrangement product 2. While this discovery provided an exciting possibility for access to 

chiral cycloheptene 2, we anticipated that an enantioselective variant starting from achiral 

substrates would be more valuable, because it circumvents the requirement for 

enantioenriched starting material 1.[5] Thus we endeavored to develop a ligand-controlled 

enantioselective alkoxylation/Claisen rearrangement.[6]

We envisioned that an enantioselective variant might be available through a 

desymmetrization reaction[7,8] of 1,4-dienes. Recently, gold-catalyzed enantioselective 

desymmetrization by nucleophillic addition to alkynes has been reported either through 

differentiation of enantiotopic alkynes[9] or nucleophiles.[10] In contrast, successful 

implementation of a desymmetrization strategy to the tandem alkoxylation/3,3-sigmatropic 

rearrangement reaction does not rely on enantiocontrol of the nucleophilic addition since 

this step forms achiral intermediate A. Rather, the proposed mechanism and the chirality 

transfer experiment suggest that the catalysts must exert influence over the sigmatropic 

rearrangement[11, 12] event and, thus differentiate between enantiotopic transition states B 
and B′ (Figure 2b) On the basis of this intriguing possibility, herein we describe our efforts 

to develop a gold(I)-catalyzed asymmetric tandem alkoxylation/Claisen rearrangement 

reaction enabled by a strategic desymmerization of 1,4-dienes (Figure 2b).

The 1,4-diene 4a was chosen as the model substrate (Table 1). Sterically demanding ligands 

with various chiral backbones were examined (entries 1 to 5).[13] Among them, DTBM-

Segphos (L4) gave the best performance, not only in enantioselectivity but also in 

regioselectivity. Although the less sterically hindered DM-Segphos ligand (L5) dramatically 

diminished the formation of the undesired 1,3-rearrangment product, it also resulted in 

decreased enantioselectivity (entries 4 and 5). Thus, DTBM-Segphos (L4) was chosen as the 

ligand for further optimization. Various solvents were screened (entries 6 to 9), revealing 

that nonpolar solvents such as benzene gave the best results (1,3 vs 3,3 = 17: 1, > 95% 

conversion, 85% ee,).[14] Interestingly, when the reaction was conducted in DCM, the 

opposite sense of enantioinduction was obtained (entry 6). Other silver salts besides AgBF4 
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were investigated and showed no improvement; however, we found that an increased 

loading of AgBF4 (0.2 equiv) led to improved regio- and enantioselectivity (entry 10). 

Additionally, decreasing the reaction temperature and employing a solvent mixture of 

toluene/benzene (4:1) afforded improved enantioselectivity without loss regioselectivity 

(entry 11). Finally, when the reaction was run at -20 °C, the desired 3,3-rearrangement 

product 5a was obtained in 89% isolated yield and 93% ee (entry 12).

With the optimized conditions in hand, we next examined the substrate scope of this reaction 

(Table 2). Phenyl groups (R1 = Ar) with various substituents were investigated first. 

Electron donating groups (Me, MeO) at para-, meta- or ortho-postions of the phenyl ring are 

well tolerated, affording the desired products in good yield with high enantioselectivity 

(entries 2 to 6). Electron-withdrawing groups such as F and Cl at the ortho-position showed 

some deleterious effects on enantioselectivity (entries 7 and 8), but substrate with para-

fluoro substitution still performed well (entry 9). A 1-naphthyl group was compatible with 

our reaction conditions, affording 5j in 90% yield with 93% ee (entry 10). A substrate with a 

more electron-rich furan substituent, reacted smoothly to give 5k in 89% yield, albeit with 

diminished enantioselectivity (entry 11). Aliphatic R1 groups were also investigated as well 

and an obvious steric effect was observed. When R1 was methyl group, the 

enantioselectivity dropped dramatically, although good yield was retained (entry 12). 

However, when a more sterically hindered tert-butyl group was introduced, the 

enantioselectivity was restored (93% ee), but the yield decreased as a result of formation of 

a significant amount of [1,3]-rearrangement product (entry 13). Switching the R2 group from 

methyl ester to Cbz or Alloc resulted in slightly decreased enantioselectivity (entries 14 and 

15).[15] An allylic ether substrate was also tested under these conditions, and gave 5p in 89% 

yield with 88% ee (entry 16).

The success in preparing cycloheptenes prompted us to extend this methodology to more 

complex systems. 5,7- or 6,7-fused bicyclic systems are common skeletons in natural 

products.[16] We examined the possibility of assembling these carbon skeletons by the gold-

catalyzed enantioselective tandem alkoxylation/Claisen rearrangement reaction. The desired 

bicyclic compounds 5q and 5r could be obtained in high yield with good enantioselectivity 

under the standard conditions (Scheme 1).

The diverse functional group generated from the gold-catalyzed rearrangement allow for 

rapid generation of molecular complexity by further transformations (Scheme 2). The enol 

ether moiety of 5a was subjected to DIBAL-H reduction to give allylic alcohol 6a in 80% 

yield by a cascade 1,4-reduction/elimination and 1,2-reduction. Regioselective alkene cross-

metathesis of 5a with ethyl acylate, catalyzed by 2nd generation Hoveyda-Grubbs catalyst, 

gave α,β-unsaturated ester 6b. Additionally, the diene moiety was reacted with a dienophile 

to give the 6,7-fused cycloadduct 6c.[17]

In summary, a gold(I)-catalyzed asymmetric tandem alkoxylation/Claisen reaction has been 

developed. The transformation provides the opportunity to assemble multisubstituted 

cycloheptenes efficiently and with high enantioselectivity. The reaction is believed to 

proceed though an enantiodetermining sigmatropic rearrangement of a vinylgold 

intermediate and, therefore, extends the types of processes amenable to enantioselective gold 
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catalysis. More generally, the desymmetrization reaction illustrates a strategy for developing 

enantioselective catalyst-controlled reactions from transition metal-catalyzed processes that 

have previously been shown to proceed with chirality transfer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Gold(I)-catalyzed tandem alkoxylation/sigmatropic rearrangement.
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Figure 2. 
Strategies for asymmetric alkoxylation/Claisen rearrangement.
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Scheme 1. Synthesis of 5,7- and 6,7-fused ring systems
[a] The purity of starting material 4q was 76% by 1H-NMR analysis. Adjusted yield was 

given based on the purity of 4q. (See supporting information)
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Scheme 2. Synthetic transformation of the products[a]

[a] Reaction conditions: a) DIBAL-H, toluene, r.t.; b) Methyl acrylate, Hoveyda-Grubbs 

Catalyst II, DCM, 50°C; c) Tetracyanoethylene, toluene, 80°C. [b] ee value in parentheses 

obtained after purification, see the details in Supporting Information
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