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FOREWORD

The National Resource for Computation in Chemistry (NRCC) was
established as a division of the Lawrence Berkeley Laboratory (LBL) in
October 1977. The functions of the NRCC may be broadly categorized as
follows: (1) to make information on existing and developing computa-
tional methodologies available to all segments of the chemistry community,
(2} to make state-of-the-art computational facilities {hardware and soft-
ware) accessible to the chemistry community, and (3) to foster research
and development of new computational methods for application to chemical
problems.

Workshops are planned :s an integral part of the NRCC's program.

A workshop in the titled area was judged timely by key members in the
field and led to a planning meeting held February 23-24, 1979 at the
University of Utah at Salt Lake City. In addition to the co-chairmen,
Professor John Light, University of Chicago, and Or. Lowell Thomas, NRCC,
we were pleased to have the participation of Dr. B. Robert Johnson,
Aerospace Corporation, and Dr. G. Parker, University of Chicago.

As the site for this workshop, we sought Argonne National Laboratory
which has maintained active interest in the development of the NRCC. We
are indebted to Dr. Michael V. Nevitt, Deputy Director, Argonne National
Laboratory for making the ANL available for this purpose.

Finally, I wish to express my thanks to the co-chairmen for their
considerable efforts in organizing the workshop and in editing this

Proceedings.



The National Resource for Computation in Chemistry is funded jointly
by the Basic Energy Sciences Division of the U.S. Department of Energy and

the National Science Foundation.

William A. Lester, Jr.
Director, NRCC
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Talks have been scheduled to allow 15 minutes for discussion.
Persons desiring the give short presentations relating to

one of the talks should make arrangements with the floor
chairman of that session. Manuscripts of the scheduled talks
may be mailed to the NRCC, c/o Close Coupling Workshop, or
presented to one of the co-chairmen at the workshop. The

time allotted for each talk includes 15 minutes for discussion.
Manuscripts for unscheduled presentations will also be accepted
for inclusion in the workshop report, and should be presented
to one of the co-chairmen at the workshop.
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PREFACE TO VOLUME I

The goals of this workshop are to identify which of the
existing computer codes for solving the coupled equations of
quantum molecular scattering theory perform most efficiently on
a variety of test problems, and to make tested versions c¢i those
codes available to the chemistry community through the NRCC
software library. To this erd, many of the most active
developers and users of these codes have been invited to discuss
the methods and to solve a set of test problems using *he LBL
computers,

The first wvolume of this workshop report is a collection of
the manuscripts of the talks that were presented at the first
meeting held at the Argonne National Laboratory, Argonne, Iil.
June 25-27, 1979. It is hoped that this will serve as an
up-to-date reference to the most popular methods with their
latest refinements and implementations.

Many of the codes will be used to solve the test problems on
the CDC 7686 computer at LBL. A second meeting will be held in
late October or early November of 1979 at Berkeley to discuss
and compare the performance of the different codes with respect
to the tests. A second report will then be issued containing the
results and conclusions drawn about them, The two reports
together should then serve as a useful guide to both the
inexperienced person wishing to do calculations of this type and
the forefront researcher wishing to advance the state of the
art.

BAugust 1979

John C. Light
Lowell D. Thomas
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OVERVIEW
Don Secrest
School of Chemical Sciences
University of I11inois
Urbana, I11inois 61801

Since the early days of exact quantum scattering calculations 3 great
variety of methods for solving scattering problems have been developed.
One of the aims of this workshop is to identify viable methods and discuss
the advantages of each.

We have all had the experience of attempting a new problem with one
of our favorite techniques and for some reason seen it fail, only to find
that a method we were sure was inferior gave beautiful results. Thus it
is clear that there is no one best method. Each method 15 suited to some
class of scattering problems. As | see it, our mission is to identify a
small collection of programs suited to each class of scattering problems
and make comparative studies of these methods to determine the mest appro-
priate role of each method in inelastic scattering calculations.

The programs we will be discussing are quite general for the

solution of the coupled differential equations,

42 g,(8,41) 2
-S5 + 55— KD FR = -] VR) F(R) m
dR R i1 it o'z

with appropriate boundary bonditions. This s the form of the close

coupling equations for rotation, vibration or rotation-vibration and a number
of other problems., It should be emphasized that many approximate formula-
tions of scattering such as the centrifugal sudden, the energy sudden and

the infinite order sudden approximation lead to equations of the identical
form of Eq. (1), and the methods we are discussing are applicable to a large

variety of systems and approximations.
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| shall discuss some of the methods | am familiar with and try to
glve an impression as to the circumstances under which each should be
used. 1| shall not attempt to discuss, or even mention all of the methods
Jescribed in thie literature, but shall merely classify the various methods
int. broad categories and discuss at least one method in each category.
The various methods in each category differ ir detail, and one or another
of them ay be better for particular situations, but in general one method
is about as good as another within each category.

There are basically two different numerical approaches in common use
for solving the coupled equations. One approach is to solve the egquations
numerically either in their differential equation form, or the egquivalent
integral equation form. I shall call this approach the approximate solu-
tion approach. The othei approach is to approximate the potential matrix ¥
in some acceptable manner and solve the coupled equations exactly. | shall

refer to this as the approximats putential approach.

For each of these two approaches there are two techniques for develop-
ing the solution. This leads to four cateyories of method which are

discussed below.

The first of these techniques | shall call solution-following. This

consists of starting the solution well into the non-classical region

of the problem where the potential energy is greater than the total energy
and proceeding to follow the solution step by step into the asymptotic
region. This is probably the most common technique for the approximate

solution approach, and is exemplified by the DeVogelaere method developed

by Lester,l_3 the Sams and Kourih’5 method, the method of Choi and Tang,6 and

many others. This technique as applied to the approximate potential approach

Is exemplified by the methods of Gordon,” S Light,” ! and Wilson.'?
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The second technique |} shall refer to as invariant imbedding, though

all the methods 1 shall discuss under this heading were derived without

the use of the concept of invariant imbedding. These techniques consist of
solving the problem scattering from a piece of the potential. Then a
connection technique is used for combining the R matrices for parts of the
potential into R matrices for larger portions of the potential, until the
scattering matrix for the entire potential is developed.

The approximate solution approach with this technique was first imple-
mented by the amplitude density”"4 method. This method is no longer used
as a numerical method except in special circumstances. The amplitude den-
sity connection formulas are still of great use however in connecting solu-
tions obtained by different methods in different regions of the interaction
potential. The log-derivative method of .]ohnson]5 is the principal method
in this category stii1 in general use.

The category defined by the approximate potential approach and the
Invariant imbedding technique has a single member, the R-matrix method
of Light and \rlalker.16 This method has been used mostly to date for reac-
tive scattering, but is aiso a valuable method for inelastic scattering in
certaln circumstances.

The four categories are summarized in Table 1. The methods of each
ot these categories have properties which commend them to use in particular
circumstances. The approach one uses is decided by the accuracy required
and the number of solutions required at different energies. In general the
approximate solution approach is capable of higher accuracy at reasonable
machine cost. The approximate potential approach often gives acceptable

accuracy, in many cases two or sometimes 3 significant figures in practical
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problems with very few integration steps. The chief advantage of the
approximate potential approach is that it allows large Iintegration step
sizes. Of course high accuracy can also be obtained by taking smaller steps,
but ail advantage over the approximate solution approach is lost when
this is done, as the work required to fmprove accuracy grows much faster in
the approximate potential approach than in the approaimate so'uifon approach.
The approximate potential approach, though it allows larger steps than the
approximate solution approach, also requires much more work per step than
the approximate solution approach for the first calculation. Thus the two
approaches are of the same order of difficulty for one solution of low
aczuracy. The approximate potential approach has the advantage
that much of the work done for the first solution may be saved and the pro-
blem may be solved at another energy with very little effort. If a large
pumber of solutions to the scattering problem are to be found at different
energies, the approximate potential approach is ideal. If only a few solu-
tions are required or high accuracy is required, the approximate solution
approach can be an order of magnitude less time consuming.

The solution-following techniques are plagued by instabilities requiring
measures to be taken from time to time in the progress of the solution to
ensure stability. The invariant imbedding techniques are inherently stable,
though often time consuming.

Recently two very different techniques have appeared in the literature
which do not fit this scheme very well at all. One is the iteration tech-

17

nique of Lowell Thomas ‘ which allows the solution of huge coupisd systems
which would be very difficult indeed by direct methods, and the other

Is the finite element technique which has been pursued in lts application

to the scattering problem by Rabitz and Askar.w’19 These have been added

as appendages to Table 1.
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There is no need to go through the details of any particular method
as that will be covered by the speakers during the conference. Let me
sketch out in very general terms how the techniques are approached and point
out problems which arise.

Let me start with the solution following technique. How we implement
it depends on the prol .m we are solving. For an inelastic scattering
problem the potential is usually large near the origin. The wavefunction
is zero at the origin and grows exponentially in the nonclassical region.

So we can start here with a small wavefunction and integrate toward large R.
When we get to the asymptotic region presumably we can compute the R matrix
or the $ matrix from the asymptotic form of the solution.

Several problems arise. First though the wavefunction is small in the
nonclassical region unless we are solving a potential scattering problem
there is more than one radial function. There are N solutions to the
problem which decay near the origin. The technique used then is to start
a complete independent set of solutions. When we get to the asymptotic
region we can form linear combinations of these solutions. One of these
combinations will correspond to the solution we are interested in. (Thus
we get a complete set of solutions all at the same total energy whether we

want them or not. This problem is not present in Lowell Thomas's-17

me thod
which | will say more about later.) Now in order to do this it is necessary
that the set of solutions we end up with be linearly independent. This

is difficult to achieve sometimes. When we start we don't know how to pick
the starting values and it probably wouldn't help much if we did. It is
very easy to pick an independent set of starting conditions. But any set

we pick will be a random mix in general of all solutions. All solutions

are growing exponentials as we integrate toward large R, and each set will
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contain some contribution from the most rapidly growing solution. This
solution will rapidly dominate and all columns of the solution matrix will
start looking like the fastest growing solution. This would be alright if
we used infinite precision in solving the equations, but we never do. Thus
after we start integrating it is necessary to alter this process before
we Jose precision. This is extremely easy to do. One merely forms new
combinations of the solutions early in the integration which are orthogonal
or in some similar way strongly independent. In the early days one per-
formed these stabilizations every so often. 1t was found one needed to
stabilize every 10 steps or so. This got time consuming. Roy Gordon
developed some efficient stabilization codes. It was later found that one
need not stabilize often--soon after starting, then much later, and 3 to
5 stabilizations were found to be enough. Thus the need for efficient
stabilization techniques vanished.

This is a good time to say a word about iterative methods. One wculd
hope by interation to obtain the one or two solutions he s interested in
instead of the complete set. If he were to start integrating at small R and
integrate toward large R, small numerical errors would introduce unwanted
solutions which would grow and defeat the scheme. Thus an lterative tech-
nique must start at large R and integrate toward small R. This of course
requires a r asonably good guess.

Now for comparisen purposes | would like to give my impression of the
invariant embedding technique.

In this technique one breaks the R space into segments and takes
the potential to be zerc outside of these regions. Then for this small

region one solves the scattering problem In one step. Usually one nowadays
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obtains the R matrix for the problem. O0ne then solves the next adjacent
region and finds an R matrix for it. Then the two R matrices are combined
exactly to obtain an R matrix for the combined region. One proceeds in
this way into the asymptotic region and the problem is solved. The com-
bining of R matrices is an exact procedure but requires a full matrix
inversion at each step., But the technique Is completely stable. This js
very important for some problems. In a typical rotation vibration problem one
starts integratiaon in the nonclassical region. 1If he is using a solution
following technique and starts too déep into the nonclassical region he
finds it necessary to stabilize often. |If he is very deep into the non-
classical region he must stabilize every step. In fact it is possible to
start so deep that one cannot stabilize the solution at all. For most
inetastic problems this is not serious and can be overcome by starting the
solution nearer the classical region. But there are problems such as
curve crossing prablems for which it is not possible to start near the
classical region. For some curve crossing problems the classical turning
point of one of the curves is deep into the nonclassical region of others.
In cases of this sort the Log-Derivative method or one of the other in-
variant imbedding techniques is ideal. The invariant imbedding techniques
require a lot of computational effort at each step but they are entirely
stable.

Now Jet us look at the approximate potential approaches. The potentia}
is broken up into piecewise continuous polynomials or constant steps depending
on the method used. This simple form of the potentfal allows an exact solu-
tion of the equations in each region., There is still coupling between

the equatlons and it is necessary to diagonalize the potential matrix at each
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Actually it is only possible to diagonalize the potential at a single

step.
point in the region, but the potential remains nearly diagonal for a reasonably
large distance on either side of the diagonalization point. For the next
region the potzntial must again be diagonalized. In general a different
transformation diagonalizes the potential in each region. Thus as the
wavefunction is progated, or as the R matrix is advanced if one is using

an invariant embedding technique, it is necessary to transform the result

at each region boundary. In the solution following technique, even though
the wavefunction for each region is computed analytically it is necessary

to stabilize every so often.

The great advantage of the approximate potential approach is that large
steps may be taken in regions where the potential is varying slowly. The
steps may be larger than the wavelength of the solution. If calculation
at high energies is necessary the approximate solution approaches require
more steps than at low energy as the wavelength is shorter at high energy.
The approximate potential approach however may use the same step size
at high energy as at low. In fact it may even be possible to use a larger
step size at higher energy due to the fact that the solution is not as
sensitive to small changes in the potential at high collision energies
as It is at lower energies.

If a series of calculations are to be performed at different energies,
the work in the approximate potential approach to determine the step size,
diagonalize the potential matrix and the transformation from one region to
the next need be done only for the first calculation. It may be saved in
the computer and used for all future calculations.

In the nonclassical region the potential is rapidly varying and the
approximate potential approach must use small steps comparable te those

required for the approximate solution approach.
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In comparing the approximate solution and approximate potential approaches
we can say that the approximate potential approaches allow very large steps
at least where the potential is slowly varying. A great deal more work
is required per step in approximate potential approaches than in approximate
solution approaches however. Thus for a calculation at only a few energies
the approximate solution approaches seem approprizce, Since the work of
the first calculation in the approximate potential approach may be saved
and used at other energies, for large numbers of calculations the approxi-
mate potential methods are the best, For higher accuracy the approximate
solution approaches seem to improve as stepsize is reduced faster than
approximate potential approaches.

The approximate potential approach requires small steps where the
potential is varying rapidly. Thus a method which is superior to both the
approximate potential and approximate solution approaches is to use the
approximate potential approach where the potential is slowly varying and
the approximate solution approach in a rapidly varying regime.

The use of jteration to solve large systems is a new technique and may
prove to be a major breakthrough for accurate scattering calculations.

As this method is applied to the many important praoblems which cannot be
approached by the direct methods we will find either that it is the direc-
tion exact calculations will take in the future or it is too unwieldy to be
practical.

The finite element method is well suited to some problems which are
refractory to the methods we have been discussing. The dissociation problem
which leads naturallv to a two independent variable problem comes immediately
to mind. As we develop more familiarity with this method its role in

scattering theory will become clearer.
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PIECEWISE ANALYTIC SOLUTIONS TO QUANTUM CLOSE-COUPLING EQUATIONS:
A REVIEW OF BECENT DEVELOPMENTS
Roy 6. Gordon
Department of Chemistry

Harvard University
Cambridge, Massachusetts 02138

"pivide and Conquer" is the approach used for the piecewise
analytic solution of the quantum close-coupling equations. The problem
is divided into a set of simpler model problems which approximate the
original problem piecewise in a set of intervals. The model problems
are solved analytically _a each interval. These approximate solutions
are joined together continuously to form the complete solutions which
satisfy the proper boundary conditioms.

The main advantages of the method are greater computational speed
and accuracy, compared to purely numerical methods. Also, the wave
function is available in a relatively convenient and compact form for
use in calculating matrix elements, when needed.

Since the original method! has been reviewed? in some detail,
and a computer program hased on it has been distributed widely,3 the
present paper will focus on more recent developments. These include
the development of piecewise quadratic approximations to a useful form.
The following sections discuss briefly these new results, for comstructing
the analytic zero-th order and first-order solutions using a piecewise
quadratic potential. Then finally we sketch the piecewise analytic
solution to equations with both Ist and 2nd derivatives, such as those

that often arise in reactive scattering theory.
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II. Zero-th order solutions for piecewise quadratic potentials

The originally developed method! uses a set of linear approximations
to the potential function, to generate the zeroth-order approximate
solutions. Deviations of the actual potential from these linear approx-
imations then generate the first-order perturbation correct:ions,1 which
will also be discussed in section IIT below.

The analytic solutions to this linear model problem are the Airy
functions, which may also be considered as special cases of Bessel
functions. Accurate and efficient algorithms for evaluating the two
Airy functions and their first derivatives, were developed,1 using
generalized Gaussian quadrature techniques.

An obvious improvement in accuracy would be gained by using piece-
wise quadratic approximations to the potential. Indeed, it might seem
at first sight that such an approach might rely on the vast amount of
study already given to the harmonic oscillator equation. Unfortunately,
one needs the less-studied solutions at non-eigenvalue energies, and
two linearly independent solutions. Mathematically, these functions were
first defined and studied by Weber; however, accurate and efficient
algorithms for their numerical evaluation were not available for all
ranges of the two arguments "a" and "x". ("a" is a parameter related to
the energy, and "x" is related to the distance variable.,) Power series
and asymptotic series are valid and useful in certain ranges of a and x,
but large areas of the a,x plane could not be treated with previous

methods. Extensions of the Guassian quadrature method,l which was so
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successful for the Airy functions, did not succeed in covering all

the parameter values, either.4 A successful algorithm for the
complete useful ranges of a and x has been achieved by a combination
of uniform asymptotic series for large |af, and recursion relatiomns
for smaller values of [a|, when needed.” Care is needed in choosing
the suitable directions for the recursion relations. For some para-
meter values, recursions in the complex energy plane are requiredi

At present, the program produces function and derivative values
accurate to about seven digits. Higher accuracy could be obtained, if

necessary, at the cost of longer running times.
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III. First-order solutions and accuracy

The zeroth-order solutions discussed above solve exactly model
problems involving piecewise polynomial potentials. First-order
perturbation theory is then used to evaluate the (small) effect of
the deviation between the actual potential and the model potential.
There are two reasons for evaluating this first-order perturbation
currection: (1) to improve the accuracy of the zeroth-order results,
and (2) to decide how large the intervals may be chosen, in the
definition of the model potential.

The first-order perturbation corrections cin be évaluated
analytically, after the perturbing potential (the difference between
the true potential and the polyromial potential) has been approximated
as a higher-order polynomial. The formulas for the perturbation
integrals involve only the zero-th order functions and derivatives at
the end points of the intervals. These integrals were originally
derived for the constant and linear cases.1 and the formulas were later
simplified to about half as many terns.® We have recently found that
the perturbation integrals can also be evaluated analytically for the

piecewise quadratic potentials J
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IV, Choice of Method

With the development of constant, linear and quadratic potential
models, and zeroth or first order solutions based on these models, one
has a wide range of possikle methods. The higher order methods offer
higher accuracy and/or smaller numbers of intervals, but with a higher
calculation cost per interval, The choice of an optimum method
depends both on the problem being solved and on the accuracy required
in the solution.

For a problem involving a single equation to solve (single
scattering channel, elastic scattering) or a small number of channels
(e.g., N 2 10), there is a clear trend. The higher the accuracy
required, the higher the order of the optimm method. This is indicated
qualitatively in the figures. At equal numbers of steps, the higher
order methods are generally more accurate. When the comparison is made
at equal computation time, however, lower order methods are more accurate
when larger errors are satisfactory, but the higher order methods become
more efficient when higher accuracy is demanded.

For problems involving many channels, (e.g., N 3 20), the compu-
tation time becomes dominated by matrix operations, such as multiplications
or inversions. These matrix operations require on the order of N3
arithmetic operations, while the special function evaluations only are
called 2N times per interval. Thus for these large problems with many
channels, it is always advantageous to use a higher-order method to

propagate the solutions within an interval.
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V. Equations with both first and second derivatives

The piecewise analytic methods available in the past have been
limited to equations, such as those for non-reactive scattering, in
which first derivacives are absent. Many formulations of reactive
scattering theory,8 however, introduce first-derivative terms as well.
We have recently shown how the piecewise analytic methods can be
adapted to these equations, as we11.9 The coefficient of the first
derivative term may be a linear function of the independent variable,
and the potential may be a linear or quadratic function in each interval.
The basic solutions for this case turn out to be Weber functions, which

can now be evaluated accurately and efficiently.5
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Abstract

Weber's Parabolic Cylinder Functions U(a,x), V(a,x), and
W(a,*x) have recently found wide application as approximations
to quantum mechanical wavefunction propagating through
potential wells or barriers. Available algorithms for
their numerical evaluation are inapplicable in some ranges
of the two arguments., In this paper we present a new
algorithm, based on the combined use of Olver's [13]
uniform asymptotic expansions and Whittaker's [23] complex
recursion relations, to extend their range of usefulness,
The algorithm generates greater than single precision
values of the functions and thelr derivatives over the

whole range of arguments,
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1. Introduction e

As approximations to wavefunctions in quantum mechanical
calculations, Weber's parabolic cylinder function have
received considerable attention. They are used in WKB-type
problems involving two or more transition or turning

points [2,3,7-9,13,21]. Our interest in the evaluation

of these functions grew out of our work on piecewise
analytical solutions for the Schroedinger equatiorn [5],
whereby we approximate the potential locally by a polynomial
function. Then we use the continuity conditions to form the
complete wavefunction as a composite of the local wave-
functions. Previously, we had been able to use only piece-
wise linear polynomial approximations, giving rise to

a basis of Airy functions. A more accurate approximation

to the potential can be formed by a gquadratic polynomial.
The resulting wavefunction is a solution of Weber's complex

linear second order differential equation [22],

2
d 1 1.2 .
;—z—z-Dv(z) + (v +5—-/TZ )DV(Z) = 0. (1.1)

D, (z) is Whittaker's notation for parabolic cylinder
functions, and its value is determined upon specifying a
point in the two dimensional complex space (z,v). Dv(z) is
an entire function of both variables. Throughout the text
v and z will denote complex variables while their real
counterparts will be denoted a , a real parameter, and x

a real independent variable. It is clear that for special
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values of the variables (x,a), (1.1) can be transformed
into either the equation.for the generalized harmonic
oscillator functions, which we write as U(a,x) and Vv(a,x),
or the equation for propagation through a potential barrier,

with a set of solutions W(a,ix).

To allow the greatest flexibility on using (1.1) or speci-
fically its two distinct real forms as approximations to

more complicated differential eguations, we must be able to
evaluate these functions for arbitrary values of v and z

(a and x). The number of numerical studies on the Weber
functions is voluminous [4,10,11,14-17]., While there exist
asymptotic formulas for large magnitudes of the parameter

v and/or the spatial variable z, and power series for small
magnitudes of v and z, there are still ranges for which,
heretofore, no accurate or convenient means of evaluation
existed. Extrapolation from a table of values [4,11] is both
inefficient and inconvenient. Employing an algorithm developed
by Gordon, integral representations for the U(a,x) and V(a,x)
have been evaluated by Gaussian quadrature for small values

of the parameter a [18-20], Attempts to extend the variable
range by recurrence relations, however, leads to instabilities

in the recessive functions.

The most recent thorough analysis of the asymptotic behaviour
{|v| large) of the parabolic cylinder functions, and in
particular U(a,x), Via,x), wi{a,¥x), is in a series of papers

by Olvcr |13-15]., While his asymptotic representations are
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valid only for large |v|, they have the advantage of being
uniform in the spatial variable z. Consequently we were left
only with the problem of devising a convenient method to
evaluate these ‘functions and their derivatives when the

parameters are in the moderate range.

In this paper we present an algorithm for the computation of
the parabolic cylinder functions U{a,x), V(a,x), W(a,*x)

and their derivatives for arbitrary values of the variables.
Those regions of the (x,a) plane, previously inaccessible
by accurate and efficient computational techniques, are
covered by a set of complex recurrence relations first
derived by Whittaker, For large ]al, the uniform asymptotic
formulas of Olver are employed directly, and for moderate
Ial they are employed to generate starting values for the
recurrence relations at some large initial index. In

section 2 we define our choice of standard functions for

the algorithms. In section 3 we examine the recurrence
relations and specify the special discrete paths of the
complex recurrence index in the v-plane. In section 4 we
outline the numerical evaluation of U(a,x) and V(a,x), and

in section 5 W(a,¥x).
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2, Choice of Standard Functions

For most physical problems only the two real standard forms
of (1.1) are of importance. The first, obtained by setting
v + % = -~a and z = x, is the generalized harmonic oscillator

equation

- ¢ x* + ap Jx) = o, (2.1)

Following Miller's criteria [10] for standard solutions we take

as the two linearly independent solutions U{a,x) and V(a,x)

Ula,x) = D 3 () (2.2)
ca -
2
Via,x) = 1 I‘(—1-2 + a){p 1{x) sin an+ D 1(—x)}. (2.3)
T -a-3 -a- g

¥When a is not an half-integer, U(a,¥x) are an alternate pair

of solutions.

The second standard form, obtained by setting v + % = =ia and
=ni
zZ = xe 4 , describes the propagation through or over a

parabolic potential barrier

-l
T
(xe ) -mi
. < x2 - ap ,xe 4 =0, (2.0

dx ~ia - 3

LN B
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Two real solutions to (2.4), w(a,¥x), can be defined in tei.= of

a complex function E(a,x), which with its complex conjugatc

forms another pair of linearly independent solutions:

. ma i @ -7i
+5 (7 + ¢)
E(a,x) =v/Z el 2 8 D , (xe T (2.5)
~la - 5
2
x>0
-1 1
-~ W(a,x) + 1x2 W(a,-x) (2.6)
-1 1
E(a,-x) = k ° W(a,-x) + ik? W(a,+x) x <0 (2.7)
where ¢ = argT(% + ia) and k =v/1 + e21Ta - e"d,

For a few convenient values of the parameters a, we have
plotted in Fig. 1 the functions U(a,ix), v(a,x), and W(a,x)
with respect to the X variable. We make reference to these
graphs in order to emphasize the characteristic behavior
and disparate nature of the standard functions, To describe
the propagation through a potential barrier, the set of

functions most clos +ly satisfying Miller's criteria are
-1 1

k 2 W(a,x) and k2 w(a,-x}.
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3. Recurrence Relations

The following recurrence formulas for the parabolic cylinder

function Dv(z),

D, ,(z) - zD (z) + vD,_,(2) = O, (3.1)
D!(z) + 5 D (2) - vD_,(2) = O, (3.2)
D!(z) - %D, (2) + D, (2) =0, (3.3)

were derived by Whittaker [23] from the contour integral

representation
1 .2 1,2
- 0+ -zt - it -v-1
_ _ T{v+1) 72 -
D\,(z) = —Z‘Hi—e 0{ e (-t) dat
- @ < arg{-t) < @, Re(v) < O, (3.4)

Integration by parts of eguation (3,4) yields (3.1).
Differentiating formally under the integral we obtain (3,2).
We solve for Du_1(z) from equation (3.17) and substitute the
expression into (3.2) to obtain the last relation (3.3).
Unless otherwise stated, the prime notation will denote
differentiation with respect to the independent variable

X or z, which is indicated in the argument of the function.

These relations are valid for all complex values of v and z.
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When both variables are real, two sets of relations can be
derived from equations (3.1) = (3.3). In terms of the real

valued functions Ula,x) and V(a,x) the recursion formulas aie

as follows:

Ula-1,x) - xU(a,x) - (a + $U(a+1,x) = O, (3.5)

U'(a,x) +.3 xU(a,x) + (a + 5)U(a+1,x) = 0, (3.6)

U'(a,x) - % xU(a,x) + U(a-1,x) = 0O, (3.7)
and

V(at1,x) - xv(a,x) - (a - H)V(a-1,%) =0, (3.8)

vi{a,x) - % xV(a,x) - (a - -;—)V(a-‘l,x) = o, (3.9)

V' (a,x) + 3 xV(a,x) - V(a+l,x) = O. (3.10)

The stable direction to use the recurrence relations can be
determined from a graph of Ula,x), V(a,x) vs. a for constant
values x, as in Fig., 2, or by an analysis of the asymptotic
form of (3.5) and (3.8). In general, to provide a balance
among the terms in the relations, the following inequalities
must hold:

jo(a-1,x}] > |uta+t,x)|
as a >+ ®, x >0,

[via+1,x)| > |V(a-1,x)]
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For a positive, U(a,x) decays exponentially, and'V(a,x) grows
exponentially. For a negative, they are oscillatory functions
whose moduli are either strictly increasing or decr=asing
functions of a. Since the stable recurrence process is in
the direction of increasing function values, the relations

should be used in a backward (decreasing a) direction to
evaluate U(a,x) and a forward {increasing a) direction to

evaluate V(a,x).

U..fortunately no analogous set of real recurrence relations is
kgown to exist for either set of independent solutions

k*% W(a,¥x) or E(a,x), E*(a,x)..ﬂowever, we observed that
since the recurrence relations are valid for complex values

of v and z, Eguations (3.1) - (3.3) could be used to recur
-7
on D 1 (xe "%) where A is a complex parameter, A = a % iN,

N =0, ;? s Nmax' The raising and lowering of the index

is now in unit intervals along a line parallel to the
imaginary axis in the A-plane. Upon recurring to the real
axis, i.e. A = a, Egs. (2.5) and (2.6) are used to recover
F1/2

E(a.x) and consequently k Wia,Ix).
In practice we find it more convenient to express the
recurrence relations in terms of the complex function

TA 1 [4(R.A) + 7] -mi

/Tete? D (xe 4)

-ip-1/2

E(A,x)

$le(rea) - ¢ (a)]
e E(A,x) (3.11)
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where ¢$(n) = argr(% + iA), and E(A,x) is the analyxtical
continuation of the function E(a,x) defined in Eq. (2.5).
With this substitution, Egs. (3.1) - (3.3) now have the

simple form

E(A+i,x) - XE(A,x) - 1(32- + iA)E(A-i,x) = O, (3.12)
=~y ixz . 1 = . _

E'(Ap,x) - E—E(A,xl + (5 + iA)E(A~i,x) = O, (3.12)
E'(n,x) + -;—"- Ba,x) - 1E(a+i,x) = O. (3.14)

When A is real (A = a), E(a,x) reduces to the function E(a,x).

For uny value of x, the modulus of E(A,x) decreases as the
imaginary component of A is made more negative. One should
then evaluate E(A,x) and ﬁ'(A,x) at A= a - iNmax(a’x)' for
some large integer Nmax’ which is in general dependent on

a and x, and use the recurrence relations in the forward

direction to raise the irndex Nmax times to determine

E(a,x) and E'(a,x).

Returning to the original recurrence formulas in terms of

the general parabolic cylinder function Dv(z), the recurrence
indices in the above relations for U{a,x), V{(a,x) and

E(A,x) can be represented naturally as particular paths

in the v-plane. Defining the initial conditions for

o
stable paths for the recurrence process are indicated in

U(a,x) and V{a,x) as v, = -ai-%, the various numerically

Fig., 3.
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4. Evaluation of U(a,x) and V(a,x)

The combined usage of Olver's asymptotic formulas and the
recurrence relations constitutes a convenient and accurate
algorithm for the evaluation of the generalized Harmonic
oscillator functions Ul(a,x), V(a,x) and their derivatives
for arbitrary real values of a and x. Performing the
calculations in double precision arithmetic on an IBM (360)
and an Univac (1800), values of the functions and their
derivatives are obtained to fourteen significant digits.
The choice of the method depends solely on the value of a,

which we have divided into two complementary domains:

Asymptotic Region Non-asymptotic Region

a>11 or a < -41 -41 £ a =2 1

When a falls within the asymptotic region, Olver's formulas
are employed directly. When the functions are needed for
non-asymptotic values of a, the asymptotic formulas

pProvide the starting values for the recurrence relations

at the initial indices a,. These have heen experimentally

determined:
a, =a+N211 U{a,x)

a =a-MZ25-41 via,x).
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In the case of U{a,x), the function and its derivative,
both evaluated at a,, are first used to obtain U{a,-1,x)
from Eq. (3.7). The index is then lowered N-1 times to a
employing Eq. (3.5) in accordance with the stable direction
for recurring discussed earlier. The symmetry of the parabolic
cylinder functions with respect to x (see Fig. 1) makes
it necessary to develop an algorithm only for x in the
right-half plane (x > 0). The computational algorithm is

summarized in Fig. 4.

For completeness we will now specify which of Olver's
asymptotic series are employed in the algorithm and comment
on any difficulties that arose in their evaluation. Since
we used more terms than Olver originally presented, we have
recorded the necessary expansion coefficients in the
Appendix. The asymptotic representations are derived from
an analysis of the normal equation,

d2

¥ e = ute? - 1) win,n (4.1)
dt

where yu and t are complex, and |u] >> O.

For a positive, (4.1) is brought into the real standard
differential equation for U(a,x) by the following trans-
formations of the dependent and independent variables:

set ¢t = ~iz, 4y = in and y(n,2) = wlin,-1z) to obtain
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2
&Y n,2) - 022 + 1) yn,2)
dz

0, (4.2)

x
and x = zn/2, a = % n2, y(a,x) = y(2a, 2/3) to obtain

g—% (a,x) - (% x2 + a) yla,x) = 0. (4.3)
dax

A satisfactory pair of solutions for (4.3) when a is
positive is U(a,x) and U(a,-x). To preserve Olver's notation,
the asymptotic formulas are more conveniently written as
functions of n and z, and in the following section, we

will denote U(a,x) eguivalently by U(% nz,znlf).

Equation (4,3) exhibits no transition point characteristics
for real, positive a, and the functions can be expressed

in terms of elementary functions [13]:

%8z = G (2)

U(a,x) = U(%nz,nzli) . g(n)e - . —%; (a.4)
(22 T s=0 5, 3 n
z%+1) (z€+1)
a>o0
1.2 i) 2,7 %@ T Vst®) ]
U'{a,x) = U'(zn nz/3) ~ el ;2,44 SE(2) N
7z s=0 3s 2s
(z2+1)2
(4.5)

The auxiliary function g{n) is calculated from the asymptotic

expansion



] +1 2,1 41 2-1 2 1 T 92441
—_— 0+ = n“ sn°+5 1+ ¥ ——l~§ (4.6)
gin)~ 2 9 i_.7 n 2 2 ( %0 RFz )
_ ﬂi(% + % nz) _
where g(n) = e g{in), and £(z) is given by
1 1
Ez2) = 222 + D%+ Jamlz + 2% + D, (a.7)

The functions ﬁs(z) and Gs(z) are defined in terms of the

polynomial functions ug(z) and v (z)

ug(z) = isus(-iz)
: (4.8)
v (z) = 1svs(—iz)

It is a tedious but straightforward exercise to determine

the coefficients us(z) and vs(z) from a set of recurrence

relations. We record the first seven terms along with the

constants 9g in Table II in the Appendix. The branches of

the multi-valued functions agi well defined upon specifiying
2

argy = % {argn = O) and ze e S(%), the domain shown in

Fig. 5a.

In our algorithm the factor g(n) is omitted thereby altering
the normalization, but eliminating an unnecessary calculation
1f only relative values of the parabolic cylinder functions
are needed at different values of x for fixed a. When

X < 0, equation (4.4) is a valid asymptotic representation
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for the linearly independent solution U{a,-x). The corres-
ponding asymptotic formula for V(a,x) can be straight-
forwardly derived by substitution of the expressions for

U(a,x) and U{a,-x) into (2.3).

When a is negative, the change of variables t = z, and

p =1n, followed by nz = =2a and X = nz/2, again transforms

(4.1) into (4.3). However, equation (4.3) now possesses
two real transition points at Xp p, = 12/Ta]. Olver's asymptotic
expansions for U(a,x) and U'(a,x), which are uniform for all x

to the right of the left hand4transition ioint, are in

terms of Airy functions, Ai(ngc) and Bi(nac) [13]:

L.

11

-1 3 3 @ Mg lr)
U(a,x} = U( % nzmzﬁ)-zni n® gme(z) 3 ai(n’n 'EE'"
=0 n

4
3 ® B
+ ALt'(n7r) I s () a<o (4.9)
8 20 nis ’ ‘
3 8 n
n
12 4
- 2 3 © C. (%)
U@, = Ut} a2 ne/z - 4200 g o) ;Ai(q4 D o e
K s=0 n
n
4
o D_{g)
+ R D) T (4.10)
=0 7

1

where ¢(g) = (—%——)I. The variable [ is given by
z2°=1
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3 1 1
% :'2 = —15 2(z2 -1)7 - -;- tn(z + (z2 - 1)2) for z > 1
3 1 1 (4.11)
s Z Zz
and —(—C) 7 arctan(z({z —1) ) - 3 z(z -1) for 0 £ z < 1

with £ = O at the turning point z = 1. The coeffigient
functions A (%), Bg(f), C (¢), and D (Z) are determined from

the following series:

2s5+1

25  _an/2 (172 -3
Agr)= 1 bl i ooy (2) Bg(t) == 1 apg iy (@)
m=0 m=0 -
(4.12)
V% (m=-] b3 (z2) D_(z) = 2§ g%y (2
s 25-m+1 s't mio aps 2s5-m
u, (z) vs(z)

whered (z) =1, d(z)=————§-7-f %(z)=-(—z-2-—1)—3-s7§

and = (2m+1L(2m+3)...(6m-12 - _ 6m+1
m!(144)

=T 3’ with a, = 1.

The analogous expansion for V(a,x) can be obtained, after
some manipulation, from the connection formulas for parabolic

cylinder functions, We will record here only the results.

-1 2 % ﬂ gtn) % et (C)

Via,x) = V(3 mzV2) ~ ”_ T a) () } Bi(n”%) 520 —-4—
4

+ B0 FREINE (4.13)

% =0 n4s
n
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1 2 4
) z.3 3, = cC
Vi) = vt () n2nem - 20 n et ? BvD § Zeln)
T(z-a)e(z) ¥ 50 1
n
4
= D_(z)
3 s
+ Bi' (n°1) =t (4.14)
s£0 n“®

The multi-valued functions are well ¢ ‘ined and the above
expressions valid for z € T(0). T(0) is the unshaded region

in Fig. 5Sb.

As x approaches the right hand transition point 2YTa| or as
z - 1 the factor (—%:?)1/4 z ¢(z) remains well defined and
has a finite value Zt z = 1. However, in a computational
sense, the limit process is ill-conditioned since it is
dependent upon including more and more terms in the series
and the cancellation which must exist between them.
Numerical experiments revealed a preferred direction in
passing through the transition region. The asymptotic
formulas maintain their accuracy longer when the transition
point is approached from the leit. Consequently for z within
a neighborhood of 1,

+8,>1>1~8, =2 where §,,8, > 0,8, > 85, (4.15)

the asymptotic series is evaluated at z  and then contunued
through the transition point region from z~ by a Taylor

series expansion, including seventh-order derivatives.
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5. BEvaluation of W(a,x) and E(a,x)}

As with the U(a,x) and V(a,x) functions, one would like

to use Olver's uniform asymptotic series to evaluate

k;1/2 W(a,*x)or E(a,x) for large magnitudes of a and devise
a recursion scheme, which is dependent on a only, x being
treated as a parameter, to cover the complementary region

of non-asymptotic values of a:

a < =40 or a > 20 Asymptotic Region
(5.1)
-40 £ a £ 20 Complementary Region

We have already outlined such a scheme in section 3 involving
the complex recurrence relations for E(A,x) or D_iA_1/2(xe—“i/4).
For asymptotic values of A, Olver developed series for

~1i/4

E(A,x) or D (xe ) which are uniformly valid with

-ia-1/2
respect to the x variable. For a in the complementary region,
these complex asymptotic series generate values of E(A,x)

and E'(A,x) at A = a - 1Nmax which are subsequently employed

in the recurrence relation (3.14) to obtain E(A+i,x). E(a,x)

is evaluated by raising the index N-1 times using Eg. (3.12)

and E'(a,x) is determined at the end from Eg. (3.13).

The Olver expansions for E(a,x) and W(a,*x) are also derived

from the normal equation
d2w

¥ ey = 0wt t? - 1w (5.2)
at
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in which p and t are complex variables. The following change

of variables transforms (5.2) into the desired form:

-in -1t
set t = ~-iz, n = e 4 u, and y{(n,z) = wine  ,-iz) to obtain

2

-d—-l.} tn,2) = - n*tz2 + 1 yn,2) (5.3)
dz
and X = nz/2, A = - % 2, y(A,x) = y(/~2R, L ) to obtain
2/-R
a2 1.2
X (a,x) = - (3 x° - A) y(Ax). (5.4)
dz

In analogy to Eg, (2.5) we can express E(A,x) in terms of

the principal solution of Eq. (5.4)

A i bl -ni
+ = (¢ + )
E(a,x) =2 e} 2 T suaxe B, (5.5)

where we have made use of Whittaker's notation

U(Alz) = D-A-1/2(z) . (5.6)
When A takes on complex values, (5.4) exhibits no real
transition point characteristics, and the asymptotic series

for E(A,x) can be expressed in terms of elementary functions.

The expansions when Re(A) is negative are [13]
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i
-7 P 2,, = .

2 L 4 n“({E(z)+n/d) = u(-iz)
-in T _glne” ) e -1y8 __S .0
i LS 17T LN T

(224113 ¢ 3 (z2+1) 2
and (5.7)
2 ¢ L I nfui+p P
u'("%"l e Taz/m- "2 glne TatnTe Yet
®  (-1)5v_(-1z)
. S - 3= (5.8)
5=0 5 % n
(z°+1)

The tunctions g(n), E(z) are as defined in the previous
section, and the polynomial coefficients us(t), vs(t) for
5 £ 7 are given in the Appendix, g&e region of validity
of the above expressions is z € e2 S(argu), where argu

varies with N as follows:

argn < % where - % nz =a - iN, a < 0. (5.9)

[«]
A

< argy < g

E]
1

The domain S (argu), with the appropriate branch cuts, is

shown in Fig. 6a.

When Re(A) 2 O, Im(A) # O, the corresponding transformation of

-in/
variables which lead to asymptotic series for U(iA,e in/4 x)

or E(A,x) is
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=S

i
n=e4 v, 2=t

(5.10)
2

x nzYZ, A = % n

The series expanslons in terms of these redefined variables

are [13]
2 i ok - u_(t)
uidh e T jar7)-2ine e ] 18— - (5.1)
2_,.% §=0 2,2 "
(z°-1) (z<=-1)

o -1 -ni 1 2. = 1% v (v ;
i e T nz/D- Mgme 1) (2-n? M E L 55 0 =5
2 =0 n

vz (22-1)2
z=1)
(5.12

where E(z) = % z(22-1)1/2 - % inlz + (22-1)1/2].

The range of the arguments of n and u as a function of N is

(o}
1A

N < o

0 2 argn > _% where % n2=a-4iN,a20 (5.13)

-% 2 argp > _%
The branch cuts that define the multi-valued function £(z)

and form the boundaries of the domain S(argu) are labeled

in Fig. 6b.

Evaluation of the complex function E(A,x) for subsequent

use in the recurrence relations with a complex index is only
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necessary when the energy parameter a lies within the
complementa§¥ region defined in (5.1). When a < -40, the
functions k 2 W(a,¥x) can be evaluated directly from the
components of E(a,x) (A real) using (2.6), (5.5) and (5.7).
W2$n a lies in the positive asymptotic range, a 2 20,

+

k 2 w(a,fx) and their derivatives are computed by Olver's

real uniform asymptotic series in terms of Airy functions:

101 1
7.3 7 2 . A_(z)
Wa,x) = W n?, nz/7~ D "é“) (¢ ; ) ;Bi(-n3c) I )% =
1 =n 2°-1 s=0 n s
25 34
3 5
B (g
+ Bi'(-na z) -8 545 f ) (5.14)
3 =0 n
n
1 % 1 4
2 2 2_ _.3 o c_(r)
W ia,x) = W (D nz/7). T0 i(’z" (2 1)1{5“ LR Y e 2
n 3 s=0
ZeT_ n
4
= ® p_(z)
. 3 s 'S
- Bi'(-n” ) (-)° —=5— z (5.15)
szo n4s )
11 1 .
2 3 . ® A_(z)
Wla,~x) = W} ,-nz/z)~ LY Z_, {Ai(-n_j ) ) ()% S
-1 -mn z“~1 * s=
2 z e 4
4
v a3 @ B_(z)
+ AL’ ( . ) 2 (_)5 sds } ) (5.16)
K] 8= n



1 2 1 4
2 2] ) 3 c_.(g)
W' (a,~x)=W' (% ,—nzﬁ)..." n- £(n) (z 1) i Aj( 714 z) 2 (_)S s =
-mn '3 s=0 n
o ¥ n
4
T o D_(z)
Al -nC ) § (S s z (5.17)
s=0 n
1 m? et -
where W' (a,-x) = 921%;251 and 2(n) = 22 e® & 2 gne *

with ¢(a) = argf(% + ia).

The expressions are valid for z in the region T(-%), where
argu = _% and argn = O (Fig. 6c). The expansion coefficients
AS(C), B, (%), CS(C), Ds(c) are evaluated by recurrence

relations recorded in the previous section.

By truncating the series (5.14) - (5.17) at a finite value
of s, the partial cancellation between consecutive terms
which allows the asymptoiic representations to be evaluated
even at the right transition point, z = 1, cannot occur

as X * Xpp = 2/a. Furthermore, as the turning point is
approached, evaluation of the series for As, Bs, Cs, and

D_ (Eq. (4.12)) becomes ill-conditioned. Near x

s TP
-3m/2 .
in the series e.g. b % B (2)2g-me1' 2re large with

the terms

alternating signs, while the series sums are much smaller
than the individual terms. The round-off error is circum-
vented by employing a Taylor series approximation within
the turning region for a > O as was done in the computation

of U(a,x) and V(a,x) in section 4. Use, however, of the
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Taylor series produces function values at Xqp which are
the least accurate in the entire algorithm (8 vs. 11
significant digits), and clearly a table of values for

A (0), B (0), C_(O), and D (0) would improve the' evaluation.

The asymptotic series for W(a,*x) and W'(a,¥x) (Egqs. (5.14) -
(5.17)) have variable accuracy over the asymptotic region,
as was determined from evaluating the Wronskian and spot-
checking against expansions for large and small x found in
the NBS handbook [1]). The accuracy of calculations performed
with double-precision arithmetic on an IBM 360 and an
UNIVAC 1108, expressed as significant digits, is indicated
in Fig. 7 for the 3 term (s < 2) and 4 term (s < 3)

series. The accuracy increases with increasing x since
112;2 + 0 for s > 1 and 112*25 + 0. At the origin, the
coefficients AS, BS, Cs' Ds-are of order 1, e.qg.

As(t=o) = mzo b2m K?gTad(o)zs_zm, and the asymptotic series,
truncated at the s = jth term, are correct to O[Té;773¢7—4.
In the complementary region (5.1), the algorithm using

s = 6 in Egs. (5.7), (5.8), (5.11) and (5.12), e.g. series
include terms up to ue and~v6, and 3 = 2 in the series for

g(n)-1, Eg. (4.6), generates greater than single precision

values of E(a,x) or equivalently k+1/2 W(a,¥x), i.e. 11 - 14
significant digits. For a > 0 and x < Xppr Dumerical
difficulties exist in determining the imaginary part of

E(a,x). The difficulties arise from the disparity in size
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between the real and imaginary components of E(a,x) (see’

Fig. 1e),
_%
Re E(a,x) _ k© W(a,x) . ma
Im E(a,x) = 1 ‘ 2¢’" a>0 0Z2x 3 xp.
k’ wW(a,-x)

In the last step of the recurrence process, two numbers

with the same order of magnitude as Re E(a,x) are substracted
to determine Im E(a,x). If the calculations are performed

in double precision, the use of the complex recurrence
relations must be restricted to a < 3.5 in order to guarantee

single precision values of Im E(a,x).

There are a number of ways to circumvent this pxnblen.
One is to recur on E(A,-x) instead of E(A,x) for small
positive x., A more efficient solution is to employ the
complex recurrence relations in the exponential region,

0 £ x £ 2/a, to obtain just the dominant real component

=1/2 W'(a,-x) _
W' (a,x). The ratio wWa, = - Y

can be evalunated from Miller's [11] non-linear differentiation

x~1/2 W(a,x) and k

equation for the derivative log function,

8y 4+ 2 2 _,=
ax +y°+1/4 x a=0

3 1
Itz + = ia)
_wia0 _ 12 |53 |
here Yo TWTer T MU TATI |

using fourth-order Runge-Kutta integration with stepsizes <

0.005. From the Wronskian relation
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wia,x) T‘F(;_?% - W (a,x) = m':l’—_-i-y

one can solve for W(a,-x) and subsequently W'(a,-x) in a

numerically stable fashion.

The computational methods to evaluate at least single-

precision values (11 - 14 significant digits) of the parabolic

F1/2

cylinder functions k W(a,¥x) and their derivatives are

summarized in Fig. 8, Within the exponential region

-1/2

0 < x < 2/a, for 1 < a < 20 only the functions k W(a,x)

-1/2w'(a,x) are obtained from the complex recurrence

1/2

and k
relations for E(A,x). The imaginary components k W(a,-x)

+1/2

and k W' (a,-x) are disgarded and determined instead from

Miller's derivative-log method discussed above. The number
of steps needed for the recursion relations as a function
of a and x is recorded in Table I. For small |a| and large x,

i.e. x2 >> 4a, a region in which k;1/2

W(a,¥x) are
oscillating functions, the values have been checked against

the Miller's modulus-phase expressions [11,1]:

1/2 ix

k-1/2 W(a,x) + ik wW(a,-x) = Fe

1/2

k-il/2 W'{a,x) + ik W'(a,~x) = -Geiw'

For O < |a| £ 4, x > 200, Olver's exponential expansions,
Egs, (5.7 - 8) and Egs. (5.11 - 12) with N 5 2 agree with

Miller's expressions to at least 11 significant digits.
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Such an agreement is surprising considering that Olver's
representations are supposing valid for asymptotic values

of |al.
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a) U(a,x) and V(a,x) for a=-2.5 and
b) U(a,x) and U(a,-x) for a=2.5.
Coefficient function (1/4 x2 + a) is
indicated by dotted lines. W(a,x) and
W(a,~x) for ¢) a = -1 and d) a = 1.
Coefficient function (a - 1/4 x2) is
indicated by dottad lines.

e} Components of complex function
Ef(a,x) for a = 1



-5} =

Ula,x)Via,x)

¢ Vigx ]
Requwr Wlax)

Jves  ? /Via,)
i 3J /
/ 2_1 //

|2 et

/_\ ’\\U(P'” .

T 2 3 4 5 o
.y Recur Ula,x)

Fig. 2. U{a,x) and V(a,x) as function of a.

v-pions

Imbs}

[Recwr Ulos) Fecwr Viox)

20, -2 pr.g.2 P ]
. 4 .._...................:.5.,
MO -5 S W 5 20 2% 30 ¥ 4

falv)
[alaa L)

[ e — L ) Ral»)

-Hmox-v2,-al 4
-a

Fig. 3. Typical paths for recurrence index in evaluation of a) uU{a,x),
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V= =ik - -]2'-= -ifa-iN) - % for -40 < a < 20.
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Fig. 4. Computational methods to evaluate U{a,x) and v(a,x) and their
derivatives.
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z-plane  a>o
+11

eZ 5(Z)Domain

(a}

z-plane, a<o
T{o) Domain

A

! (b)

Fig. 5. Domain of asymptotic éexpansions for a) U(% nz, nzv2) where
1

3 n2 = a and b) U(~ %nz, nzv2) and V(- % nz, nzv2) where % n2

= -a.
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Table I

Recurrence Index N for E(A, x)a, A=a-1iN

a X N
-40 < a< 20 0sxs 2 60
20 € x < 100 10
-40 < a< 4 100 < x < 200 10
-2 <% ax<2 200 < x 5 500 4

a E(A,x) is evaluated from Eq. (5.7) for a < o and Eq. (5.11)
for a > o, using s=6.g(n) is determined from Eq. (4.6) with
j = 2.
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TABLE 11X

EXPANSION COCFFICIENTS FOR THF POLYNOFMJIAL FUNCTIONS US AND VS

s [

~
PND W

»~
SR ANG VWV

o

PN BaLONNIN=
[CxT

us (k)

-»250000000000000000+00
2 436666666666666666-01

«T25L6B055555555556¢ DO
«216145823333333333400
~e781249999999999990-02

=+625217013EELEEBL20+00
-e3665002E9351E51852400
~e682074652777777761-01

wd3B5E5060U44hkh435-01
=9 766334 E7654320964-02

«320082672747C743312400
«307946129316165124401
«127943288544077922+01
~e 3892 736066640%46E2-02
~e80711E356962734552-D2
+182T4377E9251851E1-02

~e50E4 62B339E5279694401
-t TETES9950333792E4402
~e55871591324€¢EES30+D1
«6E2E549258222260414D0
=a56273LEI000DEE79VE4DD
«2952¢42¢0712247P40+00
-e923FPL621TELES120LE-01
«1231FLE29DL510E278-01

«25L1942P65065753524D1
«626E520£9202154957402
+121717946CL2006520403
2554 96279F12E26809+02
~e31P6e68406760671L7400
«8€0147352945¢10765-D01
=.507653B0ES7T749610-01
171236062690 23699~01
~223D¢71554459576021-02

~oBGSTLIEGH720727198 402
- T461921€6747727207R402
- 925FL5120272627E77402
= T4BEL264579ESE2955402
=e10762440¢022523501¢02

«12GF L3EETP2€4L04L5402
-2 998439454 LQ4LD5155401

522 74F23635E745350401
=+ TFESL9R23777¢CECLIE430T

«3G7140E063355004 57400
~e37£245339177055¢73-01

vs(K)

«25000000000G00OC000400
ek 1666666066656666¢-01
= 12413184444444 4444400
~a253B8541€6L6C6666674(00
«13020£232332321323-41

«62521TOVIEEREEEERT4LC
«S7490556064E14E 140D
—-aB?PIETISR777777755-01
«4BESESDEDLLLLLLLIS (T
-~ QTLOIILETLS54220964-02

~e3043602E41E1455734C0
~e23TLIELI1OC9LG4L5YEELT
—e TALIESEI2T1T2C1 2641401
~e351€7820C550683495-02

«13ES5ECESS025¢E4E7¢2-C
-+3045726L 80192530202

oSDELOR2ETTIBETTOLGL T
2GS PILTHEIOCE252T24(2
eS52C4EE2P72579852224¢1
«STZCEZLETLIIGEN2 bl
~eS6L2LCE7T1707227522470
«X02E32E551LE727465%4(0
-eP22EiEC2178 20302001
#12FIFLER2CT4 5108278 -0

e 2502¢ELLTATEELAIAT140
~e 64t 73700517¢7E4C 02
=e12970034237157104L +(3
—e25175S5E40F 1560225402
w&ICOEE2571122¢ 2212400
-2 16DE5249 1842254458 9(0
«C0ITI7CS 13U PG4TI~
~e290€2920¢C202C T 0201
«3e45525902065583:¢v-02

«PEST2V1EGLT2C737500 402
S 77505056 LDT4e255%¢ 403
wRBL122F €5t 17elPrte 4T
s17R72E3LC27130451%402
~a132402¢50774466444(4L7
«1310222804726813101402
=~ TOG74544 4L (7257977402
$S3LTH1ZETITIP4ELEST 401
e TEETOLLLELCH6I0TSD0640Y
«1Q7V4CE0ETILOLELS74LD
-eI7K220230177055¢72-01
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Table IIIX

Expansion Coefficients for the Function g(n)"1

s 925+1

o) 0.416666666666666666-01
1 - 0.974633487654320964-02
2 0.123184829045108278-01

3 - 0.378229339177055673-01
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APPENDIX

EVALUATION OF COEFFICIENTS FOR ASYMPTOTIC REPRESENTATIONS

OF WEBER'S PARABOLIC CYLINDER FUNCTIONS

The coefficient functions ug and Vg in the asymptotic series
representation of U(a,x) for a > O and E(A,x) for complex A

are either totally even or odd polynomials of maximum degree 3s.
We shall denote the argument of ug and vg generally by t

and evaluate them by a set of recurrence formulas [13].

The recurrence formula for us(t) given in (4.8) is

(€2-nul(e) = 3stu () = r__, (t) a.1)
where

Brg(t) = (t2+2)u () - 12(s+Dtrg_ (1) + 4(t3-1)r)_ (1)

and u,(t) = 1.

The functions rs(t) are determined first from eguation (A.2)
and then substituted into (A.1). Since the coefficient
functions us(t) are polynomials of degree 3s, they can be
derived from equation (A.1) by matching powers of t. For

s even, the coefficients of the leading term 25 in ug (t)

are 2zero.

Once us(t) and rs(t) are known, the coefficient flnction

vs(t) is evaluated from the relation

Ve (t) = ug(t) + 3 tug_ (B)=r__,(¢) (a.3)
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where vo(t) =1,

Olver provided the functions us(t) and vs(t) for s = 0,1,2,3.

In order to increase the accuracy of the asymptotic series
for moderate values of a, at least two more terms should
be included. In Table II we have recorded the coefficients
for the polynomials for s = 1,2 ... 7, obtained from our

program solving (A.1) - (A.3).
The constants g, appearing in (4.6) are defined to be

ug (t)
95 = lim 2 3/2 s °
Jt]+e (t™-1)

Hence 95 = O and 925+1 is the coefficient of the leading

power t65+3 in U2$+1(t) and can be obtained from Table II.
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PIECEWISE ANALYTIC SOLUTION OF SECOND ORDER
LINEAR BOUNDARY VALUE PROBLEMS
USING WEBER PARABOLIC CYLINDER FUNCTIONS*
Randall B. Shirts'
Roy G. Gordomn
and
Sergio Bienstock
Department of Chemistry

Harvard University
Cambridge, Mass. 02138

Abstract

We present a method for obtaining accurate piecewise analytic
solutions of a general second order linear differential equation in-
cluding both first and second derivatives and a small inhomogeneous
term. The method approximates the coefficient functions by piecewise
linear functions and transforms the equation into Weber's equation in
each sub-interval. Algorithms for evaluation of Weber parabolic
cylinder functions are then employed to give analytic expressions for
the solution in each sub-interval. Error analysis and application to
a test problem with known solution show the error to be of fourth order
in the sub-interval size and of at least sixth order when a first order

perturbation term is included.

* Supported by a grant from the National Science Foundation
+ Present Address: Joint Institute for Laboratory Astrophysics, University
of Colorado, Boulder, Colo. 8030%
AMS(MOS) subject classification number: 65L10 primary
34A50 secondary
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I. Introduction -62-

Many problems in applied mathematics can be reduced to solving

the second-order linear boundary value problem

y"' + £(x)y' + g(x)y = h(x) in (a,b),

with general mixed boundary conditions

Loy P@ es,y00en <y 12
J-

The problem (1) is most commonly solved by the method of finite
differences, the solution being obtained at a relatively large number
of mesh points in (a,b).

Another method is to approximate the coefficient functions f, g,
and h by suitable approximants in a series of N sub-intervals given by
the partition 7 = {a = X €xy < .., < = b} where the sub-
intervals are (xn,xn+l). n=1,2, .. .N Pruess1 has shown that if
|m] is the maximum sub-interval size, and £, g, and h are approxi-
mated by a m-th order polynomial by interpolating at the roots of the
(m + 1)st degree Legendre polynomial transformed to (xn, xn+1], then
the error in y is of order ]w]zm+2 for |n| sufficiently small. For
m = 0, the basis solutions are exponential and trigounometric functions.
For m > 0, the basis solutions are special functions which are less
readily evaluaied. In this work, we show that piecewise analytical
solution of (1) for the case of m = 1 can be readily accomplished
and does, in fact, give errors of fourth order. We also demonstrate

that corrections can easily be added to the zeroth order solution

vwhich yield errors of at least sixth order.
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Several authors have treated problems less general than (1).

The most commonly studied case is the radial Schroedinger equation in
which f(x} = h{x) = @. Gordonz’3 first investigated this case and
subsequently obtained accurate solutions for m = 1 in which Airy
functions are the basis solutions. Other authors have developed the
theory for perturbation corrections to the zeroth order solution for
m = 0.4'8 Luthey9 has developed the computational methods for the
m = 2 case, including algorithms for evaluation of the Weber para-
bolic cylinder functions. In this work, we will transform (1} into a
problem closely related to the m = 2 case of the radial Schroedinger
equation and then use Weber parabolic cylinder functions as the basis
solutions.

We emphasize the piecewise analytic character of the solutions
we obtain. After solution, one has an analytic representation of y
for the entire interval which is continuous and has a continuous
first derivative. This analytic character has important advantages
over a finite difference solution in which one has only numerical
values of y at a series of mesh points. The solution has a closed
form expression in each sub-interval which may be differentiated, inte-
grated, or evaluated at arbitrary points within the sub-interval. Iun
addition, because of the high order of the errors, one can use con-
siderably fewer sub-intervals than in other numerical methods. In
such a case, the approximate solution is completely specified by a
small number of parameters.

In Section II we will formally present the method of solution.
Section IIT will consist of a brief error analysis. Section IV will

apply the method to a problem with a known solution. Section V will

discuss the advantages of the method and summarize our conclusions.
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II. Formal Presentation of the Method

Given the partition 7 of (a,b) into sub-intervals of arbitrary,
not necessarily uniform length, we interpolate the functions f and g
(assumed to be real valued) in each sub-interval by linear interpolants
f and E at the zeros of the second degree Legendre polynomial trans-
formed to that sub-interval. This procedure is equivalent to linear
least squares approximation up to fourth order in the interval size.

The difference functions £ and €, are defined in each sub-interval by:

fEf*el,and gEg+ez, i=12,.,..N

The canonical method for analytic solution of equations with
£ # 0 is to transform the equation into normal form in which the first
derivative term is absent. Since we approximate the coefficient func-
tion £ by a linear function, we transform the equation by the change of

dependent variable as if £ were exactly equal to £, i.e,

y = u exp(- % :‘:'\dx)

after which (1) can be rewritten in the form

2 a, . -
u" - u(%—*» % ~g)=h exp(%_ff dx) - Au‘t:1 + Xu(gel - &)

where we have added the factor X on the right hand side as a pertur-
bation parameter which will be taken to be unity. Since f is linear,
the coefficient of u on the left hand side of (5) is quadratic. A

linear change of independent variable can be used to transform (5) to

the first standard form of Weber's equation:

~

2 2 -
g—% - u(%—*- a) = h(z) - Au'elr'l

-2,f
+ hur “{z€, - £,)
dz 271 2
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vhere z = r(x - %{xi + xi+1)) + s, ﬁ(z(x)) = hr'zexp(%]r? dx'), and r,

1, and xo on the

s, and a are determined by the coefficients of xz, x
left hand side of (5).

We can now expand u in perturbation series in A:

Oy 4+ AWMy 32 Ayy |,

M u =

For f and g sufficiently smooth, such series will always converge in
some radius of convergence in A which we assume to be greater than
unity. Substituting (7) into (6) and separating in equations in each

power of A gives the following hierarchy of equations:

2 ~
(O)un - (0)u(2_4_ + a) = h(z),

@
Wy _ @)y 2
u' - u(TT'+ a) = Fi(z), i=1,2...
where Fi(z) = (l'l)ur-z(%gel - 52) - (i_l)u’r—]el. Standard variation
of constants or Green's function techniques yield the following expres-
sions for the solutions:
% .
Ouez) = uGa, )[4y - +f hzV(a,2')ea'] +
1 5+
V(a,z)[By + - [ h(z')U(a,z")dz"]
(&)}

. z
1
Wutz) = v, 2) 1A, - L[ daz'v@zF ] +
1 2
V(a,z)[ui + ;J‘ dz'U(a,z")F,;(z")],
where U and V are Weber parabolic cylinder functions and w is their

Wronskian. The integrals in which h appears are evaluated by two point

Gauss-Legendre quadrature, which is equivalent to approximating h by a
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linear function at the transformed zeros of the second degree Legendre
polynomial. The integrals in the higher order solutions can be evalu-
ated by higher order quadratures, or it is possible to evaluate them
analytically in terms of the integrals f[ABz'dz (A,B = U, V, U', or V')
for which indefinite integrals can be evaluated.10

It is necessary to link up the solutions in each sub-interval in
such a way that the global solution and its first derivative are con-
tinuous and the boundary condition (2) is satisfied. This is done by
adjusting the constants Ai and Bi in eack sub-interval. We set A and
Bi equal to zero for i » 1 by fixing the lower limit of integration in
(9) at X The most officient method to determine the 2N remaining con-
stants A, and By is tc set up a 2-vector of independent solutions at a
and use a shooting method to propag.ce each component of the vector
from sub-interval to sub-interval, making each component and its deriva-
tive continuous at the mesh points. This linking requires the solution
of a 2 x 2 system of linear equations at each of the N - 1 interior
mesh points. When this is complete, a linear combination of the com-
ponent solutions can be found to satisfy the boundary condition (2).

In some instances, it is convenient or necessary to propagate
the vector of solutions from b to a rather than the reverse. This is
done simply by resetting the lower limit of integrations in (9) at

X rather than X,

n+l
We will investigate the accuracy of the solutions obtained by

truncating the perturbation series {7) after the first and second term.

The solution with one term of Eq. (7) we call the zeroth order solution.

We call the second term the first order correction.
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I1I1. Error Analysis

In this discussion, we define the error to be the maximum abso-
lute deviation from the correct result among a set of points, i.e. the
supremum or L norm of these deviatious. The order of error for an
approximate solution we define to be tuc first power in the sub-interval
size which is neglected. For the zeroth order solution, the error can
be most easily estimated from the order of the first order correction.

In each sub-interval, this correction consists of a sum of integrals

Xne1
f ABE(x)dx,
X

of the form:

wiiere A and B are either U(a,s + r(x - %(xn + xn+1))) or V(a,s + r x
x - %(xn + xn+1))) or their derivatives, and £(x) is a function which
has zeros at the zeros of the transformed second degree Legendre poly-
nomial. It is well known11 that the error in k-point Gauss-Legendre
integration is proportional to (xn+1 - xn)2k+1. and for k = 2, the
quadrature sum for (10) vanishes exactly since the Gaussian pivots are
precisely the zeros of the integrand. Thus the integrals must be of

order at least (x - xn)s. Errors of the fifth order in each sub-

n+l
integral give rise to global errors of fourth order. We conclude that
the zeroth order solution in (9) has errors of fourth order. Expanding
the functions in Taylor series about the midpoint of the interval
yields precisely the same result. Pruess has shown that this fourth
order accuracy is the maximum attainable order of accuracy for linear

approximations of the coefficient functions.1 We have demonstrated a

method to construct a piecewise analytic solution with this maximum
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attainable accuracy. This analysis is only applicable to the error at

the mesh points X, In practice we observe errors of fourth order at
non-mesh points as well, although we can theovetically justify errors
of only third order by our simple analysis. We ohserve errors of
fourth order in the derivative of the solution at mesh points, but
errors of second order in the derivative at non-mesh points.

The order of approximation of the first order corrected solution
is estimated by examination of the second perturbation corrections.

These consist of integrals of the form

Xne1
f ae) Bumax.

X
n

The function (I)u(x) is of order (xn - xn)3 for linearly inter-

+1
polated coefficient functions since it consists of integrals over an
interval range of order (xn+1 - xn) each with an integrand of order
(xn’l - xn)z. Integrals of the form (11) were siiown above to be of
1)

u(x) multiplier is o2 oraer

5 <
" xn) , but since the

order (x
n
(xn’l - xn)s, the net order of the integrals for sufficiently small

- X )B. This gives rise to global errors of

sab-intervals is (xn+1 n

seventh order. In practice, we observe errors of at least sixth order
in function value and function derivative at both grid points and non-
grid points. We are umable to distinguish between sixth and higher
order errors numerically due to “ack of precision in evaluating Weber

parabolic cylinder functions.
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IV. Application

We take as an example the following problem treated by Pruesslz

¥ _ix_{yv . 22 y=0 in (0,1/2),
1+x 1+x

y'(0) = 0; y(1/2) = 8000,

which has the known solution y = 104/(1 + xz).

We used sub-intervals of equal length for computational convenience
and for comparison with the results of Ref. 1. The calculation was per-
formed in double precision on the departmental PDP 11-45. Table 1
lists the relative ervor |7y - y.)/yl and |(y' - y';)/y'| where y;
is an approximate solution and primes denote derivatives. In this cal-
calation, first order corrections were evaluated by four point Gauss-
Legendre quadrature. We note that the relative error in our calculation
is limited by the precision to which our present routines evaluate the
Weber parabolic cylinder functions. This precision is approximately
8.E-7 for U and V functions and 4.E-6 for their derivatives. This
precision can easily be improved, but has not yet been implemented in
our present program versions. To within this tolerance, our zercth
order function errors agree with those of Pruess. The impertant feature
of Table 1 is that the error in the first order corrected solution is
three orders of magnitude less than the zero order solution without sub-
division of the interval (0,1/2). Even the derivative is accurate to
five figures. It was necessary to ‘extend the interval to (0,1) in order

to estimate the order of errors in this case.
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V. Discussion and Conclusion

The use of piecewise analytic methods for m 3 7 req:ires the
evaluation of special functions which are slower than simple exponential
or trigonometric functions. The zeroth order solution can be constructed
in N subdntervals with only 2N function evaluatiomns of the Weber para-
bolic cylinder functions and their derivatives. The difficulty of com-
puting special functions is offset in many cases by the higher order of
error of this method, which requires significantly fewer sub-intervals.

In practice, the most efficient choice of partition is not equal
length sub-intervals. The most useful criterion that we have devised is
to require that the first order perturbation correucicn in each sub-
interval be of equal magnitude relative to the zeroth order solution.
This criterion allows the mesh to be adjusted for equal relative error
per sub-interval at the time of propagation of the solution vector as
discussed in Sec. II. This criterion has been successfully used by
the authors in applications to the radial Schroedinger equation, chemi-
cal kinetics, ard charge transport in semiconduct-

It should be understood that there is nothing which prevents the
apprcxisation of g by a piecewise quadratic function. In general, this
might require the use of the second standard form of Weber's equation
with basis solutions W(a, +x). Although we have algorithms9 for evalua-
tion of these functions, they :re considerably slower than those for the
functions U and V. Furthermore, such 2 quadratic approximation to g
would not increase the order of accuracy. Such a method might be suc-
cessful ouly when g dominates f sufficiently.

Some uneasiness sometimes arises over the fact that the piecewise

~ -
linear approximants f and g are discontinuous at the mesh points Xn-
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These discontinuities result only in a discontinuous second derivative

of y. Such a discontinuity is seldom important in second order dife.
ferential equations.

In some instances when the slope of f vanishes in a sub-irnterval,
Eq. (6) reduces to the Airy equation. The use of Airy basis solutions
does not effect the order of accuracy of the solution. If, in addition,
the slope of g vanishes in the same sub-interval, then Eq. (6) has
exponential and trigonometric solutions. These occurrences are usually
only special cases which happen rarely and do not affect the globzal
absolute crror appreciably.

Although the analysis we have presented has been concerned only
with the univariate case, e.g. onc equation (or set of uncoupled equa-
tions), the generalization to M coupled equations is straightforward.
Much of the theoretical and error analysis has been completed by Luthey9
and Smooke.7 In the multivariate case, the amount of computation goes
up as Ms. Since the number of Neber or Airy function evaluations neces-
sary is proportional to NM, the frac:ion of computer time spent doing
function evaluations becomes negligible for large M. In such a case,

a higher order solution such as we have presented becomes much more
desirable.

We have demonstrated a method of solving approximately the second
order linear boundary value problem using piecewise analytic solutions
in terms of Weber parabolic cylinder functions. We have demonstrated
by brief error analysis and nume: ‘cal example that the zeroth order
solution is of fourth order in the step size,and the first order cor-
rected solution is of at least sixth order. We belleve that in many
applications the present method 1. more efficient than other methods

for comparable accuracy. We also feel that the amalytic character of
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our solution gives it advantages not possessed by fully numerical
solution methods, in that the solution can be evaluated at arbitrary
points by closed form expression and is completely specified vy a

small number of parameters.
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Teble 1
arror In £ od for pi ise anslytic to the known solution

of Bq. (12). Mumbers in pareatheses sre limited by the precision of Weber function evalustion.

In] = 12 1/4 s 116
Prusss (Ref. 1) 1.012-3 4.422-5 2.59E-6 1.60E-7
1610 order function 1.01E-3 4.46B-5 (3.14B-6) (7.,28.7)
zero order derivative 2.028-2 S.98E-3 1.57E-3 4.D1E-4
tero order derivative
(at mesh points only) 6.0 -5 4.76E-5 (2.43E-6) {2.37E-6)
first order functicn 2.238-6 (3.41E-7) (5.50E-7) {6.12E-7)

first order derivative 3.40-5 (2.16E-6) {2.88E-6) {3.78E-5)
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QCOL/MK2: AN ACCELERATED GORDON
ALGORITHM FOR INELASTIC COLLISIONS*

Millard H. Alexander
Department of Chemistry
University of Maryland
Cocllege Park., MD 20742
The usual quantum formulation of inelastic molecular
collisions at low energy leads to a set of coupled second- *

order ordinary differential equations, commonly called the

close-coupled (CC) equations. In matrix notation these are

L+ k" - V(R)Ju(r) =0, (1)

where i is the unit matrix, §2 is the diagonal wavevector matrix
and Z(R) is the Hermitian matrix of the coupling potential plus
the centrifugal barrier. Gordon has developedl_3 a widely~used
program for the efficient numerical solution of these equations,
which is based on propagating the solution matrix u(R) outward
through a series of intervals. Within each interval this matrix
is subjected to an orthogonal rotation, gm’ which is chosen to
diagonalize the sum of the wavevector and potential matrices,

Ez - Z(R), at the midpoint of the interval, Rm.

Expanding the transformed potential matrix in a power series

about Rm' one can write the transformed CC equatiocns as

* Research supported by the Computer Science Center, University
of Maryland; the National Science Foundation, grant CHE78-08729;
and by the National Resouirce for Computation in Chemistyy under

a grant from the National Science Foundation and the Basic Energy
ficiences Division of the United States Department of Energy under
Contract No. W-7405-ENG-48.
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B
()

2 =
[ 1+ é - g(R-Rm) - %g(R—Rm) + ... gm(R) =0, (2)

\§)

dR

where ) is the (diagonal) transform of 52 - VA(R)
- V(R)IE (3)

and and H are, respectively the transforms of the first and

({4

second derivatives of V(R), evaluated at R_. namely

I
€7 & @ L™ & )
and
H=ct [-d—z-- V(R)], C (5)
= =m ar = Rm =m

By neglecting the off-diagonal elements of g, the entire 2
matrix, and higher derivatives of Z(R), these equations can
be uncoupled and the (diagonal) solution matrix expressed in
terms of Airy functions. This is eguivalent to replacing the

transformed potential matrix by a diagonal, piecewise linear

matrix. For the nth channel one has
- m _ s .
W) pnt = SpneVa(R) = A Alla, (R+B )1+B Bila (R+8 )] (6)
_ 1/3
where a = (Gnn) and
N 7
n n 24 "nn'm nn m

where Am is the width of the mth interval. The term containing

Hnn is added to provide an optimal piecewise linear potential.z'4
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The coefficients An and Bn are determined by solution-
matching at the boundary of the previous interval. Prior to
this matching, the solutions in the previous interval must be

backtransformed into the original hLasis and subsequently trans-
formed into the basis which diagonalizes Ez - Z(Rm). This step
involves multiplication by the interval-to-interval transfor-

mation matrix, Em’ where
cr (8)
For N coupled equations propagation across a given interval

will require, in the limit of large N, approximately t6%)N3

multiplications, reflecting the following matrix operations

i) % N3 reduction of E? - Z(Rm) to tridiagonal form
ii) N3 backtransformation of eigenvectors of tri-
diagonal matrix to obtain Cn
iii) N3 formation of transformation matrix Tn
iv) % N3 unitary transformation of derivative matrix
[Eq. (4)]
v) ZN3 multiplication of solution matrix in previous

interval, Y1’ and its derivative by trans-

formation matrix T _[Eg.(8)].

=m
At nearby collision energies,2~or, in the case of any

"average~2" decoupling approximation, at other valaes of the

5 . .
6 the same transformation matrices

can be used. Propagation across the mth intervzl then necessi-

orbital angular momentum £,

tates only the 2N3 multiplications corresponding to step (v).

In established versions of the Gordon program,3 the initial

propagation across each interval is accompanied by the determina~
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tion of the first-order perturbation corrections to the solution
matrix, gm(R) arising from the neglected off-diagonal terms in
the transformed first-derivative matrix, g [Eq. (4)}, and diagonal
terms in the second-derivative matrix, g {Eq. (5)]). The largest
of the diagonal and offdiagonal corrections, CDIAG and COFF,
are then used to choose the size of the next interval.

The actual determination of these perturbation corrections
suffers from the following drawbacks:

i) Considerable computational effort and a significant
fraction of the total object code is devcted solely to this
somewhat minor aspect of the overall calculation. Additionally,
mathematical instabilities can arise in certain applications.7

ii) Although the addition of these perturbation corrections
should in principle render the "first-order" solutions more ac-
curate than the "zeroth-order" solutions, in our experience tiie
improvement is small, perhaps because of the approximations
which are made in the evaluation of the crucial off-diagonal
corrections.l’2

iii) For most problems it is desirable to carry out sub-
sequent solutions of the CC equations using the already deter-
mined transformation matrices. The interval width must then
by necessity be small enough to ensure sufficient accuracy not
only in the first-order but also in the zeroth-order solutions.

For these reasons we have modified the original Gordon
program to eliminate the determination of the first-order cor-
rections. The relative magnitudes of the neglected off-diagonal

and diagonal corrections, which are used to determine the next
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step size, can still be adequately estimated by integrating the

neglected terms in the G and H matrices over the interval in

guestion, in a manner similar in spirit to Gordon's work.l’2
Specifically, since
Rm+Am/2
f (r-R ) 2aR = 23/12 (9)
m m ’
Rm-Am/Z

the average integrated magnitude of the diagonal elements of

the second-derivative terms in Eg. {2) is

3 N
A
H =_E_ZIH

av ~ 24N (10

K.

A comparison of this quantity with the average magnitude of the
eigenvalues Aq, will now provide a value for CDIAG, the estimate
of the effect of the neglected diagonal second derivative terms.

We thus have

3
A
_ m
CDIAG = Wn—l— rzl IHnn[ (11)
where the matrix norm in the denominator is defined by8
N
Ity = I Iad (12)
n=1

and is equal tc N times the average eigenvalue magnitude.
Ssimilarly, a value for the parameter COFF, which is a

measure of the effect of the neglected off-diagonal terms in
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G can be obtained by comparing to Hl"l the integrated magnitude

of the largest (in magnitude) off-diagonal element of G. Since

- %n”m/z
[ le-rar = a2/, (13)
R -4 /2
we find
N2
COFF = 3—-“'%"1— max (lc;ijl)i#j . (14)

To incorporate the above changes we have made the following
modifications in the original Gordon program:

i) Propagation across a given interval, even for the
initial energy, is achieved by the subroutine SPROP. The
lengthy subroutines STEP,. DPROP, and FLAT are eliminated.

ii) The algorithm for determination of the width of the

next interval, 4 is unchanged with the exception that the

m+1’
key input parameters CDIAG and COFF are now determined from
Eqs. {11} and (14).

In addition we have made one other modification:

iii) In the subroutine DTRANS, which performs the trans-
formation of Eq.(4), the option which allows additional trans-
formations in the case of nearly degenerate eigenvalues was
eliminated. In practice we have found this option to provide
little gain in accuracy or speed and, in some cases, to con-

tribute possibly to instabilities in the propagated solution

matrix.
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on the UNIVAC 1102 at the University of Maryland these
modifications yieided savings of ~41C0 words of object code
az well as N2+20N words of required data storage. The modified
program, designated QCOL/MK2, was tested both on the Lester-

- f et 9
Bernstein model atom-rigid rotor collision system,” and on the

0

The

vollision of two HF molecules at E,_,=8000 cm ' and J=400.%

to
former calculatioas were performed on the UNIVAC 1108 at Maryland
and the latter on the CDC 7600 at LBL. In both cases the use of
Egs. (11) and (14) resulted in a distribution of interval widths
very similar to that predicted by the error criteria in the original
Gordon program. Table I displays some representative times for
detcvmination of an S-matrix at one value of the total a.gular mo-
mentum.

Figure 1 displays the convergence of the root-mean-square
error of the inelastic and elastic transition probabilities as a

function of CPU time for the Lester-Pernstein model problem at

a 9-channel level. The error quantities are

PPV L (15)

A =[] a5, .
elas ) 3L, 3

for the elastic transitions and

2 5
A, = AL . 72
inel [};j' jL,3'e /72] . (16)
L#L"
for the inelastic transitions. Here Ajl jre is the absolute
’

deviation of the calculated transition probability lsgn j'z"z
7
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from the exact value, taken from Stechel, Walker, and Light.11

Each plotted point corresponds to a different choice of input
parameters.

If one desires only moderate accuracy, it is obvious that
the present modifications offer a substantial decrease in CPU
time, especially for the crucial initial energy calculation. The
degree of convergence of both the original ezad modified Gordon al-
gorithms appears to be substantially similar. The larger scatter
in the QCOL/MK2 generated points in Figs. 1 and 2 at longer CPU
times (high accuracy) probably reflects the fact that Egs. (1l1)
and (14) are only estimates of the error and thus are ultimately
less accurate for the prediction of step sizes.than the actual
corrections to the propagated solution, which are determined in
the original Gordon code. We are presently working on the develop-
ment of alternate procedures for the even more accurate prediction
of step sizes.

In summary, we have developed a simple modification of the
original Gordon program which can result in a substantial saving in
computer time. The new QCOL/MK2 code should ke best suited to the

rapid generation of S-matrices of moderate accuracy.
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Fig. 1. Plot of the root-mean-square error [Egs. (15) and (16)]
for the Lester-Bernste.n model problem (9-channels) as
a function of CPU time (UNIVAC 1108). The left and
right panels refer, recspectively, to initial and
subsequent energy calculations. For clarity the
inelastic points have been displaced downward one
decade. Consequently, the magnitude of the error in
the elastic probabilities should be read from the left
ordinate; the magnitude of the arror in the inelastic
probabilities, from the right ordinate.
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Table I. Representative CPU times (seconds) for determination

of an S-matrix.

N initial energy subsequent
channels energy
QCOL QCOL/MK2

UNIVAC 11082

) 7.0 3.6 1.5
16 24.6 11.6 4.2
20 39.8 19.5 6.6
25 74.6 32.1 10.4

coc 7600°
10 0.51 Q.36 0,11
17 1.5 1.0 0.25
28 4.8 3.0 0.71
44 13.2 8.9 2.0
72 53,5 34.5 8."

a) Lester-Bernstein model, Ref. 9.

b) Rotationally inelastic collision between two HF molecules, Ref..".
For most meaningful comparison with atom-diatom calculations the
values shown are exclusive of times required for computation of
the more complex diatom-diatom coupling potential.
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THE LOG DERIVATIVE AND RENORMALIZED
NUMZROV ALGORITHMS

B, R. Johnson
Chemistry and Physics Laboratory
The Ivan A. Getting Laboratories

THE AEROSPACE CORPORATION
El Segundo, Calif., 90245

The Log-Derivative and Renormalized Numerov Algorithms

L. Introduction

Two algorithms for solving the coupled channel differential equations which arise
in atomic and molecular scattering theory will be presented. They are the log-derivative
methcdl’2 and the renormalized Numerov method.z’s Both these elgorithms share the
following desirable properties: They are simple and easy to implement, no special
difficulties are encountered with closed channels, the step size can be easily changed and
no linear dependence or overflow difficulties arise when propagating the solution though
classically forbidden regions.

The log-derivative method will be discussed first, then the renormalized Numerov
method and finally a model ealeulation using both these algorithms will be discussed and

features of the two methods compared.

1L Log-Derivative Method

The "coupled-channel Schroedinger equation” is most conveniently written in the
following matrix differential equation form:
p &

d——a)'— + Q()f)jl‘l’(x) =0 (1)
x2

where

Q) = (24/42) [Ei - vx]. (2)



Here, ! is the unit matrix, 4 is the reduced mass, V(x) is the symmetric potential matrix
which hes the centrifugal potential and the diagonal threshold energy terms included in it
and E is the total energy. The wave function W(x) is a square-matrix function of x.

The log-derivative matrix is defined to be
v = w0 v e, (3)

where the prime means differentiation with respect to x. Differentiating Eq. (3) and
using Eq. (1) to eliminate the second derivative term, we obtain the matrix Rieatti

equation
7 + Qx) + y2x) = 0, @

This equation cannot be integrated by the usual numerical techniques for solving
first order differential equations because y(x) diverges for certain values of x. This is

illustrated by the solution to the simple one channel problem in which Q is a constant:
v(x) = 01724 (g1/2y), (5)

This funetion is infinite at the points x = an'l/ 2 and the usual numerical algorithms
for solving a first order differential equation cannot propagate the solution across these
points. Our algorithm has no difficulty propagating the solution across these singular

points.
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The algorithm is as follows:

- -1 -1
Yy = U+thy )"y, 4, -h "0 (6)

where h is the spacing between the N + 1 grid points Xy KoKy and where

h?/3) Q (x), n=0,N
U = {20%3Q6k), n=24,.82 @
s1+8[I-m¥e)Q )], n=1,3,..N-1

Eq. (6) is & two term recurrence relation that can be iterativly solved once the term y o is
specified. The initial term is related to the initial value of the log-derivative funetion

by the relation

lyg. )

Yo = y(xo) -h o

The calculated value of ¥, is equal to y(xn) only at the final integration point n =N. This

is no problem however, since only this value is needed to calculate the S-matrix.

In actual practice it is somewhat more convenient and efficient to solve for the

quantity

z =I+hvn (9)
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Subsitituting this into Eq. (8) it is easy to show that
- R _ .1
z, =@ -U) -2, (10)
The initiel term is calculated from the relation

z, = a-uvy)+ h_v(xo) (11)

1

For most scattering problems, this leads to z; = 0. The matrix y(xN) is obtained from

zyina final caleulation
yix ) = hlzg - D (12)
N N :

The reaction matrix K is defined by the asymptotic behavior of the wave function.
In the region X > Xy in which all but the centrifugal part of the potential has become

negiigible, the wave function is

T (x) <3 J(x) + N(x)K. (13)

N

The matrices J(x) and N(x) are diagonal. The matrix elements or the open channels are

made up of Riccati-Bessel functions
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_ -t~
[J(x)]ij = &k J‘j(ij) (14)
[N(x)]ij = Oy k;* ﬁ‘j(ij, (15)

and the matrix elements for the closed channels are made up of modified spherical

Bessel functions of the first and third kinds

1
(3] = 65 (o) Ty sl (16)
- ¥
[N(x)]ij aﬁ {ie;x) sz+l,(kj"’ an

where kj is the channel wave number. Differentiate Eq. (13) with respect to x, then
multiply from the right by the inverse of this equation, set X=Xy and solve the

resulting equation for K in terms of y(xN).
K = =[ylxg) Nixg) - NI x [yixyg) ) - 3 ()] (18)

The matrix K is an augmented reaction matrix containing elements connecting closed as

well as open channels, e.g., K can be written in the form

K = a9
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where K 00’ K oo’ Kco' and ch are open-open, open-closed, closed-open, and closed-

closed submatrices of K. The S-matrix is given in terms of the open-open submatrix,

K oo DY the familiar formula
_ e vl s
5 = (I+ K, (1 iK ) (20)

Each of the matrices in Eg. {(18) can be partitioned into open-open, open-closed,

elosed-open and closed-closed submatrices similar to the partitioning of K in Eq. (19).

Written in partitioned form, Eq. (18) is

- 1 -
Koo  Koe ) YooNo "N YocNe !
Keo  Kee Yeolo YoeNe " N
< Yoo0 " To Yoe'e
Yeolo Yeede " Te

Since the S-matrix depends only Koo’ it is clear that the calculation can be simplified

somewhat by only computing the left hand column of partitions of the K-matrix. The

equation then becomes

- N’ -— -
K 'VOONO N o yOQNc ! y00‘]}0 J‘O
(21)

1

K YeoNo YoeNe = N Yeodo



-92-

The matrix J,, which is the closed channel part of J(xN) is not used in this equation.
Thus, the closed channel functions defined by Eq. (16) are not needed to calculate K 00"
However, the closed channel elements of N(xN) defined by Eg. (17) are still required.

The closed channel functions defined by Eq. (17) decrease exponentially with
inereesing x. This is a possible source of numerical difficulty. The problem is easily
eliminated by redefining the closed channel elements of both N(x) and N'(x) by
multiplying these functions by increasing exponential functions which just cancel the

exponential decrease. That i3, we make the following simpie replacement

[N&)] i —-[N(x)]ii exp (k;x) (22a)
] j; — [N0] ; exp (ki) (22b)

It should be noted that after this replacement is made, N'x) is no longer the first
derivative of N(x). It is easily verified that replacing N(x) and N'(x) by the expressions
given in Fg's. (22a) and (22b) will leave K, unchanged. These modified closed channel

functions-can be easily caleulated from recurrence relations.

We have seen from Eq. (21) that the closed channel elements of J(x) are not
required to calculate K 00 but the closed channel elements of N(x) are, in general,
required. The need for these functions ean also be eliminated, but only if the value of
Xy (see Eq. (18)) is sufficiently large. It can be shown that the elements of ycolx) and
yoc{x) must eventually approach zero exponentially as x increases. Thus, the open and
closed channel parts of Eq. (21) decouple and only the open channel elements of N(x) are

required to calculate Koo'
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III. Renormalized Numerov Method

The matrix Numerov aigorithm is an efficient method that ean be used to obtain

numerical solutions of Eq. (1). The basic formula is the three term recurrence relation

(1 - TouylWp,y - @1I+10T, ]9, o[- T, ]9 4 = O (23)
vhere
Wy = W) (24)
and
Ty = - MEn20 &) (25)

Here h is the spacing between the N + 1 equally spaced grid points Xy XpoeeeXyg and the
square matrix O(x) is defined by Eq. (2). Equation (23) is derived by an obvious

generalization of the derivation of the ordinary Numerov algorithm to matrix quantities.

The renormalized Numerov algorithm is derived from Eaq. (23) by making two

transformations. First defin: the matrix

F. = (1-T I, (26)
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and substitute into Eq. (23). This gives

Fn+1 - UnFn + Fn—l = 0. 27
where
_ -1
Un = (I-Tn) (21 + 10Tn). (28)
Next, define the ratio matrix
R =F F! (29)
n n+l “n °

Substitute this into Eq. (27) to obtain the two term recurrence relation
- -1
R =0 -R (30)

This is the basic equation of the renormalized Numerov method. It can be solved once
the value of the initial term RO is specified. In seattering problems, the wual case is to
assume the initial values of the wavefunction are W(xo) =0 and \Il(xl)== 0. The
corresponding vaiue of the initial inverse ratio matrix is R81= 0. (For exceptions to this

rule see Appendix D in Ref. 3 .)
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The matrix U, defined hy Eq. (28), is symmetric. It follows from this and the
symmetry of Ral and also from Eq. (30) that the matrix R, is also svmmetrie. For
computational convenience, Eq. (28) can be reformulated as a symmetric matrix

inversion problem. Define

w

I- Tn’ (31)

then

1

U = 12w; - 101 (32)

n

Thus, at each grid point we must invert two symmetric matrices.
Equation (30) can be solved iterativly to obtain Ry- The value of R;II-I is also
readily available and can be saved at the last integration point. Using these two

quantities the log-derivative matrix can easilv be calculated by means of the formula3

_ -1 R -1,
vx)=h (A R -A L RII-T) (33)

where Tn is defined by Eq. (25) and
An = {0571 - Tn)(l - Tn) (34)

The S-matrix can then be calculated from this log-derivative matrix bv the techniques

outlired in section IL.
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Another method for calculating the S-matrix, which avoids caleulating the log-

derivative matrix, is also possible. Multiply Eq. (13) by (I - Tn) to obtain

F, = j(xn) + n(xn)K (35)
where we have defined

j(xn) =0 - T) IHx) (36)
and

n(xn) = (l-Tn\N(xn) (37

Evaluate Eq. (35) at Xy and X471 caleulate the ratio matrix RN = FN 1 F;;, then solve

the resulting equation for K in terms of Ry
K = - [Rygn(xyg) - nly, 7T [Rygileyg) - iy, )] (38)

This equation is similar to Eq. (18) and can be partitioned and solved in exactly the
same way. If Xy is large enough, the bpen and closed channel parts of this equation
decouple; if not, they are counled and the closed channel elements of n(xN\ will be
required. In order to avoid any possible numerical diffieulty, the closed channel

elements of N(x) in Eq. (37) should be the modified funetions defined in Eq. (22a).
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The K-matrix and S~matrix computed by the renormalized Numerov algorithm will
by symmetric only to within the trunctation error of the ealeulation. In fact, one ean
obtain an estimate of the magnitude of the truneation error from the error in symmetry.
This is in contrast to the log derivative method where there is no relationship between

truncation error and the symmetry of the S-matrix.

IV. Example Cealculations

In this section several of the eharacteristies of the log-derivative and renormalized
Numerov algorithms will be elucidated and compared by applying them to a model
problem.

The model is the atom-collinear harmonie oscillator system deseribed by Secrest
and Johnson.? The Schroedinger equation for this problem is

2 2
AN ~+12+v(x_)_15]‘,=0
{ #m <3x2> 7<8y2) 7y v

where the interaction potential is
V(x-y) = Aexp[-a(x-y)]

This problem was recently solved very accurately by Stechel, Welker and Light5 for the
particular set of parameters: A = 41000, @=0.3, m = 2/3, and E =6.9, 8.0. They used a
six channel expansion of the wave function and an integration range from x = 0-100. We
have chosen this same set of parameters for our model problem. However, we only

solved the E = 4.0 case,
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Accurate, converged values of the transition probabilities are given in Table L
These valies were calculated using the renormalized Numerov algorithm with 2000
points and a grid spacing h = 0.05. Since the transition probability matrix, computed by
the renormalized Numerov method, is symmetric only to within the truncation error, we
have symmetrized the results by averaging Pmn and an. It is these averaged
probabilities that are given in Table I. The inaccuracy of any of these numbers is no

greater than two digits in the last place shown.

In Figs. 1 and 2 we show the relative truncation error of the calculated transition
probabilities as a function of the grid spacing. There are several features to observe:
The error curves are almost linear (on a log-log seale) with a slope very close to 4. This
is consistent with the fact that both slgorithms are fourth-order methods. Next we note
that for a given grid spacing, the renormalized Numerov method is more accurate than
the log-derivative methed. Alternatively, in order to obtain the same relative error, we
must use a smaller grid spacing with the log-derivative methed. The worst case is the
0-1 transition, where the ratio of log derivative to renormalized Numerov grid spacings
must be about 0.63 in order to obtain equal relative errors. The best case is the 1-2

transition where this ratio is about 0.88.

On the other hend, the averege CPU time per grid point is less ‘ur the log
derivative method than for the renormalized Numerov method by an approximately
constant ratio of about 0.76. This ratio is easy to understand. It is approximately the
ratio of the number of matrix inversions. Two inversions per grid point are required for
the renormalized Numerov method whereas, on the average, only 1.5 inversions per grid

point are required for the log erivative methed. The only other procedure that might
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require much computer time at each grid point is the caleulation of the potential matrix.
In the present model problem this is almost negligible. However, if it were not, it would

tend to make the time ratio per grid point less favorable to the log derivative method.

The fact that less time per grid point is required, approximately compensates for
the increased number of points required by the log derivative method. Based on the
figures given, the 1-2 transition could be calculated more efficiently using the log
derivative method whereas the 0-1 transition could be calculated faster with the

renormalized Numerov method.
The average CPU time per grid point as a function of the number of channels is
plotted in Fig. 3. These curves can be approximately extrapolated for N larger than 20

channels by the formulas

= -5,2.8
TRN = 0.208*10 N

and

0.158%10 5N 28

=3
"

LD

By using the information in Figs. 1, 2 and 3 and given the integration range, the time

required to calculate solutions of various accuracies can be determined.
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Table I Transition Probabilities
n o *m
0 0 0.97788564
) 1 0.97699265
% 2 0.999096929
0 1 0.2210932*10" !
1 2 0.898031%10°°

0 2 0.503948%10°7
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DEVOGELAERE'S METHOD
William A. Lester, Jr.
National Resource for Computation in Chemistry
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

For a differential equation of the form
y' = flx.y)

DeVogelaere's method1 consists of cyclic use of the equations

_ 1., .1 1
Np=Yetz¥otsFo-zfan W W
Y =Yty L (F o 2F,) (5 (2
hyy = hyy + 1 (F, + 4, +F) {6} (3)
where
o2
Fo = hoflxg ) - )

The method requires F-1/2 from the previous step and therefore is not self-

starting. For the initial step F-1/2 may be obtained from

F, (3} (5)

o) =t

oy L1
Y2 Y "z Me*

In Eqs. (1) - (5) h is the interval. We further note that the method
requires only two evaluations per interval. Following Ref., 1, we use the
symbol {n} which is equivalent to o(h").

Very recently Coleman and Mohamed have determined truncation error
estimates which permit automatic error contro].2 A FORTRAN program in-

corporating these features is available from Computer Physics Communication.3
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The generalization to a system of differential equations is straight-

forward: For
y§ = f(x.y,) i,k=1,2, ... N (6)

one obtains, in place of Eqs. (1) - (3)

. h 1 ]
Yi,172 " Yi0 * 2 ¥i,0 * § (Fi,o - 7 Fy,-172) (M
. 1
Vi1 Y0 Wi ot (Fyot 2Fy ) (8)
L e w1
hyi g =g ot (Fy ot 92+ Fi0) (9
where
2, .
Fip =0 Tilxp v ) f,k=1,2,...N (10)

The initial step requires
- Ty +1lF (1)
Yi,-172 " Y1,0 "2 Mi,0 "B Ms0

Scr‘atcm4 has indicated that by use of Radau's closed quadrature formula

for any valu: of n, i.e.,

X -1
[ ldx = nlugalny) + T Walxgroh) + Wgbe)] > (2} (12)
rs

X
o]

it can be deduced that

n=1
¥y = ¥+ hyy + W+ ):] W {1-a )F, {2n4+1) (13)
r= r
n=1
hy; = hy, + WoFo + X WF, +WF {2n+2} (14)

r=1 r



-107-

1t is possible to write down a set of equations for the unknowns “r depending

on the order of accuracy required.5

For n=1 one obtains the simple trapezium rule, which leads to

V1= Yoty t 3 F @) (15)

hyj = hyy + 3 (F, + Fy) {4 (16)

This case requires no starting procedure.

For n=2, the Radau formula is Simpson’s rule and the corresponding
equations are Di/ogelaere's method Eqs. (1) - (3). Thus, as Scraton4 states,
higher order cases of this type can be regarded as generalizations of
DeVogeiaere's method.

It is worthwhile examining the n=3 case. which to the author's know-
ledge has not been used in collision studies. Following Scraton,4 Radau's

four point formula (n=3) is

X h )
jh g(x)dx = 75 (g, + 59, + 59;_, *+ ¢;) 7 an
X
where
a=2 ;o/g = 0.2763,9320
This leads to
Yo = ¥, * 0.2763,9320 hy; + 0.0645,7768 F

0.0387,4353 F_a + 0.0187,1643 Fa-l

0.0063,5398 F_, {6} (18)
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Neaa © Y, + 0.7236,0680 hyé + 0.2971,1983 Fa

-0.1294,4272 Fo + 0.1098,7164 F_a - 0.0157,4536 Fa-] {6} (19)

N cod
y1 = yo + hyo + 12 Fo + 0.3015,0283 Fa + 0.1151,6383 F]_a {7} (20)

hyl = hy! + 15 (F, + 5F, + 5F_ +F)) 8y (21)

For the initial step, one can obtain F-a’ Fa-l’ and F_1 to an adequate

degree of accuracy from the following values of y:

1 1
-3 hy) +5F, 31 (22)

Y=Y ]

- 1
Y =Yg~ hyytg (Fo 4 2F ) 5y (23)

Y a=Yy- 0.2763,9320 hya + 0.0286,1197 F

+0.0121,3107 F_y , - 0.0025,4644 F_, 5y (24)

Yooy =¥ - 0.7236,0680 hy, + 0.1180,5469 F,

+0.1612,0227 F_y ,, - 0.0174,53% F_; {5}  (25)

To my knowledge the first application of the DeVogelaere algorithm,
Egs. (1-3), to single channel scattering was by Bernstein et a1.6 in their
studies of barrier penetration and resonance effects. A program for the
multi-channel case was written by me7 and formed the step-wise propagation
part of the code used in some of the earliest convergence tests of coupled-

channel solutions for the atom-rigid rotor prob1em.8
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9 for coupled-

The multi-channel version has since been used by McGuire
channel studies of atom-rotor systems and coupled-states studies of atom-
vibrator systems, and by Launay]o who noted for atom-rotor studies in a
body-fixed formulation that computational time with the DeVagelaere
algorithm should increase as Nz'5 instead of as N3 i{n the SF representation.
This savings arises from the reduced number of non-zerc matrix elements in
the body-fixed coupling matrix and the facile elimination of matrix multi-
plications involving null factors that is possible because of the cyclic
structure of the algorithm. In addition, unlike most other methods, there
are no matrix inversions in the Devogelaere method.

An excellent comparison of the DeVogelaere, matrix Numerov, and

1 and demonstrates the

iterative Numerov has been given by Allison,’
advantage of the latter two methods over the former. Comparisons are also
made with Gordon's linear reference potential met'.hod.]2 The interested
reader is referred to Allison's paper for details.

Finally, it is noted that the multi-channel version of the n=3 single-
channel equations derived from Radau’s formula, Eqs. (17)-(25), does not
appear to have been applied to scattering problems. Such application bears

investigation.
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NEW DEVELOPMENTS N METHODS FOR THE NUMERICAL SOLUTION
OF THE RADIAL SCHRUDINGER EQUATION
Arthur Allison
Department of Computer Science
University of Glasgow
Introduction

For large values of the independent variable r, the soiution of the
radial Schrodinger equation usually behaves in some predictable manner--
either exponentially decaying appropriate to a closed channel or oscillatory
in the case of an open channel.

One of the major disadvantages of the well known Numerov method, or
indeed any of the usual linear multistep integration formulae, is that it
cannot exploit this known behavior. This is because the formulae are based
on polynomial approximation and polynomials do not easily approximate
exponential or trigonometric functions. In this context the Numerov method
integrates polynomials of degree up to five exactly and thus a basis set
for this method is 1, r, rz, r3, r4, r5.

The known asymptotic form of the solution is, of course, assumed when
the effect of the potential is dying away, usually slowly, and a linear
fit to the potential is valid over some reasonably large radial distance.
These are the conditions under which the stepwise perturbative methods,
such as that of Gordon [2], work extremely well. Thus recent comparisons
between Numerov and the stepwise perturbative methods have tended to favor
the latter.

It is possible to modify the Numerov formula, while retaining its

computational simplicity, and circumvent the problems mentioned above using

exponential fitting.
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Exponentially fitted methods

The concept of exponential fitting arose from the study of the problem
of solving sets of stiff differential equations where one of the characteris-
tic values had modulus much greater than the others and hence the step size
of integration was constrained to unacceptably small values. Liniger and
Willoughby [4] developed a method which fitted this single large eigen-
value by adjusting a parameter in their numerical formula, thus allowing
use of an interval size determined by the smaller eigenvalues.

A modification of a definition by Lambert [3] would read "A numerical
method is said to be exponentially fitted at a value )‘o if when the method
is applied to the scalar test problem y" = xzy, y(ro) = Yoo y'(ro) = y(')'
with exact initial conditions, it yields the exact theoretical solution in
the case when X = x(')'.

This approach, meshing with earlier work by Gautschi [1] on fitting
with i‘.rigonometric polynomials, has been developed by Lyche [5], and recently
Raptis and Allison [6] have applied these ideas to the solution of the
radial Schridinger equation. We Tooked for an exponentially fitted analogue

of the Numerov formula and we found the formula

i u " n
Yo~ Wy + Ypeuq = W78 (h)yp, + 8y (h)y, + B (h)yp}

where

(1 - exp(ah))? - 22h? exp(ah)
A hz(l - exp(xh))z

By(h) = 8y(h) =

B](h) =1 - Zso(h) .
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The functions 1, r, rz, r3. exp{ar), exp{-ar) are integrated exactly and
the numerical method would be exact for the differential equation y" = Azy.
To gain this advantage we have had to let our coefficients g8 depend on the
interval size h and so they have to be recalculated any time the interval
size is changed.

There will be exponentially fitted analogues of most of the linear

multistep methods; for example, the Hartree method

Yol = Wyt ¥pp = hzy:’
with its basis set of 1, r, rz, r3, gives rise to the formula
Yps1 = Yy ¥ Yy = HBLR)Y)
g(h) = ;%;Z (exp(ah) + exp(-ah) - 2)

with basis set 1, r, exp(ah), exp(-ah).

Furthermore, for any particular method, there may be several different
choices of the coefficients 8 corresponding to different basis sets.
Implementation

The computational simplicity of the Numerov formulae has been retained
and the main new problem is to decide on the optimal value of the parameter
x. In the asymptotic region x will clearly be set to the wave number, but
in regions where the potential is rapidly varying the correct decision is
not clear. However any reasonable choice of A will still be as good as

Numerov. These points will be discussed further.
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Extrapolation methods

Under the heading of new developments I will raise the topic of
extrapolation methods which have been used in calculations of atomic
polarizabilities by Stewart [7]. This scheme has used the Hartree method
with extrapslation on the O(hz) global truncation error. My colleague,
Dr. M. J. Jamieson,and I have been thinking recently along these lines and

some discussion would be valuable.
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R-MATRIX RECURSION METHODS: CONTINUOUS
AND L® CORRECTIONS*
J. C. Light, T. G. Schmalz, and J. V. Lill

The James Franck Institute and The Department of Chemistry
The University of Chicago, Chicago, Illinois 60637

I. Introduction

Most problems in atomic and molecular scattering require the
solution of the Schrddinger equation for accurate results. Al-
though there are numerous specific approaches and many approxima-
tion schemes to reduce the complexity of the equations, the most
commonly used techniques result in a set of coupled ordinary se-
cond order differential equations to be solved over a specified
range of the independent (scattering) variable for the coefficient
functions of the known (perhaps varying) basis set expansion. For
inelastic scattering only the solutions regular at the origin
are required and, for No open channels, an No x No matrix con-
taining information equivalent to the R-matrix, log derivative
matrix, or the K-matrix is required for the complete physically
meaningful (open channel) S matrix to be evaluated. Thus here
we are concerned with the solution of a set of matrix equations
of the form

- 9’_‘_ * R 1 wike
{-Tfhae tY®I LW EER i f@ fae

where Y is real symmetric and where we assume that the basis
functions corresponding to a given element, )iy, are fixed and

orthonormal over scme range of R. As shown recently(l) these

*This research was supported by NSF Grant CHE76-11809.
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are not unduly restrictive conditions as even reactive and charge
transfer problems can be handled in this fashion locally, with
known traansformation procedures between local sectors.

Although a number of methods are available for solving prob-
lems of this type numerically, the R-matrix recursion approacﬂ2-4)
developed over the last few years has proven useful for a variety
of problems because of its relative simplicity, large step size
for slowly varying potentials, and inherent stability in non-
classical regions. In this paper we shall briefly re-derive
the basic R-matrix equations in terms of matrix Green's func-
tions (see Schneider and Halker(s)) and show how analytic per-
turbative corrections can increase the step size and accuracy.
Results from a model rotational problem will be presented.
Finally we will discuss both remsining problems and possible

future improvements via L2 corrections.

{I. R-Matrix (Green's Function) Recursion Method

If we consider the general solution of Eq. 1 over an interval
of length h, R; - %s R £ Ry + %, a simple formal method is to
construct the Green's function matrix for the interval. Let us

add the Bloch operator(6) to both sides of Eq. 1:
J'L
[-T2, +VR -z +3L}§ ~TL ¢ .
-‘lRt = - - ~ - ~ (2)

where L(R) = = s(R-Ri + h/Z)gR + S(R-Ri - hlz)gﬁ. The operator

on the left is now Hermitian since
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r4 2 Rtk
{ - + L]h(RR = ( (5;;){ W) 4R
R‘.—.;l Y (3)

The Green's function matrix for Eq. (2) satisfies the equation

R;

2
R ST AU 2% SAEICIS I SELS S
Rri€ RRSR)

Thus the solution of Eq. (2) is

Rtﬁh
{(R) - g qm,a')un')gm')aw
-u*
-k (R,Re*% )‘l £R)
= E(RR b)d 4(11;'\’&-‘ g [ g,Lu’

Evaluating this for R=R;-h/2 = ; and R=R;+h/2 ER;, and writing

in matrix form, we have

'F (R.) g(nurR ) glRl;R ) -‘F (R )
o)

[{]

guzt, A7) g(ai.nt) f (R?)

- t\ ; (_Rc
n £ (&)
Equation (6) is easily recogn1zed as the defining relation for a
(2-5)

(6)

generalized (non-diagonal) sector r-matrix giving the values
of the functions on the boundaries in terms of the derivatives
there (e.g. Eq. (9) of Ref. 4 or Ref. 5). Thus the exact sector
r-matrix is just made up of the exact Green's function matrix
(satisfying zero derivative b.c.'s) evaluated at the appropriate

sector boundaries.
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For inelastic scattering problems only the Green's function
(R4 matrix(S's)) evaluated at the final (asymptotic) boundary is
required, and this is given by recursion of the sector Green's

functions:(Z)

GIR &) = q(RR) - g(RER) Z g (RRD)

- T -
z = [ J®F) + T GRLEDT, ]
2 = = (7a)
where :!;—l,i is the matrix transformation between the basis used
in sector i-1 and that in sector i. The imitial G, G(0,0) satis-
fies the regular b.c.'s at the origin alihough normally one
starts near, but inside, all the classical turning points with
a G which satisfies the appropriate exponentially decreasing
b.c.'s there. For inelastic scattering the relationship between

G and the wavefunction coefficients is

-E('R:) = Q(RE,RI) fl(Rn (7b)

As pointed out earlier,(4’s] the sector Green's functions
(or r-matrices) can be evaluated by any means which yields accu-
rate results over the sector - LZ expansion,(2’5’7) approxima-
tion by an exact Green's function for a model diagonal poten-
tial,(2—4) etc. In what follows we give an elementary analytic
perturbative method which is quite effective in increasing the
step sjize and the accuracy, particularly for accurate calcula-

tions.
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The problem is to evaluate the solution of Eq. (4) accurately
over a step of length h. We use the straightforward approach of
diagonalizing the potential matrix at the center of the step,
evaluating the first or first and second derivative matrices in
the diagonal representation, and computing the zero order Green's
function corresponding to the diagonal constant potential. We
then evaluate the first order perturbation currections due to the
linear and quadratic (if necessary) terms in the Taylor series
expansion of the potential matrices. Various refinements of this
will be discussed in the last section.

We take, for convenience,
x= R-(Ri-1)
TTV(ROT: = X (diagomat)

v y(‘)(Ri)Ti = U
-}\ +EX

where V(n) is the nth derivative of the potential matrix, and I;
is the orthogonal transformation which diagonalizes Y at the

center of the step. In the diagonal basis we write the equation

for the evact Green's function matrix as
3 o0 {w)
-1 %‘__ - 5’} 3:(!,;(') =~ E.‘%‘f‘ (X-E)"}é"‘i"’ +1 §(x-x")
=-(g-gw)3(¥,¥l) 'fI §(x-x') (8)

where we require g to satisfy zero derivative b.c.'s at x = 0,h.
The zero order Green's function we take to satisfy the homogene-

ous part of Eq. (8)
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{-1¢ - k') g0y - I 8UX X (sa)

. ' - cos [ &; X,) "‘[hi(xf-. h)]
[ g (xx )].., = S.-j WELTYY) (sb)

where X, (xy) have their normal meaning of the lesser (greater)
cf x,x'. It should be noted that if channel i is closed at this
point, ki is merely replaced by (iki) in Eq. (9b) and the
resulting Green's function is still real and symmetric.

The exact Green's function satisfying these b.c.'s in the

interval 0 £ x € h is given by the integral equation

h
q(%,7) = 4" %) - f x2) (U - d") gz,

The first order perturbed Green's function is then

W
g"’(x,y) . 3'(x,y)- Sf(x,r)(g(z)-g"’) 3’(},7) dz an
%y + A 30‘)7)

The specific 1né%grals requ1red are then

lag (,00] . = ~ €, SCos ki 2h) cos i (21 (W) -4 ke
[ﬂ;ﬂ (a’h)].‘_,'

(T3]

L Sc_o: R;(2-h)cos kj2 ((4.(“ -t

Lag (e,
-y ;mkzmn(qm u®), oz

[n= q (h,\\\]u
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where i - [ K; k Sin k‘\q cm\‘;\\]

The explicit formulae for constant, linear, and quadratic terms
in the residual potential matrix, 1‘{(2)-'2‘.! are given in the
Appendix. The use of the first order corrected Green's function
matrix in the recursion equation (Eq. 7) then yields a better

approximation to the global Green's function matrix, 2'

III. Numerical Considerations

In implementing the above scheme there are a number of con-
siderations, minor in theory, but important in practice, in
determining the accuracy and speed of the calculation. We first
look at the order of the error for fixed k's and small h. Using
the expansion (Eq. 8) of the potential about the value at the
center of the step we see that, for example, the integrals for

Qﬁ(h,h) become, to quadratic terms in the expansion of u,
ag ] =____. ( .-kz - { &
b Lageeo] (1~ $5(1- e e

+(u“’ /z)(z- 2) } Az

.=t { el U O )».] L, w0 +Uk£
Plh S 2% 12)

S1nce the zero order diagonal terms, g , are of order h 1, the
leading U(Z) term is of order h with respect to this. This
term, which represents an average error of the potential due to

the quadratic terms, can be taken into account exactly (to all
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(2) (p h? . N

orders) by adding x< (Ri)IT to V[RiJ before diagonalization,

and subsequently substracting the perturbation integrals due to
the constant perturbation, 2(2) %T’ This shifts the eigenvalues
to include the "average" V(Z) contribution, and the 1lst order
perturbation ccrrection no longer has terms of O(hZ) with respect
to the zero order. The lowest order (in h) terms neglected now

1

are order h4 or higher w.r.t. the h™" of the zero order. They

result from the 1st order p.t. contributions due to g(4) and from

mixed first and second derivative contributions in second order
perturbation theory. Thus, for small step sizes the convergence
is very rapid with step size.

As is usual with large matrix problems, however, the goal
is to reduce the overall number of matrix operations required for
2 given level of accuracy. There are a rather large number of
matrix operations per step in this method, particularly at the
first energy where the potential evaluations, diagonalization,
and transformations must be done. Speciiically, the method
requires the matrix operations shown in Table I per step. Also
shown are the operations required in the unperturbed method.

Table I

1st E Other E's
Unperturbed |Perturbed }Unperturbed [Perturbed

Matrix Operation

Diagonalization 1 1 0 0
Inversion and
Multiplication 1 1 1 1
(A-1 B)
Multiplications 3 (@ 8 (6 2 (@.m) 3 @

{ ) Using symmetry of R-matrix and potential
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As can be seen, the first energy is significantly more work, but
at subsequent energies the perturbed calculation requires only
about 30% more work per step. As will be shown in the next
section, the perturbed method is clearly superior for relatively
accurate calculations.

A final consideration which may be of considerable importence
in practice is the choice of step size to be used in building up the
complete solution. Since the approach outlined here is a pertur-
bative one, the size of the perturbation corrections must in some
way be controlled to insure the accuracy of the solution. The
leading order term in Bq. (12) sfter the eigenvalues have been
shifted is proportional to uphs relative to the zero order solu-
tion, so that the simplest step size algorithm is just to choose
h such that h3 times the largest element of gﬂ is kept less than
some constant. While this algorithm will eventually insure con-
vergence, the approach to the converged limit may not be at all
smooth. Such an algorithm may also not be optimum since it is
not sensitive to the partial cancellation of the perturbation
integrals when hR is large. In addition, systems for which the
potential goes through a minimum present special problems since
the small value of dl,near the minimum may predict too large a
step beyond the minimum. Careful design of a step size algo-
rithm to deal with these problems may ultimateiy lead to impor-

tant improvements in the efficiency of the method.
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IV. Results
To test the speed and efficiency of the R-matrix propagation
method with perturbation corrections, calculations have been
carried out on a well studied model rotational problem described
by Lester and Bernstein.(8] The problem consists of an atom and

a rigid rotor interacting tlirough the potential

V(R,6) = (1 + a P, (cos ) V(R) (13)

with V(R) a Lennard-Jcnes potential, and reduced parameters a =
0.4, B/e = 1.5, r 2M/1 = 2.0, 2u& 1 2M% = 500. Here E is the

total energy, r, and € are the minimum and well depth of the

n
Lennard-Jones,/M is the reduced mass of the atom relative to
the rotor, and I is the moment of inertia of the rotor.
Although these parameters do not model any real systenm,
even within the restriction of the potential to the form (13),
they were chosen because they result in many small but not
negligible transition probabilities together with a few large
ones and are thus a sensitive test of the method, and because
accurate results for this system are available in the litera-
ture.(4’8) The calculations reported here were performed for
total angular momentum equal to 8 and including all channels
with rotational quantum number upto and including 4, resulting
in 9 coupled channels. With this many channels the time re-
quired to perform the calculations is essentially proportional
to the number of matrix operarions required. Integrations were

carried out from 4,6 to 80 bohr.
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In Fig. 1 the root mean square error in the 9x9 transition

probability matrix is shown versus the number of matrix opera-

tions for the perturbed and unperturbed R-matrix propagation
methods. The step size algorithm used is one which controls the
size of certain perturbation matrix elements appearing in an
integral equation approach to this problem, and may or may not
be optimal for R-matrix calculations. However, it seems to be
somewhat more efficient than the simple algorithm discussed in
the last section. The calculations shown are ther essentially
second energy calculations: the number of equivalent matrix
multiplications (not using symmetry), is 31/3 for the unperturbed
calculations and 41/3 for the perturbed calculations. Also
shown is the result using perturbation theory to correct only
the diagonal elements of the sector R-matrix, which results in
no additional matrix operationms.

The "exact" answers were obtained by a 1400 step ~4200
matrix operations) calculation by an integral equation method
described later in this couaference by Parker et al. It is
estimated that they are accurate to at least r.m.s. error:Slle.

One disturbing feature of both the perturbed and unperturbed
R-matrix calculations is the non-monotonic convergence toward the
correct answer, particularly for large step sizes. (It should be
noted that the smallest number of steps shown in Fig. 1 is 14 and
that the perturbed method reaches the 10'4 level (r.m.s. error )
at about 50 steps). For many scattering calculations an assured
accuracy of three significant figures for the larger probability

matrix elements and of two significant figures for the smaller
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ones is sufficient. Unfortunately it is seen from Fig. 1 that

3 to 10-4) the convergence is

in this regime (r.m.s. error 10~
still quite oscillatory. This is probably due to the appearance
in the recursion formula of the "squares'" of the first order
perturbation matrices uncompensated by higher order perturbation
terms. Possible solutions to this problem are discussed in the
next section.
Iv. L2 Corrections

As is well known there is an alternative representation of a
sectur Green's function in terms of the discrete complete set of
eigenfunctions of the Hamiltonian plus Bloch operator. This is,
of course, the basis of the standard L? R-matrix approach of
Wigner and Eisenhud(7) and many others. The eigenfunctions are

approximated by diagonalization of the Hamiltonian matrix

in a finite basis (c.f. R, B. Walker's paper). The number of
"“"translational' basis functions required per internal state de-
pends on the region (step) size, and accuracy is often improved
by adding the Buttle correctiontg) which is just the go for the
set of discrete states not included in the LZ basis used. We
propose to "invert' the process and to use simple and small Lz
corrections to the perturbed §=we have calculated in the last
section in order to take the largest perturbation terms into
account to all orders by diagonalization.

We assume, as is usual in LZ methods, that we start with a
complete direct product orthonormal basis in the internal and

translationai functions labeled by the two indices o,n respec-
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tively. The exact Green's function can be represented in terms
of the exact eigenfunctions of the Hamiltonian plus Bloch opera-
tor in this basis, and the Green's function matrix we desire is
the projection onto the appropriate internal states evaluated

at the boundaries as before. We take the internal basis to be
that which diagonalizes the Hamiltonian at the center of the
step, and the translational basis to be (X=R- Ri +h/2 as before)

-2 n=o

m = (14)
77 cos(niX/h) el 2,

The matrix elements of the Hamiltonian in the direct product

basis will be

(I HAEmY = 8y Sum (€4 BT
<6()H‘I_I(Z,M>= 2]
Coml Vigad = Ve as

In a finite (truncated) internal basis (0 € & £ M}, the zero

order Green's function is

M
y f_ ln)Lanl f 1> <] cos kX cosRlX-h
oHro =0 ed" m;'_rcs oLx0 k‘ c""‘ Nh (16)

4" (X =

where ﬂ is the set of arguments of the internal states {l‘f)}

This projects to the zero order diagonal Green's function matrix

used before.
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We now want to correct the Green's function matrix for only
some of the large perturbations, i.e. we do not want to diag-
onalize a very large Hamiltonian matrix in this basis as is
done in staadard L2 methods. The equation for the Green's

function is equivalent to that used before:

(H,~E) g () = §(n- ) 0ex)V g(a5xx)

We now add to both sides of the equation a non-local projection
operator containing the offending matrix elements which we want

to treat more accurately than in perturbation theory:

P Jdm
= ] on w
\Y gm > <atn] VIpw<pw s
ipw}
where we are free to choose which elements are included subject
only to the constraint that VP must be Hermitian, i.e. for each

4 anlpm) element included, its transpose must also beincluded.

Thus we have

(H,- E VM43 059« Sly-naStex’y - (V-VP)g i),

We can now find the e-values and e-functions of the operator on
the 1.h.s. by diagonalizing the matrix of H‘:'-Vp in the basis

included in VP only. Thus for this portion of the Lz space, we

determine the eigenfunctions, “\’>} :

(H,+ VT = €51% (20)
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The e-functions, |‘(> , are obtained by the diagonalizing
transformation from the ‘o(,n) included in our basis:

l¥> = T [,n)>

(21a)

TT( H, +V7) T b 67

(21b)

For example we might restrict VP to one diagonal term in the

internal states and two translational states, [0, [1); e.g.

W e 14,0 Vie <ol 4 {eiy VY wo)

of) w1
G N, <)l 4 190 Vi, {=,1)
In this case the matrix Ho + VP s diagonal except for the

'v(,o) » B, block:

° ” o
? ed*v:(lo V,‘:,
H ot y =
= o I
V‘| é.(+ I::‘ 4+ Vm
(o] s .
T o
= = d
7 T
-

and the Green's function for H, +VP would be the diagonal Green's
function matrix for all states but & , with the g?u element
=

replaced by
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» o Eo1vdL Y L lotnd)Cetn)
= [ - e et
Jua = 3o E‘ €,-E Z, DR

¥

where |¥) 1is the e-fn of the |« ?,l!(l}block of H 4 VP,
The "zero order" Green's function matrix is now taken to be

that determined by the homogeneous soln of Eq. (19):

(

This Green's function matrix, gD, is given by
e

LY -E1) 4 - I S0x-x) (2

vXIo

b4 o
= - (23a)
353+~

where g° is given by Bq. (9),

[Z’LQ <.‘l ? o<yl ‘9> (23b)

€,-€
[ 3.“]49

(x| 1Ll gy

{«%} &, +“.;T‘:t -E

] S fn><nl
¢ tz-d €T - (#
k"

That this is, in fact, the Green's function matrix for Eq. (23)
can be seen by recognizing that H, +VP - E operating on a trans-
lational basis function not in {a«,n}, ({&,n}), yields the same

as H0 - E. Thus we have, in the (n,X) representation,
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(Ex-E)IY)
( "1.,“; 1 €z ~E)|en) (28)

(€4 -€) 14w

(H.+VP—E) 1¥>
(H,+VT- E)l‘~“>‘

and thus

(H, +V'- -E){q" + = <Y “‘><“" - T lews<oen|
ol

=3 (€n-E) |y <ol + ¥ (&€ o<

v} Es-E €y-E
- [oZn>LoZul

We note the last equality holds if the basis [«{n) ¢ ]n?n> -
1)+ ]; n) is complete. Since the [«> basis is, in practice,
truncated, it holds in matrix form in the truncated projection of
the internal states, o) .

We now return to the exact equation (19) for g, and solve it
formally using gD as our "zero order" Green's function. In what
follows we omit the matrix notation and write only S g’Vg, for

example, t%::?::
s ‘3 (x,2) Vlt)g(t,x Hde

R;-2

p
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The integral equation for g is
>
9= - gg’(V'VP)g (25)

Iterating once we have

e gt e gy - {1

(26)

Since VP has no projection on go-gn. this simplifies somewhat to

‘lw = gy gw {8749 3V (17930 ¢ gjxvgv(m

We note that if VP contained all the matrix elements of V in the
L2 basis, {ld n)} , then VP = V°P (the complete projection of V),

and V-V°P would have no projection on gy ©or g, leading to

30= 3°+31'3*— Sﬂovj.fgg“vc%“ (28)
= §(8°-32) V(34 ~3) = (84~ BIV(3°-3.)

In this equation the original perturbation is corrected by
eliminating the perturbation matrix elements used in the
diagonalization (s gnVCpgn), and by eliminating the untrans-
formed off-diagonal perturbations [ s(g°-gn)v gn ] and
replacing them with the transformed off-diagonal perturbations

[g(g°-gn)v g,] . When VP # V°P, additional terms arise:
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- 474 9u-ge- [TV 4 (g 0Ty,
- 8- 39V 85 - (g 30V (3234)

+ S‘iu(V°3V?)3m - (3,(v“’_v7)r_(., (29)

Equation (29) is a generalization of the Buttle correction in two
ways. First, it corrects for the fact that VP, not VP, is used
to determine By > and second, it includes the perturbation cor-
rections for the infinite set of lv&hn> of translational
functions not included in the Lz basis.

In practice the use of Eq. (29) would not be feasible be-
cause it introduces corrections to off-diagonal elements as a
result of the L2 correction to a single diagonal element. Since
it is usually only diagonal elements that become large znough
that the continuous perturbation theory breaks down, we would
like to have an approximate method of correcting a diagonal
element alone. Such a method may be derived as follows. Equa-
tion (11) gives the continuous perturbation correction to g°

from all of V through lst order only as

° °
aq = -(q°V3
while Eq. (23a) gives the L2 correction to g° from VP only to

all orders of perturbation theory as

83"« §7-9"+ v 3n
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1f we simply add these two corrections to g° we include both
effects at once, but we see that the 1lst order correction due
to VP has been counted twice, once in each correction. We

must therefore subtract it off, yielding the Ffoilowing approxi-

mate equation for g:
~ a°-(q°V g° - * vi. co
3% VS + 4-3w + gV

We note that this has the first five terms of Eq. (29) omitting
only the (small) cross terms. Preliminary tests using only
diagonal (in o{ ) corrections and only the (0,1) translational
states indicate that it sometimes helps a lot (a factor of 10

in the r.m.s. error), but investigations are still in progress.

Appendix:
Let Vf?) be the i-jth element of. the nth derivative of %}4

times the potentisl (i.e. the potential in Kz units). Define

(n)
cij to be

) _ . "4
Cii - Vu h

n! ki k; sinz; sing

where h is the step length, Ki and Kj are the wavs vsctors for

the channels, and ;- hKi. The perturbations to the r-matrices

are then given as
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(A":“')ij = C?;‘ -'\;;,,, (:cos(Kix) cosfri¥) (x-g)“olx

(Mf“‘),-i =) (any )

(86 = € S (eos e coskix (3
h (]

(Af;“‘)i." . (AT;“))ji

Thus we need evaluate only two integrals for each n, which can

be written in dimensionless form as (let y = x/h)

™y
(II )il - Sa (Y'-'s)" tos 2,’7 cos Z;y J]

w) ' "
(T7); = § (-4 eos mtr-t) eos 25y oy

W
-sy;(7)n eosZify-3) cos 2; (y+3) dy

We also define the following quantities:
X= h(x+kj)
Y = htlki-K)
G = h (ki+k))
P = h (Ri-Ki)
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The explicit expressions for the integrals I{n) and Ign) are
given for n = 0,1,2 for i=j, for iy¥j, for Ki Q-Kj, and for

Ki and Kj small on the next pages.

0.1 (I(."),-; = "i[l + (1/Z:)sin 2; cosz;]

(I7);; = £L0/S)sinG + (/PISinD]

# [Z; Smz cos2; - Z; Stv Z; ¢0$£,']

"

01a D=0 .
(1:”)ij = (1/S) sin (8/2) cos(S/2) +i_ - %

“'»*/2 Yo -])‘/I 00g0

b) Z;,%; >0
(I ) = 1= (&+2V/6 « (2'+ 2] + 6 2{2] Y120

—(2f+2f 415212 v1SE B Y5040
0.2 (I:" )ii = ’.5.["‘” 2+ (/)5 2]
(TN = (/S) sin(S/2) eos (D/a) + (1/D)sin(Da)eos (s 12

= \L/[ BiSM2; -zjsmz_,-]
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0.2 o) P->o0

ey, . .2.
(19 eos(Slz)[ T —2..— —2%-7;,]
Fowm(s/r, D LD »¢
R T
b) 2'.‘)2'.:”90
(I(o)) - (226 + (2422 8]) 120

-(I‘ +z—J + 2 ;!-1 + 212 )/ 5 oo

14 (‘_["‘ = (1/uz)smz; cos B - (/4zh)sin’z;

(I,) = (12 cosS ¢inS o cosD
l; )[ 2% s_'_-l- _fi.

*i'-?'si}

= Jd : .
= ')7,{ X (cos 2 cos & -\) ¥ 2B{Z; SMESInNE
+ .Zi (z.- SmZiCosE - E Sin & eos z;)]

l.ia) D=0

(I(\n )ij = -(l/S‘)Sim”(Slz) + (1/28)Sin{S/2) cos(S/a)

-D/ue + P e - D‘/zs g0
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b) 2, >0
")i= (3143 fs2l)/ate +3E]
(1, ) vz = (2] +2])/ 2y +(2{ +2] ) 340 +2i2] /60

~ (2 +25)h3 o - (BF42))ZI ] /046

22 (1), -
w .....Sln (p/2) 1 cos (s/2}) _ 2Sin (s/2)
(T, (=557 - =)
- Siw (Slz)( cos (P2} _ 2 cm{DA)

= - (X/y‘)(ws 2] - cos 2 - (|‘/gy (2 S -};,:-sv'uzi)
Lh1a) Do

(Im)i--—‘{ sin (S [ -L + Dygo = V/s300]

+ LosS(S/z) [ 1 ~Dras +DY3e40]

+ s;u(slz)l 1+ D24 — p"/moﬂ

Mab) 2% 20

T
(T3)= =Y [-V/24 + (2 +23)/350 - (32 +3242] 7))
" Ho 220
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FINITE ELEMENT METHODS IN QUANTUM DYNAMICS
Herschel Rabitz
Department of Chemistry

Princeton University
Princeton, New Jersey 0B544

1. Introduction

Traditional quantum scattering theory has mainly been based on solving
the close coupling equations derived from the original Schrodinger equation.
Although the basic coupled equations are quite standard, it is useful for
our purposes here to briefly review the matter. The Schrodinger equation

can be expressed as

H(RyX1,T2,400) Y(RyT1,T2,5.0.) = EN(R,ry,ra,...) 1)

where R, rj, r3,... are the coordinates for the system. A particular
coordinate R (usually referred to as the radial translational coordinate) is
singled out. Eq.(l) is a many variable second order partial differeutial
equation. In order to reduce it further the wavefunction is expanded in a

complete set of functions, in the coordinates rj, rp,...
v o= ‘Z\a,,(R) b, (P 4y (r2) oo ,_ 2

where the unknown coefficients an(R) are obtalned by solving the following

set of coupled ordinary differential equations.

H(R) 2(R) = E a(R) 3

The chief difficulty in solving these equations is associated with the matrix
algebra during their numerical solution. This expense grows as N3 where

N ig the total number of terms in the expansion of Eq.(2).
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The philosophy behind the finite element method is based on solving
fewer coupled equations than above, and correspondingly replacing the matrix
algebra by labor involved in solving partial differential equations. The basic
idea is apparent by considering the alternate expansion of the wavefunction

in Eq.(4)

v o= fﬂ‘bn(n,rl) I CCYIR )

where an additional coordinate r; has been singled out to make the expansion
coefficients a function of two variables. These coefficients are obtained

by solving the following set of coupled partial differential equations.

H(R,r1) b(R,ry) = E b(R,Ry) (5)

The potential for savings through Eq.(5) over Ea.(3) is apparent if the r;
coordinate is assumed to require ten basis functioms in the¢ expansion of
Eq.(2). In this case its contribution to the computational expense is
approximately a factor of 103, Provided the mumerical methods for treating
Eq.(5) can stay within this factor of 103, a computational advantage can
be achieved.

The availability of new finite element methods borrowed from the
engineering disciplines1 shows considerable promise for the partial differ-
ential equation approach. This technique is presently under development
for applications to quantum mechanics, and a full assessment of its
usefulness cannot be made at this time. However, applications to certain

quantum mechanical problems have already been made ap will be discussed
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below. The aim of this presentation is to give a status report on the
present development of finite element methods in quantum mechanics and also

indicate possible further directions the field is expected to go in.

II. Essentialg of the Finite Element Method

Various methods for treating partial differential equations have been
suggested in the literature, and perhaps most notable amongst these is the
finite difference method. There are certain suggestive similarities b?tween
the finite difference and finite element methods. However, the two me?hods
differ significantly, and this point is clearly made in a paper by Morton.?
In essence, the finite difference method attempts to approximate the
differential operators while the finite element method directly approximates
the sought after function. The difference between these two approaches will
become particularly clear in a specialized application arising in three
dimensional scattering discussed below. It suffices to say at this point
that the same questions on the choice of partial differential equation method
have heen considered in related engineering problems (e.g., water wave
scattering), and ultimately the finite element method was the technique of
choice.

The oasic theory of the finite element method is apparent from
considering the Schrodinger equation in two variables, x, y. Indeed, such
a partial differential equation in two variables will exactly describe a
coliinear reactive system, Higher variable equations will be discussed

later. The Schrodinger equation in these two variables is
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-h2

TP+ Ve = B¢ (6)

In order to conveniently derive the finite element equations, consider the
standard variational functional

I = f¢(ﬂ—£) ¢dA N
A

where A is the domain of interest in the x-y plane. Setting the first
variation of I equal to zero we obtain

51 = faqs[:—g-vZ +V—E]¢dA = 0 8)
A

Gauss's theorem applied to Eq.(8) ylelds

0 = f[% $5¢-'v’¢+(v-E)¢]dA - %Efw%&ds 9
A L

where the last integral is integrated over the boundary L of the x-y domain.
The derivative in the integrand in the latter term is normal to the boundary.
It is convenlent to treat the scattering event as a boundary value probiem
whereby 6¢ = 0 on the boundary since ¢ is prescribed along L. Therefore the
boundary integral vanishes. The overall area A is now broken into finite

element areas Ak

A = (10)
L&y
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In this fashion the total variation in Eq.(8) can now be expressed as

81 = 0 = ) &I (11)

k k

where

2
61, = f[-;; Voo, - Vo, + 64, (v - E)¢k]dA (12)
A

The shape of the areas Ak is arbitrary, but generally triangles or
quadralaterals are utilized, as shown in Figure 1. A topological covering
based on the use of triangles seems to be the most convenient for general
application. An overall meshing for a reactive problem is illustrated in
Figure 2, where the element numbering scheme is also shown.? The actual
generation of a geometrical covering and numbering scheme can be done
manually or in an automated fashion.

The unknowns in the finite element method are the wavefunction ¢ at
points along the boundaries between the finite elemeats. Siuce ¢ exists
throughout the region of each element Ak’ an interpolating function is
needed in each element. Polynomials or various transcendental functions
could be used, but the former is usually the choice for convenience and
aimflicity. C;Ss%deration of a particular element in further detail is
shown in Figure 3. A general theory for handling the algebra of any
arbitrary element is desired and this naturally leads to the consideration
of oblique local coordinates &), £ which can be related to the cartesian
coordinates x,y. Details of these transformations are given in the

1iterature.3 and 1t sufflces here to indicate that the arbitrary point P
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in Figure 3 can be located in reference to the oblique coordinates by
appropriate projections (the dashed lines in the figure). 1In addition, for

reasons of symmetry it is qonventional to introduce the third redundant

coordinate £3 . As an illustration of these ideas

.-

6
8, (61,62,83) = 121 Uy (€1,62,83),, = Ug = <Ujg> (13)

gives a quadratic polynomial representation of the wavefunction in the k-th
element. It is convenient to use a scaler product notation as in Eq.(13)
where the components of the vector U are the local interpolating polynomial

given in

v = [61(251-1), £2(262-1), £3(283-1), 4€)E, 6EpE3, 45351] J14)
In a similar fashion the potential in the k-th elemenr can also be expanded
in the local interpolating polynondial, =icnough this is strictly not an

essential part of the finite element treatment. If this expansion is

performed, the resultant potential '8 expressed as

6
Vp(E1,82,68) = 121 Up(ELi62:83)Vyy = UV (15)

The first variation in the k-th element can be expanded out in terms

of the x,y coovdinates

- 22 (3 o 3 3_
8L = f[zm (Bx 59 ax % T oy S oy "’k) t o v - E”’k]d“ (16)

Ay
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When each function in the integrand of Eq.(16) is represented in its

polynomic form we obtafin

b (x,3) = <>

“J - <ﬂ’.|4, > ete an
ax ax' "k !
all the integrals can be expressed in terms of the following analytic
integral expression
IEPE‘]EI dA = DBl gl ! (18)
1°2°3 (p+q+r+2)12Ak
Using the compact bra-ket notation the following expressiom is obtained
81, = <&¢ f["—z [Vu> « <Fu| + |us(<v, |U> - E)<u]]¢ > dA (19)
k k 2m k k
which can be evaluated once and for all regardless of the element index k.
In matrix notation this result can be further expressed as
611'. = <6¢lr|Hk - EUk|4’k> (20a)
ﬁz > -
B = f[z—m |vu>-<vU| + |U><vk|U><U|] da (20b)
v, = f lus<u| da (20c)

A
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The unknown nodal values of the wavefunction ¢kl c. now be obtained
by demanding continuity across element boundaries. 1In practice this is
achieved by the generation of a continuity matrix which shows the comnection
between the global and local numbering schemes for the nodal wavefunctions.

As a result of this treatment an overall Euler equation is obtained

S, = 0

Lol

(21)
(

=]

- EQ-¢ = O

-

where H and U are the finite element representations of the Hamiltonian and
unit operator, respectively. These latter matrices are strictly independent
of the energy E which enters simply as shown in Eq.(21). Therefore
changing the total energy does not require a regeneration of the fimite
element matrices.

A pictorial representation of Eq.{(21) is shown in Figure 4a where the
matrix is non-squar due to the fact that the NB nodal values on the boundary
are actually specified in the problem as known. Utilizing the latter fact,
however, the equations in Figure 4a can be rewritten as an inhomogeneous

set of linear equations in terms of the N - N, unknown nodal points for

B
the interior of the scattering region. The choice of a linearly independent
set of boundary conditions generater - . -ies of equations like Figure (4b)

with different inhomogeneous terms. This is jllustrated in Figure (4c)

which 1s ultimately solved to yield scattering information. The

[[}-~]

_EL_]
matrix in Figure (4c) is banded with a width related to the connectivity of

the nodal elements and the order of the interpolating polynomial.
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III. Application to H + Hp Collinear Reactive Scattering

As a test of the above formalism, reactive calculations were performed
for H + Hy on the Porter-Karplus surface, Details of this calculation are
in the literature? and the results are shown as the pusints labelled + in
Figure 5. The other curves and points are various close coupling calculations.
The finite element results are quite good, but more importart was the
behavior observed concerning the inclusion of closed channels in the boundary
region. It was found that the finite element calculations did not change
regardless of whether closed channels were included in the outer region, In
contrast to this result, conventional close coupling on this problem has
required the use of closed channels to achieve conversion. This behavior
points out that the finite element wavefunctions inherently include an
arbitrary number of open and closed channels in the interior region of
importance., This is achievad by not explicitly attempting an eigenfunction

expansion as discussed in Section I,

IV, Higher Dimensional Problems

Problems other than collinear scattering will inherently involve more
than two coordinates. There are basically two ways to proceed.

1. A single partial differential equation in all
coordinates.

2. Coupled partial differential equations in fewer
coordinates.
The same trade-offs discussed in Section I are involved in deciding which

of these two is optimal for a particular class of problems. At this stage
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the outcome of this competition is not entirely clear, but the nature of

the trade-off is best i1llustrated by a few examples. Considering co-planar
atom-diatom scattering there is a total of six coordinates from which two
are subtracted for conservation of center of mass motion and one for
congservation of angular momentum. This leaves a total of three independent
coordinates such that the Schrodinger equation could be treated as a

single three coordinate partial differential equation. An alternative would
be to expaid the angular dependence in a basis and treat coupled two
coordinate partial differential equations.

The critical need to reduce the Schrodinger equation to its minimum
number of independent coordinates is most clearly 7i:lustrated in atom-
diatom three dimensional scattering. In this case there should be four
independent coordinates taking into account the conservation relatioms. It
is a trivial matter to remove the conservation of center of mass motion.
However, the reduction associated with the conservation of angular momentum
is not a trivial exercise. In normal close coupling this question is a
moot point since the conservation of angular momentum is explicitly built
into the choice of basis functions. The problem now concerns finding how
conservation of angular momentum manifests itself in the partial differ-
ential operator. This problem is very similar to that arising in classical
mechanics where conservation of angular momentum is often most conveniently
treated in the action-angle formulation. We have found it expedient to
proceed in a similar fashion in the quantum case, and this results in the

following Hamiltonian operator
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(—-z + —'z) + V(r,R,Y) + #% J(J+1)/2uR?

2 32 : ] ] 1 1 )
-2 - 2 — 2 2
+ [ # T #° coty ay.+ csccy & (5~;2 + TR,

iq -iq
_ 2 JOf3 w Jlb[a__ _ ] 2
‘3 ke Ay [BY + coty(&+lﬂ + ke A P coty(d-1)|¢ /uR

(22)
where R is the distance between the atom-diatomic, r is the diatomic
vibrational coordinate and y is the angle between r and R, The particular
operators of interest in this equation are

0 - 2 G+ D - 0+ D) (23)
where
6 = ihs- (24)
qm

and 9, is conjugate to the projection of 3 on the body fixed axis H.

The operator in Eq.(23) is a square root differential operator which is
rather unusual in dealing with the Schrodinger equation. Nevertheless it
is well behaved and it can be shown that this Hamiltonian will yield the
usual coupled scattering equations upon expanding the wavefunction in an
appropriate basis., The numerical treatment of the square root operators
raises some interesting problems which must be tackled. This type of

operator most clearly illustrates the basic differences between the finite
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difference and finite element methods. The finite difference approach
would inherently require some sort of discretization of the operator
while the finite element method can leave the operator in tact. "
Finally, perhaps the most powerful use of finite element theory may
come from its combination with conventional close coupling methods. As
illustrated above by the H + Hy; problem, the finite element approach
inherently includes closed chanu>ls which can be significant in the region
where the particles are at short range. In the asymptotic and near
asymptotic regions on the other hand, the close coupling method is very
efficient since the equations are nearly diagonal. Therefore, it is
suggestive that an optimal procedure could best utilize the strong points
of both close coupling and the finite element method. This approach is a

topic of future research, but ite schematic illustration is shown in

Figure 6.

V. Conclusion

In summary, the finite element method appears to have a viable role
in tackling certain classes of molecular dynamics problems. In particular,
reactive scattering, including dissocilation, seems to be the most attrac-—
tive field for application. In this case, since no global basis function
expansions are made, the complexities associated with choosing a coordinate
system (e.g., natural collision coordinates, etc.) are no longer a problem.
Although finite element theory is not new to the engineering sciences, it
is a new approach in molecular dynamics. Much work needs to be done to

develeop and optimally utilize its potential in this new area.
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Fig. 1. Two possible local finite element geometries,
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TEST PROBLEMS
FOR
THE NRCC WORKSHOP ON
ALGORITHMS AND COMPUTER CODES FOR
ATOMIC AND MOLECULAR QUANTUM SCATTERING THEORY
Lowell D. Thomas

NRCC, Lawrence Berkeley Laboratory
Berkeley, Ca. 94720

1. Introduction

One of the principal objectives of this workshop is to identify which
of the existing computer codes for solving sets of coupled Schroedinger
equations perform most efficiently and on which types of scattering problems,
To do this in an unbiased fashion, it will be necessary for the different
codes to solve the same problems, using the same potential energy programs,
on the same computer,and with roughly the same accuracy. To this end,
several test problems have been prepared and thess will be discussed below.

These test problems have been chosen based on discussions which were
held during a planning meeting at Salt Lake City, Utah, February 23-24, 1979,
and further discussions at the workshop itself at Argonne, June 25-27, 1979,
It was ugreed that the problems should be realistic, three-dimensional
problems, employing ab initio potentials if possible, It was also decided
to use only non-reactive collision problems, Since the chief purpose here
is to study the performance of the coupled equations codes, there is no
necessity for adding the other complications of reactive collisions., The
parameters to be varied are:

1} the number of channels,

2) the number of closed channels,

3) the collision energy, and

4) the radial range of the potential.
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With these considerations i mind, three chemical systems, He—HZ, Li{+)-CO
and e]ectron-NZ, have been selected and a variety of tests for each devised
to vary the above mentioned parameters over representative ranges. For each
system, four basis sats were chosen to give N, the number of channels, in
the range 2 to 32. J, the iotal angular momentum quantum number, is fixed
for all four basis sets, and chosen so that the impact parameter is small.
The number of closed channels is varied at the same time as the energy.
That is, when the energy is low, many channels are closed. When it is high
most or all are open. Low energy can be defined by requiring the wave length
to be roughly the same as the range of the strong interaction region. High
energy can be defined by requiring the wave length to be one-fifth of the
low energy wave length.

The calculation of the potential energy matriczs for these tests has
been programed in a fashion which is hopefuliy flexible enough to be used
by all of the codes without undue modification. The most serious omission
is, 1 believe, the exclusion of a curve crossing problem. This is largely

due to the finite computing resources available to the workshop.

11. Description of the Tests

Test 1

Test 1 is the rotational and vibrational excitation of H2 by He impact.
An accurate CI potential is available which includes all of the nuciear
degrees of freedom, and converged quantum calculations of the inelastic
transition probabilities have been done [1]. This is currently the only
chemical system which has been this thoroughly studied, and hence is a good

representation of the state of the art.
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The potential energy function is first expanded in Legerdre polynomials,

V(x,r,6) = ¢ VA(x,r) PA(cosa) s (1)

where x, r, and 6 are the H - H vibrational, He-H2 radial, and He-H2 angular
coordinates, respectively. The Legendre coefficients are then written in a

separabie expansion,

v, (x,r) = zQ,,tx) B, (r) . (2)
Matrix elements of the Q-terms between H, vibrational wave functions are
Au(nds n'3') = njfg, G n'3* . (3)
Matrix elements of the Legendre polynomials between coupled spherical
hamonics are
F {32, 3°2'50) = (jad|P,(cose) [3'2'd) . (4)
Therefore, defining the G-coefficients,
GAu(njl, n'j'e') = Aku(nj,n'i') x Fx(jl. j'e'5 0, (5)
we have the desired matrix elements,

Viz(r) = (nijizi|V\x,r,e)|njjj1j)
= %; Gku(niJizi’ anjzj) x Bxu(r) . (6)

The A-coefficients were computed with the formuia
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A (nj,n'j') =z €’ D° (nj,n'i") , (7)
Au v Au

where the Q-functions have been expanded in powers of the H-H displacement

from the equilibrium position, Xa

Q) =2, L) (8)

The constants, C:u, were taken from Ref. 1. The D-coefficients are then

the matrix elements of (V-xe)“ between the H2 vibrational wave functions

D%(nj,n'J') = (nj[{x-x}"[n'3" > . (9)

These matrix elements were evaluated numericaliy using exact numerical
wave functions for the Kolos-Wolniewicz H2 potential [2].

The four basis sets chosen are shown in Table 1. These give 2, 8, 18,
and 28 channel problems, respectiv ly. The total angular momentum quantum
number, J, is equal to 4 for all the basis sets. When H2 is in its ground
state and the relative kinetic energy is E = .0224 a.u., this corresponds
%0 an impact parameter of b = .38 a.u. At this energy the wave length is
.6 a.u. which corresponds roughly to 5 wave lengths in the strong interac-
tion region. For this system only the high energy £ = .0224 is used. Ffor
the Tower enerqgy corresponding to one wave length in the strong interaction

region, there are no open vibrational siates of H2‘

Test 2
Test 2 is designed to test the codes against a long-range potential.

T.. aroblem is the rotational excitation of a rigid rotor CO molecule by
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Li(+) impact. This system was chosen because the charge-dipole and

2 and r3 dependence in the off diagonal

~quadrapole interactions lead to r~
potential matrix elements and because an analytic fit is available to a
configuration-interaction potential energy surface [3].

Using the above criteria sor low and high energy leads to(0.000079 a.u.
and 0.00195 a.u., respectively. Fixing the impact parameter at b=4 leads to
J=5 for the lower energy and J=25 for the higher. Four basis sets were
chosen for each energy. An attempt was made to keep the basis sets reatistic,
much as one might do in a convergence test. However, because of the close
spacing of the CO rotational energy levels, it has not been possible to
retain all of the open channels. Therefore, a type of decoupled 1-dominait
decoupling scheme [4] was employed. The basis sets are shown in Tables 2
and 3. For E =0.0000779, all channels with j>2 are closed. For E =0,00193,
only the channel with j =15 is closed.

The irteraction potential is expanded i ndre polynomials

V(r,e) =] v,(r) P,(coss) , (10)
X

where r and ¢ are the radial and angular Li(+)-CO coordinants, respectively.
Matrix elements of the Legendre polynomials, Pl(cose), between coupled
spherical harmonics are jiven by Eq. (4). The potential energy matrix

elements are then given by

Vir) = ; Fo(d5240 jjzj) v (r) . (11}
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Test 3
This is a test of the codes against a short-range poteritial. The

problem is identical to that of test 2, except that tae integration range
is 0<r<7, That is, the integration is to be stopped and an S-matrix
computed by ..atching to spherical Bessel functions, at r=7.0.

This artificial truncation of the potential is a slight contradiction
of our intention to use only realistic test problems. However, the numerical
difficulties of integrating the coupled equations are so drastically dif-
ferent for the interior and exterior regions of the potential that this
truncation is justified in order to identify those codes which perform best
on the interior region.

Test 4

Electron-molecule scattering is physically quite different “rom atom-
molecule scattering because of the extreme differences in mass as well as
because of the exchange problem arising from having identical particles in
the system. It is therefore worthwhile to exercise the codes on an electron
scattering problem, since it may well be that the same codes are not the
best for electron- or for atcm-molecule scattering.

Onda and Truhlar [5] have constructed a potential for electron-N,
scattering which features a local approximation to the exchange potential and
an asymptotically correct long-range polarization potential. The potential
has been expanded in Legendre polynomials as for test 2, and spline fits
made to the radial coeffici-nts. Since the local approximation to the
exchange potential is energy dependent, this particular potential energy
matrix is only meaningful when used at 30 eVirelative kinetic energy
when N2 is in its ground retational state). The four basis sets are shown

in Table 4.
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Table 1. Basis sets for test one.
rotational angular momentum, and orbital angular momentum quantum

nupbers, respectively.

n, j, and & refer to the vibrational,

# is a serial count of the channels.

£ 3

Target energ{

nje # njt # njt # njt levels {a.u.
0o0oa 1 004 1 004 1 004 1 0.0
22 2 22 2 22 2 .001616
4 3 4 3 4 3
6 4 6 4 6 4
40 5 40 5 .005329
2 6 2 6
4 7 4 7
6 8 6 8
8 9 8 9
62 10 62 10 .011009
4 1N 4 N
6 12 6 12
8 13 8 13
10 14 10 14
84 15 .018473
6 16
8 17
10 18
12 19
104 2 1n4 5§ 104 15 104 20 .018971
22 6 22 16 22 21 .020506
4 7 4 17 4 22
6 8 6 18 6 23
40 24 .024034
2 25
4 26
6 27
8 28
Total # 2 8 18 _;g
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Table Z. Basis sets for tests 2 and 3 at.E = .000079 a.u. and J=5. J and
L are the rotational and orbital angular momentum quantum numbers,
respectively. The arrows indicate that all channels down to that
point are included in the basis set.

Dy Basis sets Target energy
J 1 2 3 4 levels (a.u.)
0 s l l 0.0

1 46 1 1.76-5

2 357 BE 5.28-5

3 2468 1.06-4

4 13579 1.76-4

5 0246810 2.64-4

6 1357911 3.70-4

Total # 3 6 15 27

Table 3. Basis sets for tests 2 and 3 at E = .00195 a.u. and J=25. j and ¢
are the rotational and orbital angular momentum quantum numbers,
iraspectively. The arrows indicate that all channels down to that
point are included in the basis set.

i g Basis sets Target .nerg
1 Z_3 4 levels (a.u.
0 25 0.0
1 24 26 1.76-5
2 23 25 27 5.28-5
3 2224 26 28 1.06-4
4 2123252729 1.76-4
5 2022 24 26 2.64-4
6 1921 23 3.70-4
7 18 20 4.33-4
8 17 6.33-4
9 16 7.92-4
10 15 9.68-4
n 14 1.16-3
12 13 1.37-3
13 12 1.60-3
14 N 1.84-3
15 10 - 2.11-3
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Table 4. Basis sets for test 4 at £ = 1.1025 a.u. and J=5. j and 2
are the rotational and orbital angular momentum quantum numbers,
respectively. The arrows irdicate that all channels down to that
point are included in tic basis set.

) R Tl By
9 5 0.0
2 357 5.46-5
4 1357 9 1.82-4
6 1357 911 3.82-4
10 579111315 1.00-3
Total # 4 15 21 27
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A VARIABLE INTERVAL VARIABLE STEP METHOD
FOR THE SOLUTION OF LINEAR SECOND ORDER
COUPLED DIFFERENTIAL EQUATIONS*
Gregory A. Parker, Thomas G. Schmalz,
and John C. Light
The James Franck Institute and The Department of Chemistry

The University of Chicago,
Chicago, Illinois 60637

The usual quantum mechanical formulations of scattering
as well as many bound state problems lead to a set of coupled
linear second order differential equations. This set of
differential equations can conveniently be written in matrix
notation as

2 2
[14. +E-ywluw=2

where 1 is the identity matrix, kz is a matrix of wavevectors,
and Y(R) is the potential energy. Numerous methods have been
developed to obtain the solution mairix, J(R), to these equations
which approach the problem from a variety of directions. Most
current methods can be categorized in several ways. For example,
we can divide them according to whether the basis is fixed (dia-
batic) or is transformed during the calculation (quasi-adiabatic),
whether the stepsize algorithm is dependent on the variation of
the solution matrix or the potential matrix, or whether the
solution is propagated .cross an elementary interval as a

(1

diagonal or full matrix. Each approach, whether De Vogeleare,

*This research was supported by DOE under Contract ER-78-5-02-4908.
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NumeroJ?’Airy function propagatioéé&ntegral equationé? or R-
matrix propagatioéshas certain advantages for particular types
of problems, depending on the potential, the number of channels,
the number of energies to be rTun, etc.

Although it is obvious that one algorithm will not be
optimum for all problems, we have tried, in this paper, to
combine some of the most successful features of several of
these methods into a single new method. This new method
can be considered either as a generalization of such
single interval methods as distorted wave Born approximation
(DNBA)(akr infinite order sudden plus perturbation corrections
(IOS)[7’8)to cases in which more than one interval (over the range
of R) is required for numerical accuracy; or a generalization of
the Gordon,(z) Magnus,(g) or R-matrix(s) diagonalization methods
to muzi higher accuracy (via perturbation theory); or finally, a
generalization of the Sams and Kouri(4) integral equation method
to include both a quasi-adiabatir. (re-diagonalized) basis and

analytic perturbations to the local Green's function solution.

The success of this method, particularly for large numbers
of channels and energies, is based on the reduction of the numl:r
of matrix operations required for accurate solutions. Since a
change of basis requires two matrix multiplications, a stabiliza-
tion of the solution matrix requires about one, and a diagonaliz-
tion about 5/3, one wants to use a fixed basis over as large an
interval as possible. ©On the other hand a basis for which the

residual (after transformation) interaction matrix (RIM) contains
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large diagonal and off-diagonal elements (after a short distance)
will require frequent perturbation evaluations (anlﬂzprocess) and
frequent recoupling of the solution matrix (equivalent to at
least two matrix multiplications).

Thus the method presented in this paper attempts (and we
believe succeeds) in balancing these factors to obtain an
algorithm which reduces markedly the number of matrix (multipli-
cation) operations while not increasing the number of steps

required. This is accomplished by using standard techniques

in ways that are innovative in several respects. First, the
intervals over which a fixed basis (without stabilization) is
used are large. Within each interval first order perturbative
corrections to the zero order solutions are evaluated. In the
limit of one interval only, the solution reduces to IO0S plus
perturbative corrections or DWBA (or something else) depending on
the basis chesen. Second, since for many problems the diagonal
elements of the residual interaction matrices (RIM's) change
faster (and become larger) across an interval than the off-
diagonal elements, analytic approximations tc the solutions of
the diagonal elements of the RIM's are generated for a number
of steps (one or more) within the interval. Finally, the
remaining perturbations (both diagonal awzy from the center of
the steps and off-diagonal) are evaluated and summed over steps
to give the overall perturbation over the interval. These

are then used in an integral equation formalism to evaluate the
solution and derivative matrices at the end of the interval.

These are stabilized and propagated by the R-matrix (inverse
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log derivative) evaluation at the interval boundary and then
joined across interval boundaries by the transformation matrices
{since different bases are used in each interval).

Accuracy is maintained by controlling both the step size
and interval size dynamically as the calculation is done at the
first (lowest) energy. Since the potential diagonalizations
need not be repeated at other energies, the transformation
matrices, RIM's, etc., are saved for subsequent calculationms.
In the following,we discuss first the formal solution in an
interval and its propagation across the interval boundaries
within the framework of integral equations and R-matrix
evaluation. We then discuss the evaluation of the perturbatively
corrected solution over the steps within the interval, and the
step size and interval size algorithms used. In the final
section we give the results of an application to the standard
nine channel rigid rotor problem of Lester and Bernstein.(lo) A

few speculative comnents follow.

Intervals

We begin by dividing the range of interest into a series
of intervals. For each interval i the solution matrix is
transformed to a new basis by an orthogonal transformation I

with the solution‘gi(R) ir. the new basis given by
G- (R) = TX LU(R)
g™ ~l A ‘ (2)

The transformation matrix li is determined by diagonalizing

the interaction
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2
K= YR (3

where Bi is an estimate of the midpoint of the interval {the
actual interval that is taken may be several times larger than
the predicted interval length). The transformed set of equations

for interval i are then

2
[,1, j},—ez-*\/yilk)]gcm):g , )

where
wim =1 [ - viR]T s)

At the end of each interval an R-matrix R; in the local basis
is determined from the transformed wavefunction and its
derivative evaluated at the end of the interval, ﬂé, by solving
the following set of linear equations:
’
GilR) = R; G (Re). 6)
Since we may multiply the wavefunction by any arbitrary constant,
we solve (€) by right wultiplying gi(&) by [gz(gg]'l thus making
the wavefunction numerically equal to R and its derivative the
unit matrix. As shown later this saves 2N3/3operations/interval,
where N is the number of coupled differential equationz, while
automatically stabilizing the solution for closed channels.
Expressing the interaction matrixlﬂi in terms of a diagonal

reference potential ﬂief {to be defined later) we have
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[1d. +wie]gum =

te§

PRG AR, )
where_gi(R) is the difference between the reference potential

and the interaction matrix

(R)= W' (R)— W(R) . ®)

~ ref —~

-~

o~

With the use of Green's functions(ll)or equivalently variation
of parameters(lz)the set of differential equations (7) can be

reexpressed in terms of integral equations as
— i L
G (R) = gl(R)A +%L(R)Q

R
L- i ’ 7 , R’ dRI
+ %m) g,lm)ft(mgbt )
Ri“ﬁ;]l (9)

R
—gj(n) g,L(RJﬁ'(R)Q.L(R)cJR ,
R;_—,Qi/z

where gi and g; are any two linearly independent solutions of

the homogeneous reference equation

[l:mz + ,W,,.}‘R)] ?:[(R, -~ (0)
2

and A and B are constants to be fixed by the boundary conditions
for the interval, the predicted length of the interval being Ii.

Since an equation like (8 )} can be set up in each interval,
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using different reference solutions gi and g%, the solution to
the whole problem can be built up by using the known solutions
for interval i-1 to fix the constants in the solution fer

interval i. After having solved Eq. (7) in the last interval,

continuity of the wavefunction and its derivative require that

Ram % (R ~2./2) A +30' (re -2./2)B a1

~ L

o l'./
1 -_-g:m‘--,ei/z)ﬁ +g,2 (R;-2:/2)B . )

If we takelgi to be the solution in interval i which is zero at
Ri-jE/Z and normalize gé to insure a unit wronskian, Eq. ( 9)

will assume the form

R
R)=gmlL+ ] g8 PG, (R)dR’]

’?i-l,'_lz
_ y R , 13
+ gl R, - g,‘(R’)f;(R)_@(R’)dﬁj
Ri-Li/2

where

IJ

o = Q Ri-1 Qs (14)
and

t
Qi: T,-___,TL 1s)

transforms the R-matrix of the last interval into the new basis.

By choosing the reference potential equal to the «entrifugal


file:///-Ajz
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term

= Q{2+ 1)/ R?
Wre(fﬂ) s @16)

and having Ti be the identity matrix Eq. (13) can be made

identical to that given by Sams and Kour1( ) except that they

begin with purely regular boundary conditions since they are
giving the solution for the whole problem rather than just
one interval. Sams and Kouri then use a numerical quadrature
to propagate the solution.

If the interval is sufficiently small and a good reference

potential is chosen we can solve Eq. (13) by perturbation theory,

and use

G2 (R) = g () i(RJR"M
Gi(R= g (RI+2, (AR, (17)

for G; on the righthand side of Eq. (13). We then obtain a

perturbatively corrected wavefunction over the interval

Gin = gin 4 + T0]- gin T,

(18)
{gL(R)I R+, (R)[:L -1 ue]} Ri,’
where R .
I, (R)= %‘(R)E(R‘)?,(R')G’R, 9)
—-£;/2

R
M CESMULY BRLY Li(RIGUR AR (oo
R~—A;/2
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and R

l: 4 ‘ . 7
JZi(R):fgzlﬂﬁf‘lR)ngﬂ)dl? :
Ri

c-2:/2
The derivative of the wavefuncticn is

/(v = gltm1 + 1,0 ]- g R 2,0
o/ 4 . OIJ
+ { g, (R L0 + g, ®) [2- E,JRJ]},&.,

which is easily verified by direct éifferention of Eq. (18).

By writing Eqs. (18) and (22) in the form

. . . . old
G.(R) = 31;”” +z\§jm)4 [?;(R) 1 Agtz"“].@;-,

.’ Y -/ 4 od
G (R =g/ (R +ag/(r) +|:g§m,‘ + AVngR)JEL'-‘

where

Agf(R) = g’i(ra) I, (R - gﬁ(ﬂ);,,(k) ,

Ag(;(m = gf (R) I.,(R) —g;m);ﬂ,z(m ,

(z1)

(22)

(25)

(24)

(25)

(26}
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.7 -/ ‘¢
49,0 = 2, (R) L (R = GL(RTMR) »  an)
and

x4 il ‘:,
A g, (R=4g, (R L) = g (RILR) g

we can use the perturbative corrections Ag;', Ag;, Agi', and
A g:zl' to control the size of the interval. We terminate the
interval whenever the maximum of any of the perturbative

corrections is greater than some tolerance TOFF
( ( ’ /
TOFF:_>-MAX[Ag,)Ag;,}Ag,/Agl:l. (29)

As mentioned before, calculating an R-matrix at the ond of
each of the intervals saves 2N3/3 operations which is easily
seen from Eqs. (23) and (24). Calculating an R-matrix via a
linear equation solver requires 4N3/3 operations; however, 2N
operations are saved by not having matrix multiplications with

Aﬁgi and Aﬂgi' (due to renormalization of the wavefunction
to unit derivative at the end of each interval), resulting in
a net savings of 2N3/3 operations. The total number of matrix
operations/interval is § 1/3 determined as follows:

i) ZN3 from transforming the R-matrix into a new basis
[Eq. (14}],

ii) w3

from multiplication of Ag% and Ag%' by R,

[Eqs. (23-24)], and
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iii) 4N3/3 for determination of the R-matrix [Eq. (6)].
The number of matrix operations/interval can be reduced to 4
5/6 by symmetrizing the R-matrix in each interval since only
3/2 N3 operations are then required to transform the symmetrized
R-matrix. The lack of symmetry in the R-matrix is a direct
result of the perturbative corrections which in general are not
symmetric (and thus do not conserve flux). However, by keeping
the perturbative corrections small the R-matrix is nearly
symmetric.

The number of matrix operations given above assumed that
the diagonalizations and energy independent transformations
were already computed and stored ready for use. For the first
energy there are an additienal 2 2/3 N3 operations/interval
determined as follows:

i) 5N3/3 for diagonalization of Eq. (3}, and

3

ii) N° for the calculation of the interval to interval

transformation matrix [Eq. (15)].

Steps
To propagate across each interval we may of course simply

choose a reference potential and evaluate Eqs. (18) and (22).
However, we can improve the accuracy of the solution by

subdividing the intervals into steps where for each step, s,
the interaction matrix Wi(R) is expanded in a Taylor series

about the midpoint Ri and terms through quadratic are retained:
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2 —
wie = ), o 3 Wolks) + W (B (R-k)

+ 1 UR) (R -R)/2 -
where Ag,s is a diagonal matrix
(B, =4 o I
,bi,; A [WL(RJ) ”’im”m’)/‘zilﬁi 6{___/2 (31)
s A

[ W, (Rj)]glk = - I \Q/,u"’(Rj)/Z‘/]Jj Jzk

and h is the length of the step. For a reference potential Eief
we use Ag,s which is constant over the step but not constant
within an interval. The solutions of the homogeneous equations
within each step are simply a linear combination of sines and

cosines,

g;.;?ﬂ): Ads Sin A[_ ;ﬂ t b5 Cos A /0 53)

s

H
“IR= € Sin)
(7[(2 - __”Lif + d, coshiysf 34
175

where//? =R - Rs - hS/Z for open channels and hyperbolic sines

and cosines
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?,‘/S(R) = aj;,',,hh,;f .,LéﬁosAA[,:/O (35)
Ags

(5
zz(k)::- Cs .fmA/;hz,;/O 4 5/5 605/7):,90 (36)

l—‘/ S
for closed channels, with the requirement that the wronskian

w( 5” ) g" (R)] g, (R)g, r)- g"(k)g"ml (37

be a unit matrix. The coefficients ag, bs’ €5 and ds are

obtained by requiring that the homogeneous solutions gi’s and

g;'s be continuous across the steps giving (RS - 25 = Rs-l +

3
0,51
as= g, (R~ hs/z) (38)
b= g"s '(R hs/2) (39)
C, = gj’s ¥ -hs /2) (40)

aﬂ— 5{‘“()? -hs/2) . (41)
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For the first step in each interval the coefficients are

determined by the definition of g and g; used in the

interval to interval matching:

g=d=1 )
bi=g,=0 - (43)

The integrals in Eqs. (19-21) can now be expressed in terms

of the homogeneous scolutions over each step as

R_‘ +h5/2
£s, . , LS » ’
— LSl P . G/R ’
L, = ag"r ¢ )f,‘(R)g’ (R) (44)
I Rg~hs/2
¢ P Ah /2
t = —\ 6‘,5 ’ 7 l'-/S R

;2["1:2"’ : fg, (R)f“k)gz (R)dR , s)

Re—hs/2

and
R,+hs /2 '
(S . s

12 = g1 Pihg, e de’ -

Rs— hs/2
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Since the gi’s and g%'s are simply sums of sines and cosines
(or hyperbolic sines and cosines) and P, (R) is a polynomial
the integrals can be evaluated analytically. The step size
is controlled by keeping the perturbative corrections to the
step less than TDIAG for the diagonal elements and
MAX (0.5*TOFF,TDIAG) for the off-diagonal elements. With the
choice of reference potential used here there are no error
terms with less than hg dependence in either the diagonal or
off-diagonal perturbation elements. Other reference potentials
could also be used (i.e.,linearfs) or quadratic) leading to
more accurate unperturbed solutions gi’s and g;,s. However,
the analytic evaluation of all the matrix elements in Eqs. (44-
46) is not known for most solutions and, since the number of
operations within each step is proportional to NZ, whereas the
number of operations/interval is proportional to NS, increasing
the number of steps slightly has little effect on the overall
computational time. In addition the sines and cosines are
rapidly evaluated on computers while other solutions (e.g., airy
functionscs)) may require significantly more effort for their
evaluation.

For the first energy the potential and its first and second
derivatives must be transformed to the local basis giving a
total of BNS/Z operations/step (3/2 N3 operations/transformation
since the potential encrgy matrices are assumed symmetric). For
subsequent energies there are no N3 type operations at each
step since the number of operations for the evaluation of the

perturbation integrals Eqs. (44-46) is proportional to Nz.
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Shown in Table I is the number of matrix operations/interval

for the first and subsequent energy runs, where one sees that
the ratio of the number of operations for a subsequent to the
first energy is 0.56 or less depending on the number of steps/
interval.

If there is no off-diagonal coupling, increasing the
number of steps and/or intervals will converge the solution to
the exact result. When there is off-diagonal coupling we have
to increase the number of intervals to converge the solution
to the exact result. Since within each interval we have formed
distorted wave solutions(6J in the Ti basis for that interval,
increasing the number of steps alone will only converge to an
approximate solution. There are two interesting limits for an
approximate solution with one interval over the entire range
of interest. First, if T, is the identity matrix then the
resulting solution is the distorted wave approximation which
is a good approximation when the ~7f-diagonal coupling is small.
This is often the case for vibrational and electronic transi-
tions. Secondly, if Tl is the transformation which diagonalizes
the potential without centrifugal and kinetic energy terms, the
resulting solution is the infinite order sudden (IOS)U’8 )
solution plus perturbative corrections. The 10S solution has
been shown to be a good approximation when the relative kinetic
energy is large compared to the relative spacings of the wave-
vectors as is often the case in rotational transitions. When
two intervals are taken, the program is essentially doing an
10S plus perturbative corrections at short distances and a

distorted wave approximation at large distances. As the number
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of intervals is increased the results converge to the exact

coupled channel solution.

Application

In order to determine the rate of convergence and accuracy
of our method we used the rigid rotor problem of Lester and
Bernstein. (10 Although the parameters of this problem are not
physically meaningful it is .one for which accurate solutions
are known.(Sb’ls) For completeness the parameters used are as
follows: total angular momentum J=8, with rotational states

4 a.u., relative

j=0,2,4, rotational constant B=.202652 x 10~
kinetic energy E=.759945 x 10'2 a.u., reduced mass A=

.66984935 a.m.u. x 1822.8%8 a.u./a.m.u., anisotropy parameter
a,=0.4, and finally the well depth and well position of the
Lennard-Jones potential are, respectiveiy, € =.50663 x 1072 a.u.,
rm=6.35716 a,. All integrations started at 4.60 a.u. and ended
at 80.0 a.u. Our transition probabilities P(j £ ¢ j' £') for
the 9 state rotational problem rounded to six significant figures
are given in TableZX.

In Fig. 1 we have a plot of the root mean square error

2
[Pt(';c*t”'ﬂ')" Ppe g N /00l
JJJQV

of the transition probability vs. the average number of steps/

r.ms. =

interval. One sees that the resu.ts converge for roughly 8 steps/
interval and t..at the convergence is uniform.

In Fig. 2,we have a plot of the root mean square error in
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the transition probability vs. the number of matrix operations

(assumed second energy). The solid curve is the result with

no perturbative correcticns and 1 step/interval which is exactly
equivalent to the R-matrix recursion method of Walker and
Light,(s) where one sees that the rate of convergence is neither
rapid nor uniform. A conversion factor of 3 1/3 matrix
operations/interval was used. The dashed curve is the result
with 1 step/interval plus perturbative corrections using a
conversion factor of 5 1/3 matrix operations/interval. The

rate of convergence has been improved as well as the uniformity
of convergence over the unperturbed R-matrix results. The
dotted curve is the result obtained from our method with
TOFF = 8*TDIAG. There were an average of 4.2 steps/interval

and the conversion factor for the number of matrix operations/
interval was (5 1/3 + % number of steps/interval). The curve
shows a dramatic increase in the convergence rate over both

the unperturbed R-matrix results and the results using only

1 step/interval.

Speculations
Although the results shown in Fig. 2 demonstrate that this

approach succeeds admirably in increasing the accuracy while
reducing the number of matrix operations for this problenm,
nothing is perfect, and we may speculate on the effort required
to produce further improvements. The presert method has a
large overhead at the first energy (primarily in transforming
the potential and derivative matrices at each step). 1In

common with all other quasi-adiabatic basis methods it must also
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take small intervals where the potential matrix is rapidly

varying, even in the non-classical regions.

This suggests two changes in the algorithm, one trivial,
the second less so. To reduce the poiential transformation
overhead at the first energy, it would probably be advantageous
to evaluate the Taylor series expansion of the potential at
fewer points than at every step. One requires that the
potential matrix be accurately represented at each step but the
current practice of evaluating and transforming V(o), V(l),

V(z) at each step, requiring 4.5 Ns matrix multiplications per
interval at the first energy may be overkill.

The second problem, small steps and intervals in (typically)
the non-classical repulsive region, might be overcome by the
use of a different sort of algorithm. In this region the
potentials are typically varying more rapidiy than the wave-
functions, and a high order numerical (non-propagation)
method would seem advantageous. Since the renormalized NumeroJZ)
is high order and only 2 matrix inversions per step and produces
the log derivative matrix (Eﬁl), a hybrid using these two
methods would seem to be optimal. Alternatively, a standard
integral equation integrator using only trapezoidal (or Simpson's)
rule could be used on a fixed basis, requirirg only one matrix
nmultiplication per step. However, since these 2re both true
hybrid modifications of the present method with ancther, we

present only taese speculations here.
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Fig. 1. Root mean square error (eq. 47) of the transition proba-

bility versus the number of steps/interval for TOFF = .512,
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Fig. 2. Root mean square error {eq. 47) of the transition proba-
bility versus the number of matrix operations (assumed second
energy) for the Lester-Bernstein rotational problem (Ref. 10}.

): without perturbative corrections (3 1/3 matrix

Solid curve (
operations/interval) equivalent to the R-matrix propagation method
(Ref. 5). Dashed curve (— — — =): current method 1 step/interval
(5 1/3 matrix operations/interval). Dotted curve (- - - -) current
method with an average of 4 steps/interval, TOFF = 8*TDIAG (5 1/3

matrix operations/interval + %—number of steps/interval).
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TABLE I

Matrix Operations Interval

Number of ist Subsequent Ratio
Steps/Interval Energy Energies

1 9.5 5.33 0.56

2 11.90 5.33 0.48

3 12.5 5.33 0.43

4 14.0 5.33 0.38

5 15.5 5.33 0.34
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TABLE II

Lester Bernstein rigid rotor rotational problem.
(See text for dstails.)

Transition Probabilities

BN ANDS AN (=% BN LNO_NS

DEaNAEANOANA
NOORWOOAS

[SYE

4 2 4

4 6 6
0.605514 0.281756 0.593056(-1)
0.281756 0.315523 0.742543(-1)
0.593056(-1) 0.742543(-1) 0.692690
0.226829(-1) 0.171931 0.159442(-1)

0.201651(-1)
0.729668(-2)
0.237556(-2)
0.803347(-3)
0.101578(-3)

0
8

0.226829(-1)
0.171931
0.159442(-1)
0.384656
0.133936
0.159547(-1)
0.207964
0.180190(-1)
0.289113(-1)

2
10

0.237556(-2)
0.371953(-1)
0.204618(-2)
0.207964
0.661537(-1)
0.469303(-2)
0.342219
0.314856(-1)
0.305868

0.961616(-1)
0.159411(-1)
0.371953(-1)
0.663197(-2)
0.255516(-2)

2
8

0.201651(-1)
0.961616(-1)
0.316285(-1)
0.135936
0.435751
0.107687
0.661537(-1)
0.971295(-1)
0.1535875(-1)

4
10

0.803347(-3)
0.663197(-2)
0.862864(-2)
0.189190(-1)
0.971295(-1)
0.752400(-1)
0.314856(-1)
0.729201

0.1:8106(-1)

0.316285(-1)
0.115317

0.204618;-2)
0.862864(-2)
0.185634(-3)

4
8

6.729668(-2)
0.159411(-1)
0.115317
0.159547(-1)
0.107687
0.656834
0.469303(-2)
0.752400(-1)
0.103665(-2)

4
12

0.101578(-3)
0.255516(-2)
0.185634(-3)
0.289113(-1)
0.133875(-1)
0.103665(-2)
0.305868

0.128106(-1)
0.635143
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Part of the S-matrix

4
4

0.528309
-0.52B565
0.227472
0.104741
-0.778045(-1)
0.111511(-1)
0.195871(-1)
-0.208697(-1)
-0.998008(-2)

0
8

0.104741
0.120203
0.119976
-0.526697(-1)
0.296390
0.119123
0.451322
0.534475(-1)
-D.924876(-1)

2
10

0.195871(-1)
0.144675
-0.415927(-1)
0.451322
-0.238758
-0.158431(-1)
0.360917
0.177006
0.157255

2
6

-0.528565
-0.497361
-0.252315
0.120203
0.202571(-1)
-0.112659
0.144675
-0.811259(-1)
-0.450512(-1)

2
8

-0.778045(-1)
0.202571(-1)
-0.636897(-1)
0.296590
-0.452396(-1)
0.176517
-0.238758
0.305180
0.322:96(-1) .

1
10

-0.208697(-1)
-0.811259(-1)
0.918147(-1)
0.534475(-1)
0.305190
-0.211871
0.177006
0.232537
-0.937555(-1)

4
6

0.227472
-0.252315
-0.573729

0.119976
-0.636897(-1)

0.116215
-0.415927(-1)

0.918147(-1)

0.423519(-2)

4
8

0.111511(-1)
-0.112659
0.116215
0.119123
0.176317
-0.725772
-0.158431(-1)
-0.211871
0.145718(-1)

4
12

-0.998008(-2)
-0.450312(-1)
0.423519(-2)
-0.924876(-1)
0.3224:6(-1)
0.145718(-1)
0.157255
-0.937555(-1)
0.750511
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Table II (Continued) Imaginary Part of the S-matrix

j 4 2 4

t 4 6 6
4 4 -0.571317 0.487372(-1) 0.869590(-1)
2 6 0.487372(-1) -0.257208 0.102915
4 6 0.869590(-1) 0.162915 -0.602931
0 8 0.108223 0.396841 0.393689(-1)
2 8 -0.118792 -0.309437 0.166048
4 8 - 0.846896(-1) 0.570000(-1) -0.319078
2 10 -0.446308(-1) -0.127532 -0.177829(-1)
4 10 0.191782(-1) 0.100277(-1) -0.140959(-1)
4 12 -0.140572(-2) -0.229641(-1) 0.129498(-1)
j 0 2 4

1 8 8 8
4 ] 0.108223 -0.118792 0.846896(-1)
2 6 0.396841 -0.309437 0.570000(-1)
4 6 0.393689(-1) 0.166048 -0.319078
0 8 0.617966 0.214684 -0.420054(-1)
2 8 0.214684 0.657042 0.276765
4 8 -0.420054(-1) 0.276765 0.360679
2 10 -0.653609(-1) -0.956467(-1) 0.666485(-1)
4 10 -0.123136 0.616904(-1) -0.174215
4 12 -0.142679 0.111119 -0.287109 .- .)
j 2 4 4

) 10 10 12
4 4 -0.446308(-1) 0.191782(-1) -0.140572(-2)
2 6 -0.127532 0.100277(-1) -0.229641(-1)
4 6 -0.177829(-1) -0.140959(-1) 0.129498(-1)
0 8 -6.653609(-1) -0.123136 -0.142679
2 8 -0.956467(-1) 0.616904(-1) 0.111119
4 8 0.666485(-1) -0.174215 -0.287109(-1)
2 10 0.460388 0.124333(-1) -0.530225
4 10 0.124333(-1) 0.833743 0.634071(-1)
4 12 -0.530225 0.634071(-1) -0.268099
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INTEGRAL EQUATIONS METHODS
FOR INELASTIC SCATTERING

Don Secrest and Kelly McLenithan
School of Chemical Sciences

University of Illinois
Urbana ITlinots 61801

Integra» Equation Methods

We may for the purposes of this discussion start with the radia!l

Schrédinger equation in some appropriate reduced units,

2 -
(L - HBD L) eme § v FR) m
dR™ R il R R S |

Of course here the subscripts are compound subscripts which depend on

the system being studled. The matrix V is the potential matrix for the
problem and f(T) is the channel radial wavefunction which must vanish at
the origin. ;h: differential equation, Eq., (1), can be cast ipto the
form of an inhomogenecus equation by partitioning the radial wavefunction
into an incoming wave and a scattered wave

f(R) = u(k;R) 8,7 + g(R). (2)
i1 [} il

Here ul(k‘R) Is the regular Riccati Bessel function which satisfles the

left hand side of Eq. (1) equal to zero. Substituting Eq. (2) into Eq. (1)

one obtains

2
(o - 2 2y o R)=T y(R)F(R) (3
dR2 RZ + ') 911 z':| i3l

This fnhomogeneous equation may be converted Into an Integral equation
through the use of a Green's function to give
@y (k‘R<)v£(k‘R>)

R =« [ % V(R') F(R')AR' . (&
I '£ 7 2;' F Y} “
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Here vz(kR) is another solution of the left hand side of Eq. (1) set equal
to zero. The only requirement on this solution is that it be independent
of ug - It is chosen for computational convenience. The constant I:l
is the Yronskian of these two solutions to the homogeneous equations.
The R< and R> are the lesser and greater of R and R' respectively.
Using Eq. (2) we now may write
up (kiR ) vg (K R))

F(R)= uy(k,RY 6, + f 212 T2 7 y@ROFRDGR! (5)
N I ¢ );- 1A'l

Thls may now be reduced to a Voltera equation by breaking the integral into

two parts

Rou (kR v (k,R}
FR) = u (k;R) &,y + [ e § V(R)F(R')dR’
i [ i [N L A

ug (i R) vy (K, R*) (6

T )i:. Viie

(R')F(R')dR’
i i'l

We may write the third term on the right hand size of Eq. (6) as the

integral from zero to infinity minus the integr.. from zero to R giving

R uy (k R')v (k R)- -y (k R)v (k R')
f(?) = ul(kIR) 6 I 3 x
i i

(7)

(kIR')
I VIRF(R')AR' + up (K R) j‘ ———z V(R')F(R')dR’

[AEEE RN R ¢ I [ L A
The last Integral in Eq. (7) is a constant which may be determined at the

end of the integration.
It Is of Importance to note that the Kernel at R'=R is zero. Thus,
If the integral is replaced by a numerical quadrature and integration

proceeds toward large R the new point is always given in t:-=3 of previous

points only.



It is convenient

solution,

where

and
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f(R) = Vz(kiR)Tf';) - ul(kiR)Qfl})

V(R) f(R)
1 'l
i1 b

(2
—_
=
>~
it

R
T(R) = (k.R*) G(R') dR'
11 { EA B

to rewrite Eq. (7) in a form more amenable to numerical

(8)

(9)

(10)

R o
ar) = ¢ Vz(kin') G(R')dR' - [ v kR GRIAR - 8, (D)
il o i1 ° il

The quadratures in Eq. (10) and (11) may be replaced by NewtonsCotes type

integration formulas and Eq. (8) then given F(R) on the equally spaced
i1

set of points Rn.

where

and

fg?n) = vy (kR ) Tf§n) = up(kR) Q§¥n)

J
T(Rp) = T(R__.) + ¥ W G(R
i i1 .pZI Pr

-1 .
= J

(12)

(13)

(14)
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Here wi is the p-th weight for a j point integration formula. Notice
the last point is not used. [t would cancel In any case when T and Q are
substituted into Eq. (12).

From Eq. (11) one sees that as R approaches infinity Q(R) must
approach -6'1. This would clearly heppen if the proper valﬁi of Q:?)
were used Initially. Since we do not know how to pick Q fnitially we start
the problem with a matrix formed from a complete set of linearly independent
QII vectors and then recombine them at the end of the integration to
obtain the desired asymptotic form. This gives us of course all initial
states at the same total energy whether we want them or not. We have usually
started by choosing Q = -1, the diagona) matrix with =1 on the diagona).
This integration technique is usually used for problems with a strong repul-
slve potential near the origin. In this case it is not necessary to start
the Integration at the origin. 1t is usually started well into the non-
classlical region with the starting point determined experimentally. The
exact starting point is unimportant as the result does not depend on
where one starts as long as it is far enough into the nonclassical region.
The experimenting is necessary only to avoid wasting computer time Integrat-
ing In the nonclassical reglon when it would serve just as well to start
farther out. As the radial wavefunction f decays rapidly in the nonclass-
fcal reglon we take for the initial value of the T matrix the zero matrix.

In principle any order integration formula may be used. My group has
studied all of the Newton-Coates formulas up to order 9. We have found
that beyond the Simpson rule the higher order formulas are more time consuming
for the same precision In the answer. The Simpson's rule is faster than

trapezoid rule in that it allows much larger steps for the same accuracy.
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It tends to be unstable for potentials with a long range interaction
however. The trapezoid rule is the most versatile.

Using the trapezoid rule Eq. (13) and (14) become

T]Sikn) = 119;"_,) +h ci(s;n_,) ug kR ) 0s)
Qi(?n) = ngrlin_,) + h sﬂ{n_]) volk;R 1} (16)

For Simpson's rule we use

Tg?n) = Tf';"") + 4/3h eg?n_,) ug (kR ) )

Qgrlxn) = E:-’I‘n-l) + h/3h Gfr}n_,) valiGR ) (18)
and

Tg{n) = L(nn_z) +2/3h “i‘;‘n-l’“z“‘i"n-r’ (19)

afrfn) = Qi(.flan_z) + 2/3hG§lI!n_])v£(kiRn_') (20)

for the next step the roles of the barred and unbarred T and Q are

interchanged.

As was mentloned earlier up for open channels is a Riccati spherizal

Bessel function,

u (2} = 2j,(2) (21)

we chose

Vz(Z) = znz(z) (22)
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a Riccati spherical Neumann function, This gives us real equations to
solve. For the closed channeis we would Iﬁke to chcose the modified
Riccati Bessel functions for complex argument, but we are in the end
interested in the S matrix. We chose the Neumann function for vy to
obtain real equation. A Hankel function is more appropriate for $§ matrix
boundary conditions and inthe clased channels it may be chosen real. This
is more convenient as the Hankel functionfor closed channels is a pure
decaying exponential and thus has better numerical properties than the
Neumann function which is a combination of a growing and a decaying
exponential. For strongly closed channels the modified Bessel function grows
and the Hanke( function decays rapidiy and we get into trouble with over~
flow and underflow quickly., Thus in order to avoid this we multiply

the Bessel function by eZ and the modified Hankel function by & which

keep them a reasonable magnitude. Thus for closed channels we choo-r
u,(z) = izj,(iz)e (23)
I3 L

and
VE(Z) = izhz(iz)ez. (24)

Of course the closed channel Q and T will be modified by a constant.

Furthermore the constant is different at each point in the integration.
k.h -k,h
t

i and e " to

Thus the closed channel @ and T must be multiplied by e
advance the constant to the next step., With these choices of vo the
constant C‘ in Egs. (4-7) and (9) Is-lkiL

Ending the integration is very simple. One sees from Ey. (8) that

asymptotically
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f(R) ~ V(kiﬂ) T - Uz(kiﬂ) Q (25)
11 Rd il il
To obtain the proper boundary condition we multiply this equation from

the left by -_0__-I to obtain

= ~1

R=-TQ (26)
The R matrix is obtained from R by

R=k V2R /2 (27)

where k is a diagonal matrix with the channel wavenumbers on the diagonal.

The S$-matrix is obtained from
s=(L+iR) (L-in! (28)

where we usc only the open channel portion of R in Eq. (28). If we had used
Neumann functions in the closed channels it would have been necessary to
use the entire R matrix in Eq. (28), but as the closed channels were already
treated using Smatrix boundary conditions only the open channels of the

R matrix should be used to compute the open channel Smatrix.

In the early part of the calculation, in the nonclassical repulsive
region of the interaction potential the radial wavefunction for each
channel is a growing exponential as integration is carried toward large R.
Since the integration was started with an arbitrary Q matrix each channel
is a mixture of all channels. Thus the most rapidly growing channel will
tend to dominate =ach column of the Q matrix and the matrix will tend to

become singular. To overcome this difficulty it is necessary from time to
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time to form linear combinations of the columns of Q which are Itnearly
independent. It is only necessary to do this a few times during a cal-
culation. Since it need not be done often there is no need to do it In

the most efficient way. A simple approach is to multiply Eq. {12) from the
right by minus the inverse of the Q matrix thus resetting Q to minus a

unit matrix and replacing T by R of €q. (26). This is convenient since it
requires no further programming. Eq. (26) must be evaluated at the end

of the program In any case. The points in the calculation at which this
stabilization must be performed are determined experimentally. As a rule

of thumb the first stabilization is done after a few Integration steps. Each
succeeding stabilization is done after approximatel!y 5 times as many steps
as the previous until the integration emerges from the nonclassical region.
At this point it is usually possible to drop closed channels. After
emerging from the nonclassical region, if closed channels are dropped, it is
not necessary to stabilize any longer.

A listing of the program is given in the appendix.
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APPENDIX

PROGPAM NRCC (INPUT ,OUTPUT , TAPES8 , TAPES=INPUT , TAPE6=OUTPUT)
REAL EK (58) ,WK (58) ,PU (58) ,PV (58) ,DR(58) ,DT (58) ,ELEV (58) ,V(2580) ,

1 a(309),r(58,50),T(58,58) ,G(58,50),P(50,50) ,K(58,58)

COMPLEX Q(50,50) ,S (58,58) ,KDEL

INTEGER 1LQ(54) ,J0Q(50) ,NSTAB(160) ,STB,DRP,CLC
LOGICAL STAB,KSEE,DROP

DATR 1D, IDX,NC,NSTEP,NSTAB1/53,300,0,8,-1/

THIS PROGRAM PERFORMS AN EXACT CLOSE-COUPLING MOLECULAR SCATTERING
CALCULATION FOR UP TO ID COUPLED CHANNELS BY THE METHOD OF SAMS AND
KOURI AND DEVELOPED BY OTHERS. TiE SYSTEM OF COUPLED INTEGRAL EQUATIONS
IS SOLVED USING THE TRAPEZOID RULE.

STABILIZATIONS

ONE CAN CHOOSE TO APPLY STABILIZING TRANSFORMATIONS DURING THE NUMERICAL
INTEGRATION BY SETTING THE LOGICAL VARIABLE STAB TO .TRUE. AT EXECUTION
TIME. A LIST OF STABILIZATION FOINTS MUST THEN BE INPUT BY STEP NUMBER.
ONE CAN CHOOSE TO LOOK AT THE REACTANCE MATRIX AT EACH OF THESE POINTS
BY SETTING THE LOGICAL VARIABLE KSEE TO .TRUE. AT EXECUTION TIME.

DROPPING CLOSED CHANMNELS

CLOSED CHANNELS CAN BE DELETED AFTER A CERTAIN FOINT IN THE INTEGRATION
BY SETTING THE IOGICAL VARIABLE DRCP TO .TRUE. AT EXECUTION TIME. THE
STEP NUMBER OF THE POINT AFTER WHICH CLOSED CHANNELS ARE TO BE NEGLECTED
MUST THEN BE READ.

WRITTEN BY KELLY MCLENITHAN (JUNE, 1979).

CALL SECOND(T1)
ASSIGN 66 TO STB
ASSIQN 9 ‘7O DRP

DATR INPUT

READ(S,1000) STAB, KSEE,, DROP , XBEG, XEND, STEP
NTOTAL=IFIX ( (XEND-XBEG) /STEP+0. 5)
IF(.NOT.5MB)G0 TO 18

READ (5,181 8)NSST

DO 5 I=1,NSST

5 READ(S,1819)NSTAB(I)

ASSIGN 55 TO STB
NSTABI-NSTAB(1)

10 IF(.NOT.DROP)GO TO 15

READ(5,1010)NSIR
ASSIQN 89 TO DRP

COMPUTE BASIS SET (ENERGY LEVELS, QUANTUM NUMBERS, AND WAVE VECTORS)

15 CALL POT(E,XBEG,W,V,CP,WK,4,1,8,ICOUNT)

CALL LIST (NQNO, XMU,JQ, LQ, ELEV)
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COUNT OPEN/CLOSED CHANNELS

NOPE=NTP=NCNO

DO 2§ I=1,NQNO

WEK=WK (1}

IF (WEK.GE.8.8)G0 TO 28
NOPE=NOPE-1

WEK=-WEK

28 EK(I)=5Q:T (WEK)

45
5@

ASSIN 63 TO CIC
IF (NOPE.EQ.NQNO)ASSIGN 75 TO CIC

DATA QUIPUT

WRITE (6,2088)E , XMU,NONO , NOPE , NCNO-NOPE , XBEG, XEND, STEP, NTOTAL
IF (.NOT.STAB)GO TO 30

WRITE (6,2018)NSST

DO 25 I=]1,NSST

WRITE (6, 20 20)NSTAB (1) ,XBEGNSTAB (1) *STEP

IF (.NOT.DROP.OR.NOPE.BEQ. N(NO)GO TO 35

WRITE (6, 2030 )NSDR

WRITE (6,2049)

DO 4@ I=1,NNO

WRITE (6,2056)1,JQ(I),LQ(I) ,ELEV(I) ,WK(I) ,EK (1)

PROGR:M INITIALIZATION

CALL ZERDZ (R, ID*NQNO)
CALL ZEROZ (T, ID*NQNO)
LUP=6

DO 58 I=1,NNO
LUP=MAX® (LUP, LQ (1))
IF (I.IE.NOPE)G TO 45
DR(I)=EXP (EK(I) *STEP)
DT (1)=1.8/DR(I)

G0 TO 50
DR(I)=Dr(I)=1.8
R(I,I)=1.8

X=XBEG

XMU2=2, 8*XMU
SX2=STEP*XMU2
ILO=NOPE+L

IST=1

BEGIN NUMERICAL INTEGRATION (TRAPEZUID RULE)
STABILIZATION TEST
GO TO STB(55,68)
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S5 IF (NSTEP.EQ.NSTABI)GO TO 95
OCOMPUTE BESSEL FUNCTIONS

60 CALL BESSEL(PU,PV,EX,LQ,X,STEP,NOPE,NC,A,1.0,IDX)
@ T0 CLC(63,75)

63 DO 78 I=ILO,NQNO

DO 65 J=1,NONO

R(I,J)=DR(I)}*R(I,J)

T(I,J)=DP (I)*T(I,J)

Z=EK (1) *X

CALL MSBESJ(Z,IUP,A,l.8,IDX)

PU(I)=2*A(1Q(1)+1)

CALL MSBESH(Z,LUP,A,1.0,IDX)

78 PV(1)=Z2*A(IQ(I)~1)

6!

w»

CONTINUE NUMERICAL INTEGRATION

75 DO 89 J=l1,NTP
DO 80 I=1,NTP
85 G(I,J)=FU(I)*R(I,J)-FV(I)*T(I,J)
CALL FOT(E,X,W,V,CP,WK,2,2,8, ICOUNT)
DO 82 J=1,NTP
DO 82 I=1,NTP
IM=I-NONO
SiM=3 .0
DO 81 M=1,NTP
IM=TMHNONO
81 SUM=SUM+V (IM) *G (M, J)
82 P(1,J)=SM
DO 85 I=1,NTP
TT=5X2/EK(I)
TU=PU (1) *TT
TV=PV (1) *TT
DO 85 J=1,NTP
T(I,J)=T(X,J)+P(I,J)*TU
85 R{I,J)=R(I,J)+P(I,J)*TV

DROP CLOSED CHANNELS

GO TO DRP(89,98)
89 IF(NSTEP.NE.NSDR)GD TO 94
NTP=NOPE
ASSIGN 9% TO DRP
ASSIGN 75 T0 CIC
99 NSTEP=NSTEP+1
X=XBEGHNSTEP*STEP
IF (NSTEP. LE.NTOTAL)GO TO STB(55,60)

END NUMERICAL INTEGRATION
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}NSTEP=NTOTAL
X=XBEGHNTOTAL*STEP
STAB=.FALSE.

STABILIZATION AND TERMINAL REACTANCE MATRIX COMPUTATION

IST=IST+1

IF (IST.GT.NSST)GO 10 97
NSTABISNSTAB (IST)

G0 TO 98

ASSIQN 68 TO STB

CALL LINSYR(R,T,NTP, ID)
DO 199 J=1,NTP
SQEKJ=1.8/SQRT (EK(J))
PO 100 I1=1,NTP

K (I,J)=~SORT (EK (1)) *T (I ,J) *SQEKT
IF(.NOT.STAB)GD TO 110
CALL ZEROZ (R, ID*NQNO)
Do 195 1=1,NTP
2(1,1)=1.0

QUTPUT REACTANCE MATRIX

IF (.NOT.KSEE)G0 10 115
WRITE (6,2060)NSTEP, X

CALL MATPR(K,JQ,1Q,NTP,ID)
IF(STAB)Q TO 68

COMPUTATION OF SCATTERING MATRIX

DO 128 J=1,NOPE

DO 120 I=1,NOPE
KDEL=(0.9,8.98)
IF(I.EQ.J)KDEL~(1.0,8.98)
S(I,J)=KDEL+(4.9,1.0)*K(I,J)
Q{1,J7)=KDEL~(8.4,1.8)*K(1,J)
CALL LINSYT(Q,S,NOPE,ID)
WRITE (6,2878)

CALL MATPC(5,J0,1Q,NOPE, ID)

COMPUTATION OF TRANSITION PROBABILITIES

WRITE (6,2080)

DO 125 J=1,NOPE

SN=8.8

DO 125 I=1,NOPE

TEROB=S (I,J) *OONJG (S (1,J) )

SUM-SUM+TPROB

WRITE (6,26%8)JQ (0) ,1Q(J) ,0Q (1) ,1Q(I) , TPROB
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125 IF(I.EQ.NOPE)WRITE (6,2100)SM

CALL SBCOOND (T2)
WRITE (6,2110)T2-T1
C
C I/0 FORMAT STATEMENTS
C
C INPUT FORMATS
C

1006 FORMAT(3L1,3E19.9)
1616 FORMAT(I5)

C
C OUTPUT FORMATS

c
2000 FORMAT (41X, #TOTAL ENERGY#,26X,1PE14.7,% HARTREE$/41X,#SYSTEM 4,
#REDUCED MASS#,13X,1PE14.7,4# ELECTRON MASSES#/41X, #TOTAL NUMBER$
.4 OF CHRNNELS#,5X,15/54X, JOPENE, 12X, I5/54X, #CLOSED}, 10X, I5/404,
14X, #NUMERICAL INTEGRATION
41X, §STOP#, 24X, F11.4, 8X, §BOERE/41X, #STEP SIZE#,19X,F11.4,8X,
#BOHR#/41X, #TOTAL STEPS#,16X,17}
2010 FORMAT (41X, #STABILIZATIONS#,16X, 14/56X, #STEP#, 6X, #COORDINATE #,
1 #(BCHR)#)
2828 FORMAT (55X,15,5K,F11.4)
2838 FORMAT (41X, #DROP CLOSED CHRNKELS, STEP#,3X,I5)
2040 FORMAT (§~#,56X,#BASIS SET INFORMATION#/$#04,32X,#INDEX#,5X, $74,6X
1 4L4,8%,4E (1) #, 11K, $K (J) **24,12X, 4K (1) #/% )
2050 FORMAT (34X,13,4X,13,4X,I3,3X,1PE14.7,3X,1PE14.7, 3X,1P%14.7)
2060 FORMAT (§#¢ REACTANCE MATRIX AT STEP #,16,#, X =#,F11.4)
2070 FORMAT (- OPEN CHANNEL SCATTERING MATRIX#)
2080 FORMAT (§-4,29X, #INITIAL STATE#,4X,#FPINAL STATES,4X, $TRANSTTION ¢,
1 4#PROBABILITY#,16X, $UNITARITY#/33X, §74, X, #L4, 9X, ¥4, 5%, $L.4)
2099 FORMAT(32X,I2,3X,I3,6X,12,3X,13,1¢X,1PE14.7)
2108 FORMAT (§#+#,96X,F14,11)
2116 FORMAT (#-#,48X,ICPU TIME#,22X,P8.3,# SECONDSH)
STOP
SUBROUTINE MMILT (A,B,M,N,L,C)
REAL A(M,M),B(N,N),C(N,N)

Vb=

THIS SURROUTINE PERFORMS THE MATRIX MULTIPLICATION C=A*B, WHERE A HAS
BEEN GIve IN GENERAL COLUMN STORAGE (AS M COLUMNS, EACH COLUMN BEING
M ELEMENTS LONG). THE RESULT IS RETURNED IN C.

anaonn

DO 1 K=1,L
1 SUM=SUM+A (I,K) *B(K,J)
2 C(1,J)=SUM

RETURN

END
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SUBROUTINE MATFR(A,J,L,ND, ID)
DIMENSION A (ID,ID) ,J(ID),L(ID)

THIS SUBROUTINE PRINTS REAL MATRIX A WITH COUPLED CHANNEL LABELS.

PO 3 IBEG=1,ND,7

IEND=MIN® (IBEG16 ,ND)

WRITE (6,1)

FORMAT (3X, &4, 5X , #L4)

WRITE (6, 2) (J (ICOL) ,L (ICOL) , ICOL=IBEG, IEND)

FORMAT (#+#,15X,6(12,3X,13,9X) ,I2,3%,1I3)

DO 3 IROW=1,ND

3 WRITE (6,4)J (IROW) , L (IROW) , (A (IROW, ICOL) , IOOL=IBEG, IEND)
4 FORMAT(2X,I2,3X,I3,1X,7(2X,1PE15.8))
RETURN

N

END

SUBROUTINE MATEC (A,J,L,ND, ID)
COMPLEX A(ID,ID)

INTEGER J(ID},L(ID)

THIS SUBROUTINE PRINTS COMPLEX MATRIX A WITH COUPLED CHANNEL LABELS AND
CLEARLY DISTINGUISHES ITS REAL AND IMAGINARY PARTS.

DO 4 IBBG=1,ND,7
IEND=MING (IBEG+6 , ND)
WRITE (6,1)
FORMAT (#8  J#, 5K, #L4)
WRITE (6, 2) (J (IOOL) ,L (ICOL) , ICOL=IBEG, IEND)
2 FORMAT (#+%#,15X,6(12,3X,13,9X),12,3X,I3)
DO 4 IROW=1,ND
WRITE (6, 3)J (IROW) , L (IROW) , (REAL (A (TROW, ICOL) ) , ICOL=TBEG, TEND)
3 FORMAT(#0 #,12,3X,13,1X,7(2X,1PE15.8))
4 WRITE (6,5) (AIMAG (A {IROW, ICOL)) , ICOL=IBEG, IEND)
5 FORMAT(11X,7 (2X,1PE15.8))
RETURN
END
SUBROUTINE SBESN  (2,IMAX,S,A,ID)
CALCULATES THE VARIOUS SPHERICAL BESSEL FUNCTIONS UP TO ORDER IMAX
WITH ARGUMENT 7
THE DEFINITIONS ARE THOSE OF MESSIAH, VOL. I, APPENDIX B.
IOGICAL SBJ
DIMENSION S (ID)
DATA LuUMAX/58/
ID IS USED TO CHECK THAT NO OVERRUN OCCURS IN CCMPUTING S; IF
OVERRUN OCCURS ERROR MESSAGE NUMBER 2 IS PRINTED OUT

[

RETURNS THE SPHERICAL NEUMAN FUNCTION
S{L+l) = N(L;2)/A%L

S(1) = C0S(2)/2

S(2) = (S(1)/2 + SIN(Z)/2)/A
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ATl = 1,8/(A*2)
AT2 = -1.8/A%*2
GO TO 158

ENTRY MSBESH
C RETURNS THE MODIFIED SPHERICAL HANKEL FUNCTION
C S(L+1) = H+(L;I2) *I** (L+1)*EXP (2) /A**L,
S(l) = 1.8/2
§(2) = (S(1)**2 + 5(1))/A
ATl = 1.8/(A*Z)
AT2 = 1.0/A**2
COMPUTES THE SET OF FUNCTIONS BY UPWARD RECURSION FROM THE
FIRST TWO
5¢ LTEMP = LMAX + 1
p=1
DO 188 L=3,LTEMP
LP =LP + 2
18¢ S(L) = LP*S(L~1)*AT1 + S(L~2)*AT2
RETURN

=00

ENTRY SBESJ

RETURNS THE RBGULAR SPHERICAL BESSEL FUNCTION
S(L+l) = J(L;2)*A**L,

Sl = SIN(zZ)/2

ATl = 1.0/(A*Z)

AT2 = -1.0/A%*2

§8J = .TRUE.

@ TO 30¢

aa o0

ENTRY MSBESJ
C RETURNS THE MODIFIED SPHERICAL BESSEL FUNCTION
C S(Ltl) = J(L;T12)*I%* (=L)*EXP (-2 ) *A**L,
ETZ = 6.0
IF (2 .IT. 88.0) ETZ = EXP(-2.0*2)
51 = (1.4 - ET%)/(2.0*2)
ATl = 1.08/(A*2)
AT2 = 1.6/A%*2
SBJ = .FALSE.
C TEST TO SEE IF DOWNWARD RECURSION IS FEASIBLE
366 IF (2.GT.IMAX.AND.SBJ) GO TO 509
PMAX = 1.0E8
LP = 2*IMAX + 1
PRD = LP/2Z
DO 31@ L=2,I0MAX
LP =LP + 2
PRD = LP*PRD/2Z
IF (PRD .GE. PMAX) GO TO 320
316 LOVER = L

C MUST USE UPWARD RECUSION
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IF (seJ) G0 TO 508

315 s(1, =sl

320

350

380

568

700
2000
2001

e XeNeXeXeXeXe]

S(2) = (1.8/(2.8%2) - 1.8/(2.B%2*2) + ETZ*(1.8/(2.8*2)

2+ 1.8/(2.8%2%2)))*A

ATl = -3/Z

AT2 = A%A

@ 10 150

COMEUTE THE SET OF FUNCTIONS BY DOWAWARD RECURSION STARTING
WITH ARBITRARY HIGH ORDER VALIES

LTOP = IMAX + LOVER + 18

IF (LTOP .Gr. ID} GO TO 799

S(LTOP) = 2.9

S(LTOP-1) = 1.9E-20

LP = 2*LTO0P - 1

LLTOP = LTOP - 1

DO 358 LL=2,LLTOP

LP = LP - 2

L = LTOP - LL

S(L) = LP*S(L+1)*ATL + S (L+2)*AT2

NORMALIZE THE DESIRED FUNCTIONS TO THE PROPER VALUES

SFAC = S1/5(1)

S(1) = sl

LIMAX = IMAX + 1

DO 380 L=2,LIMAX

S(L) = S(L)*SFAC

RETURN

DOWNWARD RECURSION IS NOT FEASIBLE SO INITIALIZE AND COMPUTE
BY UPWARD RECURSION.

S(l) = sl

S(2) = (81 - C0S(2))*A/2

AT1 = A/7

AT2 = —p**2

G0 TO 150

WRITE 2000

WRITE 2001, 2,IMAX,A

FORMAT (#8%** ERROR *** SBES *+* ARRAY TOO SMALL#,

2 § FOR DOWNWARD RECURSION#)

FORMAT (1H ,#ARG. =},1PE23.15,# ORDER =#,I10,

$ # FACTOR#,D23.15)

sTOP

END

SUBROUTINE BESSEL (PU,™V,EX,L,R,H,N,NC,57,A,ID}

RETURRS THE SCALED RICATTI BESSEL FUNCTIONS. PU IS THE REGULAR
SOLUTION U*A**[,, AND PV IS THE IRREGULAR SOLUTION, V*A¥*(-L),

WHERE A IS THE SCALING FACTOR DISCRIBED BELOW.
EK IS THE ARFAY OF WAVE NUMBERS (ONE ELEMENT PER CHANNEL).
L IS THE ARFAY OF ORBITAL ANGULAR MOMENTUM QUANTUM NUMBERS.
R IS THE RADIAL VARIABLE.
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H IS THE STEP-SIZE OF THE INTEGRATION (MUST REMAIN CONSTANT).

N IS THE NOMBER OF CHANNELS (OPEN CHANNELS ONLY).

KC IS THE MOMBER OF STEPS SINCE SBESJ WAS CALIED (SET TO ZERO
BY CALLING PROGRAM FOR FIRST STEP ONLY; UPDATED INTERNALLY)

SJ IS A SCRATCH ARRAY FOR CALLING SBESJ AND SBESN.

A IS A SCALING FACTOR

ID IS THE DIMENSION OF SJ (NEEDED BY SBESJ)

REAL EK(1),PU(1) V(1) ,8J(1)
REAL RU(40) ,RV(40) ,Q(40) ,RUN (46) ,RWN(40) ,EL (40) ,E (49)
REAL PUL(40), PVL(49)
INTEGER L(1)
IF (N ,IE. 48) @ TO 2
WRITE 1000, N
1088 FORMAT (#9BESSEL CALLED WITH N =},13,#. THIS IS LARGER THAN THE ARR
IAYS IN BESSEL#)
STOP
2 R2 = R¥*2
NC =NC +1
IF(NC - 2) 1,11,161

a0 n

QONTINUE
H2012 = E%*2/12.0

sM = 0.0

OS5I =1,N

E(I) = EK(I)%**2

EL(I) = L(I)*(L(I) + 1)

Z = R¥EK(I)

5 = EL(I)/R2 - E(I)

IF(S .QT. SM) SM = 5

T = 1.0 ~ HXO12%S

CALL SBESJ(Z,L(I),SJ,A,ID)

PU(I) = SI(L(I) + 1)*2

RU(I) = PU(I)*T

CALL, SBESN(3%,L(I),SJ,A,ID)

PV(I) = SI(L(I) + 1)*3

5 RV(I) = PV(I)*T

M = 196800

IF(M .Gr. 6.0) M = 6.8/SQRT (SM)/H
RETURN

11 Ma=M-1
D15SI=1,N
Z = R*EK(I)
T = 1.8 -~ HD12*(EL(I)/R2 - E(I))
CALL SBESJ(Z,L(1),53,A,ID)
PU(I) = SJ(L(I) + 1)*Z
RUN(I) = PU(I)*T
CALL SBESN(Z,L(I),SJ,A,ID)
PV(I) = SJ(L(I) + 1)*z
RUN(I) = PV(I)*T
PUL(I) = PU(X)
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PVL(I) = PV(I)
Q(I) = 12.8 - 18.8%T
RETURN

M=M-1
pO 196 I = 1,N

SU = PUL(I)*Q(I) - RU(I)

SV = PVL(I)*Q(I) - RV(I)

T = 1.8 - H2012*(EL(I)/R2 ~ E(I))
PU(I) = SU/T

PV(I) = SV/T

RU(I) = PIN(I)

RV (I) = RW(I)

RIN(I) = SU

RVN(I) = sV

PUL(X) = PU(I)

WVL(I) = BV (I)

O(I) = 12.8 - 19.0*T

IF(M .IE. @) NC = ¢

RETURN

END

SUBROUTINE LNSYRZ(A,B,N, ID,N81)

SOLVES MATRIX EQUATION XA = B WHERE A,B,X ARE REAL N BY N
MATRICES
RESULT APPEARS IN B; A IS DESTROYED
ID IS THE DIMENSION GIVEN A,B IN THE CALLING PROGRAM

NAME —-- LINSYR/INSYR2

THIS ROUTINE FUNCTIONS JUST AS BEFORE IF ENTRY LINSYR IS
USED. IF THE CALL IS THROUGH ENTRY INSYRZ, THE
B AND X MAY BE RECTANGULAR (NB1 BY N) MATRICES.

QQOOOOO0O0O0O0N00O0AN

129

19

REAL A(ID,ID), B(ID,ID)
NB = NB1

GO TO 10

ENTRY LINSYR

NB =N

CONTINUE

NS =N-1

IF (NS .LE. #) QO TO 380
DO 200 1=1,N5
IG=I+1

AT = A(I,I)

00 126 J=IG,N

A{J,I) = A(J,I)/AT
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Do 138 J=1,88

B(J,I) = B(J,I)/AT

po 156 K=1,N

IF (K .BQ. I) @ T0 150

AT = A(Z,K)

DO 148 L=IG,N

A(L,K) = A(L,K) - A(L,I)*AT
DO 145 L=1,N8

B(L,K) = B(L,K) - B(L,I) *AT
CONTINUE

CONTINUE

AT = A(N,N)

DO 238 J=1,N8

B(J,N) = B(J,N)/AT

DO 250 K=1,NS

AT = A(N,K}

DO 250 L=1,N8

B(L,K) = B(L,K) - B(L,N)*aT
RETURN

CONTINUE
AT = A(L,1)

DO 3¢1 I=1,N8
B(I,1) = B(I,1)/AT
RETURN

END

SUBROUTINE LINSYT (A,B,N,ID)

SOLVES MATRIX EQUATION XA = B, WHERE A,B,X COMPLEX N BY N
MATRICES

RESULT APPEARS IN B; A IS DESTROYED
ID IS THE DIMENSION GIVEN A,B IN THE CALLING PROGRAM
COMPLEX A (DD, D) ,B(1ID, D) AT

N =N-1

IF (NS ,LE. @) GO TO 39@

0 .200 1=1,85

IG=I+1

AT = A(I,I)

DO 128 J=IG,N

A(J,I) = A(J,1)/AT

DO 132 J=1,N

B(J,I) = B{J,I)/AT

DO 158 K=1,N

IF (K .EQ. I) G TO 150

AT = A(I,K)

DO 140 L=IG,N

A(L,K) = A(L,K) ~ A(L,I)*AT

DO 145 1=1,N

B(L,K) = B(L,K) - B(L,I) *AT
CONTINUE

CONTINUE

AT = A(N,N)
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Do 236 J=1,N
B{J,N) = B(J,N)/AT
D0 258 K=1,N5
Do 250 L=1,N
AT = A(N,K)
B(L,K) = B(L,K) - B(L/N)*AT
RETURN

B(l,1) = B(1,1)/A(1,1)
RETURN

END
SUBROUTINE ZERGZ (Z,N)

INITIALIZES THE FIRST N STORAGE LOCATIONS OF REAL MATRIX Z TO 2ERD.

REAL Z (N)

DO 1K =1,N
1 zZ(K) = 0.0

RETURN

END
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APPLICATIONS OF CLOSE COUPLING ALGORITHMS
T0 ELECTRON-ATOM, ELECTRON-MOLECULE,
AND ATOM-MOLECULE SCATTERING
Donald G, Truhlar, Nancy Mullaney Harvey,
Kunizo Onda, and Maynard A. Brandt
Department of Chemistry and Chemical Physics Program,
University of Minnesota, Minneapolis, Minnesota 55455
Abstract. We discuss some of the detalls of our implementation of the
Numerov and R matrix propagation methods for close coupling calculationms.
We discuss some of the successes and problems we have had applying these

and other methods in varlous applications, and we present some execution

times for runs we made to compare various methods.
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LonIRereduction
In this contribution, we summarize the procedures we currently use
to solve close coupling equations for electron-atom, electron-molecule,
and atom-molecule collisions, and we discuss some of our relevant past
experiences in applying various numerical approaches to close coupling
calculations. To facilitate comparison of these methods we also present

some timing information which we gathered for this workshop. The numerical

i the piecewise analytic

method of Gordon with linear reference Dotential,12—16 the integral equations

algorithm of Sams and Kouri,l7—23 and the R matrix propagation method of

24—~
Light and Walker with piecewise constant reference potential. 4-29

1-
methods we compare here are the Numerov method,

In section IT we introduce all four methods and discuss in detail
our implementation of the Numerov8 and R matrix propagation29 methods.
In section 1II we discuss applications of all four methods to elastic
and vibrationally and rotationally inelastic electron scattering by NZ
using anisotropic model potentials. Section IV gives applications to
electronically inzlastic electron scattering by H. Sections V 1nd VI

discuss vibrationally and rotationally inelastic atom-diatom scattering,

respectively.
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. cusaion of methods

A. Introduction. For this workshop we have compiled some comments
on our experiences with close coupling calculations of electron-molecule,
electron-atom, and atom-molecule scattering. In this section we provide
a detailed description ~f our implementation of the Numerov and R matrix
propagation methods. We also briefly introduce the codes which we used
to apply the piecewise analytic method and the Sams-Kouri method, and we
comment on our timing studies and on our use of adiabatic basis functioms.

B, Numerov method. We have found the Numerov method to be convenient
and reliable for many problems. Since the method is easy to apply, the
computer program is relatively tramsparent and easy to modify and simple
checks of convergence with resvect to numerical parameters can be made.

The Numerov method is a hybrid finite difference method applicable
to any set of second-order linear differential equations containing no
first derivatives. It is a sixth-order method, i.e., if h denotes the

stepsize and f(r) denotes the exact solution of

2
458~ by () W
dr
6 d6f
then the leading term in the truncation error per step is 240 6 %
r=r
* . . 4,30 4
where r 1is some (generally unknown) point in the interval. Blatt

has suggested that the Numerov method is "the method of choice for the
integration of (1) because it is the highest-order method which is at the
same time a three-point method.” However, the cumulative error in the
Numerov method is of order hk, which is the same order as the iiunge-Kutta

method which has an h5 truncation error per step.31’32
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Lester33 has pointed out a minor.disadvantage of the Numerov
method, namely it requires different algorithms for doubling and halving
the stepsize, respectively. For this reason, Lester chose the deVogelaere

method,34

which is a variable stepsize method and requires only a single
algorithm for changing the stepsize. Allisons compared the regular Numerov,
iterative Numerov, and deVogelaere methods for a test case36 involving rota-
tional excitation in an atom-rigid-rotator collision, and he found the iter-
ative Numerov method to be the fastest for a given precision. His tests

are significant in that they were run on the same computer using computer
codes written by the same auther thereby eliminating two of the major varia-
bles usually existing im such comparisons. He also compared his Numerov
program to Gordon's program35 using the piecewise analytic method for the
same tesl case, and he found for calculations of similar precision that the
execution times were comparable for problems having as many as nine channels.
Our program is based mainly on the work of Allison.s Further development of
the method has been carried out by Johnson who calls the resulting algorithm
the renormalized Nvamerov method.34 As compared to the original matrix Numerov
method, Johnson makes two transformations. The first eliminates one matrix
multiplication and is identical to a transformation used by Allison. The
method obtained after this transformation is called the regular Numerov
method. Johnson's second tranformation is to define a ratio matrix

(Y 1s the notation used below). This does not change the amount of

Y
~n+l ~n
computation per step, but it does eliminate the need for stablizing trans-
formations. As discussed below, our program uses stablizing transformatioms

but our experience has been that these have not required a great amount of

computational effort. In the following general review of the numerical
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techniques, we use Allison's equations wherever possible, but we change
the notation somewhat to conform more closely with the notation used else-—
where in this report.

The set of N coupled second order differential equations to be sclved

are
dz
~5 £(r) - D(r) £(r) = 0 2
dr
with [
2, (r, +1)
- 2 174 2
Dy5(0) = -y~ = {85+ (uATIY, () M)

L r
We use the convention that A denotes a matrix with elements Aij' (The

columns of A are denoted A.) Equation (2) is solved subject to the boundary

conditions
£(0) =0 (4)
and

£(r) ~ S(r)P + C(r)Q (5)
o

vhere, for the case of all charneis asymptotically open,

-~
i -1
Sij(r) A ki GijSLn(kir zliﬂ) (6)
T
and
_;‘z 1,
Cij(r) n ki 6ij cos(kir -% Eiﬂ) 7N

o
A subblock B of the reactance matrix is then given a337
R =gt ®)

This method of asymptotic analysis is easily generalized to the case where

some channels are closed.
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It is interesting to note that f(rl is not unique, i.e., for any non-
singular matrix G, £(r)G satisfies the eqs. (2), (4), and (5) if £(r) does.

However, R is given in terms of the f(r)g solution as

R= @@ e = gee Tyt - gt )

and is the same as for the f(r) solution. Since E_l is required, the columns
of f(r) must be linearly independent. Furthermore, any set of N linearly
independent linear combinations of the columns of f(r) is an equally valid
set of solution vectors satisfying (2), (4), and (5).

We use the notation X, = g(rn) where x is any matrix and r is a grid
point, and we let the stepsize between grid points be h = rn+1 - rn. At
a given point, the approximate solution §n+l to (2) is calculated from D(r)

evaluated at the equally spaced points r et Tn and Too1’ respectively,

and from f_ and f as
~n ~n-1

- —;};?n+l)§n+1 =@+ %thn)gn - @- l11—22']-Jl-l--1)§n—1 (10)
Let
and

Y1 = CHEE (12)
Then (10) may be rewritten as

¥n+l - 2¥n - 121Engn - ¥n—l 13
with

fan T CHFEL) Yy as)
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We refer to (13) and (14) together as the "regular" Numerov method.
In an attempt to speed up the calculation of (I + §n+1)_1 Allison pro-
posed the following iterative method of calculating §n+l' Let d(r) and

A(r) be defined to have elements given by

dij(r) = Fii(r) 61j (15)
and
2 N
Aij(r) = —(h"/12) kElvik(r) fkj(r) (16)
k#j
so
F(x) £(r) = d(x) £(x) - 8(x) an

Putting (17) at T into (13) yields

¥n+1 = ZXn + lz(én - gnfn) - gn—l (18)
and putting (17) at rn+l into (12) and solving for §n+1 yields formally

£ o=@+d D[y +a (19)

~ntl =~ ~n+l ~n+l  -ntl

Since g(r) is a diagonal matrix the evaluation of (I + dn+1)—1 iz trivial.

But én+ on the rvight-side of (19) depends on fn+ so Allison proposed using

1 1
Gauss—Seidel iteration38 to converge (19) at the current grid point before

ueing (18) for the next grid point, i.e.,

(m)
T = 1{im T 20)
~n+l ~n+l

for T(r) = f(r) or é(r).
The Gauss-Seldel iteration procedure is a method for finding the solution

x to the system of linear algebraic equations
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=b (21)

where A, x, and y are N x N matrices. First one makes the replacement

A=W-U-1L (22)

where W 1s a diagonal matrix, U is a strictly upper triangular matrix, and
L is a strictly lower triangular matrix. Putting (22) inte (21) and re~

arranging yields

x v (23)

=W lus 4y
This motivates the Gauss-Seidel iteration procedure for solving (21);

L) @ (mtl)

+ W Lx + W p 24)

Varga has shown383 that (24) will converge if and only if A is a positive

definite matrix. One way of insuring38b that A is a positive definite matrix

is for it to be strictly diagonally dominant, i.e.,

N
la,.] > = ]Aijl, i=1,2,...,¥ (25)
j=1
ifl

If the option to try Gauss~Seidel iteration is chosen for a given step, our
program checks (25) and uses the regular Numerov instead if it is not satisfied.

Comparing (12) with (21) and (19) with (23) shows that A = I+ Fn+1,

x = fn+1’ b= ¥n+l’ W Sy Recalling (16) and

putting these assignments into (24) yields the following Gauss-Seidel iteration

=I+d . emd (@+Lx=4

procedure

(m+1) - (m)
1 1 1+@ ii] NS 1 + (9n+1)1j] (26)
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(m) 1) (m)
(én+1)ij ==t /12)[ I @, +1)ik( Lol )kj + 2 (V +1)ik(§n+1)kj] (27)

Allison doesn't describe what to use for f( ) in (27). We let

£0)
£l ~ iy (28)

()

Then using (27) the first row of A can be calculated and put into (26)

to calculate the first row of §§+i which together with (28) can be used in
(0) (m)

and so on, i.e., row k of A
(mt1)
+1

(27) to calculate the second row of A

( ) (m+1)

and row k of f o+l

only requires f and the first (k- 1) rows of f

(m) . ‘s s
requires only row k of én+1' Provided (I + En+1) is positive definite,
equations (28), (26), and (27) are used in the above manner until

N N (E(mq-]_) ( (m))
okl )13 n+l

L1y ¢
i=1 j=1

< EPS (29)

: . : _ o (mtl) .
where EPS is an input variable. Then putting §n+1 = §n+1 into (16},

is evaluated and Y(r) is evaluated at the next grid point using (18). We

A
~n+l

refer to the above procedure'as the '"iterative' Wumerov method.

The program has three options regarding the use of the regular and
iterative Numerov methods. In the first mode of operationm, only the regular
Numerov method will be used. 1In the second, the regular Numerov method is
used until an r value is reached at which the iterative Numerov method be-
comes faster. The time comparison between the two methods is made after
the first integratisn step and every KCKth step until the iterative Numerov
nethod becomes faster. KCK is an input variable. In the third mode only
the iterative Numerov method should be used. If the matrix (I + §n+1) does

not satisfy (25) for some r, the regular Numerov method is used for that r
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independent of the choice of mode. For modes two and three the program

has an input variable NCONV, NCONV is the maximum number of Gauss-Seidel
jterations made at a mesh point. 1If convergence is not achieved in NCONV
iterations, the regular Numerov method is used to find f(r) at that mesh
point. If convergence 1s not reached fn NCONV jterations but the time

used 1s less than used by the 1 tlar Numerov method the program automatically
increases NCONV. Usually we set EPS = 10_4 and NCONV = 200. As stressed

by Allison,5 the efficiency of the iterative Numerov method is largely
dependent on one's ability to vary the value of the convergence criterion,
consistent with obtaining the desired accuracy. Allison used a convergence
criterion he called ¢ and found that e = 10_2 was sufficient for his calcu-
lations. Since we use the reasonably safe value EPS = 10 '@ for our conver—
gence criterion, we need not check so carefully for convergence with respect
to EPS, but our efficiency is not optimized. To obtain the best possible
timings one should vary EPS to obtain the value just sufficient for the
desired precision.

Hext we consider the method used to change the stepsize h. BlattA has
suggested a method for applications to single differential equatiomns for
determining when h can be doubled or should be halved. A generalization
of his error criterion to coupled differential equations has been included
in our program. The criterion we use for the varlable-stepsize runs used

to gather timing information for the present report is to require h be small

enough that
REPS(r) < 646 (30)

where 6 is an input variable and the estimated relative error per step is
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h? 3
REPS(xr) = 7.2(15nqx| Dii(r)l) (31)
1

In practice we double the stepsize if REPS(rn) < 6 and we half it if
REPS(rn) > 646. There is alco a provision for restricting the maximum
stepsize hmax and the stepsize is not doubled if h exceeds %hmax' Although
(31) is based on Blatt's error analysis, an essentially equivalent result
can be obtained by the following argument. To obtain reasonable accuracy
one would expect to require a certain number of steps per deBroglie wave-—

length, i.e.,

h £ 6' min A (32)
i 1
where Ki is the deBroglie wavelength in channel i and 8' is the reciprocal

of the number of steps per deBroglie wavelength. Using (3) and a correspond-

ing criterion for locally closed channels we rewrite (32) as

h < (const.)d'(mix lDiil)—% (33)
For comparison we use (31) to rewrite (30) as

h £ (const.') gﬁmzx |Dii|)-% (34)

The effect of (33) is the same as the effect of (34), but the constant has
a differeat name.

Because the stepsize is not changed with § < REPS(r) < 64§, and because
the stepsize is only changed by factors of 2, the actual stepsize used at
a given r depends on the initial stepsize h0 as well as on r. The program
can also operate in a fixed-stepsize mode, or used fixed stepsizes at small

r and variable stepsizes at large r.
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Doubling the stepsize is straightforward. It merely requires using
the values of g(r) and g(r) at rn and rn_2 instead of T and ru_1 and usiug
2h instead of h imn (1.') to calculate §n+2 instead of §n+l'

However, when the stepsize should be halved, g(r) has not been calcu-
lated at-a half step back and, until it is, the integration cannot proceed
using half the current stepsize h. The method4 used to calculate f(r) at

L _h l-_‘_‘_
r rn 2 from h, fn, Pn’ gn—l’ and Pn-l is as follows. Let h 2 1.e.,

half the current stepsize, let r + h, i.e., the old

= 1 =
LY + 2h T

n+l n-1
r, becomes the new r  , and the old f and D become the new §n+1 and D .,»
respectively, and the new r = L h' = r'. Using this new grid, f(r') =

fn can be found from (10) and D = D(r') as

-

I TLARE [EI - h—:;;Pnu)fnﬂ +(1- lli'z_zl’n-l)gu-lJ (3%
after which the integration can proceed as before but with h' replacing
h in all equations.
Now we consider the procedure for starting the propagation of the
solution vectors. If the elements of V(r) have no singularities of order
two or higher at the origin, then for small r the solutions of (2) that

satisfy (4) are given by

2141
ﬁ (r) :0 TN (36)

Since, as explained in the previous subsection, we need merely obtain any
linearly independent set of N solutions of the coupled equations we may
let cij - ciiﬁij' For electron-molecule and electron~atom scattering the
program calculates the initial grid point L) by solving
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r(’;minﬂ = UTEST @an

where UTEST is a small number, usually 10—12 atomic units, which is an input

variable of the program, and

N
% oin min {Jzi}i=1 (38)

For atom-molecule scattering we set I, to a value sufficiently small so that
all channels are strongly closed. In either case the results should be
invariant to decreasing UTEST or Ty Since the Numerov method is a 3-point
method, it requires f(r) at T, and ) =1, + h0 to get started. As discussed
above, the calculation of a subblock of the reactance matrix requires that
the column vectors of the solution matrix be linearly indepemdent. Therefore

the program starts the solution with a linearly independent set of column

vectors as

£, = 0 (9
and
£ -1 40)

Starting the solution with a set of linearly independent column vectors
does not insure that the computed solution vectors will remain linearly

independent until (5) is valid. For example, if the local kinetic energy

h h

in the it channel [which is proportional to —Dii(r)] is negative, the it
row of f(r) will grow exponentially as the integration proceeds and the
linear independence of the column vectors will be lost. If this problem

occurs one must perform stabilizing transformations, i.e., one must periodi-

cally replace the columns of f(r) by linear combinations of the columns
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to insure linear independence is not lost. There is of course more than

one way to do this. Riley's method,39 consisting of periodic reorthogonal-
ization of the columns of f(r), is particularly easy to apply and was chosen
for our program. An alternative method has been presented by Gordon.12

Riley's method consists of defining a transformed solution gt(r) in terms

of the solution g(r) as

ef-efl keno-1,n-2,...,0 1)

~k ~k~n

with gt(r) replacing f(r) in all equations using f(r). The transformation

is applied only when at least one of the Dii(r) is positive. The number

of integration steps taken between successive applications of (41) in such

regions is set by an input parameter, NLINDP, of the program. If NLINDP

is set too large, the subblock @J of the reactance matrix calculated in

the asymptotic region is not symmetric. For a typical case, we find it

sufficlent to reorthogonalize at every 20th step for which the local kinetic

energy in any channel is negative. Riley's method of stablization may also

be used as part of a procedure for eliminating closed channels at large r

so that the number of channels propagated may be reduced to those that are

open asympcotically.14
As mentioned above, the solution to (2) is matched in the asymptotic

reglon using (5) to a linear combination of matching functions §(r) and

C(r). The program uses either of two sets of matching functions as des-

cribed next.

If the elements of V(r) all go to zero at large r faster than r-zs

then beyond some large value r' of r the quantity gzr-z will dominate V(r)



-234-

to such an extent that V(r) can be dropped from (3). This' reduces (2) to

the Nz uncoupled second order differential equations

d2 2i(li+1) 2
;;ffij(r) --——-—rz—fij(r)+kifij(r) = Q0 (42)

with1 21 <€N,1<j<N, andr > r'. The solution to (42) is just a linear
combination of regular and irregular Ricatti-Bessel functions jﬂ.i(kir) and
nki(kir), respectively, for i = 1,2,...,N, where the Ricatti-Bessel functions
are defined in terms of spherical Bessel functions of the first kind and

second kindm by

00 = x3,00 “3)

nl(x) = xnk(x) (44)

(Reference 40 uses yn(z) in denoting the spherical Bessel function of the

second kind.) For large r41

kirjli(kir) r:'m sin(kir - =§Ei1r) (45)
and

k,rn, (k,x) ~ -cos(k,r - %L, m) (46)

i 11 i £ i i~

Comparing (6) and (7) with (45) ‘and (46) yields

-y,
853() = ki 8yydp Uyr) 47

and

%
Ci:l (r) = -k; Gijnli(kir) (48)

as one set of matching functions.
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N - -3
However, if some elements of V(r) gb to zero at largerasr ", r °,

or r—A (as is the case for electron-molecule scattering with realistic
effective potentials), then the r' for which (42} is valid is generally

very large and the use of (47) and (48) requires numerical integration of

(2) over a very large region which is expensive. Therefore, Burke and
Scheyl'z and Burke, McVicar, and Sm:l.t:hl'el (BMS) have derived asymptotic solut-
tions to (2) computed from the long~range part of the potential and a computer
prozram for using the BMS solutions as matching functions has been described
in detail by Norcross.44 For open channels, the matching functions are

written in terms of asymptotic series as

54400 = k;/z[uij(r) sin ¢, (1) + By, (r) cos ¢, (1] “49)
cad

Cij(r) = k;%[aij(r) cos ¢i(r) - Bij(r) sin ¢i(r)] (50)
where

¢i(r) = kir - ’/zlin (531)
ancd

ip -p
Y;:(0) = I y,.T G2)
ij p=0

for vy = o or g where Pi is determined as described below and
0 _ 0 _
a; S, . and Bij =0 (53)

The remaining coefficients Yij are determined by the following procedure.
The function Y(r) in (2) and (3) is replaced by its.long range form
M

(m) -m-1
Vij(r) r:m milcij r (54)
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and substituting the §(r) of (49) or the‘g(r) of (50) into' (2) for g(r)

yields recursion relations among the coefficlents of 1like powers of r-l.

The recursion relations have two different forms, one for when ki =k

and the other for when ki # kj' The latter form depends on (ki - k;)_1

and becomes numerically umstable as ki approaches k§ so a test is made
using the input parameter n to decide which form to use. Only if
lki - k;l > nlki is the latter form used. As compared to Norcross' ver-—

4b we made one additional change in the recursion relation for the case

sion
2 2 2 .

of degenerate energies, i.e., if |ki - kjl < nlki we approximated both ki

and kj by their arithmetic mean rather than replacing them both by ki as

Norcross did. From these relations the remaining values of ygj can be cal-

culated. It is well known that the best approximation which can be obtained

from an asymptotic series is obtained by summing up to the smallest term

and retaining half that term. In this spirit we replace (52) by

[T

- P _P_ . Pi -Py
Yy (r) Vi3 T gy T (55)

4

[l

0
(This is another change from the procedure used by Norcross.) The value

of Pi is determined for each channel i = 1,2,...,N using the input para-

meter T as follows. For a given p and i, the maximum absolute value of

of P
1]

or BE r' P is set equal to T and solved for r. The solution is

3
called r(i,p). This is dome for each p > 1 in increasing order of p until
p = p' where p' is the smallest p for which r(i,p+l) > r(i,p) or until p is
the maximum value Pmax allowed by the program. If the former, then Pi is

set equal to p' and r(i,Pi) is the minimum value of r for which (52) may be

used with the smallest term being less than or equal to T for the ith channel.
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(It is interesting to note that Norcross44 always uses Pi‘l 4 1in his
program.)

If v(i,p) < r(i,p-1) for all p = Pmax then 1 is set equal to Pmax
and r(i,Pi) is set to the value of r for which the maximum absolute value
of aPWax r_Pmax or BPWa* r_P“’"lx is equal to 10_14

ij i3

An estima*tc of where (5) with (49) and (50) becomes valid is then made
as the maximum of the r(i,Pi) values for the various channels 1 and the
value of r for which (54) is valid.

The above method can aiso be generalized to include closed channels.

The choice between matching to Ricatti-Bessel functions or BMS functions
is controlled by an input variable MMAX. Assuming one has reached an r
for which the asymptotic form (5) is valid, the program matches f£(r) to

either matching functions (47) and (48) or (49) and (50) at two grid points

T and T4t After rearranging terms, this yields
© c)g = -s . st £56)
“n+l n+1 “n ~n = +1 “ntl n *n N

which is solved for the approximate Q, called Qn’ and two approximate P

matrices, called P and En+l’ are then found using

- ngn) k = n,n+1l (57)

If

norm(P - P ) < STEST (58)

n+l

where STEST is an input variable and the norm of a matrix is defined as

, NN 2.5
norm 4 = ( £ EIA”]) (59

1=1 j=1
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then R is calculated from P_ and Q_ as
~ “n n
PR = QF (60)

In deriving (60) we use the fa,ct45 that R = BT.

C. R matrix propagation method. The version of the R matrix pro-

25,26,28,29 to inelastic scat-

pagaticn method we use is our own adaptation
tering problems of the method Light and Halker24 developed for reactive
scatte . ing .;voblems. The R matrix propagation method has also been adapted
to inelastic scattering problems by Stechel EE.El-’27 but their procedures
differ from ours in several respects.

In the R matrix propagation method the range of the translation co-
ordinate r is subdivided into many sectors. 1In sector (i) the total wave
function W(?,r) 1s expanded in a "primitive" basis of N orthonormal functions
Xn(;), here assumed to be the same in every sector, and a set of N close
coupling equations in the primitive representation is derived for each of
the 2N linearly independent translational wave functions f(r). We use
the convention that A denotes a column vector with component Ai and A denotes
a matrix each of whose columns is an A. These equations have the form (2).
An "adiabatic" basis for sector (1) is found by diagomalizing géi), the
interaction matrix at the center of sector (i). The wave function is ex-
panded in P of the ad{fabatic-basis functions Zii)(;), and a set of P close
coupling equations in the adiabatic representation is obtained for each of
the 2P linearly independent translational wave functions E(i)(r). The basis

W

functions xn(z) and Zél)(;) are related by a transformation matrix T

(1)

Similarly, T 1s uzed to relate the translational wave functions fn(r)

aud gﬁl)(r) to each other. The adiabatic-representation translational
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wave functions and their derivatives are propagated through sector (i) by a
propagation matrix g(i)(E). Then the requirement that Y(;,r) and V'(;,r),
where an apostrophe denotes a derivative, be continuous at the boundary be-
tween sectors (i) and (i+1) is used to obtain sector matching conditions.

To express the continuity between the wave function in the adiabatic repre-
sentation in sector (i) and the wave function in the adiabatic representation
€V

in sector (i+l), the transformation matrix T is used to transform from the

adiabatic representation to the primitive representation in sector (1), and
the matxix I(1+1)T is used to cvansform from the primitive representation in
sector (i+l) to the adiabatic representation in sector (i+l). The combined
effects of these two steps is expressed in terms of a transformation matrix

I(i,i+1) which relates the adiabatic representation in sector (1) to that in
sector (i+l). The propagator g(1+1) is then used to propagate the adiabatic-
representation translational wave functions g(i+1)(r) and their derivatives
through sector (i+1), I(i+l.i+2) 1s used to transform to the adiabatic repre-
sentation in sector (1+2), and so forth. In this way the translatiomal wave
functions and their derivatives could be propagated from the strong-interac-
tion region through each sector and across sector boundaries. Rather than
propagate the wave function and its derivative though, we propagate the global
R matrix 5(1), which relates the matrices g(l)[rél)] and g(i)[réi)] of 2P
linearly independent wave functions at the left side of the first sector and
at the right side of sector (1) to their derivatives at these locations. Im
each sector this global R matrix 5(1) is computed from 5(1_1) and the sector
R matrix 5(1), which relates the adiabatic-bagis translational wave

functions at the right sides of sectors (i-1) and (i) to their derivatives

at these locations. In turn the sector R matrix is obtained from the
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transformation matrix I(i—l,i) and the propagator E(i) In this way we pro—
pagate the global R matrix from sector to sector until we obtain the global R
matrix in the last sector. This relates the matrix of linearly independent
physical wave functions in the strong-interaction or small-r region and
in the large~r asymptotic region to the matrix of their derivatives. Small-
r and large-r boundary conditions on the wave functions and their derivatives
are then imposed in such a way that the reactance matrix 8 can be obtained
in terms of known quantities.

The sector-by-sector propagation is esscntially the same as in reference
()

24. The 2P x 2P sector propagator P is defined by

(1) _ () (1)
g ) =gy (61)

where each column of the 2P x 2P matrix g(l){r) is defined by

—

Do

P - (62)

RIS

i . .
where g( )(r) is one of the 2P linearly independent P-component solution
vectors. Here and in the following equations subscripts R, L, and C de~
note quantities evaluated at the right-hand and left~hand sector boundaries

and the center of the sector, respectively, e.g., géi) = g(1>[r£1)]. The

matrix ?(i> is partitioned into four P x P submatrices
P H@
) ~1 ~2
P = (63)

D p®
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?(i) is computed by diagonalizing Qéi) apd assuming that the eigenvalues

of D are independent of r within a sector.zn This assumption would be true

if the interaction potential were constant throughout the sector. The sector

(i-1) (1)
R R

evaluated at the right-hand side of sectors (1-1) and (1) to their derivatives.

R matrix r(i) is the matrix which relates the wave functions g and g

It is defired by

(1) réi)

1
(i) _
e LW (64
I3 t9)
where
(i-1) (1) »(1-1)
g 13 g
g . ) Eq (65)
7 0 e
The equations for the sector R matrices are
) . -1
AR CE I EIRE IO (PR R (66)
. -1
E’él) = T(i-1,1) ggl) 67)
-1
P =20 1m0 (68)
..l ,
D = p{D g™ (69)

The global R matrix g(i) spanning the configuration space from the first

sector to sector (i) is defined by

(1) @)
/ L

(1) (1)
B3 B,

(1)

R (70)
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(D
8.
“L (1)
N CH)

B(i) is propagated from the first sector to the asymptotic region in which

the scattering matrix elements and other physically interesting quantites

are calculated.

(1)

A real symmetric global R matrix R insures a symmetric reactance

1 R apg D

matrix and hence a unitary scattering matrix. r are sym-

metric matrices, then g(i) is symmetric. But
@ _ @ -t
BT TR (72
W _ @ _m?
R =R =P (73)
~2 b =3
W _ w1l
LA PR ) 74
so that 3(1) 1s symmetric., The sector R matrix E(i) is gymmetric if the

transformation matrix T(i-1,i) is orthogonal. The transformation matrix
is orthogonal if and only if the number P of propagated adiabatic chaniels
equals the number N of primitive basis functions. Thus the scattering

matrix is automatically unitary if and only if P = N.29 It has been sug-

gesteth’27 that in order to insure a symmetric g(i) the matrix :l"(:l.—l,:[)n1
be replaced by I(i—l,i)T. This also may afford computational advantages.
When P = N, this 1 not an approximation. However, for contracted basis
sets, i.e., when P < N, I(i—l,i) is not orthogonal. For contracted bases

replacing 'f(:L—l,:L)“1 by T(i-l,i)T in each gector changes the results unless

of course the calculations are converged with respect to P and N. For
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unconverged calculations we generall:;” obtained more accurate answers by

using the inverse and symmetrizing the reactance matrix than by using the

transpose. For this reason we have used the inverse for our final production

runs; however, the choice in general is still somewhat ambiguous. Both

choices should converge to the correct limit as P and N are increased.

Since, when P # N, using the inverse does not automatically produce a

symmetric reactance matrix and hence a unitary scattering matrix,'we sym-

metriZzed our reactance matrix by taking an arithmetic mean with its transpose.
We obtain the reactance matrix 8 from the global R matrix equation

by imposing asymptotic scattering boundary conditions on the adiabatic

wave functions in the following way. The P x 2P solution matrix g(c)(r)

in the adiabatic representation in sector (c) consists of 2P linearly inde-

pendent vectors of order P. Because the solutions are linearly independent,

the P x P matrix ?(c)(r), each column of which is a scattering vector, i.e.,

one of P linearly independent linear combinations of the former set of

vectors which satisfies correct small-r and large-r boundary conditioms,

satisfies the global R matrix equations for sector (c). Using (71), one

can show that

» (D |—13§°) 2O [ ®

~L
= (75)
() (c) (c) 1 (€)
9}( 53 34 -¢

where ¢é;)(r) is the m-th component of the n-th scattering vector and
~ Ll

the P X P matrices @él) and géc) consist of the P linearly independent

scattering vectors evaluated at the left side of the first sector and

(c) _(c) (e)
Ry By*s and By
(c)

(c)
)

the right side of sector (c), respectively. .

are the P x P submatrices of the 2P x 2P $lobal R matrix R which spans



-244-
the configuration space from the left side of the first sector to the
right side of sector (c). To obtain R ve substitute scattering boundary
conditions for ?éj) and ?éc) and their derivatives into (75).

To use (75) to extract the reactance matrix we first require expres—
sions for 9{1) and gi(l). Since only P of the 2P linearly independent
solutions g(i)(r) satisfy physical boundary conditions in the strong
interaction region, we include in our amalysis of (75) only the P
functions which provide physical solutions in the small-r region.

For channels which are closed at r = rél) we use the following expo-

nential functions for rhe wave functions

(?f,l))mn = dmn exp [le(rf.l))Irlflil m closed (76)

()= ol ) o

where Km(%éli> is the local wave number in the m~th channel calculated at
t{l) and the coefficients dmn are unknowns. All channels with nonzero

orbital angular momentum are closed at the origin. TFor channels which are
opan in the small-r region the boundary cenditions on the wave functions

can be written

(4)n = e ()17
I T [ c L I

where the coefficlents e, are not known. To facilitate the calculations
we cast (76)-(77) and (7B)~(79) in the same form, so that for both open

and closed channels the boundary conditions we use at r = rél) are
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o = ¢
arth) 2 8(1)9

where

xéi)(E) = Sm
1)
I ():L )] nm closed

and the coefficients Cmn are unknowns.

At large r the close coupling equation becomes

2
T

|.<m (rl(‘l))] cos !Km<r£1))|r]€1) /Zin IKm(

(80)

(81)

rflf)]ril) m open

(82)

(83)

where [é(c)(r)]2 is a diagonal matrix, the elements of which at the center

r = réc)

of sector (c) are the eigenvalues of the interaction matrix D

(c)
e .

For the discussion of the large~r boundary conditions we find it useful

to introduce the fo.lowing notation. We define the symptotic interaction

. a
watrix D by

1im D(r) = Qa

T

(84)

. . 2
We denote the diagonal matrix of the eigenvalues of pa by [}a] , where the

square of the diagonal matrix of the asymptotic channel wave numbers is

given by

612 = -n%12

(85)

Once the real potential has vanished and the r dependence of D{r) is dominated
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by the centrifugal potential, the elgenvalues of the interaction matrix in

sector (c) are given by

2 g (6 +1)R%
I O e (86)
2ur”

In the large-r region P0 of the P channels are open, and the channels
are ordered in such a way that channel m corresponds to an open channel
for 1 £m 2 PO and to a closed channel for Po <m P, In the large-r
asymptotic region the boundary conditions for closed-channel wave functions

are expressed as linear combinations of exponentially increasing and

decreasing functions

BT = ool + 2 o] e o
E,.(ci-'l -5 blk [expnk lr(cﬂ _ (c) ™ [ekp[ Ik [r(c)] (88)
~R mn mn m m' R

where b is an unknown coefficient of the exponentially increasing component
0 :
of the P - P~ closed-channel wave functions.

Tor the large-r boundary conditions on the open—channel wave functions

in sector (c) we use

@ . ; () (e) () ST e
[‘PR _—I_mn a 6mn'1.9.m (km R - amn nlm(km rR ) Lsms (89)

0] . o (c) ) Lo o
[?R ]mn - kmEanﬂméer " %mn nﬁm< m 'R )J 1

m <P (90)
where the Ricatti-Bessel functions are defined in terms of spherical Bessel

A

1A

functions by (43) and (44). The elements of the reactance matrix are related

()

to the open-channel amplitudes a
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0
i -
A O i lsms? o1
m mn n <n < PO
The large-r boundary conditions on the adiabatic wave fuictions can
be written concisely in matrix notation as
(C) ( A+ F(C) E-l(c) (92)
01 (@) = (D - (@ L 3
where
[ (c) < < p0
3 6( T 1ZmZIpP
exh(‘km‘rl({c)) PO <m <P
(k MO 1<acp?
() _ . m R
F =6 (95)
mn mn < (c9 PO <p
-1 < =
exp 'karR m
(e)} 0
© (k i’ ¢ (knrP ,) 1<m<ep
G ol g
o (96)
|k Iexl’(lk |f(c)) Pencr
1®) %( knlt'y (" réd l<msge®
mn amn (97)
n
(lkm|exf'(‘|kmlrécD F <m<p
(1 1<mszpl
b =8 S
mo ~ S 1 (98)
b Pl cnscp
and
= :90:% (C)OO 00 -
R= [k
R=[k1° (E) [k 99)
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0 x Po submatrix which links

where the superscript 00 is used to denote the P
open channels to open channels.

Substituting (80), (81), (92), and (93) into (75) yields

c B(C) B§C) 5(1)9
= (100)

B A +F(¢) (c) B(C) BIEC) G( A +H(°) (c)
Solving for the P x P matrix E(c) gives

é(c) - ["E(C) + }5(‘:)}_{(")]'1 [E(c) " rg(c)g(c)]g (101)
wvhere

(e) _ p(e) (c) (1) (e) (1) -1 (c)
M= R AR L - R TR TRy (102)

(c)

Therefore, the matrix a from which we calculate R is independent of C,

the matrix of coefficients giving the appropriate linear combinations of
(1) (c)00 (c)

functions at r = . Further a » the only portion of a which

wve nsed to obtain R, is independent of the last P - Po columas of 4 and
consequently is independent of b, the coefficient of the expomentially
increasing component of the closed-channel wave functions in sector (c).

(c) (c)

In the computer code b is set equal to zero and an and Gmrl are set equal

to zero for Po <mZP,

When all channels are closed in the small-r region one finds29
1) ~
Bg )z 0 (103)
aad
gél) X 0 (104)
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if sector (1) is located deep enough into the classically forbidden region.
(1)

In such a case R, and ng) remain small in all subsequent sectors and in

particular

l5;.:) ¥ {05)
and

B X g (106)
In such a case (102) becomes

y(C) - 13lfc) (107)

Consequently the determination of the reactance matrix from (99) and (101)
becores independent of gic), ggc), and ggc). Furthermore the propagation

(i-1)
By

eqnationz4 for 321) is indizpendent of g{l_l), gél_l), and Thus when

all channels are closed at small r we propagate only gzi) to save computer
time.

Although the asymptotic analysis just presented allows for the inclusion
of channels which are closed for large r, the presence of strongly closed
channels in the asymptotic analysis sometimes gives rise to numerical dif-
ficulties. To eliminate these, the program has two options which can be
used to simplify the asymptotic analysis. One option is used to eliminate
closed channels from the propagation at large r. We have shown that if all
elements of the last row and column, corresponding to the most strongly
closed channel of Eéi) are small, the last chamnel is uncoupled from the
remaining channels and may be dropped from propagation withoat degrading

the accuracy of the results.z9 We have implemented this option im the

following way. In the large-r region, 1f the number P of chanmels propagated
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in sector (i) is greater than the number of open channels, the program

checks whether

i
[(é ’)ﬂ,l < EPSRED 1=1,2,...,p (108)

1)l

In these equations, chanmel P is the most strongly closed propagated channel,

and

A

EPSRED i=1,2,...,pP (109)

and EPSRED is an input variable. If this criterion is satisfied, channel

P is dropped from propagation and only the remaining P -1 chamnnels are
propagated in sector (it+l). As we have implemented this option, at most

one channel is dropped from propagation in any sector. We have also im-
plemented a2 second method to avoid numerical difficulties associated with
including in the asymptotic amalysis chammels which are strongly closed

for large r. In this method we eliminate those closed channels from the
asymptotic analysis even if they have been included in the propagation.

The option as we have coded it in our programs is appropriate when the
asymptotic analysis is based on only the 34 part of the global R matrix.

The procedure we use for deciding whether a closed channel can be eliminated
from the asymptotic analysis is the following. In the large-r region,

if the number of channels propagated is greater than the number PO of
channels open asymptotically, the program compares the off-diagonal eleuents
of géi) for channel P, the most strongly closed propagated chamnel, to

EPSDR, an input variable. If

|<15§i))ﬂ,1 < EPSDR i=1,2,...,(e-1) 110)
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and

[(Rf‘i))yil < EPSDR £=1,2,...,(-1) (113)

then the number of chammels P' to be included in the asymptotic analysis
is set to P' = P~1. This procedure is repeated for subsequent closed
channels until an element for Bzi) for some closed channel fails the test

of (110) and (111) or until all closed channels have been eliminated and

The stepsize h(l) for sector (i) is defined by

N rlgi) - rTEi) (112)

Ve set rél), h(l), and h(z) by input variables, and we check that they are
sufficiently small that the calculations are converged with respect to them.
If one or more channels is open at the origin, then rél) should be close to
zero. The determination of the stepsizes for subsequent sectors is crucial
to the efficiency of the method. A reasonable stepsize criterion can be
ohtained for i > 2 by requiring that the cffect of the lowest-order neg-
lected term in the propagator46 be small. We simplified this argument

to make it computationally more convenient and arrived at the following

algorithm which is used by the code for'i 2 2:

l:(i) 1 ;'(f?.%i)z -1/6
\ ™ 4=1 dr
RO (113
h

max
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where hmax is an input variable, m is the largest value of P to be used
in a given run, and the derivative 1s estimated by a backward difference.
The error-control parameter is determined as follows. The range of r is
divided into three subranges in each of which e(i) is constant, i.e.,
independent of (i). The values of e(i) for a given run are set by input
variables, EPSA, EPSB, and EPSC. The calculations must be tested for con-
vergence with respect to decreasing all three values. For most applications

(1)

it has been sufficient to set all values of ¢ equal to each other.

One of the advantages of the plecewise analytic method and the R matrix
propagation method is that if calculations are required at several energies
with the same potential, calculations at the second and subsequent encrgy
can *e performed more rapidly by saving certain information generated in
the first calculation. We have not made much use of this feature for
electron-molecule scattering Lecause we use energy-dependent potentials
to include exchange effects (see, e.g., references 10, 11, and 25 and
references therein). However, even for this type of problem, this feature
might be useful at higher energies or for large orbital angular momenta
where exchange effects can sometimes be neglected. For atom—molecule scat-
tering this feature is very useful, and the dramatic reduction in execution
time of R matrix propagation calculations for subsequent energies as compared
with the calculation at the first emergy is discussed in section V.

Because we are interested in making close coupling calculations more
efficient, we also want to demonstrate the success we have had in reducing
the size of the close coupling calculations by using adiabatic basis functions

in the context of R matrix propagation calculations. We have found for
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electron-molecule and atom-molecule scattering calculations that we could
generally obtain similar or better accuracy with an adiabatic basis of the
same or even significantly swaller propagation dimension P than with a con-
ventional N=P basis. As discussed above we construct a P-function adiabatic
basis for sector (i) by diagonalizing the N x N interaction matrix at the
center of sector (i) and taking its P lowest-emergy eigenfunctioms.

D. Piecewise analytic method. The piecewise analytic method of Gordon
12,13

is described elsewhere. We have used two different programs for cal-
culations with this method. One was obtained originally from Quantum
Chemistry Program Exchange35 (QCPE) and was modified in various ways by

two of us (M.A.B. and D.G.T.). The second program was written by Wagner.lb

E. Integral equations algorithm. For our calculations using the

integral equations algoritbm we used the computer code of Morrison, Lane, and
Collins, which is described in detail by t:hem.zo-22 The integral equations
method was first presented by Sams and Kouri.17 The applications presented
here have used a trapezoidal rule quadrature scheme. An important feature
of the integral-equations formalism for electron scattering problems is

the recent development of an efficient means of including nuu-local Hartree-
Fock exchange operators without increasing the size of the solution matrix
over the local-potential case.['7 This feature will not be explored here
since the examples presented for electron-molecule scattering invelve local,
energy-dependent potentials. Ancther important feature is the truncation
procedure by which the number of coupled channels is decreased at a "trunca-

tion radius"; this can yield substantial savings of computer time.21’22’48



-254-

F. Timing comparisons. 1t is very difficult to make precise timing

comparisons for several reasons. The most obvious reasonm is that one method
may be programmed more efficiently than another, or a given compiler may
produce more efficient code for one method than another. Another diffi-
culty is that one seldom completely optimizes all the numeric:l parameters
for a given application. 1t is usually more efficient for production runs
to set some or all numerical parameters at safe values which produce more
accurate results than are really required for parts of the calculation or
even for the fimal cross sections. A related problem is the efficiency of
utility codes, e.g., our R matrix propagation code uses the EISPACK sub-
program RSP for matrix diagonalization and University of Minnesota codes
for solution of sets of linear equations. Another problem, less signi-
ficant than those mentioned above, is that the computer time even for an
identical run may vary 10% or more depending on the time of day and overall
computer load. A question which has no unique answer but depends on the
application is how to define accuracy or precision. TFor the present report
we have made special runs desipgned to approximately determine the minimum
computing time required to achleve a given precision for some test cases.
By precisio;';; ;;fer to all accuracy criteria except convergence with
respect to N and P, f.e., we mean accuracy of the pumerical solution for
given basis-set sizes. [Recall that N is the order of the close coupling
equation (2) and P is the number of channels propagated; for all the methods
considered here except R matrix propagation, P = N.] Bearing in mind the
above caveats, one should not attempt to draw conclusions based on the fine

details of the computer times presented in this report. Some overall trends
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and general magnitudes are however meaningful and interesting. All com—
puter times given in this report are execution times, excluding compilation.
All source codes, except for the University of Minnesota linear equation
solver used in both our Numerov and R matrix propagation codes, were written
in FORTRAN. TFor purposes of rough comparison to calculations performed

on other computers, Table 1 gives approximate conversion factors.
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IIX1. Electron-molecule scatterin
We have applied all four methods introduced in section II to electron
scattering by Nz. We consider two classes of problems: (A) vibrational-
rotational close coupling and (B) rotational close coupling with the rigid

rotator approximation.

A. Vibrational-rotational close coupling. The first method we attempted

to apply to electron-molecule scattering was the piecewise analytic method.
We used our modified version of the QCPE program. Although we had limited
success with this method, we found that it was inadequate to complete some
of the applications we attempted. These applications9 involved vibrational-
rotational close coupling calculations for electron scattering by N2 at
energles of 5-45 eV. Two difficulties we encountered were: (i) we were
unable to calculate accurate small transition probabilities, especially
those assoclated with vibrational transitions, with reasonable stepsizes;

(ii) for some problems the results were not converged even with impractically
6 a
o]

soclate with the fact that the piecewise analvtic solution used is correct

small stepsizes, e.g., 5 x 10 . The first difficulty we tentatively as-
for a diagonal linear reference potential, but although the transformation
method used diagonalizes the potential at the center of each sector, it does
not diagonalize the derivative of the potential. Thus the transformed poten-
tial through linear terms is not diagonal in a sector. This or some other as-—
pect of the method causes it to be poorly suited for the accurate calculation
of small S matrix elements. In considering difficulty (ii1), we note that the
success and efficiency of a sophisticated variable-stepsize integrator is
highly dependent on the reliability of the stepsize algorithm. In the

present case, h-w_ver, during the course of the solution, the predicted
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stepsize sometimes became exceedingly small, e.g., 10-1z ag- It was sug~
gested to us that we just substitute a very small minimum stepsize, e.g.,
10—3 ao, and continue to propagate until the stepsize algorithm again
predicted stepsizes larger than the minimum. Since the pilecewise apalytic
method requires more expense per step than less sophisticated methods like
the Numerov method, its efficiency requires that the stepsizes be fairly
large. Nevertheless we tried the minimum stepsize procedure and were dis—
appointed to find some applications where the results were not converged with
respect to minimum stepsize even at 5 X 10_6 ay. The difficulty of cal-
culating small vibrational transition amplitudes by the piecewise analytic
method has also been noted elsewl'lere.h9

The second method we applied to electron-molecule vibrational-rotational

8,9 We found this method to be accurate

close coupling was the Numerav method.
and reliable for all cases attempted, even those for which the piecewise

analytic method was unacceptable.

B. Rotatlonal close coupling with the rigid rotator approximation.

e now consider the electron-N, rotatioral close coupling problem studied

2
in reference 26. In that study the diatom is treated as a rigid rotator

with the equilibrium internuclear distance (2.068 ao), and the rotational
close coupling problem is formulated in the laboratory frame using the

total angular momentum representation of Arthurs and Dalgarno.so Only

the ground electronic state is iniiuvded explicitly, and effects of electronic-
charge-cloud polarization and of electron exchange are included by means

of an effective pot:em::f.al.l‘J The snisotropic electron-molecule interaction

potential is expanded as
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V(r,x) = & Vx(r) Pk(cos xX) (114)
A

where x is the colatitude of the scattering electron with respect to the
Internuclear axis. The individual terms VA(r) are represented by spline
functions that have a cusp at one half the interruclear distance, i.e.,

at r = 1.034 ao. Both our Numerov and our R matrix propagation codes have
special provisions for choice of stepsize in the vicinity of the cusp. For
the Numerov calculations reported here we did not use this provision; we

jJust ignored the cusp. For che R matrix propagation calculations we shortened
the sector before the cusp to put a sector boundary at the cusp.

The calculations of reference 26 used the R matrix propagation scheme,
and we attempted to obtain three-significant-figure precisfn in the elastic
and inelastic transition probabilities. 1In a separate stua,10 we had found
that jmax = 6 was required for convergence of the J = 5, even-j partial
cross sections at 30 eV impact energy where j and J are rotational and
total angular momentum quantum numbers in the Arthurs-Dalgarno scheme.

A ronventional basis for this jmax and J consists of 15 channels. The

next smaller conventional basis (jmax = 4) and the l-dominant:51 basis both
contain 9 functions. In reference 26 we compared calculations with various
conventional, f-dominant, and adiabatic bases. In Table 2 we give for com~
parison some representative results. These examples show the general result
that the 2-dominant basis provides significantly more accurate results for
elastic and inelastic scattering from the ground rotational state than the
conventional basis of the same dimension, but that a 9-function adiabatic
basis (consisting of the 9 lowest energy eigenfunctions obtained by taking

linear combinations of the 15 total angular momentum eigenfunctions of the
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primitive basis in each sector) is considerably more accurate than either
of these. 1In fact, for transitions between excited rotational states even
a 6-function ~diabatic basis provides better agreement :"ith the converged
results than either of the two 9-function diabatic bases.

For the N = 15, P = 15 and N = 15, P = 9 cases we have used trace
statements to make a detailed study of how much computer time is spent in
each subprogram. We then related the computer time spent in each sub-
program to the computer time spent on various parts of the calculation.

The results of this timiag study are shown in Table 3. For the computer

runs upon which Table 3 is based, we used a single-energ,, single-tasis~

set version of our code which used no disk reads or writes during the cal-

culation. Dimensiocus for arrays in common blocks were set to accomodate

a maximum of 15 channels and 3000 sectors. The field length required for

this to run was 101500 (base 8) words. Ve propagated only 54 and we used

the tranpose rather than the inverse of I. We set all E(i) = 0.07. Results

the same accuracy can be obtained more efficiently by dividing the

spagation range into thrae or four intervals and optimizing c(i) separately

in each. This extra optimization was employec for some production runs

but not for the timing comparison reported here. We placed the center of

the first sector at 0.03 ao and used 5 x 10—6 a, for the first two stepsizes.

The stepsize algorithm yields h(3) = 4.4 x 10—4 ag- The 15/15 run required

250 steps to reach 1 a, where h(i) = 0.014 ag, 50 more steps to reach 2 a,

where h(i) = 0.031 s and 45 more steps to reach 4 a5 where h(i) = 0.058 a-

The final asymptotic analysis was performed at 101.6 a, by which point the

stepsize had increased monotonically to 1.4 ao. The first 486 of the sectors

are located at r < 30 a,- Multiplying the first three entries in Table 3



-260-

by 486/572 gives an estimate of 65 sec for the execution time of a calcu-

lation which would quit at 30 ag- A similar correction to 30 a, vields

47 sec for the 15/9 calculation. One should keep in mind that the time

required for the calculation of D is highly dependent on the complexity

of the interaction potuntial and the efficiency of the potential subprogram.
The most striking result in Table 3 is that mcst of the computer time

is involved in diagonalizing D. The propagation of the 54 matrix accounLs

for only 32% of the time in the 15/15 run and only 13% of the time in the

15/9 run. Thus, increasing the efficiency of this step by even a factor

of two would result in savings of only 16% an. 6% in the twc runs,

respectively.

(i)

For the 15/15 case, decreasing e to 0.05 and moving the asymptotic

analysis to 120.8 a. to check the accuracy required 867 sectors and 109.5

0

sec computer time. Most partial cross sections calculated in this run

agreed to *1 in the third significant figure with those for the run described

above. hd
For comparison with these calculations we ran the Numerov code with the

same rotential and a similar potential subprogram for the same impact energy

and J = 5. We alsc used the same compi%er (MNF) and the same computer

(the CDC Cyber 74). Trial calculations showed that one can obtain about

three significant figures of precision by performing the asywptntic analysis

at 30 a, with Ricatti-Bessel functions. Similar accuracy can be obtained

at 10 ao using BMS functions, but with our computer program the overall

cost for the preseut case is greater with BMS functions because of the cost

of computing ihe BMS functions. The BMS functions are less expensive for

cases with a smaller number of channels. We wmade several runs designed
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to discover the most efficient procedure for solving the 15-channel test
nroblem pefforming “he asyn* “otic analysis at 30 ao using Ricatti-Bessel
functions. All these runs began the propagation at 10-6 a, with h0 = 0.0005 a,-
We used ho for the first ten steps. First we used the regular Numerov

method with hmax = 0.064 ag and various 6 to determine the § rcquired for
threce significant figures of accuracy. This yielded 6 = 10'“ ag» 547 steps,
and a computer time of 33 sec. With the same numerical paramaters the
iterative Numerov method with EPS = 10’“ required 48 sec. With the same

values of I hmax’ and 8, we ran the option which tests the iterative

o’
against the regular Numerov method every 25 steps. With EPS = 10_4, the
iterative Numerov method was found to be slower at all distances for this
test case; this run also required 33 sec. In the runs just discussed the
maximum stepsize of 0.064 ao was reached at r = 0.70 ag- We removed the
maximum stepsize criterion and agaln searched for the 6§ which yields about
three significant figures of accuracy. TFor most partial cross sections

this could be achieved with & = 107° or 107>. Using KCK = 25 and EPS =

10_4, these two calculations required 357 and 268 steps and 28 and 19 sec,
respectively. ‘These times may be compared with 65 sec for the R matrix
propagation code on the same compiler and same computer.

Then the Numerov calculation with KGK = 25 and 6 = 10_6 was rerun

with the FTIN compiler with optimization levels OPT = 1 and OPT = 2; the
execution times decreased to 24 sec and 15 sec, respectively. Retaining
KCK = 25, § = 10~6, and OPT = 2, we increased EPS to 10_2; the regular
Numerov method was still faster at every check. For some other electron-

molecule scattering calculations we have found that the iterative Numerov

method is relatively more efficient at large r and large J.
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The dimensions in the Numerov program were set for 15 channels and the
field length required to execute was 114500 (octal) words. For 15-channel
calculations on the He-HF system considered below the fizld length required
is only 105700 (octal) words. The difference is accounted for by the large
number of spline coefficients in the electron-N2 interaction potential.

It is difficult to compare the computation timee for the calculations
of reference 23 using the integral equations algorithm to those repor .ed
here as obtained with the other programs. The integral equations algorithm
has been uscu for calculations in the body-frame fo:nalism,21_23 whereas
the other calculations discussed in this section use the Arthurs-Dalgarno
Eormalism.50 :re input for the integral equations program consists of the
vA(t) values o= the integration mesh, whereas the input for the Numerov
and R matrix propagation programs consists of spline fits to the vl(r).
This means that the stepsizes for the integral equations calculations
are input variables. For a typical run in reference 23, the stepsize
for the first twenty steps was 0.001 ags followed by 298 steps with h =
0.01 ags 152 steps with h = 0.1 25 and 100 steps with h = 0.2 ao, for a

total of 570 ending at 38.2 a Table 4 shows typical computation times

0°
for various numbers of channels. These calculations are for Zg symmetry
at E = 13.6 eV with Amax = 28. No truncation of the number of coupled
channels was employed, i.e., the truncation radius is infinl*e. Thus all
N channels were propagated at all distances as in the Numerov calc.:lations
and the R matrix propagation calculations with P = N.

“he potential used for the R matrix propagation and Numerov test cases

is called potential i in reference 10. The results presented above were
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presented at the NRCC Workshop in June, 1979. We have also submitted a

set of VA(r) for
program based on

case for further

this potential to L. Thomas who prepared a potential sub-
this potential for the Workshop participants as a test

study.
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IV. Electron-atom %ﬁ%ﬁﬁﬁ{%ﬂ%
NNV VNV NN,

Electron-hydrogen atom scattering provides an interesting test case
for close coupling codes.l'la It is a protoiype for electronically inelastic
electron-atom scattering in general, but it has the advantaga that the
interaction potential matrix is known analytically. The interaction poten-
tial for electron-atom scattering is qualitatively different from the inter—
action potential for the other test problems considered in this report in
that it tends to -~ at the origin. The same limit occurs for electron scat-
tering from molecules like CO2, which has a nucleus at the origin.52 For
comparison of computation times for electron-atom scattering we consider
a 2-channel problem: 1s-2s close coupling without exchange and with total
angular momentum zero.

To use the piecewlse analytic method for electron-hydrogen atom scat-
tering, we had to modify the QCPE program to allow for starting channels
which are open at the origin. For various 3- and 4-channel examples,
reasonably precise results could be obtained by starting at about 10_S a,
and using a stepsize error critericn of ll'.)—5 or 19—6. Using the FI3 compiler
and a CDC 6600 computer, precise results for the ls-2s s-wave test case
required about 1.6 sec. This corresponds to about 1.5 sec on the CDu
Cyber 74. 1In general it was difficult, as compared to using our Numerov
program, to test and obtain convergence with respect to the starting point
and the stepsize error criterion.

The R matrix propagation method, propagating Bl’ 32, 33, and 34,
was applied to the test case and the numerical parameters were adjusted
so that the partial cross sections were precise to #1 in the third signi-

ficant figure. This yielded e(i) = 0,05. The calculation was 1 @11
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converged at sector 166 at 17.5 ay- The stepsize became very large at
large r, and two more steps brought the calculation to the final sector
centered at 25.1 a,- The computation time, using the MNF compiler and
the Cyber 74 computer, was 0.6 sec.

To compare the efficiency of the computer codes we applied the variable-
stepsize regular Numerov method with Ricatti-Bessel function boundary
conditions to the same problem, again using the MNF compiler and the
Cyber 74 computer. Asymptotic analysis was performed at 25 a, where it
was converged with respect to further propagation to 5 significant figures.
Ve used h = § x ]0_4 ay for the first ten steps. Subsequent stepsiz .s
were determined by increasing § in successive runs until we obtained only
three significant figures of precision in the partial cross sections.

This required § = 10_6 and a computation time of 0.42 sec. In this run

the stepsize duubled every step from the eleventh until it reached 0.128 a.
It then increased to its final value, 0.256 ao at 0.52 ao. The calculation
required 116 steps. We repeated the calrulation using the optior to check
every 1lth step whether the regular or iterative Numerov method is faster.
With EPS = 10_4, the iterative Numerov method becamc faster at r = 18.2 ao.
This whole calculation required 0.44 sec. The iterative Numerov method is
relatively more efficient for cases with centrifugal barriers.

Tu check the sensitivity to compiler we reran the most efficient of
the above calculations with a code compilrd on the FTN compiler with opti-
mization levels OPT = 1 and 2. The computer time jncreased from (.42 sec
to 0.44 and 0.43 sec, respectively,

A class of methods which has been widely applied to electron-atom

scattering, and to a lesser extent to electron-molecule scattering, is
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the algebrailc variational meyhod and related techniques involving expansion

33-59 In these methods

of the translational wave function in a basis set.
the potential is generally represented in a basis set rather than as a
function of the radial coordinate. These methods can often be used to
solve the same problemn as are attacked by close coupling codes like the
ones discussed here which rely on nuumerical integration of coupled dif-
ferential equations. However, they become relatively more efficient and
mcre useful when nonlocal exchange potentials are included.

Using our original algebraic variational programﬁo with the FUN com-
pile: on the CDC 6600 computer, a typical run on the 2-channel test problem
of this section required 26 sec (equivalent to about 24 sec on the CDC
Cyber 74). This run involved 15 and 10 uncontracted basis functions for
the expansion of the translational wave functions in the 1ls and 2s channels
respectively. This time can be speeded up by using more efficient oroce-
dures for evaluation of the integrals over basis functions. Unfortunately
a computer time 18 not available using our more efficient integrals

61,62

packages on this test problem. The computer time can also be decreased

by using contracted basis functions.63
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V. Vibrationally inelastic atom-diatom:scatterin

For atom-molecule scattering the interaction potential is independent
of energy. When the R matrix propagation method is used to study systems
with energy-independent interaction poteatials, great savings of c;mpucer
time can be made since calculations with the same number N of primitive
basis functlons can be carried out for several energles with the time-
consuming diagonalization of the interaction matrix D carried out only
once.24 The calculation at the first energy is called a reference-mode
calculation. In a reference mode calculation, D is calculated and dia-
gonalized in every sector, the eigenvalues are stored on the disk, and the
transformation matrix I is calculated and stored on the disk. If I’l is
to be used, it too is computed and stored on the disk. Calculations at
additional energies may be carried out in a propagation-mode. Additionally,
to test convergence with respect to P the propagation-mode can also be used
to run calculations at the same energy but with successively smaller values
of P.

We here report a detailed study of the timing requirements of the many-
energy, many-basis version of our R matrix propagation program for a test
problem. Thz test problem is collinear scattering of He by H2 with a
harmonic oscillator potential for H, and an exponential repulsive inter-
action potential. The Hamiltonian is the same as used in two published

64,65 and corresponds to m = 2/3 and a = 0.314 in the unitless

studies
notation of reference 65. We considered total energies of 8hw and 7.75 hu
and used harmonic oscillator eigenfumctioms for the primitive basis. We

used the many-energy, many-basis version of our computer program to run

a series of nineteen calculations with various values of N aud T l. the
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range 7-15. By printing out the computation times in various subprograms
we werc able to approximately distribute ¢he computa“lon times into four
categories: setup, calculation and diagonalization of D, propagation, and
asymptotic analysis. We then fit each category of computation time (in
sec) to an empirical function of N or P. The total computation time (in
sec) is called t, and the functions for the four catepories are called s,

d, p, and a respectively. Tor a reference-mode calculation we obtained

€58+ M) +p (P) +a 11s)
wvhere
s) = 0.5 (116)
aN) ¥ 1.13 x 107287 + 0.031N° (117
p,(® ¥ 0.029 7 (118)
and
aZo.s (119)
.y -
For o propagition-aods calevlation we obtained
™
t=s5_+7p,(P)+a (120)
2" P2
where
s, % 0.3 (121)
o 2
p,(P) = 0.021P° (1 + 0.008P) 122)

and a is as before. The functional forms in (117), (118), and (122) have
not been fit exactly; they are chosen strictly to provide a simple empirical

fit over the range of N and P examined. In ' "inciple other powers of N and
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P should appear. U ing these functions we can generate the sample compu-
tation times in Table 5.

For the runs used to generate equations (115)-(122), we propagated
only BA and we used the inverse of T. We also made runs in which we used
the transpose of T; for our program there was little difference in the
execution time as compared to using the inverse. We determined that
c(i) = 0.15 and rfl) = 1.195 3, were just sufficien: to get 27 accuracy
for all transition probabilities and 3-significant-figure accuracy for
those greater than 10_5. We found that placing the center of the last
sector at réc) 26 a, was sufficient to ensure that our results were con-
verged with respect to increasing the range of the propagation. To
achieve this convergence for all the runs and to use a fixed number of
sectors to simplify the interpretation of the computation tim:s, we used
150 sectors for all the runs and propagated to 7-24 ags depending on N and
P; however, the stepsize becowes large at large r (for the last few steps
=3 ao), and r = 6 a, is not reached earlier than the 142nd

0

sectar,  Typleal values for the centers of the seclors and the stepsizes

n o p

max
are r((:i) = 1.40, 1.67, and 2.5 a, and 2 < 0.0096, 010122, and 0.0261 ay
for i = 25, 50, and 100, respectively.

Table 5 shows that, calculations at second and subsequent energies are
faster by factors of about 3-~5 than calculations at thé initial energy.
These savings are also achieved when a series of P values is rum to test
convergence,

In Tables 6 and 7 we give representative transition probabilities

va, = ]va.|2 calculated for the simple model of vibrationally inelastic
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collinear atom-molecule scattering described above.29 For energies cor-
responding to 4hw and 8hw we see that an adiabatic baais of propagation
dimension P can give significantly more accurate results than a conven-
tional basis of the same dimension. For example, at E = ghw converged
results for all but transitions involving the highest open channel, v' = 7,
can be obtained with a 9-function conventional basis which includes har-
nonic oscillator eigenfunctions correnponding to v = 0~8. 1In contrast

the transition probabilities obtained by calculations using the 8-function
conventional ‘asis which includes only the open channels can have large
errors, E.g., as shown in Table 7, the N = 8, P = 8 calculations of P25,
P46’ and P06 have errors of 12%, 47%, and more than a factor of two, re-
spectively. The N = 9, P = B adiabatic basis, however, gives all but 3
transition probabilities (P34, P5

for this example, that when the results differ, adiabatic bases yield con-

73 and PGT) to within 1%. Thus we see

siderably more accurate results than conventional bases of the same or
frequently even larger propagation dimension P, This is an important

result. To obtain the adiabatic basis extra efforlL -t be expended to

(1)
c

when the interaction potential is independent of energy, as it is for the

diagonalize the N x N interaction matrix D in each sector. However,
present problem, the adiabatic basis functions in each sector are also
independent of energy. Consequently, as we have seen above, significant
computational savings can result from obtaining the adiabatic basis in a
reference-mode calculation and using it for several energies in propagation-—
mode calculations.

Table 5 ghows that most of the computer time in a reference-mode cal-

culat.on 1s spent calculating and diagonalizing D. Since the interaction
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potential is very simple for this test case, the diagonalization step is
the slow one. One idea for a method to reduce the time required to evaluate
the eigenvalues and eigenvectors of D is to calculate and diagonalize D
on a coarse grid, fit the elgenvalues and eigenvectors to spline functionms,
and use the spline functions for a prupagation-mode calculation on a finer
grid. One would have to converge the calculation with respect to the spline
grid as well as the propagation grid. We tried this for the case N = 8B,
P = B with the unconverged coars’ grid being about ten times coarser than
the propagation grid. We used the storage-efficient but computer-time
inefficient version of our spline subprograms. The computer time was
7.4 sec (compare 5.5 sec in Table 5). Since the spline version of the
program was not at all optimized, this test indicates that this kind of
idea deserves further consideration. Another possible way to speed up
the diagonalization step is to use an iterative method for the diagonal-
ization. The diagonalization at the previous step would be used to start
the iteration.

The piecewise analytic method has also been used for this test problem.
We used the program written by !-Iagner14 for this purpose, Compiling this
on the MNF compiler and running it onm the CDC 660U computer required 9.1 sec
compt ter time (corresponding to about 8.4 sec on the Cyber 74) to obtain
slightly less than three-significant-figure accuracy for a basis with 8
channels; at the enzrgy considered 5 channels were open, and no transition
probabilities were less than 10-4. The piecewise analytic method, like the
R mucrix propagation method, has the advantage that additional calculations

at subsequent energles can be performed with reduced cost.



-272-

JI. Rotationally Inelastic Atom-Dlatom Secatterin

We have applied three different methods te rotationally inelastic
50
scattering of an atom by a rligid rotator using the Arthurs-Dalgarno”  scheme

Consider first He-HF scattering with cthe interaction potential of Collins

20,28,66

and Lane. For a test case we study scattering at total angular

momentum J = 12 and impact energy 0.05 eV using a conventional 10-functlon
basis with jmax = 3., Using the R matrix propagation scheme (propagating

only Bb) we found that propagating from 3.0 a_, to 20 ag was sufficient

0

to give 1% precision for the real and imaginary parts of all 5 matrix

-2 es R ‘s
clements greater than 10 © and three~significant-figure precision for

: i
partial cross sections from the ground state. We used rhe srme E( ) for

every sector and increased it till we just retained this accuracy. This

)

required € = 0.3, and took 4.8 sec execution time for a program com-

piled on the MNF compiler and run on the Cyber 74 computer. Using the
same compiler and computer, we repeated the calculation with the regular

Numerov method, starting at 3.5 a, and applying Ricatti-Bessel function

0

boundary conditions at 24 a Using fixed stepsizes, we found that we

0
could satisfy the criteria given above with h = 0.064 a,- This calculation
required 15 sec computer time. We repeated this calculation using the FIN
compiler with optimization level OPT = 2, anu the execution time decreased
to 10 sec. We then tried the variable-stepsize algorithm and obtained com-
-8

parable accuracy for § = 7 x 10 ; in this run the stepsize increased to

0.064 a, at r = 4,50 a_ and remained at this value; the execution time

0
was still 10 sec with the FIN compiler and optimization level OPT = 2.
Based on Allison's ex]..erience5 one would assume that the execution could

be improved by using the iterative Numerov method with a carefully chosen

value of EPS,
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One advantage of the R »-irix propagation method for chis problem is
that, since the interaction potential is independent of energy, one can
perform calculations at additional energies at a reduced cost. Further,
by judicious use of contraction, f.e., P < N, one can often obtain good
accuracy without propagating the full number of functions required in the
primitive basis set.28 To illustrate this we give in Table 8 some vepre-
sentative rotational excitation cross sections for E = 0.05 eV for J = 4

28-29 As shown here, we found that in all cases adiabatic bases of

and 12.
propagation dimension P gave more accurate results than conventional cal-
culations of the same dimension except where accidental cancellation of
errors occurred. In Tahle 8 we see that a 10-function conventional basis
including channels with j = jmax= 3 gives converged results for both total
angular momenta. In contrast the next smaller conventional basis, the
6-functiun jmax = 2 basils. gives errors of 15% and 66% in 03+1 and ag+2,
respectively, and 127 and 48% in céil and uéiz. However, the N = 10, P = 6
adiabatic basis ylelds all four cross sections with an accuracy of 9%. 1In
Table 9 we show that the significant increase in accuracy obtained when an
adiabatic basis is used instead of a conventional basis is not predicated
on a fortuitous cancellation of errors. For this example, the jmax =2
basis gives errors of almost a factor of 2 for each partial cross section,
while the 6-function adiabatic basis yields all three partial cross sections
wiithin 6%.

1he plecewlse analytic method has been widely used for atom-rigid-
rotator collisions, although even for this problem the difficulty of

obtaining very precise answers has been noted.5 We applied the piecewise

analytic method to the 16-channel problem of Johnson gE_gL.67 Using the
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numerical parameters of the QCPE test data, the FUN compiler, and the CDC
6600 computer, we obtained less than three significant figures of precision
in 12 sec for a first-energy calculation. This corresponds to about 11 sec
on the CDC Cyber 74 computer. This problem required propagating from 0.73 24
to 6.5 a5 For comparison, the R matrix propagation method for the He-HF
problem discussed above, with e(i) = 0.3 and propagating from 3.5 to 20.0 ag
required 10.3 and 8.4 sec computer time on the CDC Cyber 74 computer for

N =15, P = 15 and N = 15, P = 10 problems, respectively, for first-energy

calculations.
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VII, Summarz

We have presented some detalls of ocur iwplemextation of the Numerov
and R matrix propagation methods for.i:nelastic close coupling calculations.
We have found that these methods are convenient and reliable for electron-
atom, electron-molecule, and atom-molecule collisions involving rotationaily,
vibrationally, and electronically inelastic scattering where the close
coupling equati.ons take the form of coupled differential equations. We
have shown that the computer time requirements of these two methods as
well as the piecewise analytic method and the integral equations method
are similar for a variety of inelastic close coupling calculations. The
ultimate choice among these methods should therefore oftem be based on
other considerations, such as ease of programming in the Numerov method
or of using adiabatic basis sets in the R matrix propagation method. Both
these methods have favorable properties for checking convergence with respect

to numerical parameters in calculations performed on a production basis.
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Table 1. Approximate coriversion factors for computer time

Computer Factor relative to CDC Cyber 74
€DC 6400 0.35%

CDC 6600 0.92

CbCc 7600 6.0

IBM 360/75 0.6

IBM 370/168 1.4

IBM 360/91 2.8

IBM 370/195 6.0

Univac 1108 0.4

AFor example, to convert a computation Zime obtained with
the CDC 6400 computer to an expected computation time on
the CDC Cyber 74, multiply by 0.35.
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Sums of transition probabilities for transitions from the ground state

(3,2) = (0,5) and from the second rotaticnally excited atate® as a function
of basis for e—llz. J = 5 gcattering at 30 gv.b

description of basis conventional conventional 2-dominant adiabatic adiabatic
N/P 15/15 9/9 9/9 15/9 15/6
.
] M Posy’s®
2 2.92¢-3)¢ 3.16(-3) 2.70(-3) 2.97(-3)
4 5.36(~4) 2.39(-4) 4.40(-4) 5.63(-4)
6 1.99(-4) 1.462(~4) 2.11(-4)
L)
1 LT
4 2.46(-1) 1.04(-1) 2.28(-1) 2.4B(-) 2.47(-1)
(] 1.07(-1) £.08(-2) 1.11(-1) 1.10(¢-1;

®These are doninated by transitions from (j,2) = (2,3) channel

bSenz reference 26

“The number in parentheses denotes the power of ten by which the entry should be

multiplied.
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Table 3. Timing study using the R matrix propagation method
for two runs on the elec:t:r:on—N2 scattering problem

of reference 26.

Function computation time gsec;"_
N/P = 15" N/P = 15/9°
Calculation of D 9.1 8.8
Diagonalization of D 40.7 39.9
R matrix propagation 24.1 7.5
Asymptotic analysis 0.6 0.8
Miscellaneous 1.5 1.4
Total 76.0 58.5

computing time (as a percentage of 76.0 sec)

Calculation of D 12 12
Diagonalization of D 54 52
R matrix propagation 32 10
Asymptotic analysis

Miscellaneous

Total 100 77

vy compiler, Cyber 74 computer.
b572 sectors

€561 sectors
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Table 4. Computation times (in sec) for body-frame
close coupling calculations on electron—}lz
scattering using the integral equations

program.
N coc 7600° Cyber 74°
14 12.2 61
9 7.0 a5
8 6.3 31.5
7 5.5 27.5

2 umber of coupled channels

bNCAR FORTRAN compiler

Cconverted using Table 1
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Table 5. Computation times (in sec) generated by equations

(113)-(120) for He ¥ Hz.a

N P Reference mode Propagation mode

Calculation and diagonalization of D

14 14 9.2 0.0

11 9.2 0.0

8 9.2 0.0

11 11 5.3 0.0

8 5.3 0.0

& 8 2.6 0.0
Propagation

14 14 5.7 4.6

11 3.5 2.8

8 1.9 1.4

11 11 3.5 2.8

8 1.9 1.4

8 8 1.9 1.4

Total

14 14 15.9 5.4

11 13.7 2.6

8 12.1 2.2

11 11 9.8 3.6

8 7.2 2.2

8 8 5.5 2,2

mF compiler, Cyber 74 computer
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Table &. Transition probebilities Pw' = ISW,|2 for the model

He-li2 tsysx:emﬂ at E = H\u.b

description of basis Vipax = 5 Voax ™ 3 adiabatic
N/P 6/6 4/4 6/4

v v'

0 1 1.33(—l)c 1.30(-1) 1.33(-1)

0 2 2,04(-3) 1.65(-3) 2.04(~3)

0 3 4.97(-7) 4.56(~7) 4.9(-7)

1 2 5.51(-1) 4.61(-2) 5.51(-1)

1 3 3.09(-5) 1.11(-5) 3.3(-5)

2 3 2.11(-3) 7.76(-5) 2.2(-3)

AThe system is described in references 64 and 65

l:'The results are from referonce 29

®The number in parentheses denotes the power of ten by which

the eatry should be multiplied
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Table 7. Transition probabilities Bw. = lSw.Jz for the model

systen® at E = ghw.®

He-Hz

description of basis Voax 8 Voax =7 adiabatic
N/P 9/9 8/¢ 9/8

v v'

0 6 1.77¢-6)¢  4.03(-6)  1.77(-8)
1 4 7.33(-2) 6.98(-2) 7.33(-2)
1 6 3.31(-5) 5.15(-5) 3.32(-5)
2 5 2.58(-2) 2.26(-2) 2.58(-2)
4 6 1.90(~2) 1.11(-2) 1.90(-2)

3The system is described in references 64 and 65

b'l'he results are from reference 29

“fhe number in parentheses denotes the power of ten by which

the entry should be multiplied
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Table 8. Rotational excitation cross sections ogoj

from the ground rotational state for He-HF at E = 0.05 ev.?

' (ag) for transitions

description of basis jmax =4 jmax =3 jmax =2 adiabatic
N/P 15/15 10/10 6/6 10/6
3 =4 _

1 2.06(-1)°  2.03(-1)  2.36(-1)  2.25(-I)
2 9.75(-2)  9.57(~-2)  1.62(-1)  9.55(-2)
3 2.70(-2)  2.86(-2)

5 I=12

1 4.83(-1)  4.82(-1)  5.42(-1)  4.94(-1)
2 1.74(-1)  1.75¢-1)  2.58(-1)  1.59¢-1)
3 3.38(-2)  3.56(-2)

4See references 28 and 29

bThe number in parentheses denotes the power of ten by which the entry
should be multiplied
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4 2
Tabie 9. Partial cross sections To4s28" (lo) for He-WF for

J =4 and E = 0,05 ev.2

description of basis jm =4 j“ax = 2 adisbatic
N/P 15/15 6/6 10/6
El

2 2.88¢-2)°  4.82(~2) 2.72(-2)
4 4.57(-2) 4.26(~2) 2.49(-2)
6 4.30(-2) 7.07(-2) 4.34(-2)

85ee references 28 and 29

bThe number ir parentheses denotes the power of ten by which
the entry should be multiplied
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REFERENCE POTENTIALS WITH INTECRAL EQUATIONS

Michael J. Redmon
Chemical Physics Group
BATTELLE
Columbus Laboratories
505 King Aveuue
Columbus, Ohio 43201

1. INTRODUCTION

Due to the rapid accumulation of information conceraing the
potential surfaces of chemically interesting species, it is desirable
to be able to perform coupled-channel calculations within the close-
coupling method. Unfortunstely, even the most e«fficient tradiational
methods of integrating the coupled equations are so time-consuming that
their use for more than a few coupled channels becomes prohibitively
expensive. A recent method, developed by Roy Gordom (Go69) and based
on a plecewise-analytic approximation to the potential, is a major
breakthrough in numerical techmology because it requires relatively
few steps to integrate the coupled equations. At high energies, it
has a real advantage over methods which approximate the wavefunction,
such as the Runge-Kutta method or the more recent de Vogelaere (dV55)
method, since a proper conatruction of the wavefunction using these
methods requires a large number of steps. Recent methods for solving
close-coupled integral equations have been developed by Johnson and
Secrest (Jo66) and Sams and Kouri (Sa69). Both of these methods use
numerical quadrature procedures, which subdivide integrands into slowly
varying partitions and, therefore, must employ a finer integration mesh

with incresaing energy,
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We have developed an integral equations method for solving coupled
squations that does not require quadrature procedure (Re74a). Thus, it has
the desirable feature (characteristic of the Gordon method) that the inte-
gration mash is relatively inseusitive to changes in energy (wavelength).

It is based on the Volterra integration equation, as is the Sams and Kouri
method (5a69), but, instead of replacing the integrals »y a quadrature, it
uses a piecewise~constant reference potential, in the spirit of Roy Gordun's
method (Go69). The result is that larger steps can be taken as the equations
are integrated into the asympotic region since the integrals for the model
potential probiem can be evaluated exactly for each interval.

The mothod has been implemented in a general inelastic scattering
code, INSCAT, which hzs been used to study a variety of atom-diatomic mole-
cule (Re73) and atom-atom collisions (Re?74b). For a typical atom-rigid
rotor interaction the integration takes 60-100 steps to reach the asymptatic
region. Accuracy and speed are comparable to the program of Gordon. Execu-
tion times increzie as NZ at least up to 25 channels. Stability to growth
of closed channels is ensured by using variable pickup points and occasional
stabilization.

In part 1 we develor the form of the Volterra integral equation
for inelastic scattering used in the method. The use of reference poten~
tials is discussed in part 2. In the final section, the code INSCAT is

discussed, and comparison is made with results obtained with other methods.
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1. The Multi-Channel Volterra Equation

The quantum mechanical coupled equations for scattering can
be derived from the differential form of the time-independent

Schrddinger aquation. We wish to derive sn integral c;lution repre-
sentation for the wavefunction. We consider the Schridinger equation
(-8 -k =0 Q)
with the boundary condition
!i(r)—-—-b(z'n)'uz axp(iK-T) + £ L*P-(—lr“' . 2)
e

Y{(r) is the coordinzie representation of che cutgeing stationary
acattering states If-b, and £ is the scattering amplitude.
For the stationary states |ﬁ+>. equation (1) can be transformad
into an integral equation
[Ee> = B> + (B - By + 1e)-v]Ee> )
vhere the plane wave |ﬁ> is a solution to the homogeneous problem
(2 - B)|®> = 0. (%)
Equetion (3) was first derived by Lippmann and Schwinger (L150) and
is often celled the Lippmann-Schwinger equation for I'G».
In the coordinate representation, (3) can be written
ke = g = @ + [@edivengdn.  ©
It is more convenient, for our purposes, to work in the angular momentum
representation. The vectors ]f+> can be expanded in terms of angular
momentum eigenvectors, for which we use the notation |!.!..n+> (Ta72).
These eigenvectors can be written in the coordinate representation as

1/2

drsme = LE)V2ew, oge ®
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vhere the redial functions ¥, , (r) reduce to spherical Beisel funétions
»

jl(kr) when V+0 and satisfy the radisl equation (Ta?2)

2
e - LA o) 4 k1Y, () = 0. ™

4

The statas l!.l,ur» satisfy the Lippmann-Schuinger equation
IE’LIW - 'Ev".-> + (E-Hy + ic)-lvllo"s-"> (8)
and, in analogy to (5) an integral equation for the radial wave-

function can be obtained:
- [ ]
!,"k(r) = 5, Gkr) + Io"""r.,k"-""“'""z,k"" (9)

vhere the kernel is
o L. .1 *
Gp,x = = ¥ Iyl dtyeny). a0
h.: is a spherical Hankel function. The asymptotic condition is
¥y o (£)—, (k) + ke, (K)exp[L(kr ~ m/2)]. (11)
> o

Eqration (9) can be convaniently rewritten:

T
Y".k(r) = 1 () + Jodr'cz.k(r,r')v(r')'l”'"k(r,')

-
+ I dr'Gz.k(r,r')V(r')?,"k(r') . 12)
T
Using (10) we can write the integral equation as

T
¥, () = 3, Ger) - § By Cer) Jodr'.‘ll(kr')v(r’)‘i’z.k(r')
1 T r + A v A ' L]
+ £ 1 Gkr) 0dt‘ hy (ke )V(E")Y, L (x*)

-$3,am Iodr'h:(kr')v(r')Yl.k(r'). as
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The last integral is a constant, and, following Sams and Xouri (Sa69),

g k(r) - J"(kf) (1 + c) - " hl(kf) I dr'J"(kr')V(r')Y" k(r')

' 4
+1s,a0 Iodr'h:(kt')V(r')Yz.k(r') 1)
vhare
1 (% .+
Cs= - I-Iodr'hz(kr')v(r')Yz.k(r'). (i5)

Ve note that (1 + C) corresponds to the Jost matrix of multi~-channel
scattering (Ta72). Since this quantity is a constant, we can renorma-
lize our integral equetion by multiplying through by (1 + C)~!. This

yields the squation [Sams and Kouri (Sa69)]:

k(r) = 1, (kr) - —hl(kr) I dr'j,’(kr')v(r')!" el

+ i 3,'(1::) Idr'h (kr')v(r')'r" k- ae)

This is & Volterra’ equation of the second kind (Ar68) and has the
desirable feature that the limits of intagration are finite. This
equation hes been used as the basis of a computational method by Sams
and Kouri (Sa69), who replaced the integrals by quadratures and showed
that the equation could be solved by a nonitarative procadure, due to
the cancellation of the two integrals in the final quedratura terms.

A very important property of Volterra integral equations of the
second kind is that such equations sre always uniquely solveble,
regardless of the magnitude of tha kernel (Ta58). This is not true

in general for Fredholm integral equations, from which the Volterra
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*
equatione may be derived as a speciel case.
The matrix analog of (16) is

() = 3() - n"(r)-rdr'a(r')-v(r')-v' "
0

+ .1(:)»rar'n"'(:')-vcr').y' ). an
0

In obtsining (17) we have made use of the commutation of diagonal
matrices and have absorbed the wave~vectors into H. The basis used
for the matrix representation is suitably chosen for each application.
For atom-atom scattering it is convenient to use a set of molecular
electronic states.

In the next section we develop a new method, based upon an

approximation to V(r), for solving (17)

2. A New Computational Procedura for Solving the Volterra Equation
The Volterra integral equation (16) is very convenient for

numerical computation b of the finite limits on the integrals.
This means that we can break up the range of integration into a
finite number of steps by using a quadrature procedure to represent
the integral, as Sams and Kouri (5a69) have done. An alternative
scheme is suggested by the work of Roy Gordon (Go69), who made a
plecewiae-analytic approximation to the potential in each interval

and represented the solution by a linear combination of solutions

*Rninh;rdt and coworkers, in a racent series of papers, have
developed a numerical procedure for evaluating the Fredholm deter-
minant, thus leeding to a direct matrix solution of the Lippmann-
Schwinger equuation: Representative raferences are (Ra70a), (Re70b),
(Re71), and (He73).
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to the model potential problesm. We will adopt this procedure and
write the single-channel integral equation in the form

T ¢ ]
y(r) = ¢3(r) - é2(x) [ I; dr* + I

T
ar + ... +I dr']h(r')vu')y(r')
] L

T % T

+ ¢1(r) [ I dr' + I de' + ...+ I dr'Jh(t')V(r')y(r') 8)
0 k5 rn

or

y(r) = ¢1(r) - $i(x)F(x) + $1(x)G(x) (19)
vhere F(r) and G(r) are the net values of the two integrals up to r.
The functions ¢, and ¢; are solutions to our homogensous problem,
being sines and cosines if we choose H, to be the kinetic energy
and sbsordb the centrifugal potential into V. The derivative of y
is easily evaluated:

¥(@) = $a(r) - $2(DIK(x) + $1(rIG(r). (20)

In _uch interval (a,b) we make the spproximation
W(r) = Uy (a<r<h) (21)
snd represent the wavefunction in thie interval by the local
approximation
y(r) = Axa(r) + Bxa(r) (a<r<p) 22)

whers A and B are linearly independent soluticne for the conetant
potential problem; i.e., for a classically allowed region
Xi(r) = sin(ox) 23)

%2 (r) = coelar) : (24)

and for a forbidden region
Xi(r) = exp(-ar) (25)
¥a(r) = exp(ar). (26)
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For convenience, we lét V(i) ba the laffective potential
v(r) — v(r) + !-(.L_t;ﬁ:l - @n
Then the functions ¢ snd ¢2 are solutions to the free particle

problem; i.e.,

31(x) = sin(kr) (28)

and
$2(r) = So8lD), 9

With these choices for the various functions, the integrals may be
vwritten for a classical region, as
b
F(b,a) = j sin(kr')Uo[Asin(or') + Beos(ar')]dr' (30)

a
and

b '
G(b,a) = I Q-!ékL)-Uq[Min(ur":: + Beos(ar'))dr'. (31
a

Similarly, for a forbidden region, we use the notation

F(b,a) = I1(b,s)A + I2(b,a)B (32)
G(b,a) = I5(b,a)A + I,(b,a)B 33
vhere, for example,
b
I1(b,a) = U L-m(kr')sm(ar')dr'. (34)

All of these integrals can bs evaluated analytically.

The calculational scheme consists of assigning initial values of
y and §, deterwining A and B for an interval by inverting the local
expressions for y and ).'. and then propagating the solution across the

interval (a,b) by use of the integral equation. The explicit forms
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for A and B, obtained from (22) and an analogous expression for ;, are

A=V 10Ry - %) (35)

B= W10y - Xiy) (36)

vhere W is the Wronskian of X; and X2. The multi-channel Volterra
equation (17) may be writtem, using our notation, as

¥(r) = 1)+ [1 + €(r)] - () *€(x) an

where ¢, and ¢2 are diagonal matrices. The matrices F and € are

F(r) = I,°A + I:°8 + F(a) 28
and
€(r) = Iy*A + Iy*B + €(a) (39
where, for example,
T
I = de(r')‘tln ") xa(x)de’. (40)

(The other integral matrices I:I. are given by similar expresaions.)
F(a) and 6(a) are the accumulated values of F and € up to r = a.

If we have one or more closed channels, we have different
boundary conditions which ¢; and ¢, must satisfy: ¢ must be zero
at the origin, and ¢, must decay exponentially for large r. Clearly,
two lineariy independent functions satisfying these criteria are a
hyperbolic sine and a decaying exponential. A proper closed-channel
Green's function is
I - % sinh(kr)exp(—«r"') (for r>r')

(41)

Clror,) = - 2 oirei(r,) = )
l -z sinh(xr')exp(-«r) (for r<c'),

With this choice of G° , the integrals must be re-evaluated, but ths
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computational procedurs is the same as before.

The reason for making a potential approximation and performing
all of the integrals is that we should be able to take large staps as
we approach the asymptotic region. In order to vary the step-size
efficiently, we nee’ a local messure of the error we are introducing
at each step. Roy Gordon has given an expression for choosing the

step-size:

To |1/3

hn-!-l = hn[T_] (42)
where To is the desired error, and T is an estimate of the error
incurred in a step. The power of 1/3 arises because the first-order
correction to the wavefunction for a linear reference potential is
cubic in the step-size h (Go71). We have found that this relatiom,
when used for choosing the step-size for our constant reference
potential, maintains the error produced in esch intervai at a value
very near the desired error T,

The formula requires an estimate (T) of the actual error incurred
in each step. Following Gordon (Go69), we assume that A in (35) is
a function of r:

B i ey - X 43)
The Wronskian W is constant because the functions X; and x; are lonal

solutions to a gecond~order differential equation with missing first

derivative. Both ¥z and y satisfy second-order differential equations,
80 we have

Y% =~ [k - Ule (44)

¥ = - [k -vDly. (45)
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Using thess expressions, (43) can be writtem

Wwn . W V() - Tslxay.

dr (46)
We can obtain the variation of A(r) over an interval (a,b) by
i.ntcgr'nting
A(b) - A(a) = - w! J:x;(r')lv(r') = Ugly(c')ar’. 47

Inuvtiug our local spproximation for y(r) and dividing by the step-
size h (Go69), we have an estimate of the average variation of A(r)

over the interval (n,b):.
b .
AMD) , _ - sz(r')[v(r') - UolIA i (E") + B3 (1" (g

Ve take for A. and B. their values »t r = a. To evaluate this
integral, we expand V{(r) in a Taylor series about the midpoint

of (a,b) and keep only the first two terms. This gives

. b
B o wi-te; [ GG - DlaE + B 49)
. a

where a, is the potential slope [See Appendix G.]
a - [dv b4 1 .
1 dr L - F (50)

We can also obtain an expression for the average variation of

B(r) over an interval (a,b):

b
ARE . () ta, [ xa(ED (' = B [Agy (') + By, (e") ]dr". -
. "

The integrals appearing in (49) and (51) are easily evaluatec
since y; and y, are transcendental functicas. It is worth mentioning

that computationslly convenient expressions are obtained by performing
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the integration over the interval (- .‘2!. , %) and taking advantage of
the parity of the resulting integrand.

Once the integrals in (49) and (51) are evaluated, the

first-order correction to the local wavefunction is estimated by

writing
Alr) = A. + [i‘-&](r - 8) (52)
Br) =B + [%!](r -0 (s3)
so that, for r= b
yi(b) =AA-x3(b) +ABexz (D). (54)

Using this estimate for the correction to y at the right-hand side of

an interval, Gordon (Go7l) defines the error introduced in the

- 1 +a et
y By + a *ly°(d)] ° (55)

where the zero-order fumction is given b-y (22), and a is the local

interval (a,b) as

wave number. Since the corrections to A and B vanish at the midpoint
of an interval, (55) 1is a very stable measure of the error intro-
duced in one step.

The step-size selector (42) requires an estimate of. the local
error introduced in an interval before the next step-size can be
determined. This errcr estimate, T, requires the evaluation of the
“perturbation integrals" (49) and (50) . Since we are approxi-
mating the potential, these integrals are slowly varying functions
of eanergy, and in practice it is found that one nesd only evaluate
these integrals and determine a sat of step-sizes at ons snergy.

It is then possible to use these same step-sizes at other energies.
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This desirable feature of embedding with a refarence potential has

been discussed Ly Gordon (Go69). In our inﬁlenentation, this prac-
tice results in savings of about one-third in computation time in
comparison with runs in which the step-size is computed. A good
procedure to follow is to divide a set of energies into partitions
such that the lowest energy of one overlaps with the highest energy
of another. This makes possible e check of the assumption that the

step-size is independent of energy.
3.__A Multichannel Scattering Program

We have implemented the computational procedure developed in Section 2
into a coupled-channel program INSCAT for solving the coupled integral
equations which arise in scattering theory. We will discuss the program
arrangement and give selected results in this section.

) The main program, INSCAT, reads in the required input and calls
either INROT or ATMATM to solve the coupled equations for the rota-
tional inelastic problem or atom-atom collision problem. These subroutines
are called once for each value of the total angular momentum. INROT calls
the subroutine F2INIT and F2 to set up the F2-matrix, sets up the potential,
and then calls MIKINT to integrate the coupled equations. ATMATM sets up
the potential for the atom-atom problem and calls MIKINT to perform the
integration.

When the coupled equations have been integrated for a particular
value of J, XSECTN is called from INSCAT to compute the partial
cross-sections. After the equations have been integrated for all
values of J, ANGDIS is called to compute the angular distribution.

All input is in atomic units (Hartrees apd Bohrs), but the

printed output lists the cross-sections in both square Bohrs and
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square Angstroms, and the eneréiea in Hartrees and electron volts.
Defaults are available for most parameters, and the progran is
documented with detailed information concerning the -choice of
parameters. For most ritational inelastic scattering calculations,
an initial step-size of ,05 Bohrs and a value c¢Z T.= ,001 are
satisfactory. For the atom-atom collisions we have studied, we found
that an initial step-size of .625 Bohrs and a value of T = ,0005 were
required to obtain acceptable results.

The spherical Bessel functions were calculated by downward
recursion for J<x, and by a procedure recommended by Wills (Wi7la)
for J>X.

INSCAT is presently dimensioned to allow one to compute the
step-sizes at one energy and use them for calculations at nine other
energies. Partial cross-sections and angular distributions may be
calculated for each energy. Phase~shifts and R-matrices can be
written on a data set for later use.

Several standard potentials are already programmed into the
potential subroutine POT and can be accessed by simply setting a
flag. In addition, a set of matrices defining a set of potentials
may be read in and a spline-fit used to allow interpolation between
the points.

The value of 1/3 used for the exponent in (42) was chosen by
a trial-and-error procedure for single-channel calculations, and
appears to work reasonably well for the problems we have considered.
We have actually plotted the calculated error (55) as a function
of the radial coordinate, and found that it oscillated around the

preselected optimum value.
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The potentisl slope required in obtaining the variations of
A and B in (49) and (51) is calculated from the difference in the
potential at the nidpoint of two succeéssive intervala. This
can be a poor approximation if large steps are taken too soon in a
radial integration. This is not a very severe restriction since the
use of a constant reference potential precludes the use of very
large stepg before the potentials begin to flatten out.

A normalization factor is used to insure that the solutions
start to grow at a aufficiently small rate; for rotational inelastic
problems, it was sufficient to set XN = 1, but this procedure would not
be adequate if the channel wave-numbers were very different from one
another.

One difficulty which often arises in integrating coupled
differential or integral equations (with initial value methods) is the
gradusl appearance of linear dependenciee caused by the expomential
growth of solutions in classically forbidden regions. Roy Gordon (Go69)
has given an elegant discussion of the problem and has pointed out that
the situation arises quite naturally from the finite precision of
wmachine arithmetic and has nothing to do with an inherent instability
of the coupled equations. Gordon shows that it is possible to
stabilize the solutions by unitary transformation to upper-triangular
form, thus insuring that the diagonal elements of the solution matrix
have the most rapid growth.

The problematic growth of solutions is most troublesome when highly
closed channels are involved. However, we have found that it is often
not necessary to stabilize, even for closed channels, if the channel
wave numbers do not differ appreciably from one another. When

stabilization is required, it is in practice only necessary to transform
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the solution matrix periodically to upper-triangular form, and not
necessarily by constructing a unitary transformation. Calculations
have been performed for rotational-inelastic scattering of an atom
colliding with a rigid rotor. The formalism used was that of Arthurs
and Dalgarno (Ar60), and low-energy collisions were studied for

(He + Hz). (He + Nz). and Hg + Hz). Our choice of these systems

was based on the fact that published data for close-coupling calcula-
tions are available, and the potentials involved are sufficiently varied
to permit a useful analysis of the method.

The calculations chosen for comparison were the (He +H2) cross=
sections of McGuire and Micha (MG72), the (g + HZ) R-matrices of Lester
and Bernstein (Le67a, Le67b, and Le68a) and Lester (Le7la), and the
extensive calculations of Erlewein et al. (Er68) and von Seggern and
Toennies (vS69) for both open and closed channels.

Two other programs were used to generate cross-sections. These
were the de Vogelaere differential equation program of Paul McGuire (CLSCPL)
and the Volterra integral equation program of Neal Sams, Charles Wells, and
Donald Kouri (SPIE). The version of CLSCPL available to us did not have
the capability of including closed channels in the basis, but the integral
equation program, SPIE, did have this option.

We have made four-channel calculations, with each of the three
programs, on the three potentials mentioned above. The related speeds
of the three methods depend very much on the potential. INSCAT takes
roughly as much time as SPIE for (He + Hz) collisions at 0.2 eV, and
CLSCPL is slightly faster tham either of the others. This is not

surprising since the (He = Hz) potential of Krauss and Mies (Kr65) is



exponential and our constant potential approximation is rather severe. For
potentials with wells and long-range interactions, such as (He + Nz)
or (Hg + Hz), we are from four to ten times as efficient as the other
two methods, depending on the relative emergy (both of the other
programs are wavelength dependent). We did not carry our calculations
above 1 eV; however, at higher energies we would expect to be significantly
faster than the other methods. These statements should be taken as a
rough comparison of the relative speeds of the three programs.

In Table 1 we present a comparison of our calculated R-matrix for
(He + NZ) with one obtained from calculations using the program of
Kouri. The symmetry in the R-matrix is an indication of the stability
of the numerical procedure, although it does not guarantee accuracy
in the calculated cross-sections. In Figure 1 we present the (He 4 NZ)
compound-state resonance at about 1.066x10~° eV, which was reported by
von Seggern and Toennies (vS69). The resonance curve was constructed
from calculations of the total cross-section, including 25 partial waves,
at ten energies. The computations required about one minute ~f UG time
(on the University of Florida IBM 370/165 computer) to integrate the coupled
equations and to determine the total cross-sections and angular distributions
(not reported here) for all ten energies. Each integration required about
80 steps to reach the asymptotic region (6030). This represents a good
closed-channel test of INSCAT since we have only one channel open at this

energy. We found that it was not necessary to stabilize to obtain these

results.
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Two planned improvements in the code are the use of a simple (fast)
quadrature procedure to integrate through regions of steep (ropulsive)
potentials near the origin, and relaxetion of the rigid-rotor constraint
to allow for vibratioml transitiuns. The present code is very portable,
and has been used in IBM, CDC, UNIVAC, and VAX computers.

The development of this code was greatly facilitated by interactions
with David Micha, who suggested using reference potentials in an integral
equation method, and with Paul McGuire, Don Kouri, and Roy Gordon, who
offered computational advice. The author wishes to thank Bill Lester of the

NRCC for the opportunity to participate in this workshop. This work was
part of a dissertation submitted by the author in partial fulfillment

of the requirements for the doctoral degree at the University of Florida

(Re 73).
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Table 1. A Four~Channel R-Matrix

Col 1 Col 2 col 3 Col &

Row 1 1.5296", 0.1749 ~0.0717 0.1060
(1.5412) (0.1773) (-0.0734) (0:1073)

Row 2 0.1747 ~2,5740 0.0207 0.0304
(0.1773) (~2.5423) (0.0120) (0.0307)

Row 3 -0.0717 0.0110 0.1350 ~0.0040
(-0.0734) (0.0120) (0.1389) (~0.0040)

BRow & 0.1057 0.0304 ~0.0040 0.2230
(0.1073) (0.0307) (~0.0040) (0.2242)

INSCAT parameters: He + N, for I = 4.

x0 = 4.72 E = 8.085054D-5 V1 = 1,08046D=4
xf = 67.3 Rm = 3.5022 V3 = 6.65196
time = 0.3 sec HO = 0.025 V4 = 0.375

no. steps = 72 T = 0.001 V5 = 0.176

*INSCAT results

+SPIE results
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SOME THOUGHTS ON THE SOLUTION OF A CLASS
OF LINEAR DIFFERENTIAL EQUATIONS*

Fred T. Krogh
California Institute of Technology
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, California 91103

The problem of interest, which arises from scattering theory, can be
written
d?y
() y'= E;E— = A(t)Y, Y(ty) - Yo
where Y is an N x N matrix, A is a symmetric N x N matrix; and Y‘(to)
is to be determined from certain asymptotic conditions, There are two
regions of interest with very different characteristics. In the first
region A(t) is quite dense and changing rapidly. It also has large positive
eigenvalues which leads to the need for periodic reorthogonalization of the
solution in order to keep the linear independence required for the final

determination of Y'g. In the second region A(t) is relatively sparse, and

slowly varying.

—
This paper presents the results of one phase uf research carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under
Contract NAS7-100, sponsored by the Natinnal Aeronautics and Space
Administration.
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These very different characteristics have led to the development of
two classes of methods for the solution of this problem. We believe it likely
that no single method will be highly effective in both regions, and thus,
that a general purpose method for solving {1) should be a hybrid consisting
of a method for the first region, a method for the second region, and some
mechanism for deciding when to switch. We believe that this view is generally
held by people working in this area, although as yet no such hybrid code has
been written.

In this note, we consider only methods for the first region.

Methods for the First Region

In the first region, there are a large number of plausible methods which
correspond to methods in use for general nonlinear equations. Two points are
worth mentioning, Most important is that methods designed specifically for
the solution of second order equations will perform significantly better than
related methods applied to the equivalent first order system. The other point
is that because (1) is a matrix equation and because A(t) is symmetric,
the cost of using implicit methods is significantly less than is generally
the case. This second point may not be as significant as might appear at
first glance. At least for multistep methods, the primary advantage of
jmplicit methods is their superior stability, and it happens that explicit

"methods for second order systems without first derivatives are significantly
more stable that explicit methods for the equivalent first order system.

Recent studies [1], [2] have found that when evaluation of derivatives
is expensive, variable order Adams codes are best; when evaluation of
derivatives is cheap, Runge-Kutta methods are best at low accuracy, and
extrapolation methods at high accuracy. Thus for large N (experiment is

necessary to define large), we believe the method for second order equations
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derived in [3] will be most effective. Although this type of method is
usually used in PECE mode (Predict, Evaluate derivatives, Correct, Evaluate
derivatives), for the problem at hand we believe one should either use the
PEC mode or the implicit mode. Using the notation of [3]; except with capital

letters for matrix variables, the PEC mode is defined by

. Ry 4 291 *
Poa = Y, + Y + b 1_z=ogi’2¢x’1.(n)
(2) ' q-1 )
Paet = Y n ¥ 02 90 93(n)
=0
Y1 =P .o +hZg [A(t..) P -2, (8)(ni)]
ntl - Ty q,1 n#l’ "ntl T Yo
(3)

"1 = P (e)
Y'oe1 = Py * 090 At 4q) Py - % (n#1)]

The only N3process is the matrix multiply, A(tn+]) Pn+1‘ The most efficient

implementation of the implicit mode replaces egs. (3) with

2 - 2 (e)
L1 - b9 2 Altpy)] Youy = Py - 0700 5 87 (i)

Y =P+ 96,0
n+l n+l h_q_gq . (Yn+1 -P n+1)

(4)

where the only N3 process is the solution of the top equation in (4) for
Yn+1' If the full generality in [3] is used, gi,j is a matrix, but multi-
plication of a matrix by gi‘j involves multiplying corresponding matrix
elements, not a full matrix multiply. If integration orders, g, are all
the same or just the same over individual columns, then a slight reduction
in arithmetic operations is obtained by multiplying the top equation in
(4) by 1/ g ,.

Closely related to the implicit method given above, is Cowell's
method, [4, p.292]
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2 9 i
§) Y., =2Y -Y . +h o
(8)  Ypuq = 2Y, - Yo, Zy O Y (M) Y)

2 q
= zvni--lyn-'l RO AA(E ) Yo f§1 01" [Alty) Yo -
o o
32__7°v (Aft)) Yn)]}

For g=2 and 3 this is the Numerov formula

(6) (1 - g3 hoA(t q) Yopp = 2Y, - Y,y + y3 WEDI0ACE) Y, +

A“’n-l) Yn-l:]

which may be an attractive choice when integration overhead dominates compu-

ting time in the above method. A reduction in operation count is obtained

with the substitution
(7y z ={1- ! hz Alt. V) ¥
‘ n AF3 n’! "n

Using the identity (I + 5A) (I - F\)'.I =51+6 (I - l\)'.I it 1s easy to obtain

from eqs. (6) and (7)

(8) Zq -2, +Z_q=-12[1-(-q hZA(tn))_]]Z"

It is well known, see e.g. [4,p.327],that a double sunmation of eg.(8) gives

an algorithm with better round-off characteristics. Thus

(9) 2 = 1292 (L1 - (1 - qp 02t )) 112,

The only N3 operation required by this algorithm is the formation of

m
-

0 (- griae Nz =y,
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and thus computationally this algorithm is quite efficient. Unfortunately
there may be excessive cancellation in (9) when subtracting (10) From Zn.

1f this should be the case, one may prefer to replace (9) with the equivalent.
= 2 -2 1.2 -1
M)z, = b5 VOLAR T - p h7A(L )] 7}

which requires nearly twice as much work (13/6 vs. 7/6 N3) for large N.
Changing stepsize when using the summed form of these formulas requires
adjustments to the first and second sums. Details for the cases of halving
and doubling the stepsize can be found in {5, pp. 957-9581.

Other possibilities for the case when integration uverhead dominates the
time for the variable order Adams methods are Runge-Kutta-Nystrom methods
developed by Fehlberg, [6], and Horn, [7], and extrapolation methods based on

the Numerov formula.
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CHANGING STEPSIZE IN THE INTEGRATION
OF DIFFERENTIAL EQUATIONS USING
MODIFIED DIVIDED DIFFERENCES ¥

Fred T. Krogh

California Institute of Technology
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

Abstract

Multistep methods for solving differential equations based on numerical

integration f las or ical differentiation formulas {for stiff equations)

require special provision for changing the stepsize. New algorithms are given
which make the use of modified divided differenc s an attractive way to carry
out the charge in stepsize for such methods. Error estimation and some of the
important [actors in stepsize selection and the selection of integration order are

also considered.

1, Introduction

d ber of hods for changing the stepsize of

a
ed a

We have
multistep methods in [ 1], and the use of modified divided differences in
particular in [2). The algorithm propored here is different than that given in
[2] in that the stepaize is not changed on every step, and the procedure for

computing integration coefficients is designed to take ad ge of this

Even when the stepsize is changed on every step, the new algorithm computes

the required coefficients more efficiently than the algorithms in 2172,

%

Published by Springer-Verlag, 1974. "Proceedings of the Conference on
the Numerical Solution of Differential Equations.' 19-20 October 1972,,
The University of Texas at Austin, Vol. 362, Lecture Notes in Mathema-
tics. This paper presents the results of one phase of reseaich carried out
at the Jet Propulsion Laboratory, California Institute of Tecinology, under
Contract NAS7-100, sponsored by the National Aeronautics aud Space
Administration.
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However, if there are more than approximately 2 first order stiff equations and

the stepsize is changed on every step, then the overall algorithm is slightly less

efficient than a carefully organized Lagrangian formul (See [7] for example}
Refereace [7], which gives the only algorithm of the type considered here for

Ay
stiff equations, reactivated our interest in this area by giving an algorithm with a

computationel cost that only goes up linearly with the integration order, as

opposed to quadr! 1y for hods based on ical integration formulas.

The use of & pletely variable psize gives more flexibility than what we

propose here, and other methods considered in [ 1] require less computation. We
believe the new method is a good compromise between the conflicting goals of
flexibility, computational economy, and stability and reliability.

The following section gives algorithms for computing integration, inter-
polation, and differentiation coefficients in a framework useful for the step-by-
step integration of ordinary differential equations of arbitrary order. The
interpolation and differentiation formulas age useful for the case of ctiff equations.

In section 3, details d with the impl tion of these algorithms in

a program for integrating differential equati are idered. Comp ional
details associated with implementing the algorithms in an efficient way are
considered in section 4.

Section $ considers the problem of interpslating to points which do not
coincide with the end of an integration step. The paper concludes with a
discussion of some details such as selection of integration order and stepsize,
which are difficult to make rigorous statements about, but which are very

important in making an integration program efficient.

2. Algorithms for Computing Coefficients and Updating Differences

Let w(t) be a function given at discrete points, Y, with g, >t for all i,
and consider the polynomial interpolating w at the points e tn-l' PN ln_q”

given by the Newton divided difference formula
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Poo1, nlt) ® Wit Jeteotiwle ey 4.0

2.1
Her Heee ) -lt-:n_q,z)-vt taetnete s rtaagel ]
where
\v(tﬂ) i=0
Wity qor g 1s wit oot oWl et ) Lz (2.2)
s T
Also consider the polynomial
» .
Pq. n“) = Pq-l.n(“’“.tn“tﬂn- l)' v (t-tn-qfl,"t'nﬂ' 'n' T .n-qH ] (2.9

Although apparently P; n

L] Pq nt1® later P is associated with a predictor formula snd P‘ with a cor-
)

rector formula, and the divided difference w[v.n

which interpolutes watt .0 t...., .n-qﬂ'

TS 'tn-qH] in equation {2. 3)
is computed using a predicted valuz of w(t_ ).

We are interested in the problem of efficiently integrating, interpolating,

and differ g the polynomials Py, and ’;.n atere ) and then
beaind 1 iale *
g the poly 1 1"“,1"“1 and Pq.nﬂ'
As in [2) we make & change of variable and introduce some additional

notation. Let
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hy ot -4

T “-In“hnol
‘S(M” = hnﬁl + hn A hMl-i

ontl) = h /l‘(nﬂ)

n+l
Oo(nﬂ) [ |
B,(n+1) = [Eyins 1Eyins1) - - &, (n+ 1) J/[Egln) <« &, 1(n)]
®gin) = wit,)

@;(n) = Eo(edg (n)- - 8§ y(mdwle it paeennt, )

H, (ntl} = hnulk. Hy(n#l) = hoil

Hy(n+1H {n+1)- < *Hy _{n+1) k>0
s, (ntl)=( 1 k=0
[H,(0+1)E,(n+1} --H_k(nu)l" k<o

The (n) or (n+1) following a variable name may be dropped if the value to be

{2.4)

aspigned to n is obvicus. From equations (2. 2) and (2.4) it is easy to obtain

B;41(n%1) = @ (nt1)-B,(n+1)g;(n)

from which it is apparent that if hn%l = hn Bz hn+2-i

divided difference v‘(nﬂ) is equivalent to the i-th backward difference of

watt= tn+l'

then the mbdified

(2.5)

Later we shall tind it useful to estimate qi(nu) from the values

of vi(n). These estimates are obtained using equation (2. 5) and estimating that

]
vq 0. Thus

(e) -
9g (nl) =0

#hnet) = @S (ne1) ¢ B nelion, ina-1, q-2o..

.0,

(2.6)
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Clearly

o nel) = 9“.)(nﬂ) slwie ) - 9"’(n4nl. 1=0,1,....4q. 2.1

The proceriure used to update the modified divided differences from t, to
'n#l in given by equations (2.6) and (2.7). The expression Bi(nfl)q;i(n) which
is required in equation {2.6) is also used in the formulas for integration, inter-
polation and differentiation, since its use permits a more economical evaluation

of the required coefficients. Thus we introduce
oL (n) = B,(n+11p,(n) @8

From equations (2.1), (2.3), (2.4), (2.6}, {2.7), and (2.8), simple substitution

gives
q-1 -
q-! n“) = q-l.n(ln’hnﬂ” = ifo ci.n“wi(n’ {2.9)
and
Py =P e Cq, nlTIWlt, 10 e 1)) (2.10)
q.n n+l :
where
1 i=0
(1) = (2.11)

Baad™ | [paa8lel) Ry TR
St Tl | T ey [FET '
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1 i=0
ci.n(') z uo(ml)v =3 i=]

t'i-l‘""l""“S-Z‘n)ul-l("n)]ci-l.n tx2

To treat the case of extrapolating to it = toyyr dELTE 1 and observe that

4-1(n%1) 4 (B, _o{n)/8,_ytne1)) = 1 (i22)

and hence O (I’ =],

The lormull for the k-th derivative of P with respect to t is obtained by

{2.12)

(2.13)

computing the k-th derivative of LA |‘.('r) with respect to v. Thus from equation
.

12.12)

- 8, p(n}
Shal™) e gintdiey g 47 ¢ Loy yintd)s "—“_l‘;:_:(m 33611, 887

(k-1

cgt")‘(-r) = ka‘_l(nﬂ)c‘_l n(')+[’k-l(n'l)"'—_m-] k

oM

Setting * = 1 and using equation (2.13}

1) = ke, ,(nmc{‘.‘;',’,m selfd

Define

L &}
%k " &7 S, nll)

Then {rom the above (d‘ X 0 for i < k}

(2.14)

(2.15)
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1 k=0,4=0,1,....q9
d!,k' 'i-l("”)’dl-l.l k=i, is),2,...,q {2.16)
ointidy L 4dyy , keZ.3dskikel.q

From equations (2.4), (2.9}, (2.10), and (2.15) there follows

& e ( ( +nq:.‘u *(n) .11
<op s in o*in .
wFFa-1,n et LA
“'nfl
K
d K
a2t =|d
[d ka0 ] % Pg-1,nit
tet de tat
nt1 ntl (2. 18}

+ '-k(“”’dq, Wit - 'E;)("“)]

where the d‘ x con be determined as indicated in equation (2.16).
»

For the case of integration we procesd much as we did for differentiation,
except that now integration by parts is used. Let ci':’(v) denote the k-fold
L T
integral ]; J'T ) ;. n(7)d7. Then (starting with equation (2.12))
0 v

§;-2(n)
e = (oy_ytnt)e o——mr)c{ 2meamenel ) o

( k)m = (o jintl)r ’1—(,,—,1')') C‘_l)n(f) ha; (nﬂ)cg . l)(-r)
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B« 8 e o

Define

81 = ke 1el My 219

From equation (2. 11) and the above

(l/k i=z0

|
8,y = VIk(ke1)) iz (2.20)

li-i,k-ai-l(n”)‘i-l,kﬂ i22,3,...,q; k = q¢d-i,...,1

where d is the largest value of k for which one desires 8,k From equations
B
(2.4), {2.9), (210}, (2.19), and the definition of ci"*) i¢ follows that the k-fold

integrals of P and Prare given by

ntl ot t 9-1 «
J“ J; J; Pq_l'n(t)d: = oy (nt1) ‘fogi.kvi(n) (2.21)
n n n

‘n-&l t t tzn-l t t
e TP (thde = P ., (tyde
J;n J;n '[n %0 J;n J;n {n 9-1.n
(2.22)

+ antligy wie )-wbhne1))

where the 8;, can be determined as indicated in equation (2. 20).
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3. Implementation of the Algcrithms

Consider the single d-th order diff:rential equation

SRR DR AT L WU TR Y S TOR a1
and let
Yo * y(tn) & puted approxi ion to Y(:n)
(3.2)

Py = predicted value of Yn

Except where noted to the contrary, the extension to systems of differential

equations of what is done in this section is & simple matter of applying what is

done for the single ion to each in the system. Permitting different
values for d and/or q (the ii.iegration order) for different equations in the system
can aleo be done in an obvious way.

The formulas of the previous section perrnit a numerical solution of

equation (3. 1) with d+] different choices of w. Let
w = yld=d (3.3
where j takes one of the values 0,1,...,d. The smaller the value of j, the

more accurate the forrnulas for solving equation {3.1). But for some problems

(stiff equations), too small a value for j will unduly restrict the stepsize because

of stability problems. If j> 0, then in the g 1 case an approxi 1
to a system of nonlinear equations must be obtained on every step. Thus the

case j = 0 is to be preferred if the stepsize is not thereby unduly restricted.

This choice gives the wall known Adams-Bashforth-Moulton hod whei d = 1

and the stepeize is and to hods which we shall simply call Adams

methods for all d. The case j= 1, d = | gives a class of formulas first
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suggested by Curtiss and Hirschfelder [8] and recently popularized by Gear {9,

r103. if the Y'9

in equation (3.1) is replaced by 0, then equation (3.1) is an
algebraic equation if d = I, and an implict differential equation of order d-1 for
d> 1. Including such equations, which we shall call implicit for all d, is a simple
matter although ona i restricted to j 1 for this case.

Although equation (3. 1) could be broken up into d first order equations, there-
by simplifying much of what follows, the extra complexity of d+aling with a d-th

order eguation directly is well worth while in many cases. The most obvious

advantage is that only one set of dilferences iz required, thus saving on both

torage and the p of differences. In the case of the Adams methods
we have found that integrating 2-nd order equations directly sometimes permits

a larger stepsize or enables one to integrate efficiently with 8 PEC (Predict-
Evaluate derivatives-Carrect) method instead of the more usual PECE method.

The best choice depends on both the differential equations and the initial ccuditions.
For example, interms of derivative evaluations to obtain a Ziven accuracy on

x" = ~xfr, y* = -y/r, r= (xz#yz)”z {a simple 2-body problem}, U the motion

is circular (PECE)Z .3 approxi ly twice as effici as either (l-"E(:l:)l or
{PEC),, where the subscript 2 incicates the integration of the above two 2-nd
order equations, and 1 the integration of the equivalent first order equations
x'=zu, u'= -xlr’. y'=v, vz -ylrs. On the other hand if the motion is
elliptic with eccentricity .6, then (l-"E(:)z is approximately twice as effic’ent as
(PECE)Z or (PECE),. Examples can also be given where reduction to a system
of first order equations is best; see e.g. [2) or [11]. The advantages or
disadvantages of integrating d-th order stiff equations directly is as far as we
know an open question. One advantage as we shall show below is that the direct
integration permits a reduction in the eifective number of equations which must
be solved at each step. The reader who is not interested in the general case may
{ind it advantageous to substitute specific values for d and § in the following text.

If this is done, any equation with a final index less than the sts:cing index should

be deleted.



-328-

For predictor formulas, equations (3.3), (2.21), {2.17), (2.9), and (2.4)
give

< ~1
(a-5-1) _ d-j-1 ., %, -
P4y = VYn +h ‘Eo 8, 1% (n)

P:-lj-k) . yg‘d-j-k) . H.[vf,d'j"‘") . Hz[y;d-j-mz) . 3.4

-j- q-1 -
on_,[y(d -y, hifosi, W1l ) k=2,3,...,d55

-1
(G A I *
Pnel =8, iEkdi' kvi(n). k=1,2,....j, {3.5)
and, of course,

5 ol
,,f: e .};)(nu) . ‘Zoq:(n) (3.6)

For the case j = 0, the corrector formulas are

dek) _ _(d-K) . d-1)
vralel v eu KT IN L RRTE IO SPRTIN e R LR

3.7)
k=1,2,....4d

{d) _ ' (d-1)
Yar1 = “tnol'ynol'ynﬂ""'ynﬂ ) 3.8

The case j > 0 requires the (approximate) solution of the following system of
equations .
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et et R oy R L I 3.9

A S A RTINS LR A 1S A TR (310
. (d-1), . _(d) (d-j), (e

1 Yne1* Yned =+ Vel % Prg) ""J'd'a-jcynﬂ’ "o. (n+1)] 3.an

The expression

e= [ysg'l" -.f;‘(..n)] = o (a+) 3.12)

which appears in equations (2. 9) and (3. 10} is also required for updating the

difference table. For the control of round-off error it is essential that e be

solved for directly, her than ) g & from equation (3. 12) after
obtaining ys:;lj). Substituting equations (3.9) and (3. 10) into equation (3.11), the

problem of solving equations (3.9)-(3.11) for ¢ is reduced to

(d-j-1) {d-j) {d-j+1)
“‘n#l' Pne1?t .d'j'Qn d'j" Tttt Vatl + 'l‘q. 1% Pp4l te Pal
{3.13
{d-1) = 5ld
+ -_qu_ 1800+ -2 Ppyp "'-jndq,j-l” = Pn#l“-j‘q,j'

Of course, in the general case equation (3.13) is a system of equations with order

equal to the total number of differential equations in the system. There are many

ways that one might obtain an approxi lution to this syst seee.g.[12).
For general purpose use a two iteration constant slope Newtoh mithod appears to
be a good choice; see [13). The (1x}) matrix required to apply the Newton

method to equation (3.13) is given by
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af { A
A= {Eausbg 0t TN, 1 (R

(3.14)
af f
+ - d draed N . - d .
T e-1, 1t Ty PIseidg, i1} %ot 3
Although it is a little awk d notati Ny, itis pletely straightforward to

extend A to the case of a system of equations, even if different values of d, j,
and/or q are used for different equations. The same matrix can and should be
used over several steps. This is not important for a single equation, but for
large systemns a significant gain in efficiency results from using the same
factorization of A over as many steps as possible. Of course, the partial
derivatives of {f need not be computed on any step that A is left unchanged.

The two stage iteration process proceeds as follows. Solve

(d-1)

=G4
Ay = Posy " Mg Prege Phyys s+ Pray ) {3.15)

for €. Compute °n+l'°|'-.+l' .. ""‘S:-l” using equations {(3.9) and (3. 10) with
oy Fepinced b <,y and L5 ofHne1))replaced by . (<47 < i

Then solve

(d-1)

= old) -
Aez-pn”-&l_jdquel “'nﬂ'cnﬂ.cllmﬂ'""cnﬂ ) (3.186)

(d-1)
n+l
3]

for e,. Substituting ¢ forp ., ande, for [y - wg“)(nol)',‘ in equations

ntl ntl
{3.9) and (3.10) the fina) values of y_, (r-- -+ y::-l are cbtained. The

difference table is updated using e = ¢, + €5, and the ratio lle, '/ Ve, ¥ gives an


http://CyJ.fi%22-
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indication of the convergence of the iteration and thus is useful in deciding how
| Note that two

frequently a new matrix A should be & duced for the 1
evaluations of { are uqnii-cd. the same a3 is required in equations (3.7) and

dl
(3.8). For implicit eq simply replace pi%) and s_jd, jwith Oin
eguations {3.11), {3.13)-(3.16).
For the purpose of obtaining error observe that equations (2. 6)
and (2. 8) give
R L S ) (e) LR )
E g 9(n)= £ g [0 (nt])-@ 1intl) = £ g @ Hnt]) {3.17)
=0 ki =0 1, kETA i+l 4z0 ki
where
. i=0
. %k *
B,k " 3.18)
8, k8t 120

© * L]
Since 'q. k= 80,k + 5, K *'q. K’ €quations (2.7} and (3.17) perms$: 1s to write

q-1 " (e} 9 g
1fo'i- W5 +8g, 1l Wity )= ey tat])] = 1Eo £, @;in+1) (3.19)

Clearly the same type formulas can be obtained with di K substituted for [

and



-332-

d = (3.20)

It is also clear that replacing Bq.k in equation {3.19) with 8g-1,k will simply
change the upper limit of the sum on the right side of equation (3.19) {rom q to
qQ-). The corrector formulas as given in equations {3.7), (3.9)-{2.11) have an
order one greater than the predictor formulas in equations (3.4} and (3.5). If
‘q,k‘ gq' K dq q,ji" equations (3.7), (3.9), (3.10), and (3.11) respectively
were replaced by 'q-l,k' 'q-l. K d -1k dq-l,j then the correctors would have

'hund d

the same order as the predictors. We have given our algorithm with correctors
of higher order than the predictors because in the case of a constant stepsize and
d = 1, the Adamns methods forq = ),2,...,12 have significantly better stability
characteristics when the corrector has an order one greater than the predictor.
{For q = 13,...,19, as far as we have checked, the opposite is true.) For the
-case j = ), d = ), Klopfenstein [ 13] has shown that the method using a corrector

with order one greater than the order of the predictor has the same region of

asymptotic absol stability as the hod using the same order corrector.
{This means that for h sufficiently large, the methods are equally sensitive to
error in the matrix A of equation (3. 14).) In both cases one also has the advan-
tage of using a corrector which will give better accuracy on most problems. (As
far a» we know, no effort has been made to compare the algorithm which uses a
corrector with order one greater than that of the predictor to the more usual one
for the case d > ] or for the case when the stepsize is not constant.)

It is frequently stated that for the purpose of error estimation the predictor
and corrector should be of the same order. If the usual error estimate is added
to the corrector with the same order as the predictor, one increases the order
of the corrector by one, obtaining the type of algorithm we recommend. We

suggest using the same error estimate for the case when the corrector presumably
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is more accurste. Also see Shampine and Gordon [ i+) where this matter is con-

ize, if the integration order is selected

sidered in more detail. For a given P
to minimize the local error, then by necessity any error sstimate will be quite
crude. (Despite the crude error estimates one gets with this policy of selecting
the irtegration order, we believe it is the best policy since it tends to reduce
global errors for a given amount of work, and since reasoritle estimates of the
global error are usually difficult to obtain from local errors even if they are

known with high precision.}

Let

(d-k) . (d-k} _ a{d~k)
Egtl “Yarl "~ VYnel 3.21)

where 'y‘(d'k) is the result of using a corrector with the same order as the

n+l
predictor to compute YLTI”' and E",:-lk) is to serve as an indication of the error
o (d=k)
N Yoe -

Clearly for the case j=0, equations {3.7}, (3.18), and (3.21) give

d-k * -
Bt * 0 W[y Py 1 Py Pt D= e (.22

Although the local error in y:::k, is of higher order in hnﬂ the larger the value of
k, this is not true for the global error; see [11]. The global error in all cases
has order one less than the order of the local error in computing y(d-”.
Computing good theoretical error bounds for the case j > 0 is more work

than can be justified. Thus we suggest estimsting the change in e due to using
correctors of different orders by the change in e,(ze, -G.). This gives a good
approximation if le ! |l is considerably larger than “’2“‘ which should be the case
since ordinarily one will want to recompute A if "'2 > allel". where o m 1/8.

With A defi. dasis A fn equation (3. 14), except with every q replaced by q-1,
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it is eany (o obtain from equations (3. 185), (3. 15) with Ael replaced by A:I' {3.20),
and {3.21}

& ':rl:--l” - '-jd;,jﬂ (3.23)

By appropriately bounding the stepsise (to prevent A and A trom becoming too
poorly conditioned), one can guarantee that ES:"” will be changed very little if
A replaced by A in equation (3.23). This is what we recommend to the
cautious user. Those who regard the error estimate primarily as a means to
reasonable stepsize control may want to simplify equation (3.23) by assuming
the partial derivatives are all zero {always a reasonable assumption for suf -

ficient]ly small stepsize), obtaining

. .
d4 . d . s
(d-j) oo Red . Red (470 (d-j)
EnflJ ~ dq-l j ! dq-l jhnﬁl Pnet ! (3.241

The use of equation (3. 24) for large stepsizes can be justified for some types of
problems. For example, it provides safe error bounds if A is diagonally
dominant with al) negative elements on the diagonal. Given E::'lj). eguations

(3.9), (3.10), (3.12), (3.18), (3.20) and (3.2]} clearly yield

(d=j-k) (d-j) , _* - -
Enﬂj - 'k(‘qﬂ.kznﬂ "q.k'l)' keli2,..codsy 13.29)

)
+ dq_ ke

(d-j+k) (d-j i-
Eny e {901, kEnel e kL2, el (3. 26)

Almost as important as obtaining an estimate of the local error is estimating
the effect that various strategiea of selecting the stepsize will have on future

estimated errors. An a first step consider the case when the divided difference

{and hence the corresponding derivative) which is in the error estimate is constant,
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and h *h. k2 1. i there has been a recent change in stepsize, then local

ntk
error estimates will change from step to step until q steps without a stepsize
change have occurred. This is due to the factors gogl. . cq‘
w[!n. tn- P 'n-qJ to form qq(n); see squation (2.4). For this simple care,
after q steps without & change in the stepsize, the error estimate will have

1 which multiply

changed from its current value by a factor of (approximately)

b {2 )+ (ah )

¢ =
q hn(hn+hn_l) (hn+hn_l+ 4

{3.27)
hn-qfl’

In order to limit the frequency with which the stepsize is changed and to
reduce the work required to decide how much to change the stepsize, we suggest

giving the user the option of specifying the two parameters

oi(ni > 1) = the basic factor by which the stepsize is to be increased.
{3.28)

pd(pd < 1) = the banic factor by whick the stepsize is to be decreased.

The closer to one these parameters are selected, the more frequent changes in
the stepsize will be, and thus the more overhead that is required for computing
integration coefficients and difference tables. (See the next mection.) At the
mame time, increased flexibility in selecting the stepaize {within reason} enables
the solution to be computed to a given accuracy with fewer derivative evaluations.
A reasonable choice for these parameters in most applications is o, = 2,

oq * 1/2; but for problems with extremely expensive derivative evaluations,
values as close to one as [ 1.1 by = .9 may prove useful.

We propose the following strategy for selecting the stepsize.



-336-

). After P § eTrorT but before the second derivative

evaluation of the step, check to see if the estimated error is "too"
big. 1f 30, go back to the beginning of the current step and try again
with the stepsize reduced by a factor of min{1/2, ’d]'

2. At the completion of the step, estimate what the error would be on
the next step if the stepsize were held constant. If this estimated
error is "too" big, reduce the stepsize by a factor of o4 before

starting the next step.

The "toc' big in the test for redoing a step shouid be at least twice as large as the
‘tao'" big in the test for simply reducing the step. With such a policy a step will
require being repeated only rarely, thus saving the derivative evaluation that is
wasted in such cases and also some of the overhead associated with backing up.

If no reduction in the stepsize is required, then increase the stepaize by a
factor of p:. where k is the smallest integer for which {any estimated error)-{mex
hrq, I])'(n?)k” is "too" big. The "too" big used here shouid be no bigger than one
tenth the ''too' big used in the test for deciding if the stepsize should be reduced
at the end of the step unless there has been a fairly long and consistent history
of the error decreasing from one step to the next, in which case it pays to
gradually increase the tolerance used here until it is the same size as that used
for decreasing the stepsize. We have found it prudent to restrict k {in p?) (1
that n:‘ € max(2, n‘)ni. where h in:rtgltd on the ?reviouu step by n'g- The factors
p:‘ used in estimating the growth in the error should be stored during the

initialization procedure for all valuea of q which may be used.

4. Computational Datails

In presenting the slgorithms below, the following notation is used.
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n, number of differential equations.

d(e) order of the 2-th equation.

q(t) integration order used on the f-th equation.

j¢1] the (d{£)-j(£))~th derivative of y{£) is used in forming the

differences o{i, £), 1=0,1,...
y‘k’( £) current value of y‘” for the 2-th equation, k=0,1,...,d({2)-1.
?(”(l) value of y(k)(l) from the previous step.
£(2) current value of £f(t, ¥, ¥, ..., y(d'") for the £-th equation.
(i, 2) i-th modified divided difference for the f-th equation.
e(2) for stiff equations, the value of e for the £-th equation. (See
equations (3.12), (3.15), (3.16).)
h current value of the stepsize.
€(k}, a(k), 8¢k}, H{k}, s(k) current values of gk. . ak, Hk' and "
(See equation (2.4).)
gli, k), d(i, k) coefficients for integration and differentiation formulas. {4.1)
Same as &,k d" K {See equations (2. 16), (2.20), (3.4).
and {3.5).)
g‘(i.k). d‘(i. k) coefficients required for ervor estimation. (See

equations (3. 18), (3.20), (3.22), and (3.23).)

a(k) Same as LY in equation (3.27). -
max . .

9, s {qta)}= order integration formula

1 {a)(2)edin)} used.
q i fq2)) = maximum order differentiation formula

D (£:5e>0} used.
my max[d(£)-j(2)} = maxi ber of repeated integrations.
mpy max{j(2)] = maximum number of repeated differentiations.
ny, number of steps that h has been constant (not counting the

current step).

We have found that permitting different values for d. q, and j for the
differcnt equations in a system, and permitting any q to change {rom one step

to the next, provides a useful flexibility. Diffcrent values for d can give a more
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efficient integration if equations of different orders are oeing integrated; different
values for q can make for more efficient integrations and makes available
valuable information for diagnostic purposes; and different values for j can
significanily reduce the size of the system of nonlinear equations which must be
solved on every step if only a {ew equations in a Jarge system cause the stiflness.
When implemented as described here, this flexibility is obtained with little cost
over what is requirsd when the same values are used for each equation. Where
it is not obvisus, we indicate the simplifications that can be obtained when one or
another of d, q, or j is fixed. In order that the implementation be as efficient as
possible, we require d(4) $4. The extension to larger values of d is trivial, but
in practice larger values of d are rarely used. (Such equations can always be
broken up into lower order equations.)

The description of the algorithm for computing integration, differentiation,
and related coefficients, assumes that the following initial values have been

assigned as indicated. These coefficients are never changed by the algorithm.

a0} = B{0) = 5(0) = {1} = 1,
a1y = d*, = 1.

= (4.2}
d(i, k) =d (i,k} =0, i=1,2,...,k-1; k= 2,3, and 4.
gl0,k) = 1/k, g1, k) = 1/[k(k+1)), k = 1,2,3, and 4.
The following variables are used internal to the algorithm.
a9, mnx(ql. 9 2} = step number of the method.
ng number of steps for which o, 8, o, and § coefficients
determined by a3 conatant stepsize have been computed.
’ {4.3)

nl(nD) number of steps for which integration (differentiation)
coefficients determined by a constant stepsize have been
computed.

T 7 locations used for temporary storage when computing £.
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(4.3 cont'd.)

q; value of q, the last time integration coefficients were
computed. (Initially ql‘ x0.)
.
§ “qtmy
B(k} = }{kk+)), kel 2,.. ., mlx{q.ﬂnl-l] {used to initislize V(k)).
V(k) * ging=1,5) §f k % §ony; = gl W), for k = §oniel, ... G- 4.3

{used to initinlize W(k)).
wik) = gin, kj {a* C20 in the algorithm below) k=1,2,..., Ql-n).

For use in selecting the order, it is useful to carry along one more
difference than is required by the integration {or differentiation) formula. Since
the value of 8@ used in forming this last difference is not very critical, a simple
extrapolation formula is used to obtain the last B (see Cl13). 1n order to make
good decisions on when to increase the order we have found it necessary to

examine differences of at least 4 different orders. In order to have encugh

differences for the order selection then it is y to restrict q, to be 2 2.
With such a policy it is necessary to set §(0) equal to the starting stepsize when
starting an integration. (We also use » different method for aelecting the order
on the first {ew steps.) For best efficiency the place to go at statemnents C20
and C28 should be set initially (once per integration if my and mp, are constant)
based on the values of ™, and rnD. {in FORTRAN this is best done with the
assigned GO TO ) itisa d that if ml=0 then ql=0. if mD=°

then qD=0, and that neither 9y nor qp, can be increased by more than one on any
step.  We have left out the calculation of ;‘(n. k) for k = 2 at C21-C23 since we
never estimate errors in anything but ym-". Error estimates for y‘d'jl(j > 1)
should not be used for stepaise selection since the error estimates tend to be
much too small ‘when starting. (Due to the small stepsize required by the low

order.)
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Algorithm for Computing Coefficients

Cl.

ca.

c3.

C4.

Cs.

cé.

Cc7.

cs.

c9.

clo.

Cll.

clz.

€13,
Cl4.
Cl15,

[Set q,step number of method. ]
[ Test if stepaize did not change. ]

[Set new values for H and s. ]

[Set variables indicating a step
change.

[ Test if integration order did not
increase. 1

([ Compute new V's required by the

increase in ql'.]

[ Test if stepsize has been constant
long enough. ]

[Update n_ and set the index n. ]

( Compute precisely, those coefficients
which remain fixed if h is held
constant. ]

[ Test if step has been constant for q
steps. ]

[ Compute coefficients which will
change on next step, even if h is held
constant. ]

[ Test if more coefficients need be
computed. ]

{Set !(q.-l) and approximate l(q.).]

{ Test if no integ. cosff.are required. )
(Set indices for computing integ.

cosfficient. ]

o, « max{q. qp, 2).
ifn #0, goto C5.
H(0)+ h: H{k} & h/k,
a{kp-H(k-1}s(k-1}, k=1,2,..., ml-l;
s{~kys{1-k}/H(k), k=1,2,..., mp.

*-1;

ngtlinelingel; LN

vl'-h'. goto Cll.
. £
if q,‘ql. go to C7,

vi§p-Bif)): if n=2. go to CT7.
Viki-V{k)-al§) -k Vik+1),

= - A - -
k=§-1, §-2,....§-n+2.

if q %n,. go to Cl4.

n_+n tl.:nen_.
. . s
Bla -1 "1 en )+ L

u(n.-lk-lln.; 110-n.h.
ifnx q,. Boto Ccl3.

TUn-1); Unml) e T
B(n)ﬁl(n-l)'rl/-rz; vlo-1z+h;
ﬂ(n)'-h/?l: a(nt+l)*(ntl)a(n)ain).

nentl; §f n<q,, goto C1l1.

8la,- et )i8lg, w0 7lq, - 1)/0la, -2)
n>q, goto C2e.

L]
neng Renptls qp e q)i

§mapemy w&-n.



Clb.
clz.

Cls.

Ccl9.

c20.
c2l.
caz.
c23.
C24.
C25.
C26.

ca7.

C28.

c29.

Cc3o0.

C3l.

cia.

C33,

Ci4.
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[ Test if stepaize did not change. ]

T Initialize V{k) and W(k). ]

[ Update V{k) (and initialize W(k)). ]

{Inner loop for computing integration
coefficients. |

[Go store integration coefficients. ]
{cal = c25-4.]

{c22 = c25-3.1

{c23 s cas-2.1

[c24 s c25-1.]

{ Test if more integ. coeff. required. )
[ Test if no differentiation coeff.
required. ]

[ Set indices for computing difi. coelf. ]
[ Go compute and store diff. coeff. ]

[c29 = C33-4.]

fciom c3r?-3.]

{c31 = c33-2.

[c32 3 C33-1.1

[ Test if more diff. coeff. required. ]

[ End of computing coefficients. ]

if n>1, go to Cl8.
VikI-B(k), Wik}V(k),
k=1,2,...,ji go to C25.
Vik}V(k)-ain-1)V(k+1),

WikpVik}, k=1,2,...,j

go to C20.

3= 1 W(kleW(k)-a(n- IW{k+1},
k=1,2,...,j.

go to CZS-ml.

sin, -W(4).

g(n, 3-W(3).

gin, 2p-W{2).

gin, 1eW(); g%(n, 1)egln, D)-gin-1.1)
men+l; if “‘ql' go to (L9,

if nD> ap go to 34,

nan;nDO-nD-fl: if n=1, gu to C33.
go to CJS-mD

d#(n, 4)a(n-1)d(n-1, 3);
é(n, 4-d%(n, £}+d(n-1, 4).
a*(n, 3pain-l)din-1, 2);
d(n, 3)-d”(n, 3)+d(n-1, 3).
a%(n, 2lafn-1)d(n-1, 1);
d(n, 2}+¢%(n, 2)4d(n-1, 2).
a*(n, Iratn-1)

d(n, 1}+d*(n, 1)+d(n-1,1).
nntl; ifn $qp go to c28.

Exit.
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A striaghtforward imple of the difference formulation of the Adams

method involves accessing the difference tables in three different loops: to
form the predicted valuea, to form the differences from predicted derivative
values in order to obtain corrected values, and to form the difference tables at
the end of the step from the final corrected derivative values. Each of these
loops involves overhead associsted with {nitializing indices and with the locp
itself, and each must be passed through for each equation. An algorithm is
given below which requires accessing the difference tables in only one loop.
{The difference tables also must be accessed when correcting, estimating errors,
and selecting orders, but the entire difference table is not required for these
operations.) The capability of treating equations with different orders is
obtained using preassigned transfers (similar to what was done in the algorithm
for computing integration and differentiation formula coefficients) rather than

a Joop whi'ch would require additional overhead. The variable order Adams
program DVDQ [ 15] unes three loops for operations on the difference tables,
and loops on the order {for both predicting und correction) to permit equations
of different orders. Thus a similar program based on the approacb used here
should require significantly less overhead than is reported for DYDQ in [16])
an. [17). (Note, DVDQ uses a different method for changing stepsize, wee (1]
and it has no provision for stiff equations.})

The algorithm gi.\_ren below should be executed just after computing integration
coefficients, which in turn is the first thing done on a step. The algorithm — ®
includes among the jobs it does:

1. An updating of the difference table based on [yf‘d-j, - v&')(n)]

{rom the previous step.

2. The calculation of predicted valv2s far the differences on the

next step, ql}e)(nﬂl. to be used for job 1 on the next step.

3. The calculation of predicted values for the dependent variables.

These are two situations when job 1 will have been done previous to the

executicn of this algorithm. If a step is being repeated, it is casiest to return
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the difference tables to the point they would be in just after step 1 using the

formula

o tn) = [9{"(-:”) - Qt}(n*l)]lli(nﬂ). i=0,1,... (4.4)

™

ly from equation (2.6). If an interpolation to an off-step
(e),

which follows i
point is required at the end of a step, then it is best to convert the ¢ ''s to :i's
using equation (2.7) before doing the interpolation. We examine this point in

more detail in the next section. Thus we introduce

0 if no update has occurred (p contains o")‘l)
vs {4.5)
1 if there has been an update {p contains ¢'s)

The statement '1'51 + P64-1 {for example) means there is a "'go to” at Psl' and
this ""go to" is now to indicate a transfer to the line labeled with a P fullowed by
the integer 64-1. The "go to" at P51 will then contain in braces the possible
transfers and the conditions which determine the actual transfer to be used.

Additional notation used in the algorithm includes

I =d{2) - j(£) for the current value of £.

E(i) = sum used in the formula for predicting y“”)
e yLd—j) - ws]"(n) for the current equation if v "~ and =0 otherwise {4.0)
1= used to contain v:(n#l) {see equation 2. B) for the current equation
Ty = used to contain wg‘e)(nﬂ) {see equation 2. 6) for the current equation |

For g2} > 1, v:e) is zero as far as the computation of the other differences is
concerned (since T, is .nitially set to 0), but at P23, 9(q( L), £) is set equal to cz
for use in the order selection algorithm later. (It is useful to have a difference
with order one greater than is used in the corrector for purposes of crder

selection.) It is assumed that 9{q{£), £} is set equal to 0 before coming back to
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this algorithm on the next step. This means that when beginning this algorithm

{when v = 0)

®(q(2), 2) = 0 if the order was not changed on the last step.
4.7
elq(£)-1, #)= 0 if the order was increased on the last step.

1i; addition, when the order is increased, g{new q(£), £) should be set equal to
.-o(old qi2), £} before setting 9{oldq(L), £) to serc in order that the correct value
for g{g(2), £) be obtzined by the algorithm below. Note that condition (4.7} can be
used to detect if the order was increased prior to repeating a step. {Clearly,
the order can not be allowed to increase on a step that is rejected. One must
also replace €(k) with §{k+1)-h, k= nps "h”' ..., before executing the algorithm
for obtaining new coefficients, when a step it being repeated.)

The case q{2)=1 is treated the same as q(£) = 2 as far as computing other

differences is concerned, but only 9{0, £) is included in the P ion of the

sums. As indicated earlier, g(2) = 1 is treated as a special case in order to
have an additional difference available to assist in order selection. Obvious
simplifications can be made if this extra difference is not required. As given,
the slgorithm uses a {irst order predictor for y:‘d-” when q(2) = 1, j($>0,
contrary to what is given iw equation (3.6). (Also note that at P58 ?("( L)

+9(1,2) =¢{0,4). The former is used b some impl i will want

to carry y and ? to more precision than 9.) The corrector formulas (3.7) and
{3.11) should have Qg" replaced by 0?, - 9(1-, when q(f) = 1, if q(£) = 1 is being
treaicd as 2 special case.

Finally, note that krnin should be set to 0 initially. (This can be done with

the DATA initialization statement in FORTRAN.)

Algorithm for Predicting and Updating Differences

Pl. [Test if differences not updated yet, 1 if v=0, go to P3.
P2. [Set 7l=0. and tranafers at P26 and P50. ] "e o; TSD *TZS*P”: go to
P4.



Pa.
P4,
PS.
P6.
P7.
P8.

P9.

Pl0.
Pll.
Pi2.
P13.
Pl4.
PI5.
P16,

Pl17.
P18,
P19.
P20.
P2l.
P22,
P23,
P24,
P25.

P26.

P27.
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[Set transfers at P26 and P50. )
[ Initialise the i .

[ Set max. no. of repeated integrations. )
[ Ter: if equation is stiff. ]

[Set v, if v=0.]

[ Set transfers at P30, P33, T3, P39,
P44, P51, and P59, ]

[ Go store 0 in diff. formula sums. 1

[ Go store 0 in integ. formula sums. ]

[ Set R AL 0.1

[ Set tranafers at P30, P33, P36, P39, and
P51. 1

{Go store 0 in integ. formula sumas. ]

[Set index for use in loop below. ]
[Store 5, (eq. {2.9)} Into @lk+1, £).)

[ Test if ususl case of g{2)> 1. )

[ Do special calculations when q{2)=1,]

[Initialize 15, anC test if only hackward
differences are required. ]
[ Set stopping index for mod. div. diffs.

and test if 7, needed. )

Tgo*Tpe*P37.

2«1,

Ted(2)-j(2).

if j(£) =0, go to P15.
Hv=0, T eelL)

Tag* T3¢ Ty3+Tyy-PH4-ilL):
Ty4*P49-1; T51+P58-j(£):
Tgq- Pé4-1.

go to Pl4-j(2).

E(~4) ¢ 0.

E(-3)+ 0.

E(-2)« 0.

E(-1}+ O.

go to P22-1.

ifva0, 7, = {0 -9(0, £).
T390-T36*T33'T30'P49—I;
T51+Pé4-1.

go to P22-1.

Z{4)* 0.

E(3) « 0.

£(2) « 0.

E(1) + 0.

k + q(2)-1.

wik+1, £)e[olkel, 27, J8(ke).

if k> 0, goto P26.

T0(1, £hi(2, 2[5 (% )0 T
8(2); go to P38.

T30 ifk€n,, goto {P37 it
v=0; P35 if w10},

k .nﬁnhﬂ; if y=0, go tv P31,

<A
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P2B. [Set transfer st P50.) TgorP29.
P29. [Compute 9:. wo, and k>n, . ] ‘rzow(k. 2)8(k).
P30. [ Go form sums. ) go to (P44-j(2) if j(2} > O

P49-1 otherwise).

P31. [Set transfer at P50.7 Tgo-P32.
P32. [Compute @y, v=0, and k>n,. ] 7 elotke £+ 7, B(K).
P33. [Go form sums. go to [P44-j(1) if j(0) > O,

P49-1 otherwisc}.

P34. [Set transfer at P50.) TSO-PBS.
P35. [ Compute w:, vf0, h constant. ? 7 0wlk, 1).
P36. [Go form sums. ] go to [P44-j(1) if j{£) > 0;

P49-1 otherwisc ).
P37. [Set transfer at P50.) Tgo+P38.
P38. [ Compute w:, v=0, h constant {(usual case?.1 7 -0k, Ly,
P39. [Go form sums.? go to [P44-j(1) if j(2) > O:

P49-] otherwise].

P40. [ Form sums for differentiation t(-4)v2(-4)+d|k.4)12.
P41, formulas.) I(-3)~I(-3)+d(k, 3)7,.
P42, I(-2)e L(-2)4d({k, Z)"Z.
P43, I(-l)*[(-l)!d(ldl)'rz.
P44, [Go form sums for integrations {if any). ] go 1o {P49-1).
P45. [Form sums for integration L(4) - £ah gk, 4) v,
P46. formulas. } I(3)eL(3) 1 glk, 3)1'2.
P47. E(2)» £(2) + g(k, Z)‘l’z.
Pas, It e (1) + gik, l)"z.
P49. [ Compute v{:’, see cquation (2. 6). 1 Tye T4 Ty @k, ey,
P50. [ Test for ¢nd of forming differences or ke k-};ifk2 Kmin® 80 t©
end of forming mod. div, differences. ) {P29 if vi0, kminiO;

P32 i w20, kmin“’" P35 if W0

Kk in=0i P38 if =0, kmin=°]'
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P5). [Test if done forming differences and if I:mmﬂl. 8o to [P64-I if
sums. ? 5(£)=0; P58-j(2) otherwise]}.

Pu2. [Sct up to compute differences based kmin-o; if v=0, go to P27,

P53. on constant stepsize. ] goto P4,

P54. [ Compute y's using differentiation formulas.] y(“‘)(l) « s(-4)E(-4).

Pss. ¥ e a-38-3).

Psé. Y20 - s -280-2).

Ps7. Y e e-nzeeny.

PS8, Yy« 9% + v,

go to {Pé4-1}.
P60, [Compute y's using integrition formulas. J yu'”(l) - ?(l‘l)“) +
* H N 4
He2)t #1720 +
ST e + nEwn Tl
Pél. YNy 3y o

w2 +
L F Y + nee3l)

Pé2. A2y o g2y
a7 e + nzea).
Po3. Y0y « 897Dy 4 mey,

P64. [Test if more equations to be processed. 1 2+ f+l;if £ £ n.. &0 to P5,
P65, [Set » to indicate that  is nnt updated. ) ve 0.

P66. [ End of predicting and updating diff. ] Exit.

5. Interpolation to Oif-Step Points

A significant advantage of multistep methods over one-step methods is that
a multistep method has sufficient information stored to enable one to get the
solution at any point passed during the integration: with the same accuracy as
is obtained at the end of the individusl steps, without interfering with the

integration process in any way, and without requiring any additional derivative
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svaluations.
Ordinarily one is interpolating to a point t which satisfics the1 SUS t where
t, is the value of t at the end of the current step. Sometimes it is necessary to

extrapolate the solution (tn <t g ”) because derivatives are impossible to

‘l'l
compute att =1 ... Finally, if the solution is being saved for later use, it is

n-q St

useful to know that the algorithm gives reasonable accuracy for t e’
where q = min{q(2)]. It is assumed that values of y“" i{rom the current step
have been stored in 9(” {see equation 4. 1} and that the interpolated values are
to be stored in y‘k). and in {,

In order that full accuracy be obtained, the ¢(i=)(n)'| should be replaced by
wi(n)'i before doing the interpolation. This can be done using equation (2.7)
{with n+] replaced by n); it should be done only if v=0, see equation {4.5); and 1f
it is done, v should be set equal 1.

Let

(5.1)

then hl plays the same role a» hn” in the predictor formulas (3.4)-(3.6), if the
interpolation is looked at as junt taking a new step. However the recursions
(2. 16) and (2. 20) (with hnﬂ replaced by hl' can not be used since arbitrarily
large values of o) occur as hl - -hn. These recursions wouldn't give the desired
coefficients anyway since f[rom equations (2.8), (3.4)=(3.6) and the fact that we
are now using vi(n), it is clear that we should introduce
o0k 8",

(5.2}

(1) (1)
R LY
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for use in the interpolation, where .{“ is defined as in equation (2. 4) with hnﬂ

replaced by h,. Then equations (3.4)-(3.6) can be used for the interpolation if H

1
and s are computed using hl' ': is replaced by LY and d are replaced by '(l)

and di¥, and it is understood that d; | implicitly multiplied 9; in equation (3. 6),
.
(We recommend using q=2 in the case that q(2) = 1.)

To avoid potential overflow in computing l_ksk!/h:‘, we suggest defining
 _ ko oll)
= sermpal, {5.3)

and using equation (3.5) with L% removed, and di K replaced by ail)k (1¢ in not
' .

a bad idea to simply compute l_kdi' k and 8 K instead of di. x and &,k when

computing the coefficients for continuing an integration. )

With
", = hy/gn) (5.4)

v,={ P i=0 {5.5)
ol Ihgre, y(m))/gm) >0

there follows immediately from equations (2. 16), (2.20), and (5.2)-(5.5}

0 i<k
1 i=0, k=0
1 (5.6)
an . Al . .
, k v .d i=1,2,...,9-1;
i 21,0 ik e

1) -1-
G‘H'k isk ktl,...,q°1;

k=1,2,...

k)
e ¥ Y
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(1 V. {1} -1. a- .
vi-!‘i-l.k nt-l‘i-l.kﬂ izq-1,9-2,...,1; ksm-1,...,1

{n . (5.7

'k

1/k k=m-=1,...,1

Of course, equation (5.7) is valid for any value of m, but we derive below a more
cfficient algorithm for computing g:"'n, where m is the maximum value of d-j
.
{d and j defined as in equation (3.3)). If j=0, then a“I’o need not be computed,
.

and f (=y(d)) can be computed using the formula

f=qgtvgley v lopt vy 0,11 -] (5.8}

The recursion to compute g{l)m is obtained starting from the coefficients of
,
the interpolating polynomial. Define

!:;(n){o(n)!l(n)'“!i_k_l(n)w[tn.....t sbgeeent, 1 izk+l

n’ n- n-itk

@, e (5.9)

;;wtcn,....:nl isk

where the \n'l in the divided differences are repeated k+) times. Clearly
LN o(n) = Qi(n) as defined in equation {2.4), and L9 gives scaled coefficients of
’ .

the interpolating polynomial, so that

9-1 i
Pg.y,nft = ‘:‘:o o, ginll(t-¢ )/h ] (5.10)

From equations (2.2) and {5.9) it is easy to obtain

LI LU RO D RTC O R VRYINL A 2 P PRPPE TR o T OIS B t A 1))
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where Qq'k(n) =0,

(If one wants to integrate/interpolate/differentiate P (t) for many

q-b,n
different valuzs of t, then it is monst efficient to compute the % from the < o's.
and then to compute the desired result using equation (5.10). With v.‘ i(n)
,
= (h;Ii!)Y,(.:)n #=0,),...,q+d-2, one gets & method like ours in the Nordsieck
formulation if one writes
pld-i)

9y, 11 =0 N 1)+ (e 9"y 3'1-'1E(d"_j:. s -olt ) s

where c(ik:. is defined as in section 2. Recursions for w(e)(nol) follow from consid-
.
ering w[tn.tn, .. .,:nJ. wlt . .‘.tn.thJ. Wittt ot e,
whe ot et owle ey ‘Ml]‘ the recursions obtained are identical to

the computationa} shortcut due to Gear, [18). Also see Thomas, [ 192, In order
for this Nordsieck type formulation to give a method equivalent to wha{ we have
described, some care is required when changing the order, see [14]. Il many
interpolations are to be performed during the integration, this Nordsicvk
formulation may be preferred to the use of i:.odified divided differences if one is
not interested in using different integration orders for different equations, and
not tco many equations are being integrated.)

The m-th integral of P is given by
NS -‘""tn)w Ll (5.13)
n n i=0
where it is clear from equation (5. 10) that

al = W ) (i) = W eb/giem) (o) (5. 14)

and from equations (5.11) and {5.13)
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h
n {m) 0 ix .
m.i,kﬂ k=0; i<}, 2,...,q9=1
a{mt - {5.15)

h
—n__(m} | _(m) wici: izae e _
gi-k-l(")."k”' 3-ik k=i-j; i=q-1l,...,j+1; j=l,....g-2
With the definition
- -k
50 = 0w 1y te7Ral (5.16)

we have {from eguations {5.2), (5.4}, (5. 14)-(5.16)

m-1)! e ds -
Trm)y (o) k=i; i=0,1,...,9-1

alm) _J - alm) _a(m) cici. izae . .
&7 54 Tiek- i kel 0ok k=ie3; i=q-1,...,j415 3=1,...,9-2 {5.17)
{m}
LR Kk=0; i=1,2,...,q-1
and

20,1,...,9-1 (5.18)

o = 80

(Note that a(i:'r;)

need be computed at most one time if m is not changed.
Calculations can be arranged so thatd, ., g. ., anda. . {(k < i) all occupy the
ik %,k ik

same vector in storage.)
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6. Concerning Some of the Messy Details

If one computes the difference table of a function with sufficient precision,
for sufficiently small h, he will most likely find that for a given order q,
differences of order q+k tend to decrease in magnitude as k takes the values
0,1,... . Since in practice we almost always select the order q in such a way
that the differences behave in the opposite way, it is reasomable to suspect that

any theory based on results for h ~ 0 and ignoring the effect of round-off error

will be of limited value. We believe there is greater danger in attempting to
apply rigorous mathematics to problems which do not satisfy the underlying
assumptions, than there is_in careful inductive reasoning {rom results on a
selection of problems which individually are simple enough to understand, and
collectively cover the types of difficulties found in real problems. Thus we have

taken primarily an empirical approach. Most of our effort has been spent in
poring over difference tables generated in the solution of a variety of problems
while using a variety of algorithms for selecting the integration order. Most of
what follows is either trivial or mere opinion, yet much of it is important in
determining the effectiveness of a variable order algorithm for solving differ~
ential equations. The specific algorithms presented give an idea of what we have

done, they are not i ded as r dations. For results {rom a variable

order Adams method which makes use of some of the ideas below, see [16™:

for a comparison with other methods, see [17].

6.1 General Design

The interface between algorithms and users, despite its importance in

deter ing the effecti ss of an algorithm, has been given minimal attention
in the numerical analysis literature. Because of the problems inherent in the
addition of features not considered in the original design (probably by a person
unfamiliar with the code) we believe it is a good idea to design for maximum
flexibility if an algorithm is muant for general purposc use. Cowaples appli-

cations will require the flexibility, and it is a relatively simple muatter 1o insert
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a flexible program into a package to be used by the unsophisticated user. Since
code of wide generality is liable to contain much that is superfluous 10 some
spplications, we think it is alsc a good idea to make it easy for a user to remove
that code he is not interested in using. A procedure for handling code which
consiste of many versio.s is described in [20).

We have found it difficult to anticipate user needs. Users can‘t know what
they should have available when they don't know what the possibilities are, and
thus they are not as much help in this arca as one might think. The integrator
in [15] is reasonably flexible and all of its features have been heavily used. But
it proved to be insufficiently flexible for some users, leading to the design {217,
Thia in turn has had to be modified and extended to meet user needs that have
surfaced since 1t was written. The reaults of a survey on the importance of
various factors in a program for solving differential equations can be found in

[221.

6.2 Some General Comments on Differences

In the case of the Adams method we have made it a practice to correct y,
estimate errors, and select the integration order in the same block of code, thus
making multiple use of the differences formed {rom predicted derivative values.
Especially at low integration orders, we prefer such differences to those formed
from corrected derivative values, since the formuer tend to converge less rapidly,
giving a more vonservative algorithm. For q $2 (d=], j=0) it is possible for the
differcnce table formed from corrected derivative values 1o converge nicely,
while at the same time the numerical solution is diverging rapidly from an
acceptable solution. Such problems do not occur when using predicted derivative
values. Let

(d-1), _ le)
“!nH'PnH""'PnH ) %o (nt1) k

"
£

6.2.1)
w(e'(ml)nv k=g-1, q-2,...
k q '
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snd let ’qﬂ be computed as pq - [ What is stored in the q-th difference location
by the algorithm for predicting; see P23. ), where q=max{2, integration order of
the pudictor]. Ordinarily, only the differences Qq_z. pq_|. °q' and wqﬂ need
be computed since they almost always (sec “zlow) provide sufficient information
for selecting the order.

We have found the linear equation y'=Gy (G a constant matrix} helpful in
organizing some of our thoughts. For this case, if h is constant and G has
distinct eigenvalues, Yn=£°ir?‘ Some of the r. are extraneous to approximating
the desired solution (Seé [23] for some background on this.), and for the cases
d=1, j=0, g@>3; d=1, j=1, > 1 it can be shown that the largest extraneous r, has a
negative real part. Since the k-th backward difference of " is given by
rn[(r-l)/rf'k. di‘ferences of an extraneous root tend to increase. By selecting
the ozder at abour that point where the differences start to increase, one is
stopping at about that order where the influence of an extraneous root is starting
to dominate the differences, which in turn guarantees a stable metiod.

A given difference may be amall because the error is small, or because it
happens to be passing through zero., or just as a fluke. Any decision made on the
basis of one difference being small has a good chance of giving the wrong result.
{In the sense for exampie that the order might be increased when it should not be;
such wrong results do not necessarily do significant harm to the solution.) On the
other hand, two small differences in succession will only rarely be misleading.

In judging the convergence of the differences, their signs are also important.

For given magnitudes, alternating signs indicate the most rapid convcrgence.

6.3 Starting the Integration

Variable order methods do not require any special logic to start an integration,
but still there arc advantages to treating the start in a special way. Efficiency
in the starting process can be critical for problems with frequent discontinuities.
Because of their ability to find the proper stepsite quickly, we believe that

variable order methods will frequently prove superior to good one-step methods
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on very short integrations. The Adams method starting procedure outlined
below does not require much additional code, deapite its apparent complexity.
Initially, of course q ¥ 1.

Let p denote the predicted values at tgth, and c,, ¢,. ¢4 successive corrected
values. After p‘d’ is computed, compute <y and the estimated error on the first
step. I the estimated error is too large {in the sense that such an error would
ordinarily cause the step to be rapeated), a new startiry .tepsize is selected on
the assumpticn that the estimated error is proportional to the square of the
stepsize. The resulting stepsize will usually give an acceptable error, and thus
an jnitial value for the stepsize chat is too large usually costs only onc extra
derivative evaluation. It is rare for more than two evaluations to be requirced.
In estima ‘iug the errur on the firet step, we multiply our usual estimate by 1/4
aince esti.nated errors would otherwise have a tendency to be much too large.

After obtaining a watisfactory €)» compute c(ld’ and € Estimate th* error
in c"zd-” by lh(p(d)-c“d’) and compute l)(l) * lh[p“)(l)- c‘ld)( [1%1is p‘d-l’(l)

- c(‘d-”(l)]l. If the estimated error is too Jarge {rarely happens) reduce the
stepsize as in the preceding paragraph and start over. Otherwise check if

8 < 1/16 for all equations, and if it is proceed to the next paragraph. If

-l(n > 1/16 for some 1, then compute cgd’ and cy. Compute a new error and
lz(L) using formulas like those above with p replaced by €z I the error is too
large, start over; if not and min[ll(l), uz(l)] > 1/16 for some £ then end the
the starting phase. I none of these, then continue to the end of the first step
immediately below.

Set Y= the {inal corrected value, and increase the order to 2. From this
Point until the end of the starting phase, no derivatives are computed after
computing corrected values. {A PEC method is used.) This is justified since
the second derivative evaluation is required primarily to improve the stability
properties of the method. For low orders and small stepsizes, instability is
usually not a problem. At the end of the second step increase the order te 3.

At this end of the third step leave the order at 3, making oq” available ( and

thus the usud]l order selection process poasible) for the first 2ime on the fourth
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step.  If at any time the stepsize must be reduced, or the order must be reduced
and the estimated error is too large to permit an increase in the stepsize, then
end the starting phasc. One can gain a little in the starting process by making

it easier for the order to increase than would be prudent after getting started.

6.4 Determining if Too Much Precision Has Been Reguested
We believe that some test {or unreasonable accuracy requests should be

considercd an intrinsic part of @ ‘y,ggne,r.l purpose integration prografm. Many

users have come to us becay, integrator gave them a diagnostic to the

effect that it could not get the.accuracy they desired. Theac users appreciated
being warned of a problem they would aot have been aware of otherwise. Users
of T157 rarely question us about this type of diagnostic now. We presume they
have lcarned to select reasonable error tolerances, or to trusi 1%z diagnostic
when they get it. Since 3 missed diagnostic of this type will usually only result
in a less efficient integration, and since unjustified diagnostics make for bad
relations with users, we recommend that one be conservative in the test whirh
results in the diagnostic.

Clearly the absolute accuracy that can be obtained depends on the number
of significant digits to which { is computed, and on the size of . Thus in solving
y'* = -y, y(0) = 0, y'(0) = ¢, an accuracy request that is impossible to meet for
c =1, may be easily met for ¢ = xu'zo.

The test usad in [ 15] assumes that rod-off errore in { get magnified by
Zk in L {This is the magnification one gets if errors are of equal magnitude
and alternate in sign from one step to the next. This assumption appears to

work best, even though smaller magnification factors would appear more

rcasonable.} Thus, with

-d
Ry = Llogl + log, | Mr2%1s0 1 {6.4.1)
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where d‘ is the number of significant digits in 1, R, <1 is an indication that
round-off errors are limiting the accuracy. To s first approximation, the test

in [15] gives a diagnostic if the estimated error is too large and Rl <1, where

R‘ is computed on the as P that d‘ is appr ly the ber of signi-
ficant digits in the computer's number system. We believe that it is too much
of an imposition on the user to ask him to supply d‘; but even {f it weren't, it is

hard to justify trusting him for d‘ when he cannot be trusted to supply a reasonable

error toierance. If round-off error is the primary P of the imated
error, then the estimated error for a larger stepsize tends to be too large. Thus

in [15) the estimated error at twice the stepsize in reduced whenever R, < 1.

1
We have been experimenting recently with a test which is impossible to
justify, and for which examples could be constructed which csuse it to give
unjustified diagnostics. It makes no assumptions about the precision to which {
is computed, but rather makes some implicit assumptions about the regularity
with which difference tables converge. An integrator using this test has been
used on a few applications, and has resulted in three diagnastics. 1n two cases
{once when the user thought everything was done in double precision) some
calculations done in single precision, should have been done in double precision,
and in the other case results were being interpolated from a table with
insufficient accuracy. The integrotor [ 35) would not detect these problems.
This new test should not be trusted unless the order selection algorithm does a
very good job of selecting the order, it should not be applied in the starting plase
of an integration, and q € 2 should be treated as a special case.

Let

Rp=llwgl + lo_, Qi 1¢{} + 1591 (6.4.2)

where
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. | 3Isqgs4

rlq) = 6.4.3)

{02313 g

and let ny be the number of steps for which the equation with the largest ratio of

d error to req d error has had an Rz < l. If the estimated error is

too large, and np 24, then a diagnostic is ind d. The 1 d error with

the stepsize increased is reduced by the factor (See equations (3.28} and (4. 1)

for notation.)
mu{Rz.n;k]. where k=m-x{nh.nR]-3] (6.4.4)

whenever Rz < 1. When Rz < 1, the integration order is increased if

I9g4y 1 < minlleg ([ legl). {6.4.5)

6.5 Selection of Integration Order
The most important point to be made here is that a reasonably good job of
selecting the order can he done with very little effort. For example, the al-

gorithm used in [15]) for g > 2 is given by the following.

Ql. ne q+2

Qz2. i I:pq_z| <1, |v“‘|, go to Q5
Q3. l!l(pq_l|<'ll quﬂ" go to Q8
Q4. increase g by one, and go to Q8
Q5. T+

Q6. i qu-2|>‘rl |qq|or |q)q_]|>'r] |oq”|, go to QB



Q7. decrease 3 by 1

Qs. «nd of order selection

Note that the above algorithm uses 4 different differences and requires either 2
or ) comparisons. If one dies not want the order to oscillate unduly, then we
believe that at least 4 differences must be examined.

In order to have a check for discontinuities it is sometimes necessary to

check more than 4 differences. We now do this as follows. 1f
log.gl s l9g.y) 5 leg] = lwg,ls and {6.5. 1)

81509 g il € lag, ] - ol {6.5.2)

then q it reduced by 1; LI is replaced by L for k = g=2, g+~1; a new wq_z is
computed; and the test above passed through again. The conditions for reducing
q by more than | must be very stringent. For example, on a simp’« 2-body

with eccentricity . 6, using just the condition {6.5. 1) for this test, we have seen
the order reduced by about 6 over several steps, when a reduction of at most one
was appropriate. If q starts out 2 5, is reduced to ) and the differences still

converge slowly, then a dis inuity is indi d and the integration restarted.

Otherwlse the final q is treated just as if it werg the original as far as order
selection is concerned.

The more factors that are taken into conslderstion, the better job one can
do in selecting the order. For example, it helps to bias the test towards a low
order when errors are decreasing, and vice versa when errors are increasing.
{The¢ former may increase the current error estlmate, while decreasing the
estimate of what the error would be with the stepsize increased.) Since the
stlection of intcgration order influences both the integration efficiency and tests

such #% discussed in 6.4 and 6.8, it is not easy 1o decide at what point additional
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effort does not justify the return. We think it is better to use a simple acheme
such as the one in [15) on every step, rather than some more complicated
schame less frequently, and that at a minimum, some test for decreasing the
order be made on svary step.

The algorithm we are currently using works reasonably well, but is
probably unduly complicated. It uses as a measure of the convergence of the

difference table at Qq (with appropriate safeguards to prevent overflow):

I’q*]|/|w .]‘Dql qu”vq-, 20
e {6.5.3)

q
!Qq¢||llvq-|| “qul'q.' <0.

To a first appronimation, the order is increased if

.75 L h is closer to being decreased

2
< .
Oqflq-‘ -2 and .q<.q-l and .'I<“‘rl
oy il b is closer to being increased,
(6.5.3)
and it is decrcased if
leg 1> logl> log ! (.57

Note that these tests differ from those used in [15] in that signs of the differ-

encen influence th= tests, the order need not be increased when Oq and &, _, are

q-

both very small, Qq_z is not used in the test for decreasing the order, and the

tests to not have an explicit dependence on q.
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-
6.6 Error Eatimation and the Selection of Stepsize
Many of our ideas in this area are given at the end of section 3. We

currently estimate the error in y‘d'" for the Adams method by

Ingg, I legl + log, 1270 - ) 6.6.1)

where ¥ = mln[’q. .q- e 75), see equation (6.5.3). This reduces to equation
(3.22) if L and T are replaced by 0. The inclrsion of lwqﬂ' is for reasons
discusscd ja 6.2, and the factor involving ¥ is included because otherwise error
estimates tend to be a little low when the differences decrease slowly. We

currently use

. q EZ
lhlq'lh m-x(uq.l][ |wq_1|+|wq|; |qqﬂ|]/(1 ') (6.6.2)

for the estimated error with the stepsize increased by the factor p. The role
of T in (6.6.2) is quite important since a slowly convergent difference table is
liable to require a significantly lower order when the stepsize is increased, thus
giving a larger error estimate.

As mentioned at the end of section 3, we think it is a good idea to vary the
parameter one uses for making decisions on increasing the stepsize as a
function of the increase or decrease of the error estimates. Thre way we do this
is outlined below. Numbers in parentheses give the actual valucs of the

parameters as currently implemented.

E iargest value in any equation of (estimated error)/(requcsted
error).

IR(. B UHE> R the step is repesated with h reduc.>d by the factor
min{1/2, pd].
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average value of E. Computed as (I:OI:A)IZ at the end of
every step, with an initisl value of Sp-

value of I:A Jjust before current I:A was computed,

E astimated valus for E on the next step. E_*E min{2, I:IeA].
ll(. 1) if £.> € the stepsize is reduced by the factor o4

!1" 2) upper bovnd on E;, see below.

El(. 01) lower pound on El. see below.

step io increased if in so doing the estimated E at the new
stepsize is less than El. With an initial value of L it in

computed using

A
min(E, .EIEA/!-:A) {ESE,

E
1
[EpE,)/2 {E>E,

Note that except for starting the integration, the stepsize is never reduced by
more than min{1/2, nd) no matter how large the error. 1f the step has to be
vrepeated more than once we restart the integration. If the stepsize has been
aecrvased, then increased, and is about to be decreased again, we reduce h by

the factor (hud)/z; this tends to reduce oscillations in the stepsize.

6.7 Treating q{£) = ! As a Special Case When Using the Adams Method
Frequently when the order selection algorit .m picks an order of 1, there is
a stability problem. In this case the stability of the method can be improved by

introducing a parameter @ into the corrector formula. Thus

(d-k) _ _(d-k)
Ynei = Ppei OO0 %) 1/aswsl, (6.7. 1)
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When solving y’ = Ay with @ = |, the above method is absolutely stable for
s = hie[-2,00, The largest interval of absolute stability is obtained for w = 1/4,
which gives a method sbsolutely stable for e¢[-8,0]. We have, with mixed
success, attempted to approximate s, and for s 5 -2 set w = max{1/4, -Z(lu)/sz).
This choice for @ zeros the root of the characteristic equation if -4-2\/2—‘ s6-2,
assuming the equation is linear, and that s is approximated correctly.

Since ||;. l' is 80 much smaller than I;;' ) | (1712 vs. 1/2 for h constant),
there is a tendency to overestimate the error when using (6.6.1) and (6.6.2).
We have been substituting 1/8 for Y:,l in these expressions. We also increase
the error estimates a little if o] is large or Tislarge. (A larger increase is
wsed far (6. 6,24 than for {6.6.1).) The increase in the estimate (6. 6. 1} is
prudent; the increase in (6. 6.2) quite important if one has a mildly stiff equation,
the order has dropped to ont, and one wants to avoid oscillations in the stepsize

and minor irregularities in the solution.

6.8 Testing for Stiffness

It is frequently the case that only sorme of the differentia) equations in a
large system are the cpuse of stiffness. Since the solution of a large stiff
system requires considerable storage and computation for the iteration process
and since users frequently do not know which, if any, of their equations are stiff,
it is desirable to have a test for stiffness. With equations separated into those
which are stiff and those which arc not, fewer partial derivatives and smaller
matrices are required. Since suggesting automatic classification of equations in
[12], we have tried off and on without success to find a stiffness test which does
not require computing partial derivatives. A test to tell when an equation being
integrated as a otiff equation, could be integrated with the Adams method would
also be useful, but should not be as difficult since in this case the Jacolian

matrix is available.
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Fometimaes it {s possible to aay in ad which th are stilf and

which are not, in which case no tests are required. One problem at JPL was

integ. d with 9 equati treated as stilf and 5 as non-stiff. In this case, in
addition to the savings in the iterations there was the bonus that partials
connected with the sti’] equations were sasy to compute, while the other
partials were extremely complicated.

It {s worth noting that tests based on ratios such as [f{y)-f{p)1/{y-p.
where y and p ar2 corrected and predicted values at the same time point, are

not likely to be successful. For y' = Gy as in 6.2,

Afleme)
y(t} ~ !‘2:" n® {t near tn)

and with the onset of stiffness, the Sn associsted with A;'s which have large
negative real parts become very small. Then if the method is stable, which it
will tend to be because of the way the integration order is selected, there is not
enough of the solution in the direction of the eigenvectors associated with the
large negative xi'- to give useful ratios.

When integrating an equation which is atiff with an Adams method it is best
if the stepsize is such that the method is absolutely stable, but not relatively
stable. The order tends to come down gradually because of the relative insta-
bility, but there is no growth in the error since the method is absolutely stable.
One problem with halving and doubling the stepsize with the Adams method is that
as a result of doubling the stepsize it is possible to move from inside the region
of relative stability to outside the region of absolute stability. When this cccurs,
the order is reduced, there is rapid error growth, and the stepsize must be
halved. The algorithm is then relatively stable, the order is increased, the

error estimates decrease and the cycle is repeated.

q

We think that itoring R, of ion (6. 4. 2) (with suitable (?)
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adjustments when q or h is changed) together with the flexibility in changing
stepsize availatle through the use of modified divided differences, may provide
what is needed to detect stiffness. There ie of course also l.-lne possibility that
we are attempting to extract information from difference tables that isn’t there

to begin with,
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SUMMARY OF TEST RESULTS WITH VARIANTS
OF A VARIABLE ORDER ADAMS METHOD

Fred T. Krogh
Jet Propulsion Laboratory
Pasadena, California
91103

A variable order Adams method can be implemented and/or used in many differ-
ent ways. In the process of developing a variable order Adams cade which uses
modified divided differences for changing stepsize, see [1] or [2], we have had
occasion to explore the effect of four parameters on the performance of the pro-
gram. The effect of these paramet:rs was studied for test problems 8 and 9 of
[3). Both are simple two-body problems, one with circular moticn, and the other
traces out an ellipse with eccentricity . 6. For each of these problems we nave
examined all possible combinations of two distinct possibilities for e¢ach of the
parameters at requested error tolerancesof 10, 1, .1, ..., lD'ZO(leéxZZ
cases). The choices examined are given below.

1. Use a PECE or a PEC Adams method, always with a corrector that
has order one greater than the predictor. (I is easy to show for such methods
that a PEC method is equivalent to a PE method, where the P is the same order
as the C in the PEC method.)

11. Use either {2, 1/2) or {9/8, 7/8) as norninal factors for changing the
stepsize. The program allows other values, but these values are probably
extreme cases. The program does not restrict itself to the nominal factors
when changing the stepsize, but factors closer to one do tend to causc more
{ftequent changes in stepsizce, more integration overhead, and fewer function
evaluations.

L. Solve the 2nd order equations directly, or solve them by breaking them
up into an equivalent system of first order equations.

1v. Use the same integration orders for all equations or select the inte-
gration orders indupendently for each equation.

* This paper presents the results of one phase of research carried out at
the Jot Propulsic.a Laboratory, California Institute of Tcchnolopy, under
Contract NAS7-100, sponsored by the National Acronautics and Space
Administration.
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The results given for DVDQ on these problems in [3] were obtained using a PECE
method, {2, 1/2) as the oniy factors for changing the stepsise, solving the 2nd
order equations directly, and selecting integration orders separately for different
equations. In its current state, and with options za close to DVDQ as possible,
the integrator used for the comparisons here was of approximately the same ef-
ficiency for the case of circular motion (although the global error was a more reg-
ulzr function of the local error tolerance as a result of not restricting changes in
the stepsize to the nominal factors), and approximately 10-20% more efficient in
the case of elliptic motion (which we attribute primarily to the different procedure
for changing stepsize). Performance of the new integrator would have been some-
what better if we had allowed it as large a maximum integration order as DVDG.
We plan to investigate this (and some other things) in more detail at a later time.

We summarizec below the results of our tests. Generalizations to other problems
are risky of course.

1. There was no appreciable difference between using the same and using dif-
{erent Integration orders. We believe the primary advantage of using different
integrati-n orders comes when integrating equations with different character-
istics. And we have encountered problems where one is better off requiring
the integration orders to be thc same on certain equations.

2, Integrating the second order equations lirectly is always best (of course,
problems are known for which this is not true, see ¢.g. [47): in the case of
circular motion better by a factor of over two, except for the PECE methods
at low accuracy where the factor is about.).5. In the case of the elliptic
motion results are somewhat similar, except that for the PECE methods the
dircct integration offers only a small advantage. We attribute the results
to the better stability characteristics of the direct integration of second order
cquations on these problems. The cases where the differences are not great
are thosc where discretization error is the primary factor limiting the stepsize.

3. 1t is not as well known asg it should be that the primary advantage of doing
two derivative evaluations per step is due to improved stability characteristics
and not to a smaller error term. Thus on the elliptic problem when integrating
2nd order equations directly, the PEC method is nearly twice as efficient as

the PECE method. (The implications of this for practical problems is not highly

significant, since in most problems of this type a predict-partial-correct scheme

should be used. Such a scheme computes the main part of the derivative twice



-370-

per step, and perturbing forces, which typically are significantly more com-
plicated; only after predicting. The values computed after predicting are used
in the P ion of the derivati after correcting.) But there arc implica-

tions for the parisons of thods, since many methods don't offer the
partial correct option. If a comparison is to be made with the best Adams
method on such probl one should pare with & PEC method integrating
the second order equations directly. We have obtained similar results on the
restricted 3-body problem in [3].

Changing stepsize by factors close to one results in a definite reduction

{10-20%) in the number of derivative evaluations for the problem which calls

for a wide variation in the stepsize. When derivatives evaluations are expen-
sive, factors close to one appear to be a good idea, but when derivative eval-
uations are cheap, the factors {2, 1/2) seem to be a reasonable choice to reduce
the integration overhead. There is not much difference for the case of circular
motion, but there is also not much difference in overhead since, except for
extreme values of the error tolerance, the integrator tends to use a constant
stepsize ultimately. (This would not be true for a problem which is best inte-
grated with slight variation in the stepsize, however.)

References

1.

Krogh, Fred T., Changing stepsize in the integration of differentia) equations
using modified divided differences. Proceedings of the Conference on the
Numerical Solution of Ordinary Differential Equations, pp. 22-71, Lecture Notcs
in Mathematics No. 362, Springer-Verlag, New York, 1974.

Shampine, L,F. and Gordon, M.K,, Computer Solution of Ordinary Differcntial
Equations, The Initial Value Problem. W.H. Frecman and Co., San Francisco,
1975,

Krogh, Fred T., On testing a subroutine for the numerical integration of
ordinary differential equations. J.ACM 20 (1973), pp. 545-562.

Krogh, Fred T., A variable step variable order multistep method for the
numerical solution of ordinary differential equations. Information Processing
68, pp. 194-199, North Holland Publishing Co., Amsterdam, 1969.



APPENDIX:

-371-

NUMERICAL RESULTS

TwO-BODY PROBLEM, CIRCULAK MOTION.
WITH AN ABSOLUTL ERROK TEST

RESULTS ON THE INTERVAL (0, 16 P}
LOG OF ERROK TOLEKANCE -6 -9
ND/ E INT ABSOLUTE ABSOLUTL
STEP HINC ORD ORD ERROR ND ERROK ND
3 H 2 SAME ( -%)2 0 299 ( -8)2 0 409
H 2 2 DIFF ( -5)2 7 303 ( -9)3 6 485
H 2 ] SAME [ -4)2 &5 491 « -8)2 &« 811
2 2 1 DIFF [ -4)3 1 493 ( -8)% 3 8u1
2 98 2 SAME ( -5)4 3 279 ( -8)2 0 409
2 e/8 2 DIFF ( -%)3 3 303 « -832 t 409
2 9/8 1 SAME ( -4)4 0 46 t -8)2 5 811
2 9/8 1 DIFF ( -4)3 &5 485 ( -8)4 8 779
1 2 2 SAME ( -6)9 0 269 [ -8), 6 410
1 2 2 DIFF € -6)1 & 301 t -8)2 3 404
1 2 1 SAME ( -4)2 0 777 { -7)2 6 1476
1 2 1 DIFF C -4)1 & 743 { -8)6 9 1422
1 Qs 2 SAME ( -%31 3 252 t -83)3 2 413
1 Qs 2 DIFF ( -%5)2 2 248 « -8)2 9 390
1 9s8 1 SAME ( -5)¢ 0 807 ¢ -7)1 8 1508
1 978 1 DIFF ( -4)1 6 746 { -8)3 3 1441
DVDO ( -8)4 0 a1 ( -932 0 469
PVDO(@-¢ ., -5, ~11)  -4)3 4 317 t -9)2 2 442
TWO-BODY PROBLEM. ECCENTKRICITY= 6.
WiTH AN ABSOLUTL ERKROR TEST
RESULTS ON THE INTELRVAL (0. 16 FI)
LOG OF ERKOE TOLERANCE -6 -9
ND/ LQ INT ABSOLUTE ABSOLUTE
STEFF HINC ORD ORD EKKCR ND ERKOR ND
2 z € SAML i =331 5 1557 « -7)8 % 2655
2 2 H DIFF ( -4)2 9 1637 C -7)5 1 2698
H 2 1 SAMI it €02 ¢ -7)9 2 2176
2 2 1 DIFF 351 4 16170 ¢ -6)1 0 2768
2 9/8 2 SAME « -33)2 17 1413 ( -6)1 6 2150
H 978 13 DITF ¢ =311 8 1456 t =631 2 2195
2 978 1 SAME ( -3)3 3 1416 t -6)2 4 2372
2 978 1 DIFF € -3)2 4 1500 ( -611 % 2415
1 1 2 SAME ( -41)9 5§ 819 t -7)t ¢ 1379
1 < k3 DIFT ( -432 2 343 C -71)% 6 1425
1 2 1 SAME ( -4)3 9 1318 { -739 5 2664
1 2 1 DIfF € -3)1 9 221 { -6)Y 6 2729
1 9/8 H SAML € =711 122 t -7r4 17 1177
1 9/8 2 DIFF { -4,2 0 732 1 -7)6 6 209
1 9/8 1 SAME ( -4)% 9 1284 t -631 3 2661
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AN LZ APPROACH TO R-MATRIX PROPAGATION

Robert B. Walker and Barry I. Schneider
Theoretical Division
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

Standard R-matrix methods are used to compute a series of Wigner
R-matrices each covering a small region of the scattering coordinate for
a model atom~dfatom collinear vibrational excitation problem. The R-
matrices so obtained Are then combined using the R-matrix propagation

algorithm. We present here additional data on the performance of this

method.
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I. INTRGDUCTION

In an earlier publication,l we described an L2 approach to the
solution of a heavy particle scattering problem; normally, such problems
are attacked through the solution of the so-called close coupled equations.
These equations are obtained when a basis set expansion is introduced to
described all degrees of freedom in the scattering wavefunction except
one; motion in the final degree of freedom, represented by the scattering
coordinate, is determined by the numerical solution of the close coupled
equaéions.

The method we presented dlfiers from a standard close coupling approach
in that the firail degree of freedom is also represented by a basis set
rxparei n ir the total scattering wavefunction. This method is based on
e R-matrix formalism introduced over thirty years ago by Higner.z In this
approach, ope imagines enclosing configuration space in a "box". This box
has t~ be big enough so that outside the box there is no residual interactiop
between the scattering particles. Inside the box, the wavefunction is
determined by L2 methods, and outside the box, the wavefunction is forced
to fit an ap; ropriate asymptotic form.

As described, the R-matrix approach has not been used extensively to
treat the scattering of heavy particles in molecular force fields. The R-
matrix method suffers from a practical disadvantage -~ the range of the
interaction potential is so large that the R-matrix box must be made big
enough the encompass many be Broglie wavelengths associated with the scattering
degree of freedom. Furthermore, in molecular scattering problems,

there are typically many strongly coupled channels. Consequently,
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the basis set expansjon of the entire wavefunction is required to be
impractically large. A step in the right direction was taken by Zvijac

and Light,3 when they presented equatione which showed how ¢two R-matrix boxes,
convering adjoining regions of configuration space, could be "joined"

by matching the scattering information implicitly contained on the surface
common to the two boxes. The ability to piece together the information from
two separate (but adjacent) boxes effectively solves the basis set problem
associated with the translational degree of freedom —- because now the size
of each R-matrix box 1s no longer constrained to encompass the full range
of the interaction potential. This advantage has been exploited by Light
and Walker,a who incorporated thase R-matrix propagation eguations into an
algoritim for solving close-coupled equations. In their approach, which
has subsequently undergone further ref:lnement5 and development,6 the size
of each R-matrix box is dictated by the form of the interaction potential
within the box. The box is taken to be small enough so that higher order
terms in the (power series) expansion of the interaction potential are
negligible. 1In fact, in their gimplest approach, the box is taken to be small
enough that the interaction potential may be regarded as a constant within
the box. For this simple form of interaction, the R-matrix associated

with each box can be determined analytically. Once the R-matrix for each
box (commonly referred to as a sector) is known, the sector R-matrices are
assembled and a global R-matrix obtained. The global R-matrix is then uged
in the enforcement of scattering boundary conditions just as 1f it had been

obtained in a standard 12 approach.
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In the L2 R-matrix propagation approach, we follow the Light-Walker
strategy in that the whole of configuration space is subdivided into smaller
regions in each of which we determine an R-marrix. This step still solves
the de Broglie wavelength protlem. However, n the L? approach, the size
of each R-matrix sector is aot constrained by any approximation to the inter-
action potential ~~ the full interaction potential is determined and used
in a standard LZ evaluation of the sector R-matrix. This approach has an
advantage over the Light-Walker propagation scheme. Because we treat the
full interaction potential exactly, we may use larger R-matrix boxes in
regions of configuration gpace where the Light-Walker method is forced (by
the form of the potential) to take small R-matrix sectors. In particular,
we are thinking of the steep repulsive wall associated with all inelastic
scattering systems., In this region, the rapid variation of the potential
implies that the constant coupling approximation used in the simplest form
of the Light-Walker method will be justified only if a large number of very
small R-matrix sectors are used. One of the objectives of this project is
to determine the circumstances under which we may expect the L2 method to
be competetive with the Light-Walker method.

In this paper, we extend the results of the previous paper (paper I)
to more fully characterize the properties of the L2 propagation approach.

We review the results of paper I and present additional data on the dependence
of the 12 method on the number of channel functions included in the total
wavefunction expansion. This data ispresented in the next section, Section
II. In Section II, we draw some tentative conclusions about the current

approach.
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II. PROPERTIES OF THE L2 METHOD

A. Review of Paper I

We investigated the model collinear vibration excitation problem defined
by Secrest and .._Tohnson.7 The parameters used were given in paper I, The
interaztion region was divided into equal sized R-matrix boxes (17 boxes
from x=0 to x=51; each box has a width of 3). In each box a basis set
consisting of products of channel functions and translational functions is
constructed. The channel functions are the same as would be used in a
standard close coupling expansion (harmonic oscillators). The translatiomal
functions are polynomials in x. In each box we construct and diagonalize the
sum of the Hamiltonian and Bloch operators. For simplicity in the
characterization of this method, each channel function has associated with it
the same set of translational functions. In such a case, the matrix to be
diegonalized is a real (NcNTF)x(NcNTF) symmetric matrix, where Nc is the
number of coupled channels, and NTF is the number of translational functions
per channel , It is the diagonalization of this matrix which requires the
bulk of the computational time for the L2 propagation method.

Figures 1 and 2 of this paper (which were Figs. 1 and 2 of I) present
the essential features of the L2 method, for a 5-channel example problem
(Nc=5). Figure 1 shows the CPU time required to apply the method as a
function of the number of translational functions (N.n_.) associated with
each channel. The upper curve of Fig. 1 shows the "setup" time required;
this is the time required to censtruct and diagonalize the Hamiltonian
matrix, Once the eigenfunctions and eigenvalues associated with each box
are known, we compute and assemble the sector R-matrices to form the global
R-matrix. This procedure is repeated at each scattering energy; the time it

requires is shown in Fig. 1 as the lower curve (which has been scaled by a

factor of ten).
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There are two significant features to notice about Fig. 1. First,
compared to the R-matrix assembly time at each energy, the initial setup
time is very large. Second, both times increase as the mumber of translational
functions increases. The setup time in~reases more severely -- because of
the matrix operations involved in the initial diagonalization stage of the
calculatinn, we expect the setup time to eventually go as N':.:’P' On the
other hand, the propagation time per energy tends to increase only linearly
with NTF'

It should be clear from Fig. 1 that our objective is to minimize
number of translational functions which must be carried with each chanrel
function, if we ar” to speed up the L2 method. However, as shown by Fig. 2,
the quality of the scattering information obtained depends severely on the
number of tramslational functions. The higher in scattering emergy we want
to go, the more translational functions per channel are required. For

example, Fig, 2 shows that with N, _ = 5, the scattering results are good

TF
only to about E = 7. With NTF = 6§, the results are satisfactory up to
E = B. To obtain results good to E = 16, we must have NTF =9, The
conclusion 1s obvious -- as the scattering emergy increases, the number of
de Broglie wavelengths in each box also increases. In order to describe
this behavior satisfactorily, we must increase “'II-‘ accordingly.

Jp to this point, we have reviewed the results of paper I. The remainder
of this paper will comsider additional properties of the L2 method., 1In
particular, we consider two addit:lona'I effects =- the effect upon computation

times of increasing the pumber of channel functions, and the effect of varying

the widths of the R-matrix boxes.
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B. Channel Size Effects

We have repeated calculations as in Fig. 1 but based upon 8, 10, and
16~-channel wavefunction expansions. The number of translational functions
required per channel depends only on the scattering energy and the size of
the R-matrix box, and not on the strength of the potential or the number of
strongiy coupled channels. Consequently, the number of translationnl~functions
required per box is typically the same as in the 5-channel study presented
in I. The results of this study are presented in Table I. As we would expect,
the CPU effort increases as the number of channel functions increases.
Because the majority of the computation effort is involved in the Hamiltonian
diagonalization, we once ~gzain expect the setup time to go approximately as Nz
(with NTF fixed). This point 1is emphasized in Fi;. 3, where we plot (on a

log-log scale) the product NcN vs, setup CPU time per box. The figure

TF
supports the idea that all the data are effectively described by a single
curve -- and the slope of the curve suggests that the setup time goes
approximately as the 2.3 power of NcNTF'

C. Effect of Box Size

We repeated the calculations of the 5-channel problem, except that we
doubled the total number of R-matrix boxes by halving each box width. 1In
Fig. & we show how the scattering data now converge with respect to the
number of translational functions per channel (in the smaller boxes). The
figure shows clearly that the data converges much more rapidly with NTP
than before. Whereas it previously required NTF = 9 to obtain good scattering

data up to E = 16, we now obtain satisfactory results with NTF between 5 and

6. Because the new calculation is required to diagonalize 34 (25x25) matrices
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instead of 17 (45x4S) matrices, the setup time associated with the curreat
calculation is considerably smaller (2.2. CPU sec. instead of 3.9 CPU sec.).

On the other hand, th: time required for propsgation at each scattering

energy is larger (0.093 sec vs. 0. 080 sec) because there are now a larger
number of R-matrix boxes to be assembled. We therefore have offsetting

effects in ~valvating the total time required to complete an entire calculation
~- the setup time is smaller but the scattering times per energy are larger.
However, because the setup time is so high in comparison to the scattering
time, one can obtain scattering results at quite a large number of energies

before the 34 box calculation costs as much as the 17 box calculation (130

energies) .



IXI. CONCLUSIONS -384-

The l.2 R-matrix propsgation schame is claarly capable of providing
high quality dynamical information. The method has several strengths and
weaknesses, which we will touch upon briefly.

To date we have detarmined only two significant wesimesses with this
method = (1) the method is typically more expensive thsn others, and (2) it
does not lend itself to calculations requiring a very lasrge number of coupled
channels. We dealt here primarily with characteristics of the L2 method
affecting the first weakness. Looking at Fig. 2 of paper 1, we ascertain
that the L2 method (at 5 channels) must be applied at approximately 12 energies
before the time it requires equals the time required to solv2 the corresponding
5 coupled channel equations 12 times. We are reading off Fig. 2 of paper 1
where N“. = 9, because we have determined in practic that “TP = 9, is required
in order to obtain good scattering data at all the energies of interest.
0f course, if we had wanted transition probebilities at even ! igher emergies,
probably ‘Nn. will increase and the Lz method will compare even less favorably
with the analytic method. PFixing “TF = 5, we may slec deternine from
Table 1 (snd from Fig. 5 of Ref. 5) that this breakeven number increases
as N, increases (for the 17 box calculstion). As N, increases (Nc-5,8.10.16)
the braakeven mumber increases also (%-12,14,16.18). This weaknegs of the l.z

method 1s further emphasized by the point alluded to at the end of the
preceding section, where we determined that the I.z method ic actually
= 5 instead of a 17 box, N = 9

TF TF
ealculation. Pushing this strategy teor its limit reduces to the analytic

faster if ve do a 14 box calculstion with N

Rematrix schame, whers thers are many boxes, and only one translational

function per channel per box.
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The second weaknass of the Lz method pertains to its behavior as
Nc incresses. The value of “‘1‘}‘ depends primarily on the box width, and
.80 if we choose the box widths so that Nn. % 5 for accurate rasults,
then ve are comnitted to s method which must handle matrices 5 times larger
than conventional close coupling methods handle. This restriction complicates
she coding problem if very large systems (with many channels) are to be
handled. For example, the Lz method might require as much core for a 20
channel problen as a close coupling method would require for a 100-channel
problem. As it is, the Lz method is slso expensive in I0 charges, since
all the box eigenfunctions must be read in from disk at each scattering
energy. The 10 expense will increase significantly as Nc increases.

Without being too megative about it, we should also point out the strengths
of this method. Primarily, it does the one thing we at first wapted it to
do =- it handles all regions of the potential with equal ease—-including the
steep repulsive wall. The L2 method is actualiy very powerful because it
is flexible. There are few built-in assumptions. The potential is treated
exactly. It is easy to study the effect produced by varying the number or
type of channel expansion being used. One can easily vary the number of
translational functions used, and the type of translational basis expansion
used. Probably, it is not necessary to have as many translational functions
associated with deeply closed channels as there are with open channels.

The use of a mixed trigonometric/polynomial basis should be studied, etc.
Finally, the method could be an idesl tool for determining the relative

importance of various perturbative cotrections to the analytic R-satrix method.
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CPU(s)

Fig. 1. Fig. 1 of Ref. 1. Approximate CPU time required for a five-channel
target expansion, as a function of the number of translational basis

functions N used per channel function. The heavy line t, shows the

TF
setup time required for the celculation, which congists of the time
required to construct and diagonalize the Hamiltonian matrix in all
the R-matrix boxes. The thin line t, shows the additional CPU time
reguired to construct the sector R matrices and assemble them into the

global R matrix. Note that the actual CPU times for assembly are a

factor of 10 smaller than shown in the graph.



Fig. 2. Fig. 3 of Ref. 1. Effect of the number translational functions used
per channel function (N,n,) on the accuracy of the current method as a
function of scattering energy E. The 0 + 1 vibrational excitation
probability is plotted on the ordinate. In each panel, the solid curve
shows the exact calculation, obtained by the currext method using
NTF = 9, The three panels show calculations using N‘I‘F = 5,6, and 8,

The current method gives bettar accuracy at higher energies as N\,

TF
increases.
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Fig. 3. A log-log plot of the dependence of the CPU setup time per box upon
the product of “c and “TF' The four curves are labelled with the 5,8,10,
and l6-channel calculations. The proximity of the curves sugges:~ they

are all effectively fit by the same function.
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Fig. 4, Same as Fig. 2 above, except that the lower panel compares the

convergence with Ny of the 34 box (h=1,5) calculation with the 17 box

(h=3.0) calculation. The 34 box Npp = 5 calculation is only slightly poorer

in quality tban the 17 box Npp = 9 calculation.
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*
Table I, Timings for the L2 R-Matrix Propagation Method

10

16

0.047(0.0025)
0.069(0.0029)
0.096(0.0033)
0.140(0.0038)
0.176(0.0042)

0.229(0.0047)

0.131(0.0071)
0.193(0,0081)
0.286(0.0050)
0.398(0.0100)
0.630(0.0110)

0.740(0.0123)

0.206(0.0122)
0.332(0.0140)
0.502(0.0164)
0.708(0.0178)
0.996(0.0197)

1.335(0.0214)

0.759(0.0439)
1.140(0.0509)
2.039(0.0546)
2.625(0.0616)
4.449(0.0680)

5.173(0.0752)

“Al1l times are LASL 7600 CPU sec per R-matrix box.

The primary entry is the

setup time; the propagation time per box per energy is in parentheses.
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A VARIATION-ITERATION METHOD FOR A
SINGLE COLUMN OF THE S-MATRIX

Lowell D. Themas
NRCC
Lawrence Berkeley Laboratory
Berkeley, California 94720
I. Introduction

The details of this method and the results of a sample calculation with
it have been recently published [1], and these will not be repeated here.

I will instead discuss some of the motivation for this work, the original
implementation of the Kato variational method [2], and finally the future
plans for the method.

A comparison of the numerical effort invclved in a quantum and a
quasiclassical scattering calculation for atom-molecule scattering yields
some interesting insights. Consider for the moment rotational excitation
of a linear rigid rotor by collision with a structureless particle [3,4,5].
If the rotational levels of the rotor up to j=50 are retained in the expan-

sion of the wave function, then the number of coupied equations, N, is
- i2 2
N=1/2 j“=1250 .

If the potential energy function is expanded in Anax Legendre polynomials,
and we work in the body-fixed frame, then the interaction matrix coupling
the radial Schroedinger equations will be a banded diagonal matrix which

has at most a band width of 2Amax+1' If we choose A, =2 (often not enough,
but often used in the literature), then for each column of the matrix of
wave functions we must solve 1250 second-order differential equations

coupled 5 at a time. By this I mean that even though all 1250 wave functions

are indirectly coupled to one another, the matrix multiplication of the
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interaction matrix times the solution matrix involves only 5 multiplications
and 5 additions per element.

Let us now consider the analogous classical trajectory calculation.

If solved in Cartesian coordinates, there are 6 independent variables for
each trajectory. For a fixed impact parameter one would typically run

200 trajectories. Lagrange's equations for the 6 independent variables give
6 coupled second-order differential equations. The 200 trajectories there-
fore require the solution of 1200 second-order differential equations

coupled 6 at a time. A simple counting of the number and couplings of the
differential equations yields roughly the same numbers for the classical and
quantum calculations. Of course there are many other differences between the
two methods.

First of all it may be argued that the solutions in the two cases have
very different characters. The classical trajectories are smooth while the
wave functions are oscillatory. As one goes to higher energy this is of
course true, but in fact at intermedizte energies in the eV range, both
the classical trajectories and the wave functions will require something
1ike one- to a few-hundred integration steps.

It may also be argued that classical trajectories can be done one at a
time, making them simpler to calculate. This does make them simpler to
program and the programs require less computer storage space, but this fact
does not reduce the actual number of numerical operations. One could,
if one 1iked, vun all 200 trajectories simultaneously with little increase
in total computer time.

The real difference between the two metheds seems to me to be the fact

that the classical calculation can be done for a single initial state. A1l
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trajectories begin with the rotor {n the same fnitial state. The quantum
analogue of this would be to solve the coupled equations for only a single
column of the wave function matrix, and this is not possible ir a direct
fashion due to the double-ended boundary conditions which must be imposed.

This kind of reasoning implies that close coupling calculations could
be done for most or at least many of the systems for which only classical
calculations have been possible, if we could somehow solve for a single
column of the wave function matrix. The equation to be solved is,

hi = Vi, m

~

where h is a diagonal matrix of second-order differential operators, V is
the interaction coupling matrix,and § {s the vector of solutions. The
numerical work in general increases as NZ, where N is the number of coupled
equations, due to the matrix multiplication. The standard procedure is to
solve for N linearly independent solution vectors and then take 1inear
combinations to get the proper boundary conditions. Hence, the overall
work increases with N°.

An alternative approach would be to attempt to solve Eq. (1) iterative-
ly. That is, guess a solution vector, test to see if it satisfies Eq. (1),
improve the guess if not, and so on. This way the numerical work would
increase with MN% where M is the number of iterations. If a rapidly
convergent procedure could be found such that M << N, this would result in
a considerable savings. There are several good reasons to believe that
such a procedure can be found. The coupling matrix, as argued above, is
relatively sparse. Also, several approximate methods, most notably the

105 [6] and coupled states [7] methods, which ignore much of the coupling
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matrix have been very successful. One intuitively feels that there is not
much physics left to be accounted for, and that if properly done only a few
iterations would be necessary.

The next section 1s essentially a walk-through of the ideas originelly

used to develop this approach.

II. The Iterative Method
An iterative approach to the problem is much more transparent when
Eq. (1) is written in its equivalent itegral form,

«

i) = % ey + [ G e Ty (e (2)
0 A

where
X
h, , ; =0, (3a)
23
1im xA(r) =0, (3b)
r-0
XYy = % ¥ =1 (3¢)
hG,(r,r') = &(r-r') , (3d)

Py, (r')s r<r',
GA(r,r') = (3e)
(' )y, (r)s ro>r!

Or, in matrix form,
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U=+ [ GV drt 4

where x, y,and G are diagonal matrices and 8, =8, .

The 1dea now is to guess a trial function 6'1 use it to evaluate the

right hand side of Eq. (4),

i = xk+ [ avdlar (5)

1

M in some way to obtain an improved guess §"+ . Four ways

and then to use U
have been tried and these will now be discussed. The test problem used for

these experiments was the Ar-N, problem published by De Pristo and Alexander

[8].

2

The oldest and most obvious itera:ive method is the Born series [9].
That is, let
P-x (6a)

and

R (6b)

This series did not converge for the test problem. Since this was a small
problem with relatively weak coupling it is to be expected that the Born
series will in general not converge for atom-molecule collision problems.

Another possibility suggests itself if we rewrite Eq. (2) as

uy(r) = *A(r){‘xxo + A (r)} + y,(r)(B,(0) - B,(r)} (7)

where
Alr) = { vt (e )drt (8)
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B,(r) = {' X, r* W (e )art (9)
W, = %Z V,, iy (10)

It was first pointed out by Sams and Kouri [10] that when a quadrature formula
is introduced for the integrals of Eqs. (8) and (9), the terms involving
ux(r) at the end points of the integration exactly cancel. The unknown,
ux(r), may be evaluated from the known values, ul(ri), r <r;. Therefore,
given E(O) we can find the exact wave function U. But unless B(0) is just
the one we are looking for, U is not regular at the origin and the numerical
integration becomes unstable in the non-classical region. What we want to
try now is to guess the correct B(0) rather than the correct wave function.

One of the beauties of Eq. (5) is that the trial function, 'c_:'j'n. need
not have any special boundary conditions nor, for that matter, need it be
continuous. As long as it is properly normalized (and hence regular at the
origin) the computed function, ", will be continuous and have the proper
form (but nct values) for the boundary conditions.

The second experiment takes the following form. Let

@

B = g ar, an
o
I o=xiZef yRNry + y&" - [ 0dflery (12)
r = ~ r =

® -7, (13)
n+l t
v , r>r

o Py Py

A n t
uy » L (14)
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where r: {s the classical turning point for the channel 1. What is being
done is this. Guess [ 3, then integrate imwards for the exact wave
function 3° (with the wrong boundary condition) until the classfcal turning
point is reached, then set the wave function to zero. We now have a new

>
value for B(0),

1
B, =[ Z XV, v dr (18)
t 2
"

and we start over again. For the second and higher iterations, however,
instead of setting the wave function to zero at the classical turning point,

we use u from Eq. (5). Unfortunately, this rather elaborate scheme

A
fares no better than the Born series and in retrospect probably a little
worse.

It does, however, suggest another experiment and this one is successful.
We still feel at this point that integrating inward from a trial E(O) is a
good idea if we only had a better way to handle the non-classical region.
Expansion in a basis set has a well-proven track record in these circum-
stances, and R-matrix theory [11] comes immediately to mind. It is, however,
out of the guestion. The R-matrix is related to the S-matrix in a non-
1inear way and, hence, a single column would do us no good. Besides that
recall, we are thinking in terms of eventually solving a 1200 channel
problem. Even with one basis function per channel, the eigenvalue problem
associated with the R-matrix method becomes a formidable obstacle.

Instead, we 100k for a variaztional integral to help us out. In the
early literature on the Schwinger variational integral [2,12,13,14] is a

variational method by Kato [2] which is well suited to the problem at hand.
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Kato's method is to use the wave functions from the previous iterations
as basis functions. Therefore, we use the previous scheme except that in

the non-classical region we use

n+l _ n t
9, = i)=:0 Gy, > I (16)
The constraint
Z: Ci =1 (17}

is also necessary for §"+1 to be properly normalized. The Schwinger
variational integral can only be applied in this case to the elastic,
initial channel S- or T-matrix element [9]. Therefore, we relax the
requirement that the variational integral be stationary to arbitrary
variations in the wave function, and require instead only that it be
stationary with respect to variations in the expansion coefficients, ci,
subject to the normalization constraint, £9. (17). A convenient integral

to work with is

I8 = J [a- 082 ar . (18)
!
Therefore,
1, _ *
g™ —iZj €5 935C; » (19)
where

335 = 1 (a-0F* - (h-vF ar (20)
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leading to
]

Ci = ICi s (21)
where

1 - _'!

c-] 3(!1 )'IJ (22)
and

-1
I= (ZC,-) . (23)

Note that because of Eq. {14) the integration really extends only over the
non-classical region.

This_is in fact a convergent procedure for the Ar-N2 test problem. Note,
however, that this variational method could just as well have been applied

straight away to the Born series. That is, let
n
S
‘5"‘”:2 c_iu1, J<r<w, (24)
=

This then is the fourth method and it does converge more rapidly than the
previous scheme. It is also much easier to write down and explain, but the
difference in the computer codes between these last two methods reaily only

amounts to a change in about four statements.

II. Future Plans

Kato‘'s variational mechod is the essential ingredient to a convergent
iterative method for a single column of the wave function matrix. It is by
itself, however, not enough. The Ar-N2 test case is a 16 channel problem.
The number of iter.iions necessary for reasonable convergence of the

variationally modified Born series is 22. In addition it is necessary to



-400-

do complex arithmetic when solving for a single column of the S-matrix.
Therefore, 22 iterations involves something more than twice the numerical
work needed for a standard close coupling calculation. Unless it is pos-
sible to accelerate the convergence considerably, no gain has been made.

One way to do this is 6 reduce the strength of the coupling matrix by
including its diagonal elements in the definition of h and hence in the
Green function. The details for implementing this are given in Ref. [1].
This has a dramatic effect on convergence, which is reduced from 22 to 4
iterations for the Ar'-N2 test case. This then points the way to possible
further improvements to the method. It is possibie to further reduce the
strength of the coupling matrix by using a matrix Green function. Of course
this means more work in computing the Green function and at some point this
extra work will stop paying for itself through fewer iterations. Exactly
where that point is remains to be seen, but surely it has not yet been
reached.

The matrix Green function is given by

() yiey e e
) = {10‘) LA B I A )
where
hG(r,r') = s(r-r')1, (26)
hx=0, (27)
hy=0, (28)
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and
By - aby-1 (29)
The superscript t indicates the matrix transpose.

Therefore, to calculate the matrix Green function we need to solve
for the matrix scattering wave function x in the standard way and in
addition solve for an irregular matrix wave function, y. Calculating the
matrix Green function requires roughly twice the numerical work as cal-
culating the scattering wave function. For small matrices of order less
than, say 50, this will be a small part of the overall calculation.

There are two matrix choices which seem worth trying first. The first
is simply to include all of the coupling matrix elements which directly
couple to the initial state. For the 210 channel problem of Ref. [1]
there are only about 15 channels which couple directly to the ground state.
Therefore, in addition to the diagonal Green function already computed, there
would be one 15x15 matrix Green function to calculate. It is expected that
«e reduction in the number of iterations will more than pay for the addi-
tional work involved with the Green function.

A second choice, which may actually involve more work than necessary,
is to transform to the body-fixed frame and include everything but the off-
diagonal centrifugal terms in the Green furction. That is, simply compute
a coupled states Green function. All that would remain in the matrix V of
Eq. (4) would be a bidiagonal of centrifugal terms. This is appealing not
only because convergence should be reached in a very small number of

iterations, but also because it seems the logical way to use the coupled

states method [7], which is already known to be in many cases a good
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approximation, as a starting point for the full calculation.

Another idea for future work is the applicaton of the method to electron-
molecule scattering. A varfational method similar to Kato's was developed
by Saraph and Seaton [15] in the early days of electron-atom scattering to
deal with the problem of electron exchange. Their work and that of others
[16] was in many cases successful, but since they were interested in the full
matrix of solutfons it was abandoned for other non-iterative approaches.

In light of the present developments, however, it may be worthwhile to
revive the iterative approach. For one thing, there was apparently no
attempt at that time to include any part of the coupling matrix other than
the centrifugal terms in the Green function. The present approach can
very likely be used to kill two birds with one stone; that is, to reduce
the problem to a single column of the solution matrix and to eliminate the
exchange probiem at the same time.

Work on these ideas is currently underway.
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