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RESEARCH ARTICLE

Sensory Processing

Hierarchical emergence of opponent coding in auditory belt cortex

Jeffrey S. Johnson,1 Mamiko Niwa,1 Kevin N. O’Connor,1,2 Brian J. Malone,2 and Mitchell L. Sutter1,2
1Center for Neuroscience, University of California at Davis, Davis, California, United States and 2Department of Neurobiology,
Physiology and Behavior, University of California at Davis, Davis, California, United States

Abstract

We recorded from neurons in primary auditory cortex (A1) and middle-lateral belt area (ML) while rhesus macaques either discri-
minated amplitude-modulated noise (AM) from unmodulated noise or passively heard the same stimuli. We used several post
hoc pooling models to investigate the ability of auditory cortex to leverage population coding for AM detection. We find that
pooled-response AM detection is better in the active condition than the passive condition, and better using rate-based coding
than synchrony-based coding. Neurons can be segregated into two classes based on whether they increase (INC) or decrease
(DEC) their firing rate in response to increasing modulation depth. In these samples, A1 had relatively fewer DEC neurons (26%)
than ML (45%). When responses were pooled without segregating these classes, AM detection using rate-based coding was
much better in A1 than in ML, but when pooling only INC neurons, AM detection in ML approached that found in A1. Pooling
only DEC neurons resulted in impaired AM detection in both areas. To investigate the role of DEC neurons, we devised two
pooling methods that opposed DEC and INC neurons—a direct subtractive method and a two-pool push-pull opponent method.
Only the push-pull opponent method resulted in superior AM detection relative to indiscriminate pooling. In the active condition,
the opponent method was superior to pooling only INC neurons during the late portion of the response in ML. These results
suggest that the increasing prevalence of the DEC response type in ML can be leveraged by appropriate methods to improve
AM detection.

NEW & NOTEWORTHY We used several post hoc pooling models to investigate the ability of primate auditory cortex to lever-
age population coding in the detection of amplitude-modulated sounds. When cells are indiscriminately pooled, primary auditory
cortex (A1) detects amplitude-modulated sounds better than middle-lateral belt (ML). When cells that decrease firing rate with
increasing modulation depth are excluded, or used in a push-pull opponent fashion, detection is similar in the two areas, and
macaque behavior can be approximated using reasonably sized pools.

amplitude modulation; auditory cortex; middle lateral auditory cortex; population coding; primary auditory cortex

INTRODUCTION

Amplitude modulation (AM) is a fundamental feature of
many ecologically relevant signals, including communica-
tion signals. The detection of AM is thus a fundamental task
in the auditory system. Importantly for the understanding of
neural coding, however, the representation of AM is pro-
foundly transformed across the ascending auditory system.
Arguably, the most salient aspect of this transformation
is the reduction in synchronization to the modulation en-
velope along the ascending auditory neuraxis (1, 2), which
limits the explicit encoding of AM in the firing patterns
of auditory neurons. Nonetheless, it is possible that other

aspects of this transformation could inform the encoding
and decoding of AM signals.

The neural representation of AM is transformed from
primary auditory cortex (A1) to other cortical areas (3–9)
including middle-lateral belt (ML) (10–13). From the stand-
point of population coding, the two most important
response changes are the reduction in synchronization
and the increasing heterogeneity of rate tuning. Reduced
response synchrony constrains the utility of spike timing-
based modulation encoding at the level of individual neu-
rons (14–19) and neural populations (20, 21), whereas the
increase in the diversity of rate-based tuning constrains
the effectiveness of pooling rate responses (22).
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Most A1 neurons increase their firing rates at higher modu-
lation depths (10). By contrast, a substantial portion of neu-
rons in the middle lateral (ML) field of the belt region of
auditory cortex decrease their firing rates when the depth of
the modulation applied to a carrier increases (11). When a
given brain region includes neurons that exhibit (predomi-
nantly monotonic) increases and decreases in responsiveness
for increases in a given stimulus parameter (e.g., modulation
depth), we refer to this representation as “bidirectional encod-
ing.”Although decreasing responses to increasingmodulation
depths can be observed in A1, they are relatively uncommon
(e.g., see Refs. 11 and 15). Decreasing responses approach par-
ity with increasing responses in field ML, which suggests that
this representation is an emergent property of the ascending
auditory pathway. This change in the relationship between
firing rate and modulation depth implies that the optimal
readout mechanism for A1 and ML populations should differ.
Here, we investigate how differences in A1 and ML cortical
responses affect modulation depth detection by simulating a
number of distinct population-based decoding methods that
rely on spike rates, or response synchrony. Specifically, we
test the hypothesis that a “two-pool opponent code” leverages
the emergent diversity in rate tuning for modulation depth
observed inML (13).

Population codes are highly relevant tomodels of auditory
processing because they allow formore complex sensory rep-
resentations than single neuron-based encoding models,
due to the exponential increase in the dimensionality of the
population response space as the size of the population
increases (23–26). Because neural populations can, and typi-
cally do exhibit high heterogeneity both within and across
structures, they can encode stimulus information in a wide
variety of ways (27–29) and would thus require a similarly
wide variety of downstream readout mechanisms to support
effective decoding. Our goal here is to investigate how the
representational changes from primary (e.g., A1) to second-
ary (e.g., ML) auditory cortex impact the utility of broad
classes of population-based decodingmodels.

In the current study, we explore a series of population-
based decoding methods based on equal-weighted pooling
of cortical neurons to quantify neurometric performance for
modulation detection. Our results demonstrate that the
increased prominence of bidirectional encoding in ML can
be exploited by a two-pool opponent code, indicating that
the optimal readout for higher-order auditory cortex is likely
to differ from optimal readout methods for earlier auditory
stages where the stimulus representation is distinct. These
findings also suggest that the emergence of bidirectional
encoding in the auditory belt might reflect an increasing
need for stimulus representations that are robust to stimu-
lus-extrinsic influences on firing rates related to task
performance.

MATERIALS AND METHODS

Subjects

We made single-neuron recordings from the right hemi-
spheres of three adult rhesus macaque monkeys (V, female,
age 11–12; W, female, age 10–14; X, male, age 13–16). We
recorded from primary auditory cortex (A1) in all three

animals (V, 22 cells; W, 144 cells; X, 126 cells). We recorded
from the middle lateral belt area (ML) in two animals (W, 99
cells; X, 74 cells). Recordings analyzed in this study were
made in conjunction with recordings analyzed for prior pub-
lications. Data from passive modulation transfer function
(MTF) collection were not used in this study but have been
reported previously (13), and some data from active and pas-
sive test blocks were included in previous publications (10–
12, 30, 31). The analyses presented in this study have not pre-
viously been published. All procedures conformed to the
United States Public Health Service (PHS) policy on experi-
mental animal care and were approved by the UC Davis ani-
mal care and use committee.

Identification of Cortical Fields

The identification of the cortical field location of each re-
cording site was based on physiological measurements and
has been described in detail for these recordings in the study
by Niwa et al. (10, 11). A tonotopic map collected with pure
tones was used to identify A1. The A1/ML border was deter-
mined on the basis of differences in tone latency, frequency
tuning width, and tone/bandpass noise preference. Area ML
was 2–3 mm wide and located lateral to the A1/ML border.
The anterior border of ML with the anterolateral belt area
(AL) and the posterior border of ML with the caudolateral
belt area (CL) were estimated using a tonotopic map of best
frequency (BF) determined with a bandpass noise tuning
curve.

Stimulus Generation and Presentation

The acoustic stimuli were 800-ms sinusoidally amplitude-
modulated (AM) nonbandlimited Gaussian noise bursts with
a 100-kHz sampling frequency. The stimulus set included
modulation frequencies (MFs) of 2.5, 5, 10, 15, 20, 30, 60, 120,
250, and 500 Hz, and modulation depths of 0% (unmodu-
lated), 6%, 16%, 28%, 40%, 60%, 80%, and 100%. All stimuli
were created in Matlab (MathWorks). For all stimuli, the
appropriate modulation envelope was applied to an identical
“frozen” noise stimulus generated by a single random num-
ber sequence drawn from the “randn” function in Matlab,
and clicking was eliminated by applying a 5-ms 1-cosine2

ramp at onset and offset.
Digital stimuli were converted to an analog signal with a

D/A converter (Power1401; Cambridge Electronic Design) at
a sampling rate of 100 kHz, and then passed through both a
programmable attenuator (PA5; Tucker-Davis Technologies)
and a passive attenuator (LAT-45; Leader) before amplifica-
tion (MPA-200; Radio Shack) and delivery to a speaker inside
the sound booth. Two different sound booths (IAC) with dif-
ferent speakers were used. One booth was 2.9� 3.2� 2.0 m
with a Radio Shack PA-110 speaker (10-in. woofer with piezo-
horn tweeter) positioned 1.5 m in front of the animal; the
other booth was 1.2�0.9� 2.0 m with a Radio Shack
Optimus Pro-7AV speaker positioned 0.8 m in front of the
animal. In both booths, the center of the speaker was posi-
tioned at ear level. Stimulus intensity was calibrated to 63 dB
sound pressure level using a sound level meter (Model 2231;
Br€uel and Kjær) while the animal was absent with the micro-
phone placed in a position corresponding to the center of the
animal’s head when present.
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Behavioral Procedure

Animals were trained to discriminate noise-carrier sinu-
soidally modulated AM (AM noise) from unmodulated noise.
The experiments reported here were comprised of three dif-
ferent experimental trial-block types: 1) a passive (no task)
modulation transfer function (MTF) block; 2) active test
blocks; and 3) passive (no task) test blocks. In an initial MTF
block 1), we collected anMTF using 100%modulated stimuli.
The MTF of the multiunit response was used to determine
the multiunit best modulation frequency (BMF) for both rate
(spike count, SC) and temporal (phase-projected vector
strength, VSPP, see Measure of Phase Locking) measures.
Either the rate or the temporal BMF (both based onmultiunit
activity) was pseudo-randomly selected as the test MF for
subsequent active 2) and passive 3) blocks at varying modu-
lation depths. The behavioral condition (active or passive)
for the first test block was selected pseudo-randomly. During
active test blocks 2), the animal was required to initiate each
trial by holding down a lever. After a 500-ms delay, two 800-
ms sounds were presented with a 400-ms interstimulus
interval. The first sound (S1) was always unmodulated noise.
The second sound (S2) was either unmodulated noise (non-
target trials; �12.5% of trials) or modulated noise at one of
the seven modulation depths (target trials; �87.5% of trials).
The animal was required to listen through the offset of the
second stimulus, then release a lever (“hit”) within an 800-
ms response window on target trials or continue holding the
lever on nontarget trials (“correct rejection”). During passive
test blocks 3), no S1 sounds were presented, and the animal
was neither required to initiate the trial, nor to make a
response. Because cells could not always be held long
enough to complete a recording session, the number of trials
per modulation depth varied. Active test blocks averaged
�47 trials per depth; passive test blocks averaged �51 trials
per depth. Some active recordings included in the analysis
(A1: n ¼ 94; ML: n ¼ 26) do not have a passive counterpart
because the cell was lost. Passive recordings without an
active counterpart were excluded from further analysis.

To encourage alertness and good task performance, the
animals were fluid regulated during the period of the study.
Animals were rewarded with juice or water for correct
responses (hits and correct rejections) during the active
blocks. Passive blocks had occasional randomized liquid
presentations.

Physiological Recording

Each animal was implanted with a titanium head post and
head-restrained during recordings in a custom-made “acousti-
cally transparent” wire mesh primate chair. Access to A1 and
ML was provided by a recording chamber (CILUX, Crist
Instruments) located over parietal cortex, and containing a
plastic grid with 27-gauge holes arranged in a 15� 15 mm
square (1-mm intervals). Before each recording, a stainless
steel guide tube was inserted through the grid and transdur-
ally into the brain. A high-impedance tungstenmicroelectrode
(1–4 MX, FHC; 0.5–1 MX, Alpha-Omega) was inserted into the
guide tube, and a hydraulic microdrive (FHC) was used to
lower the electrode through parietal cortex into A1 orML.

The electrophysiological signal was amplified (A-M Systems
Model 1800) and filtered (0.3–10 kHz; A-M Systems Model

1800 and Krohn-Hite Model 3382) then sampled at 50 kHz
by an A/D converter (Power 1401; Cambridge Electronic
Design) and saved to hard disk. Spike sorting of action
potentials was performed offline (Spike2; Cambridge
Electronic Design). Spike sorting was implemented by a
waveform matching algorithm that represented candidate
spike waveforms in three-dimensional (3-D) PCA space.
Well-isolated clusters in PCA space were defined as single
units. A k-means clustering algorithm (Spike2; Cambridge
Electronic Design) was applied to overlapping clusters in
PCA space; waveform templates were created from the
k-means clusters when the centers matched the centers of
density in PCA space. We did not consider any single units
whose peak-to-peak amplitude divided by noise standard
deviation was less than 2.5, and the mean value of this
measure across all single units was 10.1 (median 8.8).

Data Analysis

All data analysis was performed using MATLAB
(MathWorks). All statistical comparisons between counts
or percentages were performed with a z-test for independent
proportions. All other statistical comparisons were performed
with a two-sided t test.

Measure of Phase Locking

To measure phase locking we used phase-projected vector
strength (VSPP), a trial-based measure of synchrony that
penalizes vector strength (VS) values on a given trial by their
deviation from the cell’s overall mean phase (17). The stand-
ard formula for vector strength is

VS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
coshi

� �2 þ
Xn

i¼1
sinhi

� �2
r

n
; ð1Þ

where VS is the vector strength, n is the number of spikes,
and hi is the phase of each spike in radians, calculated by

hi ¼ 2p
ðti modulo pÞ

p
; ð2Þ

where ti is the time of the spike in ms relative to the onset of
the stimulus and p is the modulation period of the stimulus
inms (32, 33).

Phase-projected vector strength (VSPP) was calculated on a
trial-by-trial basis as follows:

VSPP ¼ VSt cosðjt � jcÞ ð3Þ
where VSPP is the phase-projected vector strength per trial,
VSt is the vector strength per trial, calculated as in Eq. 1, and
jt and jc are the trial-by-trial and mean phase angle in radi-
ans respectively, calculated for each stimulus condition as
follows:

j ¼ arctan2

Xn

i¼1
sin hiXn

i¼1
cos hi

; ð4Þ

where n is the number of spikes per trial (for jt) or across
all trials (for jc) and arctan2 is a modified version of the
arctangent that determines the correct quadrant of the
output based on the signs of the sine and cosine inputs
(MATLAB, atan2). A cell that fired no spikes was assigned
a VSPP of zero.

EMERGENCE OF OPPONENT CODING IN AUDITORY BELT CORTEX

946 J Neurophysiol � doi:10.1152/jn.00519.2024 � www.jn.org
Downloaded from journals.physiology.org/journal/jn at Univ of California Davis (128.120.140.212) on March 11, 2025.

http://www.jn.org


Classifying Modulation Depth Functions and
Calculating Neurometric Detection Thresholds

We determined neurometric depth sensitivity for 259 cells
in A1 and 143 cells in ML. Because some cells were tested at
two modulation frequencies, we had a total of 292 recordings
in A1, and 173 recordings in ML. Cells were tested at the multi-
unit-based rate BMF, the multiunit-based temporal BMF, or
both, when the recording duration allowed. We used modula-
tion depths of 0% (i.e., unmodulated noise), 6%, 16%, 28%,
40%, 60%, 80%, and 100%. We calculated the area under the
receiver operating curve (ROC area) (34) at each nonzeromod-
ulation depth. The ROC area measures how well the neural
responses on each trial can be used to distinguish modulated
and unmodulated stimuli. ROC area was computed for both
SC and VSPP. ROC area integrates to 1 if all of the values in the
modulated distribution are greater than all of the values in
the unmodulated distribution, and 0 if all of the values in the
unmodulated distribution are greater than all of the values in
the modulated distribution. In both cases, an ideal observer
would predict with 100% accuracy whether or not a given
spike train was elicited by a modulated stimulus. An ROC
area of 0.5 corresponds to chance performance.

We define ROC areas plotted across modulation depth as
modulation depth functions (MDFs) for each recording: a
rate-based MDF using spike count (rMDF) and a temporal-
based MDF using phase-projected vector strength (tMDF)
were created. A given cell can indicate the presence ofmodu-
lation by increasing the value of some metric (for example
firing rate) calculated on its responses or by decreasing that
value. We determined whether each MDF belonged to an
“increasing” (INC) or “decreasing” (DEC) response class by
averaging ROC areas across modulation depth. MDF aver-
ages above 0.5 were classified as increasing; MDF averages
below 0.5 were classified as decreasing. This means for an
MDF classified as increasing, on average, the firing rate is
higher than the firing rate in response to unmodulated noise.
For an MDF classified as decreasing, on average, the firing
rate is lower than the firing rate in response to unmodulated
noise. MDFs calculated from responses within a window
from 400 to 800 ms after stimulus onset were used to deter-
mine whether a cell belonged to the increasing or decreasing
response class for the purposes of the pooling analysis (see
RESULTS). In all other analyses, the response from the entire
stimulus duration (i.e., 800ms) was used.

To determine a modulation depth detection threshold
(“threshold”) for SC and VSPP for each recording, we fit each
rMDF and tMDF with two functions: 1) a logistic function
(Eq. 5), and, because MDFs need not be monotonic, 2) a
Gaussian function (Eq. 6):

y ¼ a þ b

1 þ e�
x�l
s

� �
; ð5Þ

y ¼ a þ b� e
�ðx�lÞ2

2s2 : ð6Þ
Both curves involve four free parameters: the y-offset (a),

the height (b), the x-center (l), and the slope (s). We used
MATLAB’s “fmincon” function to perform a constrained fit,
where we restricted the slope (s) between 2 and 20 and re-
stricted the height (b) to six times the difference between the
ROC area value at 6% depth and the ROC area value at the

most responsive (i.e., furthest from 0.5) modulation depth.
To prevent overfitting, we did not fit Gaussian functions
(Eq. 6) if the absolute ROC area value (jROC area – 0.5j) at
100% depth was more than 7/8 of the maximal absolute ROC
area value of the MDF. If both fits were attempted, we used
the fit with the highest correlation coefficient with the MDF.
The threshold was taken as the modulation depth at which
the fitted function crossed (or first crossed in the case of a
Gaussian) the value of 0.75 for an increasing function, or the
value of 0.25 for a decreasing function. If this criterion was
not crossed, the cell was deemed not to have reached detec-
tion threshold.

Pooling

For our pooling analyses, we pooled spikes from multiple
cells on a trial-by-trial basis before performing subsequent
analyses. These multi-cell spike trains were composed of the
union of the spike times across individual cells as follows:

Px;m ¼ ⋃
np

i¼1
Ci;x;m; ð7Þ

where a number of neurons corresponding to the pool size np

were randomly selected with replacement from all neurons
(in all animals) tested at modulation frequency m (excluding
500 Hz due to low sample size) from a population x, which
was defined by 1) cortical area (A1 or ML); 2) behavioral condi-
tion (active or passive); 3) response class (increasing, decreas-
ing, or all); and 4) spike train epoch (all, “early” [0–400 ms],
or “late” [400–800 ms]). Each randomly selected cell had its
trial order at each modulation depth randomly scrambled to
generate cell Ci,x,m, which had 50 trials at each modulation
depth. Randomization of trial order ensured that the probabil-
ity that the same trial was pooled with itself in any Px,m was
lowwhen a particular recording was randomly selectedmulti-
ple times in the same Px,m. For recordings with more than 50
trials at a givenmodulation depth, the first 50 scrambled trials
were included. For recordings with fewer than 50 trials, the
balance of trials was taken from a re-randomization of the
original set of trials. Thus, each Px,m was a list of 50 pooled tri-
als (built from np cells) at each modulation depth. ROC area
for SC and VSPP was calculated on the pooled trials in each
Px,m and a pooled modulation detection threshold was calcu-
lated by fitting the ROC areas with Eqs. 5 and 6 as aforemen-
tioned. This procedure was repeated 1,000 times for each np.
The percentage of pools reaching threshold was defined as
the “success rate.” The mean threshold of pools (that man-
aged to reach threshold) was calculated for each np and for
each tested MF. For most analyses in this study, these values
were averaged across MF for presentation. We used pool sizes
of np¼ 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 25, and 50 units.

We performed two variants on the above pooling technique
to investigate whether the existence of increasing and decreas-
ing MDFs could be leveraged to increase success rates and
decrease pooledmodulation detection thresholds. In “subtrac-
tive” (“SUB”) pooling, spikes from decreasing MDFs have an
inhibitory (ergo subtractive) effect on the pool. For SUB pool-
ing, separate Px,m were built for the increasing and decreasing
MDFs at each np. Since the selection of cells was random, it
was possible for the increasing Px,m or decreasing Px,m to be
empty, particularly for low pool numbers. For SC calculations,
the spike count on each pooled trial was equal to the spike
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count from the increasing Px,mminus the spike count from the
decreasing Px,m, with a floor of 0. The floor was used to model
the property that neural firing rates do not go below 0. For
VSPP, the SUB model was designed to be sensitive to whether
spikes from increasing rMDFs were in phase or counterphase
to those from decreasing rMDFs (there are no decreasing
tMDFs as neurons do not phase lock to 0% modulation). For
these calculations, the pooling process directly eliminated
spikes; there was no subtraction of firing rates. For each spike
in the decreasing Px,m, we deleted the first spike (if present)
within 5 ms of the “inhibitory” spike in the corresponding
pooled trial in the increasing Px,m. VSPP was then calculated on
the resulting pooled-and-eliminated spike trains. Calculation
of ROC area, fitting of MDFs, and determination of threshold
were then performed as described earlier.

The second variant used a form of opponent coding, which
we termed two-pool opponent coding (OPP), based on the
notion that populations that increased and decreased firing rate
in response to AM could be directly compared in a push/pull
fashion (e.g., see Refs. 35 and 36). For OPP coding, an increasing
Px,m and a decreasing Px,m were independently created at each
np, as in normal pooling, and SC/VSPP was calculated on each
pooled trial in each Px,m. The calculated value for each trial in
the decreasing Px,m was then subtracted from the calculated
value for its corresponding trial in the increasing Px,m to create
the OPP Px,m. ROC area, MDF fitting, and threshold determina-
tionwas performed on the OPP Px,m as described earlier.

For SC, OPP pooling differed from SUB pooling in two
ways: 1) The response classes were balanced, so INC and DEC
spike counts had equal weight. By contrast for SUB pooling,
we used random selection, which will give more weight to
the more abundant response class. 2) OPP pooling did not
have a floor of zero, to simulate a “push-pull”mechanism, so
if a given pair of DEC and INC pools had more DEC spikes,
the pooling metric was allowed to be negative. For VSPP, OPP
pooling differed from SUB pooling because VSPP values were
calculated independently for INC and DEC pools before sub-
traction. Pool size for OPP was defined to be the summed
total of cells in the two pools, resulting in OPP pool sizes
ranging from 2 to 100, rather than 1 to 50.

Behavioral Thresholds

To facilitate comparison to the physiological results, we cal-
culated behavioral thresholds from the active conditions of
the recordings used in this study. Because thresholds were
similar across animals, and because our pooling analyses
pooled recordings across animals, we combined behavioral
results from all three animals before calculating behavioral
thresholds. For eachmodulation frequency, we calculated the
signal detection theoretical measure d0 for each modulation
depth. The resulting d0 measures for each depth were fitted
with a standard logistic function (Eq. 5, aforementioned), and
the threshold depth was taken as the point on the fitted func-
tion where d0 ¼ 1.

RESULTS
We recorded amplitude modulation depth functions in A1

(259 cells, 33 of which were tested at two MFs for a total of
292 recordings) and ML (143 cells, 30 of which were tested at
twoMFs for a total of 173 recordings).

There was a lot of diversity in A1 and ML neural responses
to noise-AM. Figures 1 and 2 show examples for four neurons
capturing a large range of responses. The top panels contain
raster plots where phase locking and response magnitude
can be seen, and the bottom panels show neurometric depth
versus ROC plots and curve fits for the calculation of AM
detection threshold based on ROC areas.

Figure 1A shows raster plots and MDFs of a neuron that
phase locked well both in the passive and active conditions.
Strong phase locking was common in A1. This cell fires more
spikes during the active condition than the passive condition
which also was quite typical (31). The neuron has a slightly
lower SC-based neurometric AM detection threshold in the
active than the passive condition (15% vs. 19%), and very
similar VSPP-based neuromeric thresholds across active and
passive condition (12% and 11%). This was more sensitive
than the typical A1 neuron, but its improvement in average
SC-based ROC-area (ROCa) thresholds in the active condi-
tion and lack of significant difference between active and
passive conditions for VSPP-based ROCa are typical of A1
cells (31).

Figure 1B depicts responses from an ML neuron. In the
passive condition, this cell has no defined SC-based thresh-
old, but in the active case, the spike count decreases
observed at 60 and 80 percent modulation depth cross the
threshold (ROCa ¼ 0.25) for distinguishing AM noise from
unmodulated noise. Despite a higher proportion of non-
phase locked spikes relative to the example in Fig. 1A, this
neuron has worse but roughly comparable VSPP-based ROCa
AMdetection thresholds (16% and 17%).

The A1 neuron with responses depicted in Fig. 2A has
strongly suppressed responses at the highest modulation
depths in the passive condition, but not in the active condi-
tion. This was atypical. Despite the strong suppression of ac-
tivity at higher modulation depths in the passive condition,
the spikes that did fire at these higher depths were very tem-
porally precise causing strong phase locking and a monot-
onically increasing VSPP versus MDF (Fig. 2A, bottom right).
In both active and passive conditions, the firing rate for
modulated stimuli is typically lower than that for unmodu-
lated stimuli, resulting in ROC areas less than 0.5 for this
decreasing neuron.

Figure 2B shows responses of a neuron in ML where the di-
versity of responses was even more apparent than in A1. This
cell is unusual because its phase locked responses disappear
at highmodulation depths in the passive condition, but not in
the active condition, where phase locking is remarkably tight
(recall that the VSPP-based MDF depicts ROC area, not actual
VSPP values). Typically, A1 phase locking was stronger and
improved monotonically with modulation depth. Overall,
Figs. 1 and 2 are consistent with the idea that neuron response
characteristics were diverse rather than stereotypical.

Mean Modulation Depth Functions

As an initial characterization of our data, we averaged
MDFs across modulation frequency for the active and pas-
sive conditions. We included only those cells that were
tested at the same modulation frequency in both the active
and passive conditions. Using spike count (SC) mean MDFs,
we separated our cells into increasing (INC) and decreasing
(DEC) response classes. Because Niwa et al. (11) showed large
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changes in activity during the second half of stimuli (400–
800 ms) in the active condition for some cells, we used only
the second half of the response in the active condition to
define the INC and DEC response classes in this study, rather
than the full stimulus duration. Figure 3 depicts the rate-
based ROC values used tomake this classification, separately
for A1 and ML (averaged across all presented modulation
depths, 400–800 ms only). Cells classified as INC lie above
the line at 0.5 ROC, and cells classified as DEC lie below the
line. In ML the distribution of ROC values is centered near
0.5 (mean ¼ 0.506), but in A1 the mean of the ROC values is
significantly higher (mean ¼ 0.586, P ¼ 2e-11, two-sample
t test) and has a skew toward higher ROC values.

In A1, using only the second half of the stimulus for classi-
fication resulted in a total of 24 cells (8% of the total) chang-
ing response class and a net shift of 10 cells into the DEC
class (217 INC [74%], 75 DEC [26%]). In ML, using only the

second half of the stimulus for classification resulted in a
total of 34 cells (20% of the total) changing response class,
and a net shift of 10 cells into the DEC class (95 INC [55%], 78
DEC [45%]) relative to classifications based on the full stimu-
lus duration. The cells that changed classification when
using only the second half of the stimulus (Fig. 3, black sym-
bols) were, as expected, generally cells whose MDFs had ROC
values near 0.5. In A1, the mean ROC value for cells that
swapped classification (INC-DEC or DEC-INC) was 0.492,
which was not significantly different than 0.5 (P ¼ 0.19, one-
sample t test) whereas in ML, the mean ROC value for cells
that swapped was 0.482, which was significantly different
than 0.5 (P¼ 0.045, one-sample t test).

Mean MDFs, plotted by active/passive condition (green/or-
ange) are shown in Fig. 4. SC-based MDFs (Fig. 4, A–D) are
separated into INC and DEC response classes and by cortical
area (A1: left; ML: right). VSPP-based MDFs for INC and DEC
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Figure 1. Reponses to amplitude modulation
(AM) in two example neurons. A: spike train ras-
ters and the associated modulation depth func-
tions (MDFs) depicting the responses of a
neuron in primary auditory cortex (A1) stimu-
lated with 20 Hz AM applied to a noise carrier
in the passive (left) and active (right) behavioral
conditions. Vertical lines on raster plots indicate
the beginning and end of stimulus presentation.
Horizontal lines on raster plots separate the
tested modulation depths. Receiver operating
curve (ROC) area is plotted against modulation
depth (dots, with fitted line) for spike counts
and phase-projected vector strength (VSPP).
Vertical dashed gray lines indicate the modula-
tion detection threshold (listed on each panel),
the intersection point with the threshold value
(horizontal dashed gray lines; 0.75 for increas-
ing MDFs; 0.25 for decreasing MDFs). B:
responses of a neuron recorded in middle-lat-
eral belt area (ML) stimulated with 30 Hz modu-
lation. Details as in A.
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response classes are very similar, and so are only separated by
cortical area (Fig. 4, E and F). Active and passive mean MDFs
were qualitatively similar. For SC, there is a trend for the
active condition to have a higher firing rate than the passive
condition, but this difference is significant only for 100%
modulated stimuli in the INC response class in A1 (Fig. 4A),
and for the spontaneous rates in A1. Mean firing rates for the
INC response class are higher in A1 than in ML (three-factor
ANOVA, P < 10e-8); mean firing rates for the DEC response
class are also higher in A1 than in ML (three-factor ANOVA,
P < 10e-15). Phase locking in A1 is stronger than in ML (three-
factor ANOVA, P < 10e-6), consistent with the well-docu-
mented loss of phase locking in higher auditory centers (1, 2).

Indiscriminate Pooling of Responses in A1 and ML

It is probable that behavior is driven by the activity of
ensembles of neurons rather than by single neuron responses

alone. We investigated the ability of ensemble responses to
detect amplitude modulation by performing offline pooling
of our responses across separate recording sessions (see
MATERIALS AND METHODS). For one method, pooling was per-
formed separately at tested MFs and consisted of randomized
trial selection and randomized cell inclusion, with replace-
ment, for population sizes from 1 to 50 neurons. We call this
form of pooling “indiscriminate” because responses are
pooled together without respect to any cell’s response proper-
ties. After pooling the data across a given population, we
applied the same neurometric analysis used on single neu-
rons in the bottom panels of Figs. 1 and 2 to determine neuro-
metric AM detection thresholds for the pools.

Figure 5 illustrates the results for two different methods of
evaluating the effect of response pooling on AM detection.
The top row shows the success rate, i.e., the percentage of
pools that successfully detect modulation as defined by
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Figure 2. Reponses to amplitude modulation
(AM) in two atypical neurons. Plot details are
the same as Fig. 1. A: responses of a neuron
recorded in primary auditory cortex (A1) tested
with 30 Hz modulation. B: responses of a neu-
ron recorded in middle-lateral belt area (ML),
tested with 30 Hz modulation.
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reaching an ROC area threshold criterion of 0.75 for increas-
ing depth-rate functions or 0.25 for decreasing rate-depth
functions (Fig. 5, A and B). A success was achieved if the fit to
the depth-rate function crossed threshold (more details on fits
are in MATERIALS AND METHODS). Success rate is agnostic as to
whether the neuronal response has a low or high threshold
with regard to the minimum modulation depth detectable by
the pool. Success rate is depicted for both spike count (SC,
left) and for vector strength (VSPP, right). Success rate
increases smoothly as the number of pooled cells increases in
all tested conditions and was consistently higher for A1-
derived pools (red lines) than ML-derived pools (blue lines).
SC-based pools aremore likely to reach threshold in the active
condition (triangles) than in the passive condition (squares).

We also evaluated the effect of pooling on AM sensitivity
by calculating the mean modulation detection threshold for
all pools that reach threshold (Fig. 5, C and D). Mean thresh-
olds decrease smoothly as the number of pooled cells
increases for both SC (left) and VSPP (right), although occa-
sionally there is a small increase in mean threshold for very
small pools before the mean threshold begins to improve. As
with success rate, A1-derived pools (red lines) have higher
sensitivity (i.e., lower mean thresholds) than ML-derived
pools (blue lines), and pools in the active condition (trian-
gles) are generally more sensitive (lower mean thresholds)
than corresponding pools in the passive condition (squares),
particularly inML-derived pools.

These data are replotted in a different format in Fig. 6 to
show statistical comparisons between different types of
pools. The top panels (Fig. 6, A and B) depict A1-derived val-
ues plotted against their corresponding ML-derived values.
In this and subsequent figures that depict data at different
pool sizes where pool size is not a primary axis, symbol size
indicates the pool size, with larger symbols corresponding to

larger pools. Themiddle panels (Fig. 6, C and D) depict active
values plotted against their corresponding passive values;
the bottom panels (Fig. 6, E and F) depict SC-derived values
plotted against corresponding VSPP-derived values. Filled
symbols indicate statistically significant differences (two-
sided t test, P < 0.05, corrected for multiple comparisons
(i.e., 13 pool sizes) with respect to parity (dashed line) for the
relevant axes on each panel set.

In all but one case, A1-derived pools outperform corre-
sponding ML-derived pools, exhibiting higher success rates
and lower mean thresholds for pools that reached threshold
(since there is no threshold value for those that do not). Active
pools are generally more successful and more sensitive than
corresponding passive pools, although there are three instan-
ces where the passive pool reached threshold more frequently
than the corresponding active pool (where solid symbols are
above the unity line in Fig. 6C), and there are quite a few non-
significant comparisons for both success rate and mean
threshold when comparing active and passive in A1 (Fig. 6, C
and D, red). The SC/VSPP comparison (Fig. 6, E and F) shows a
different pattern. SC pools exhibited higher success rates than
corresponding VSPP pools in both A1 and ML (with one ML
counterexample). However, SC measures resulted in lower
mean thresholds than VSPP measures only for A1-derived
pools. SC-derived thresholds were generally higher than VSPP-
derived thresholds in ML-derived pools. This may seem sur-
prising, given the reduction in VSPP in ML relative to A1, but
these results must be considered in light of the fact that A1-
derived pools exhibit lower thresholds than ML-derived pools
for either response measure (Fig. 6B). More importantly, per-
haps, A1 was dominated by the INC response class (74%), rela-
tive to the DEC response class (26%), whereas the ML
categories were more closely balanced (55% and 45%, respec-
tively), raising the possibility that pooling across response
classes limited neurometric AM detection performance.

Segregated Pooling of Increasing and Decreasing
Response Classes

In addition to simple indiscriminate pooling, we per-
formed segregated pooling of INC and DEC response classes
to test whether pooling these responses classes differently
might affect AM detection. Figure 7 plots pools comprised of
cells drawn from INC and DEC response classes against cor-
responding indiscriminate pools. Data points in Fig. 7 are
collapsed across active and passive conditions. Filled sym-
bols indicate exclusive INC (Fig. 7, A and B) and DEC (Fig. 7,
C and D) pools that differ significantly from corresponding
indiscriminate pools (two-sided t test, P < 0.05, corrected for
13 comparisons).

Comparing Fig. 7, A and C, it is evident that success
rates for INC pools generally exceeded those for DEC pools.
The difference was particularly salient for SC-derived pools
based on A1 responses (red circles), and ML responses (blue
circles). This makes sense, since the definitions of the INC and
DEC capture opposite changes in firing rate in response to
AM. As a result, combining INC and DEC responses indiscrim-
inately in a pool would diminish the apparent effect of AM.
For A1, excluding roughly the quarter of DEC responses from
the pools improves performance relative to indiscriminate
pooling; for ML, excluding DEC responses (comprising 45% of
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Figure 3. Distributions of rate-based receiver operating curve (ROC) area.
Cell-by-cell distributions of rate-based ROC area averaged across all pre-
sented depths, calculated using only the response during the second half
of the stimulus (400–800 ms). Cells from area primary auditory cortex (A1)
are plotted on the left, and cells from middle-lateral belt (ML) are plotted
on the right. Cells that lie above the ROC ¼ 0.5 line are classified as
increasing (INC) in this study, cells that lie below the line are classified as
decreasing (DEC). Color of symbol indicates INC/DEC classification if the
entire stimulus (0–800 ms) had been used. Cells in magenta (green)
would remain classified as INC (DEC), cells in black would switch classifi-
cation. Mean ROC area is indicated by the red line for each area.
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Figure 4.Mean modulation depth functions. Mean modulation depth functions (MDFs) were calculated from the MDFs of cells tested at the same modu-
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significant. C and D: mean spike rate MDFs for decreasing cells in A1 (C; n¼ 48) and ML (D; n¼ 65). Spontaneous period is 100 ms before onset of stimu-
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significant. E and F: mean phase-projected vector strength (VSPP) MDFs for A1 (E; n ¼ 190) and ML (F; n ¼ 142). No active/passive comparisons were sig-
nificantly different.
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the data sample) causes an even more pronounced improve-
ment in success rate.

Results for the success rates of VSPP-derived pools exhibit a
different pattern. There were slight improvements in the INC-
only pool relative to indiscriminate for A1, but significant wor-
sening for ML. It is important to recall that the response class
definition (INC or DEC) was based on firing rate, not on
response synchrony, so a class designation of DEC does not
imply that VSPP values were reduced by modulation (in fact,
they should not be, since for unmodulated controls VSPP
should be near 0 as there is no modulation). As shown in
Fig. 4, E and F, VSPP values increased monotonically with
modulation depth in both A1 andML (INC and DEC responses
were not segregated since they were roughly equivalent). For
ML, removal of DEC responses from the pools lowered the
VSPP-based success rate, as indicated by the values below the
unity line (Fig. 7A; blue triangles).

The fact that the success rates were almost universally
lower for DEC-only pools relative to indiscriminate pools sug-
gests that DEC responses are typically less informative than
INC responses (Fig. 7C). The predominance of INC responses
in A1 is consistent with the large reduction in the SC-based

success rate for A1 (red circles) and the smaller but significant
reduction in VSPP -derived success rates (red triangles; com-
pare Fig. 7, A and C). The largest increase in the success rate
occurs when limiting the ML-derived pools to INC responses
(Fig. 7A, blue circles), as indicated by the distance from the
unity line. Since INC and DEC responses were nearly bal-
anced for ML, indiscriminate pools reliant on firing rate are
likely (in the context of random selection) to be compromised,
since superimposing AM on the carrier elicits both increases
and decreases among themember neurons of the pool.

The most striking effect of limiting pools to pure INC or
DEC responses occurred for SC-based mean thresholds in
A1-derived pools (red circles; Fig. 7D), which suggests that
AM-imposed reductions in firing rate are not reliably distinct
from responses to the unmodulated carrier on a trial-by-trial
basis. In ML, however, pools drawn entirely from DEC
responses performed much like indiscriminate pools. By
contrast, SC-based mean thresholds were lower for pure INC
pools than for indiscriminate pools for both A1 and ML
(Fig. 7B).

It is possible to gauge the relative informativeness of INC
and DEC responses for A1 andML by considering the relative
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Figure 5. Indiscriminate pooling. A and B: success rate for amplitude modulation (AM) detection (defined in MATERIALS AND METHODS as percentage of
pools that reach threshold) with spike count (A) or vector strength (B) measures plotted against the pool size. Data are averaged across all tested modu-
lation frequencies (MFs). C and D: mean modulation depth threshold of pools that reached threshold for AM detection with spike count (C) or vector
strength (D) measures plotted against the pool size. Data are averaged across all tested MFs (weighted by the number of pools reaching threshold at
each MF).
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Figure 6. Indiscriminate pooling scatter plot. A: comparison of success rates and thresholds between primary auditory cortex (A1) and middle-lateral belt
(ML) pools of neurons. This includes pools of all sizes from Fig. 5 with the symbol size in the scatter plot indicating the pool size, with larger symbols cor-
responding to larger pool A1 pools (x-axis) plotted against corresponding ML pools (y-axis). Symbol size increases with increasing pool size. Filled sym-
bols indicate comparisons that are significantly different (two-sided t test, P < 0.05, corrected for 13 comparisons). Dashed line is a unity line. Pools
below the unity line have a higher percentage of pools reaching threshold in A1 than in ML. B: as in A, except plotting mean threshold of pools reaching
threshold. Pools above the unity line are more sensitive (lower thresholds) in A1 than in ML. C and E: as in A, except plotting active pools (x-axis) against
passive pools (y-axis) in C, and plotting spike count pools (x-axis) against vector strength pools (y-axis) in E. D and F: as in (C and E), except plotting mean
threshold of pools reaching threshold.
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plotted positions of pools of equivalent size for the different
cortical regions. For example, success rates for SC-based,
INC-only pools are quite similar; the relative leftward shift of
the ML pools shows that ML performance is penalized to a
greater extent by indiscriminate pooling. For DEC-only, SC-
based pools, however, A1-derived pools have lower success
rates and higher mean thresholds for all pool sizes, indicat-
ing that the DEC responses in ML support AM detection
more reliably and more sensitively than those in A1.
Nevertheless, DEC-only pools underperformed indiscrimin-
ately pooled cells (Fig. 7C), suggesting that INC responses
capture AMmore effectively overall, though the margin nar-
rows fromA1 toML.

Subtractive Pooling and Two-Pool Opponent Coding

It is possible that information from INC and DEC response
classes could be leveraged more effectively for AM detection
than the additive pooling scheme described earlier. We
implemented two additional methods: 1) Subtractive (“SUB”)
pooling, and 2) two-pool opponent coding (“OPP”). In SUB

pooling, pools were composed of cells randomly selected
from the population without regard to response class, but
DEC cells had an inhibitory rather than excitatory influence
on the pooled response. For SC, the spike count from DEC
responses was subtracted from the spike count from INC
responses, with a floor of zero. For VSPP, spikes from INC
responses and DEC responses were pooled separately, then
for each spike in the DEC pool, the first spike in the INC pool
within a 5-ms window was removed to simulate inhibition. If
no spikes in the INC pool occurred within the 5-ms window,
the DEC response spike had no effect.

The results of the SUB pooling are summarized in Fig. 8, A
andB. As in Fig. 7, data from the active and passive behavioral
conditions are combined, unless the legend indicates other-
wise. Success rates (Fig. 8A) were lower for SUB pooling than
for indiscriminate pooling based on SC and VSPP measures for
A1 and ML. Results based on mean detection thresholds were
analogous (Fig. 8B): SUB pooling increased mean thresholds
relative to indiscriminate pools, except for a few small pool
sizes for SC in A1 and ML, and for VSPP in A1. Overall, these
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results indicate that the SUB population decoding model does
not effectively leverage cortical firing patterns in either A1 or
ML. If DEC responses provide inhibitory drive to a pooled AM
detection mechanism, the readout mechanism is likely more
sophisticated than the SUBmodel implemented here.

In OPP pooling, two pools of equal size were generated
from randomly selected INC and DEC responses, and SC and
VSPP were calculated separately for each pool. The DEC pool
result was subtracted from the INC pool result to obtain the
metric used for neurometric analysis. For SC, OPP pooling
differed from SUB pooling in two ways: 1) The responses
classes were balanced, so INC and DEC spike counts had
equal weight. By contrast, random selection for SUB pooling
resulted in an average INC-to-DEC ratio of roughly 3-to-1 for
A1 and 5-to-4 for ML; 2) OPP pooling did not have a floor of
zero, to simulate a “push-pull” mechanism, so if a given pair
of DEC and INC pools had more DEC spikes, the pooling
metric was allowed to be negative. For VSPP, OPP pooling dif-
fered from SUB pooling because VSPP values were calculated
independently for INC and DEC pools before subtraction.

Pool size for OPP was defined to be the summed total of cells
in the two pools, resulting in OPP pool sizes ranging from 2
to 100, rather than 1 to 50.

The results of OPP pooling are shown in Fig. 8, C and D.
Success rate (Fig. 8C) is depicted separately for active and
passive conditions for SCmeasures because of notable differ-
ences between the two, particularly in A1. In the active be-
havioral condition, the OPP model applied to spike counts
(SC) from A1 resulted in success rates very similar to those
obtained with indiscriminate pooling (red “upward” trian-
gles). In the passive condition, however, the OPP model out-
performed indiscriminate pooling, particularly for larger
pool sizes (red squares). When decoding spike counts from
ML, the OPP model significantly outperformed indiscrimi-
nate pooling in both the active (blue “upward” triangles) and
passive conditions (blue squares). The highest success rate
we observed in this study occurred for the OPP model
applied to ML data in the active condition using spike count
as the metric. For a pool size of 100, 99.99% (8999/9000)
pools reached threshold for AM detection.
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As we expected, success rates for the OPP model based on
VSPP (Fig. 8C; “downward” triangles) were much lower than
those for indiscriminate pooling. We include the results here
(combined across active/passive behavioral conditions) for
completeness. Response classification (INC or DEC) was
based on spike counts, because of the observation that AM
can increase or decrease the firing rates of cortical neurons;
there is no analogous effect for VSPP, which, on average,
increases monotonically with modulation depth in both A1
and ML (Fig. 4, E and F). In light of this, we did not further
investigate the OPPmodels with VSPP.

Mean detection thresholds for OPP models applied to SC
(averaged across active and passive conditions; Fig. 8D) did
not exhibit the relative improvements we observed for suc-
cess rates. In A1, OPPmodels resulted in highermean thresh-
olds than indiscriminate pooling; in ML, mean OPP
thresholds were basically the same as for indiscriminate
pooling, despite the increase in success rates. This discrep-
ancy is likely explained by a recruitment effect: pools that do
not reach threshold were not included in the average to
obtain the mean threshold. The higher success rates for the

OPP model added more high-threshold pools, thus raising
themean threshold.

Separate Pooling of Early and Late Responses

Cortical responses to AM stimuli can evolve over time rela-
tive to stimulus onset, such that responses to the latter half
of an 800-ms stimulus can differ from those in the initial
half (11). For that reason, we analyzed “early” pooled
responses (0–400 ms after stimulus onset) and “late” pooled
responses (400–800 ms) separately. Figure 9 depicts the ra-
tio (late/early) of the success rate (averaged across active and
passive presentations) based on A1 and ML data for multiple
decoding models: indiscriminate pooling, INC-only, and
OPP (VSPP-based OPP models were excluded for reasons
described in the previous section; see Fig. 8D). Success rates
based on SC (Fig. 9, A and B) generally suggest that late
responses are more sensitive than early responses, except for
indiscriminate pooling in ML, where early responses are
somewhat more sensitive in all but the smallest pool sizes.
SC-based late epoch increases in success rate were greatest
for the OPP models in both A1 and ML. In ML, late epoch
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increases in success rate were evident for INC-only pools for
all but the smallest pool sizes, whereas indiscriminate pools
achieved higher success rates in the early epoch for all but
the smallest pool sizes. In A1, by contrast, results were com-
parable for both models. In general, better pooling perform-
ance during the second half of the stimulus, along with
examples showing the emergence of late responses at lower
MFs (e.g., Fig. 1A and Fig. 2B), suggest that simple adaptation
is not likely to account for changes in neural coding over the
800-ms stimulus time course.

The synchrony-based analysis (Fig. 9, C and D) suggests
that phase locking for individual neurons was enhanced in
the late portions of the response, but that with larger pool
sizes this effect dropped off. Most notably, success rates
based on VSPP for ML show large relative increases during
the late epoch for smaller pool sizes (Fig. 9D, downward tri-
angles both magenta and black). Late epoch increases in
success rate for VSPP were much smaller in A1, and limited
to the smallest pool sizes (Fig. 9C, downward triangles
both magenta and black).

We further refined our early/late epoch analysis to com-
pare INC and opponent models because Figs. 7 and 8 suggest
that the largest gains in AM detection over simple indis-
criminate pooling occurred for INC and for OPP pooling.
This was particularly evident with success rate using SC
measures. To investigate the relative performance of the
OPP and INCmodels in greater detail, we computed ratios of
the success rates subdivided by epoch and behavioral condi-
tion (Fig. 10). In A1 (red curves), INC-only pooling slightly
outperformed the OPP model in the early epoch for both
behaving and passive conditions (Fig. 10A). In the late epoch
this was maintained for pools with less than five neurons.
The larger pools in late epochs showed much smaller OPP/
INC differences that, while significant, trended toward
equality with increasing pool size.

In ML, however, there was a striking interaction between
epoch and behavioral condition. In the late epoch (Fig. 10B),
for the active condition (blue triangles), small OPP pools (n¼
6–24) detected AM 20% more often than INC pools. By

contrast, INC-only pools detected AMmore reliably than the
OPP model for larger pool sizes in the passive condition
(blue squares). The opposite pattern was observed for the
early epoch (Fig. 10A), where the OPP model outperformed
INC-only pools in the passive condition (blue squares), and
underperformed INC-only pools in the active condition (blue
triangles). These results could explain the emergence of a
large population of DEC responses in ML, since these
responses could be leveraged, via a push/pull opponent
code, to detect AMmore reliably than INC responses alone.

Comparison of Pooling and Behavioral Results

Since population activity in auditory cortex likely drives
the perceptual decisions underlying AM detection, we com-
pared neurometric thresholds for the active behavioral condi-
tion against behavioral performance obtained during active
recordings. The behavioral performance reported here closely
matches that obtained for macaque monkeys engaged in the
same psychophysical task, but collected with equal distribu-
tion across MF (37). The comparisons are plotted in Fig. 11.
Mean detection thresholds based on averages from single cells
(squares) were substantially higher than behavioral thresh-
olds (dashed lines) for all tested modulation frequencies for
neurons in A1 and ML, regardless of the response metric (SC,
VSPP).

Pooling spike counts from A1 resulted in significant
improvements in AM detection thresholds. For example,
INC-only pools based on 25 cells (small pink circles) resulted
in neurometric thresholds much closer to the behavioral
thresholds, although they underperformed at low modula-
tion frequencies, and overperformed at higher modulation
frequencies (Fig. 11A). In A1 relative to INC-only pools, the
OPP model based on 24 cells (12 each in the increasing and
decreasing opponent pools; small teal triangles) had higher
thresholds at all MFs, particularly at modulation frequencies
below 30 Hz. When relying on the VSPP metric (Fig. 11B), we
found that a larger pool size (n ¼ 50) provided the best fit to
the behavioral performance, despite the poor fits at modula-
tion frequencies of 15 and 20 Hz (compare with similarly
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poor VSPP performance in Ref. 18, Fig. 10). In contrast to the
results for SC, neurometric performance exceeded behav-
ioral performance at the lowestmodulation frequencies.

Results for ML-derived spike counts differed from those
for A1 in a number of ways. First, mean thresholds for single
cells were typically higher than those in A1 (compare Fig. 11,
A and C). Second, INC-only pools comprised of 25 cells did
not approximate behavioral performance as closely as those
in A1 (Fig. 11C; pink circles). Third, neurometric thresholds
for the OPPmodel based on 24 cells (small teal triangles) typ-
ically underperformed the analogous neurometric thresh-
olds in A1 (10 Hz was a notable exception). Lowest thresholds
were obtained for a SC-based OPP model restricted to the
late epoch (400–800 ms) of the response and including 100
cells (large teal triangles). This model also produced the best
match to behavioral thresholds.

Similar to the results obtained in A1, VSPP-based decoding
models for ML failed to capture behavioral thresholds effec-
tively. INC-only pools resulted in neurometric thresholds far
above the behavioral thresholds for all modulation frequen-
cies other than a narrow range from 5 to 15 Hz, even for the

largest tested pool sizes (n ¼ 50). Given the overall patterns
of neurometric thresholds in both A1 and ML, it would
appear that SC-based pooling of cortical responses could
plausibly account for the animals’ behavioral sensitivity, but
VSPP-based pooling could not, unless the biological readout
mechanism differs significantly from the decoding models
we explored.

DISCUSSION
Niwa et al. (10) first reported the existence of a significant

minority of cells in ML that decreased their firing rates in
response to increasing modulation depths, and based on
that finding subsequently proposed that “separately decod-
ing increasing and decreasing response functions as two
complementary populations of neurons”might leverage that
emergent response property in service of AM discrimination
(11). In this study we directly test this hypothesis by investi-
gating, using multiple decoding models, whether segregat-
ing populations by increasing (INC) or decreasing (DEC)
responses can potentially leverage existing information that
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might otherwise go unused in the service of AM detection.
Our current results indicate that an appropriate decoding
model, a two-pool opponent code (OPP), can exploit bidir-
ectional modulation depth functions based on firing rates,
particularly during task engagement. As Downer et al. (12)
discussed, population-based neural codes allow for more
complex sensory representations due to the increased
dimensionality of the population response space for larger
populations. In this paper, however, we explored lower
dimensional subspaces of the response space by simulat-
ing convergence via response pooling, and by limiting the
subpopulations to broad response-based categories (i.e.,
INC and DEC). The OPP code is effectively a two-dimen-
sional decoding model, and its success in ML indicates
that there exists a latent manifold of relatively low dimen-
sion that is adequate to account for behavioral perform-
ance, provided the pool size is sufficient (Fig. 11); in A1,
pooling limited to the dominant response type (INC) is suf-
ficient for smaller pool sizes, given the higher sensitivity
of individual A1 neurons.

The optimal readout for A1 and ML neurons differs
because of the differences in the distributions of response
properties in each field. The greater heterogeneity of ML
responses disadvantaged rate-based pooling methods that
did not segregate neuronal responses by tuning to modula-
tion depth. This disadvantage was proportional to the rela-
tive parity of INC and DEC responses. In A1, DEC responses
are far less common than in ML. As a result, the optimal
pooling strategy for A1 was the exclusion of DEC responses,
which contaminated the response pools, whereas for ML the
optimal pooling strategy was an opponent code that
exploited the greater prevalence of DEC responses. It is note-
worthy that with the optimal readout strategy we explored
for ML populations, the success rate for the two-channel op-
ponent code was competitive with the optimal readout from
A1, despite the reduction in synchrony and the increase in
response homogeneity in ML (Fig. 8). However, these results
depend on both the analysis epoch (e.g., “early” vs. “late”)
and the behavioral condition (“passive” vs. “active”). Our
results suggest that the optimal readout for a given popula-
tion does not necessarily generalize across task demands,
nor an animal’s training history.

The clear implication of our results is that any downstream
readoutmechanismmust be at least as flexible as the underly-
ing neural representation to support successful behavior.
Moreover, prior work indicates that cortical responses are la-
bile and adjust to task demands. In previously reported stud-
ies from our laboratory (12, 20, 38), animals were trained on a
more complex task that required feature attention—the ani-
mals had to attend to either a change in spectral bandwidth
or modulation depth. Under these task requirements, the dis-
tribution of DEC responses in A1 was quite different than that
observed here—the proportion of A1 neurons that exhibited
decreasing AM depth functions was more similar to that
observed in ML in the current study. Moreover, the majority
of A1 and ML neurons that exhibited significant AM depth
encoding also exhibited increasing AM depth functions. In
effect, the increases in attentional demands, stimulus feature
ambiguity in firing rates, and task difficulty in the feature
attention paradigm may have collapsed the distinction
between A1 and ML observed in the current study. Based on

these representational changes, the authors concluded that
cortical AM encoding depends on behavioral and sensory
demands.

Because in these studies an increase in either bandwidth or
modulation depth could increase the firing rate of a given neu-
ron, there is a potential confound for downstream neurons
tasked with interpreting the perceptual basis for this change.
Bidirectional encoding could aid in resolving this confound if
there is a population of neurons that exhibit distinct changes
in their response rates for increases in the behaviorally rele-
vant stimulus features. This might explain the increased prev-
alence of DEC responses in A1 when the stimulus processing
demands are more complex, as in the case of feature-based
attention. If cortical feature representations are sufficiently
malleable, we might expect, for example, that animals detect-
ing a target at an intermediate modulation depth might de-
velop nonmonotonic MDFs, rather than the largely monotonic
MDFs (with positive or negative slopes) we observed in this
and prior work (10, 13). In such a case, we expect that popula-
tion-based readoutmechanismswould show the requisite flex-
ibility to exploit representational changes expressed in single-
neuron responses.

There are several important issues to consider with regard
to the optimal readout of population responses in the context
of highly trained animals performing a perceptual task. First,
the optimality of the readout may depend on the attentive or
behavioral state, and this effect may vary by cortical field. For
example, the MDFs of neurons with decreasing responses in
A1 showed shallower slopes during engagement relative to
passive listening blocks; by contrast, neurons in ML with DEC
responses showed more steeply negative MDF slopes in the
attending condition (11). Moreover, it cannot be assumed that
the effects of attention are static and apply equally throughout
stimulus presentation during each trial. For example, the dif-
ferences in the relative performance of the OPP and INC
decoding models in the early and late intervals relative to trial
onset (Fig. 10) may be reflective of attentional shifts related to
evidence accumulation and decision making (39, 40). These
effects interact with pool size and vary by cortical field (Fig. 9),
illustrating the complexity of the problem even in the context
of population decodingmodels chosen for their simplicity.

With respect to an efficient or possibly optimal readout
mechanism, we must emphasize that here we have used fairly
stringent limits on the population decoding models that we
investigated in this study. Specifically, we only used decoding
models that simulated convergence via equal weighting of all
neurons in a pool since we were interested in the potential
implications of the representational changes we observed, par-
ticularly the bidirectional encoding of modulation depth.
Individual weighting of neurons within each pool would have
permitted the removal of divergent responses in that pool,
such as the effective silencing of all DEC responses in A1 pools
by setting their weights to zero. As Downer et al. (20) showed
in the context of AM frequency discrimination, even a very
small subset of the most individually informative neurons can
achieve decoding performance approaching the performance
for much larger pseudopopulations. Thus, improving the
decoding model via individual weighting risks nullifying the
existence of response categories by treating each individual
neuron as its own effective type, as in the context of conven-
tional labeled line codes (41–43).
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The opponent code, which proved most effective for rate-
based population decoding in ML, is distinct from—and
arguably more sophisticated than—the subtractive model in
two chief respects. First, the subtractive model enforces a
floor of zero spikes, even when the simulated inhibition
from pooled neurons with DEC responses dominates excita-
tion from neurons with increasing responses to larger modu-
lation depths. Second, the opponent model balances the
counts of INC and DEC responses in the opponent channels,
whereas the subtractive model allows for imbalance among
the pools since it is based on random draws. Thus, the oppo-
nent model implements a form of normalization absent
from the subtractive model, and relaxes a rectification con-
straint, which benefits ML success rates (Fig. 8). The rectifi-
cation constraint in the subtractive model for spike count
measures was implemented to mirror a biological constraint
—individual neurons cannot have a firing rate less than zero.
For a model where a readout neuron is receiving excitatory
input from an INC population and inhibitory input from a
DEC population, such a constraint would be appropriate. Of
course, it is possible in silico to remove that constraint and
try again. We did this (data not shown) and found that
removing the rectification constraint accounted for �70% of
the improvement of the opponent model over the subtrac-
tive model—the remaining 30% of improvement would pre-
sumably be due to the balanced pools found in the opponent
model. Thus, both of the primary differences between the
subtractive model and the opponent model appear to con-
tribute to the opponentmodel’s advantages.

It is important to note that any biological implementation
of an opponent code would rely on the ability to segregate
the responses of INC and DEC neurons. If neurons with INC
and DEC MDFs were biologically distinct (e.g., different cell
types, expressed different receptors or different neurotrans-
mitters) the problem of segregating the populations would
not seem terribly difficult. In this case we might expect that
the distributions of INC and DECMDFs would be distinct (as
measured by their ROC values). However, from Fig. 3, it
appears that these distributions are more or less unimodal,
not bimodal. This would suggest that the shape of the MDF
varies continuously and not categorically. This in itself is not
enough to rule out the possibility that opponent populations
can be segregated, but it does suggest that Hebbian-like
mechanisms would be required to wire such networks.
Ultimately, the data presented here cannot establish that
responses in ML are specialized to implement an opponent
code, but merely that sufficient information is present in hy-
pothetical opponent networks to significantly improve mod-
ulation detection compared with indiscriminate pooling.

Notably, although the opponent model can result in large
increases in success rate relative to indiscriminate pooling,
we did not observe similar patterns of improvement with
respect to the mean thresholds for the pools. Success rates
reflect the robustness of decoding performance of the mem-
bers of the pools, whereas mean thresholds ideally reflect sen-
sitivity to modulation. Because a threshold value is only
assigned when a given pool exceeds a threshold criterion (see
MATERIALS AND METHODS) it is possible for recruitment effects
to affect mean threshold values. In a recruitment effect, an
improvement in success rate results in previously noncrite-
rion pools reaching criterion—because these are likely to be

pools with high modulation depth thresholds, their inclusion
may result in mean threshold values that appear to be less
sensitive, even if all individual pools improve (e.g., see Ref. 18,
Figs. 6 and 7). For completeness, we reported both values, par-
ticularly because threshold estimates provide a more direct
analogy to psychophysical performance metrics. Threshold
measurements more commonly resulted in smaller effect
sizes [e.g., Fig. 5C (for A1), Figs. 7 and 8] or noisy threshold
estimates for decoding results based on phase locking (Fig. 11,
B andD), which could reflect the aforementioned recruitment
effect. Overall, we believe that success rates likely provide a
better reflection of the relative efficacy of the populationmod-
els and have therefore emphasized success rates when discus-
sing the implications of our results. There are also important
caveats to consider when comparing psychometric and neu-
rometric thresholds. First, sufficient variation in decoding
model performance, coupled with improvements in decoding
for increasing population sizes, will typically provide a good
match to psychophysical thresholds at a tested simulated
population size (44). Assignment of the causally relevant pool
size for the behavioral readout is not possible without causal
manipulations that were not pursued in these experiments.
Nevertheless, it is clear that population-based decoding mod-
els can reproduce the behavioral sensitivity observed in
highly trained animal subjects with relatively small popula-
tions, and that the decodingmodels that best approximate be-
havioral thresholds are distinct in A1 andML.

Our analyses relied on averaging the performance of ran-
domly generated pools of each chosen size. Ince et al. (45)
demonstrated that the population decoding performance at
a given pool size can vary considerably depending on pool
membership, which Downer et al. (20) confirmed for the
decoding of sinusoidal AM signals similar to those used
here. Thus, the similarity between the neurometric and psy-
chometric results must be understood in the context of the
averaging process applied to the neurometric data, since the
best and worst pools of a given size could span a significant
range of thresholds. Relatedly, the pools were generated via
random selection with replacement, so modulation frequen-
cies that are less well represented in the data set would ex-
hibit less variation about the average, particularly for larger
pool sizes. Therefore, the average result may not be repre-
sentative of the true population average.

The procedure used here of pooling neural responses that
were recorded in disparate sessions—a limitation of the cur-
rent data set—is at best an approximation of the real-time
combination of neural responses in the behaving animal.
One possible shortcoming of this method can be seen in the
fact that even using sampling with replacement, the size of
the pools did not completely asymptote, indicating that bet-
ter decoding performance can likely be achieved with larger
populations. However, the improvements expected for larger
populations are potentially limited by correlations among
the responding neurons (46–49). Downer et al. (20) demon-
strated that population-based decoding of sinusoidal AM
was worse for simultaneous recordings than for trial-shuffled
versions of the same data, which remove noise correlations
while retaining signal correlations. In the current study, all
neurons included in a given pool were responding to an
identical stimulus, but were recorded at different times. As
such, the pools included signal correlations, but excluded
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noise correlations that might reflect attention, decision-
related activity, motor preparation, motor execution, or
learning (50–53). Although noise correlations are believed to
decrease encoding accuracy among neural populations with
similar tuning (54–56), Johnson et al. (13) proposed that a
two-pool opponent coding mechanism could make signal
processing robust to changes in correlated noise among neu-
rons (12), since increases in noise correlations have been
shown to improve population-based encoding accuracy
among neuronal pools with opposite tuning (46, 57–60).
Thus, the emergence of bidirectional encoding of modula-
tion depth in ML could be indicative of a processing strategy
aimed at supporting dual encoding of sensory and cogni-
tive-/task-related variables in higher auditory areas where
the putative sources of noise correlations are expected to be
more prominent. Understood in this context, “noise” correla-
tions are not necessarily extrinsic to performance of the be-
havioral task, just the sensory demands of the task. For
example, activity increases reflective of stimulus extrinsic
factors that might be interpreted as increases in modulation
depth among neurons with INC responses would be inter-
preted as decreases in modulation depth among neurons
with DEC responses, thereby preserving stimulus feature in-
formation in the fuller cortical representation.

Unweighted, indiscriminate pooling obviates the need for
“labeled line” representations that track neuronal identity (the
“labeling problem”; see Ref. 43). However, as noted earlier and
elsewhere (22), heterogeneity in stimulus feature preferences
corrupts rate-based encoding schemes for indiscriminate
pools, just as heterogeneity in modulation phase preferences
corrupts timing-based encoding schemes. Bidirectional encod-
ing of modulation depth is especially problematic for indis-
criminate rate codes, since it is analogous to populations of
neurons responding in anti-phase in the context of timing-
based codes. As such, the emergence and increasing preva-
lence of bidirectional AM encoding in the ascending auditory
pathway is perhaps surprising. Unlike modulation transfer
functions, which are heterogenous and often exhibit nonmo-
notonic tuning (1, 2, 61), modulation depth functions in sub-
cortical and core cortical regions are typically monotonically
increasing (2). Moreover, the significant reductions in syn-
chrony to themodulation envelope amongML neurons (10, 11)
constrains timing-based modulation encoding schemes (21,
22), which are more robust to stimulus context effects than fir-
ing rates (16).

What then is bidirectional encoding for, and, more broadly,
what value do noncore auditory neurons add to modulation
detection and discrimination, given their poorer synchrony
and greater response heterogeneity? Our current work, under-
stood in the context of prior work in the laboratory, is consist-
ent with an important shift in how auditory information is
represented across the auditory neuraxis. Lower processing
centers, relative to higher processing centers, shield their rep-
resentations from stimulus-extrinsic factors, likely because
the flexibility of those representations is more tightly con-
strained by the need to optimize for efficient signal transmis-
sion. Higher centers, by contrast, are optimized for flexibility,
to support arbitrary mappings to behavioral outputs, such as
those required by experimental paradigms we have used. We
speculate that belt areas support integration of task-related,
stimulus-extrinsic information, such that “noise correlations,”

in the context of stimulus decoding, are better understood as
multiplexed “signals” related to task demands. As a result,
emergent representations such as bidirectional encoding
allow for complementary readout mechanisms that are more
independent from “noise correlations” in ML, relative to A1
(12). That said, bidirectional encoding is not an exclusive
property of ML, but a manifestation contingent on specific
task demands in highly trained animals, and can be found in
A1 when task demands are different (38). The success of the
two-pool opponent code inML underscores the importance of
readout mechanisms that can most effectively exploit cortical
representations that balance stimulus-related and task-
related information. Future work will be necessary to explore
limits on the flexibility of rate-based representations of com-
plex dynamic stimuli like AM, whether such flexibility neces-
sarily comes at the price of the temporal fidelity observed in
primary auditory cortex, and how such representations
empower attentional mechanisms and deeper integration of
stimulus-extrinsic, task-related activity.
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