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Abstract

In order to interact with objects in our environment, humans
rely on an understanding of the actions that can be performed
on them, as well as their properties. When considering concrete
motor actions, this knowledge has been called the object affor-
dance. Can this notion be generalized to any type of interaction
that one can have with an object? In this paper we introduce a
method to represent objects in a space where each dimension
corresponds to a broad mode of interaction, based on verb se-
lectional preferences in text corpora. This object embedding
makes it possible to predict human judgments of verb applica-
bility to objects better than a variety of alternative approaches.
Furthermore, we show that the dimensions in this space can be
used to predict categorical and functional dimensions in a state-
of-the-art mental representation of objects, derived solely from
human judgements of object similarity. These results suggest
that interaction knowledge accounts for a large part of mental
representations of objects.
Keywords: affordance; object representation; embedding

Introduction
In order to interact with objects in our environment, we rely on
an understanding of the actions that can be performed on them,
and their dependence (or effect) on properties of the object.
Gibson (1979) coined the term “affordance” to describe what
the environment “provides or furnishes the animal”. Norman
(2013) developed the term to focus on the properties of objects
that determine action possibilities. The notion of “affordance”
emerges from the relationship between the properties of ob-
jects and human actions. If we consider “object” as meaning
anything concrete that one might interact with in the environ-
ment, there will be thousands of possibilities, both animate
and inanimate (see WordNet (Miller, 1998)). The same is true
if we consider “action” as meaning any verb that might be
applied to the noun naming an object (see VerbNet (Schuler,
2005)). Intuitively, only a relatively small fraction of all pos-
sible combinations of object and action will be plausible. Of
those, many will also be trivial, e.g. “see” or “have” may apply
to almost every object. Finally, different actions might reflect
a similar mode of interaction, depending on the type of object
they are applied to (e.g. ”chop” and ”slice” are distinct actions,
but they are both used in food preparation).

Mental representations of objects encompass many aspects
beyond function. Several studies (McRae, Cree, Seidenberg,
& McNorgan, 2005; Devereux, Tyler, Geertzen, & Randall,
2014; Hovhannisyan et al., 2020) have normed thousands of
binary properties for hundreds of objects. Properties could

be taxonomic (category), functional (purpose), encyclopedic
(attributes), or visual-perceptual (appearance), among others.
While some properties were affordances in themselves, most
reflected many affordances at once (e.g. “is a vegetable” means
that it could be planted, cooked, sliced, etc).

Recently, Zheng, Pereira, Baker, and Hebart (2019) and
M. Hebart, Zheng, Pereira, and Baker (2020) introduced
SPoSE, a model of the mental representations of 1,854 objects
in a 49-dimensional space. The model was derived from a
dataset of 1.5M Amazon Mechanical Turk (AMT) judgments
of object similarity, where subjects were asked which of a ran-
dom triplet of objects was the odd one out. The model embed-
ded each object as a vector in a space where each dimension
was constrained to be sparse and positive. Triplet judgments
were predicted as a function of the similarity between em-
bedding vectors of the three objects considered. The authors
showed that these dimensions were predictable as a combina-

tion of elementary properties in the (Devereux et al., 2014)
norm that often co-occur across many objects. M. Hebart et al.
(2020) further showed that 1) human subjects could coherently
label what the dimensions were “about”, ranging from cate-
gorical (e.g. is animate, food, drink, building) to functional
(e.g. container, tool) or structural (e.g. made of metal or wood,
has inner structure). Subjects could also predict what dimen-
sion values new objects would have, based on knowing the
dimension value for a few other objects.

Our first goal is to produce an analogous ”affordance embed-
ding” for objects, where each dimension of the space groups
together actions often applied to objects scoring high on that
dimension. Our approach is based on the hypothesis that, if a
set of verbs apply to the same objects, they apply for similar
reasons. We compile applications of action verbs to nouns
naming objects in large text corpora, and use the resulting
dataset to produce an embedding. This embedding represents
each object as a vector in a low-dimensional space, where
each dimension groups verbs that apply to similar objects. Our
second goal is to understand the degree to which affordance
knowledge underlies the mental representation of objects, as
instantiated in SPoSE. We do this by showing that most di-
mensions of the SPoSE representation of an object can be
predicted from its affordance embedding, in particular those
that are categorical or functional.
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Related Work
The problem of determining, given an action and an object,
whether the action can apply to the object was defined as
affordance mining (Chao, Wang, Mihalcea, & Deng, 2015).
The authors proposed complementary methods for solving
the affordance mining problem by predicting a plausibility
score for each combination of object and action. Subsequent
work (Rubinstein, Levi, Schwartz, & Rappoport, 2015; Lucy
& Gauthier, 2017; Forbes, Holtzman, & Choi, 2019; Utsumi,
2020) predicted properties of objects in the norms above from
word embeddings (Mikolov, Chen, Corrado, & Dean, 2013;
Pennington, Socher, & Manning, 2014), albeit without a focus
on affordances. In addition to object/action plausibility predic-
tion, Ji, Shi, Guo, and Chen (2020) addressed the problem of
determining whether a object1/action/object2 relationship was
plausible. Other papers have focused on understanding the rel-
evant visual features in objects that predict affordances (Myers,
Teo, Fermüller, & Aloimonos, 2015; Sawatzky, Srikantha, &
Gall, 2017; Wang & Tarr, 2020). This has been combined with
text in robotics literature, but usually focusing on a restricted
set of objects and manipulation actions. For validation of the
rankings of verb applicability predicted by our model, we will
use the datasets from (Chao et al., 2015) and (Wang & Tarr,
2020), as they are the largest available human rated datasets.
In computational linguistics, P. S. Resnik (1993) introduced
computational approaches to determining selectional prefer-

ence, the degree to which a particular semantic class tends to
be used as an argument to a given predicate. Several methods
have been proposed to do this, leveraging some grouping of
verbs and objects into classes (e.g. WordNet in (P. Resnik,
1996), or co-occurrence statistics of words in a corpus (Erk,
2007; Padó, Padó, & Erk, 2007; Séaghdha, 2010; VanDeCruys,
2014; Zhang et al., 2020). All of these methods could be used
to score verbs by how applicable they are to a given noun,
the ancillary task we use to make sure our embedding carries
the relevant information. Our proposed embedding space is a
latent variable model for verb-noun applications. While this
is also the case for these papers, they would require exten-
sive modification to add sparsity assumptions – important for
interpretability – and to produce verb rankings.

Methods
Objects and Actions considered
We used the list of 1854 object concepts introduced in
(M. N. Hebart et al., 2019) and for which SPoSE embeddings
are available. This list sampled from concrete, picturable,
and nameable nouns in American English, and was further
expanded by an AMT study to elicit category1 memberships.
As we are not doing sense disambiguation for each noun that
names an object, we will use ”noun” or ”object” interchange-
ably. We created our own verb list by having three annotators

1Main categories: food, animal, clothing, tool, drink, vehicle,
fruit, vegetable, body part, toy, container, bird, furniture, sports equip-
ment, musical instrument, dessert, part of car, weapon, plant, insect,
kitchen tool, office supply, clothing accessory, kitchen appliance,
home decor, medical equipment, and electronic device.

go through all verb categories on VerbNet (Schuler, 2005),
and selecting those that included verbs that corresponded to
an action2 performed by a human on an object. We kept only
those categories where all annotators agreed, and all verbs in
each category. The resulting list has 2541 verbs.

Extraction of Verb Applications to Nouns from Text
We used the UKWaC and Wackypedia corpora (Ferraresi,
Zanchetta, Baroni, & Bernardini, 2008), with approximately,
2B and 1B tokens, and 88M and 43M sentences, respectively.
The former is the result of a crawl of British web pages, while
the latter is a subset of Wikipedia. Both have been cleaned and
have clearly demarcated sentences, which is ideal for depen-
dency parsing. We replaced all common bigrams in (Brysbaert,
Warriner, & Kuperman, 2014) by a single token.

We identified all sentences containing both verbs and nouns
in our list, and we used Stanza to produce dependency parses
for them. We extracted all the noun-verb pairs in which the
verb was a syntactic head of a noun having obj (object) or
nsubj:pass (passive nominal subject) dependency relations.
We compiled raw counts of how often each verb was used
on each noun within a sentence, producing a count matrix M.
Note that this is different from normal co-occurrence counts;
those would register a count whenever verb and noun were
both present within a short window (e.g. up to 5 words away
from each other), regardless of whether the verb applied to
the noun, or they were simply in the same sentence. Note also
that the counts pertain to every possible meaning of the noun.

Finally, we converted the matrix M into a Positive Pointwise
Mutual Information (PPMI (Turney & Pantel, 2010)) matrix P

where, for each object i and verb k:

P(i,k) := max
✓

log
P(Mik)

P(Mi⇤) ·P(M⇤k)
,0
◆
, (1)

P(Mi⇤) and P(M⇤k) are marginal probabilities of i and k.

Object embedding in a verb usage space
Object embedding via matrix factorization Our embed-
ding is based on a factorization of the PPMI matrix P (m
objects by n verbs) into the product of matrices O (m objects
by d dimensions) and V (n verbs by d dimensions), yielding
eP := OV

T ⇡ P. O is the object embedding in d-dimensional
space, and V is the weighting of each verb in each dimension.
Each column V:,k of matrix V contains a pattern of verb usage
for dimension k, which captures verb co-occurrence across all
objects. Intuitively, if two verbs occur often with the same
objects, they will both have high loadings on one of the d-
dimensions; conversely, the objects they occur with will share
high loadings on that dimension. The top-5 verb patterns for
most of the 70 dimensions are shown in Table 1.

The idea of factoring a count matrix (or a transformation
of it) dates back to Latent Semantic Analysis (Landauer &

2Those VerbNet categories contained ⇠ 10� 50 verbs sharing
thematic roles and selectional preferences (e.g. fill-9.8, amalgamate-
22.2, manner-speaking-37.3, build-26.1, remove-10.1, cooking-45.3,
create-26.4, destroy-44, mix-22.1, vehicle-51.4.1, dress-41.1.1).
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Table 1: Top 5 verbs in selected affordance dimensions.

Dimension Top 5 verbs in each affordance dimension

1 invent, introduce, manufacture, develop
2 blanch, boil, steam, drain, cook
3 spot, observe, sight, hunt, watch
4 park, drive, hire, crash, rent
5 wield, grab, carry, hold, hand
6 squirt, formulate, dilute, smear, dissolve
7 capsize, moor, sail, beach, raft
8 grass, uproot, mulch, smother, clothe
9 wear, don, unbutton, match, button

10 coil, splice, braid, sever, thread
11 rouge, twinkle, flinch, twitch, sneer
12 mewl, breast, coo, breastfeed, swaddle
13 empty, fill, clean, clutter, line
14 tiptoe, totter, leer, yowl, mosey
15 serve, eat, cook, prepare, order
16 drink, sip, sup, swig, quaff
17 determine, compute, plot, ascertain
18 pasture, herd, slaughter, milk, tether
19 moo, pomade, gel, tweeze, primp
20 weave, drape, embroider, knit, sew
21 lob, hurl, fire, throw, explode
22 wet, moisten, rinse, soak, reuse
23 fleck, scallop, strew, emanate, pluck
24 sound, hear, play, blare, amplify
25 bare, swathe, waver, thump, tattoo
26 steal, recover, retrieve, discover, hide
27 freckle, moisturize, spritz, dehair, deflesh
28 close, open, shut, padlock, unlatch
29 sprinkle, mix, add, stir, blend
31 manufacture, buy, purchase, sell, design
32 dodder, skedaddle, snicker, roust, sober
33 extinguish, light, kindle, rekindle, flare
34 strangulate, fumble, glove, punt, bunt
35 unscrew, screw, slacken, disengage, tighten
36 declaw, leash, worm, feud, groom
37 hunt, kill, cull, exterminate, chase
38 unfasten, tighten, fasten, undo, loosen
39 dodder, skedaddle, snicker, roust, sober
40 deice, whir, flit, swagger, quiver
43 cloister, remarry, ostracize, unionize, intermarry
45 gabble, cluck, bridle, loll, lisp
47 winnow, mill, parboil, grind, reap
49 grill, baste, barbecue, marinate, brown
50 sharpen, blunt, wield, plunge, thrust
51 thicken, spoon, reheat, stir, simmer
52 sprain, hyperextend, flex, fracture, injure
54 eradicate, deter, swat, combat, discourage
57 cultivate, grow, plant, prune, propagate
58 pilot, board, rearm, crew, station
61 install, connect, disconnect, activate, operate
62 erect, carve, flank, adorn, construct
63 fish, catch, destress, whiff, degut
64 bake, leaven, ice, eat, serve
65 block, clog, dam, choke, flood
66 fit, mount, position, incorporate, attach
67 slice, peel, chop, dice, grate
68 unload, wheel, lug, load, transport
70 munch, scoff, eat, gobble, nibble

Dumais, 1997), and was investigated by many others (Turney
& Pantel, 2010). If factorized into a product of two low-rank
matrices, the structure of the matrix can be approximated while
excluding noise or rare events. Given that the PPMI matrix P

is positive, the matrices O and V are as well. We obtain them
through a non-negative matrix factorization (NMF) problem

O
⇤,V ⇤ = argmin

O,V
kP�OV

Tk2
F
+bR (O,V ), (2)

which can be solved through an iterative minimization proce-
dure. For the regularization R (O,V ), we chose the sparsity
control R (O,V ) ⌘ Âi j Oi j +Âi j Vi j. We used the NNDSVD
initialization, a SVD-based initialization which favours spar-
sity on O and V and approximation error reduction. We found
that the optimal dimensionality and sparsity were d = 70 and
b = 0.3, respectively, using the two-dimensional hold-out
cross validation procedure described in the Appendix. This

procedure removes entire blocks of the matrix at a time, and
reconstructs them using a decomposition of the rest of the
matrix, using a range of dimensionality and sparsity settings.

Estimating the verb usage pattern for each object Deriv-
ing a similar pattern for each object i, given its embedding
vector Oi,: = [oi1 ,oi2 , . . .oid

], requires combining these pat-
terns based on the weights given to each dimension. This
requires computing the cosine similarity between each embed-
ding dimension O:,h and the PPMI values P̃:,k for each verb k

in the approximated PPMI matrix P̃ = OV
T , which is

S(O:,h, P̃:,k) =
O:,h · P̃:,k

kO:,hk2kP̃:,kk2
. (3)

Given the embedding vector for object i, Oi,: =
[oi1 ,oi2 , . . .oid

], we compute the pattern of verb usage for the
object as Oi,:S. Thus, this is a weighted sum of the similarity
between every O:,h and P̃:,k. We will refer to the ordering of
verbs by this score as the verb ranking for object i.

Experiments and Results
Prediction of affordance plausibility
Affordance ranking task The first quantitative evaluation
of our embedding focuses on the ranking of verbs as possible
affordances for each object. We will use the Affordance Area
Under The Curve (AAUC) relative to datasets that provide, for
each object, a set of verbs known (or likely) to be affordances.
Intuitively, the verb ranking for object i is good if it places
these verbs close to the top of the ranking, yielding an AAUC
of 1. Conversely, a random verb ranking would have an AAUC
of 0.5, on average. This is a conservative measure, given that
a perfect ranking would still penalize every true affordance
not at the top. Hence, this is useful as a relative measure
for comparing between our and competing approaches for
producing rankings. More formally, given the K ground truth
verb affordances {gk}K

k=1 of object i, and its verb ranking
{vi}n

i=1, we denote `k to be the index such that v`k
= gk 8k. We

then define AUCC for object i as AUCC = 1
K

ÂK

k=1

⇣
1� `k

n

⌘
.

Datasets We use the two largest publicly available object
affordance datasets as ground truth. In the first dataset, WTAc-
tion (Wang & Tarr, 2020), objects are associated with the top
5 actions label provided by human annotators in response to
“What can you do with this object?”. Out of 1,046 objects and
445 actions in this dataset, there are 971 objects and 433 verbs
that overlap with those in our lists (⇠ 3.12 action labels per
object) . The second dataset, MSCOCO (Chao et al., 2015),
scores every candidate action for an object ranging from 5.0
(“definitely an affordance”) to 1.0 (“definitely not an affor-
dance”). We consider only a 5.0 score as being an affordance.
Out of 91 objects and 567 actions, 78 objects and 558 verbs
overlap with ours (⇠ 34 action labels per object).
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Baseline methods We compared the ranking of verbs pro-
duced by our algorithm with an alternative proposed in (Chao
et al., 2015): ranking by the cosine similarity between word
embedding vectors for each noun and those for all possi-
ble verbs in the dataset. We considered several off-the-shelf
embedding alternatives, namely Word2Vec ((Mikolov et al.,
2013), 6B token corpus), GloVe ((Pennington et al., 2014),
6B and 840B token corpora, Dependency-Based Word Em-
bedding (DBWE, (Levy & Goldberg, 2014), 6B corpus), and
Non-negative Sparse Embedding (NNSE, (Murphy, Pratim, &
Tom, 2012), 16B corpus). The embeddings are 300-D in all
cases, except for NNSE (1000-D, similar results for 2500-D).
Finally, we also ranked the verbs by their values in the row of
the PPMI matrix P for each probed object, to see how much
our method of embedding through a low-rank approximation
allowed the extraction of additional information.

Table 2: AAUC of verb rankings by each method.

Dataset Method

DBWE NNSE W2V GV G840 LSA Ours
WTA 0.60 0.65 0.70 0.75 0.80 0.81 0.88
MSC 0.56 0.58 0.59 0.65 0.68 0.63 0.77

Results For each dataset, we reduced our embeddings O

and V according to the sets of objects and verbs available. We
then obtained the verb ranking for each object, as described
in the Methods section, as well as rankings predicted with
the different baseline methods in the previous section. Ta-
ble 2 shows average AAUC results obtained with these verb
rankings on the two datasets. Our ranking is better than those
of all the baseline methods, as well as PPMI (0.77, 0.61), as
determined from paired two-sided t-tests, in both WTAction
and MSCOCO (all p-values⌧ 0.01). The following figure
contrasts the AAUC distribution across objects for our method
with those obtained with the top 4 embeddings and PPMI, on
the WTaction and MSCOCO datasets, respectively.

Prediction of SPoSE object representations
The SPoSE representation and dataset The dimensions
in the SPoSE representation (M. Hebart et al., 2020) are
interpretable, in that human subjects coherently label what
those dimensions are “about”, from the categorical (e.g. an-
imate, building) to the functional (e.g. can tie, can contain,
flammable) or structural (e.g. made of metal or wood, has
inner structure). The SPoSE vectors for objects are derived
from behaviour in a “which of a random triplet of objects is
the odd one out” task. The authors propose a hypothesis for
why there is enough information in this data to allow this:
when given any two objects to consider, subjects mentally
sample the contexts where they might be found or used. The
resulting dimensions reflect the aspects of the mental represen-
tation of an object that come up in that sampling process. The
question we want to answer is, then, which of these dimen-
sions reflect affordance or interaction information. We used
the 49-D SPoSE embedding published with (M. Hebart et al.,
2020). We excluded objects named by nouns that had no verb

Figure 1: AAUC distribution on WTaction (top) and
MSCOCO (bottom) datasets using our method, against the 4
top embeddings and PPMI.

co-occurrences in our dataset and, conversely, verbs that had
no interaction with any objects. We averaged the vectors for
objects named by the same polysemous noun (e.g. “bat”). The
resulting dataset had 1755 objects/nouns, and 2462 verbs.

Relationship between SPoSE and affordance dimensions
We first considered the question of whether affordance dimen-
sions correspond directly to SPoSE dimensions, by looking
for the highest correlated match. Many of the 49 SPoSE
dimensions are similar to at least one of the 70 affordance di-
mensions, with the distribution of correlation of the best match
shown in the x-axis of Figure 2. Then, in order to determine
which SPoSE dimensions of an object could be explained in
terms of affordance dimensions, we predicted their value from
the affordance embedding of the object. Denoting the SPoSE
vectors for m objects as a m⇥ 49 matrix Y, we solved this
Lasso regression problem for each column Y:,i

w
⇤
i
= argmin

w2Rd ,w�0

1
2m
kY:,i�Owk2

2 +lkwk1, i = 1, . . .49, (4)

where l was chosen based on a 2-Fold cross-validation, with l
in [10e�7,10e3] with log-scale spacing. Since both Y:,i and our
embedding O represent object features by positive values, we
restricted w� 0. Intuitively, this means that we try to explain
every SPoSE dimension by combination of the presence of
certain affordance dimensions, not by trading them off.

Overall, the cross-validated predictions of this regression
model are more similar to SPoSE dimensions than any indi-
vidual affordance dimension, as shown in the y-axis of Fig-
ure 2. The best predicted dimensions are categorical, e.g.
“animal”, “plant”, or “tool”, or functional, e.g. “can tie” or
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Figure 2: For each SPoSE dimension, correlation with the best
matching affordance dimension (x-axis) and with the cross-
validated prediction of the regression model for it (y-axis).

“flammable”. Structural dimensions are also predictable, e.g.
“made of metal”, “made of wood”, or “paper”, but less so
for appearance-related dimensions, e.g. “colorful pattern”,
“craft”, or “degree of red”. What can explain this pattern of
predictability? Most SPoSE dimensions can be expressed as
a linear combination of affordance dimensions, where both
the dimensions and regression weights are non-negative. This
leads to a sparse regression model – since dependent variables
cannot be subtracted to improve the fit – where, on average,
5 affordance dimensions have 80% of the regression weight.
Each affordance dimension, in turn, corresponds to a ranking
over verbs. Figure 3a shows the top 10 verbs in the 5 most
important affordance dimensions for predicting the “animal”
SPoSE dimension. As each affordance dimension loads on
verbs that correspond to broad modes of interaction (e.g. ob-
servation, killing, husbandry), the model is both predictive
and interpretable. Whereas we could use dense embeddings
to predict SPoSE dimensions, they do not work as well (in
either accuracy or interpretability, see Figure 3b for GloVe).
For example, if we consider the top 5 verbs from affordance
dimensions used in predicting each SPoSE dimension, we see
that “tool” has “sharpen, blunt, wield, plunge, thrust” (D50);
“food” has “serve, eat, cook, prepare, order” (D15), or “bake,
leaven, ice, eat, serve” (D64); “plant” shares D2 with “food”,
but also has “cultivate, grow, plant, prune, propagate” (D57).

These results suggest that SPoSE dimensions are predictable
insofar as they can be expressed as combinations of modes
of interaction with objects. As described in Methods section,
we can combine affordance dimension verb rankings into a

	B


	C


Figure 3: Top 10 verbs in the 5 most important affordance
dimensions (proposed affordance embedding versus GloVe
840B) for predicting the “animal” SPoSE feature.

verb ranking for each SPoSE dimension. We replaced the em-
bedding O in (3) with the SPoSE prediction eY and we ranked
the verbs for dimension h according to S(Ỹ:,h, P̃k). Table 3
shows, for every SPoSE dimension, ranked by predictability,
the top 10 verbs in its ranking. This table suggests that highly
predictable categorical dimensions correspond to very clean
affordances. The same is true for functional dimensions, e.g.
“can tie” or “container” or “flammable”; even though they are
not “classic” categories, subjects group items belonging to
them based on their being suitable for a purpose (e.g. “fasten”,
“fill”, or “burn”). Why would this hold for structural dimen-
sions? One possibility is if objects having that dimension
overlap substantially with a known category (e.g. “made of
metal” and “tool”). Another is that the structure drives manual
or mechanical affordance (e.g. “elongated” or “granulated”).
Finally, what are the affordances for appearance dimensions
that can be predicted? Primarily, actions on items in categories
that share that appearance, e.g. “textured” is shared by fabric
items, “round” is shared by many fruits or vegetables. Pre-
diction is worse when the items sharing the dimension come
from many different semantic categories.

Conclusions
In this paper, we introduced an approach to embed objects in
a space where every dimension corresponds to a pattern of
verb applicability to those objects. We view such a pattern as
a very broad extension of the classical notion of ”affordance”,
obtained by considering verbs that go well beyond concrete
motor actions, and objects that encompass many different cate-
gories beyond tools or household objects. We showed that this
embedding can be learned from a text corpus and used to rank
verbs by how applicable they would be to a given object. We
used our embedding to predict SPoSE dimensions for objects.
This allowed us to conclude that our ”affordance” embedding
knowledge predicts 1) category information, 2) purpose, and 3)
some structural aspects of the object. SPoSE dimensions to do
with visual appearance were poorly predicted. To go beyond
this, and conclude that our embedding is a valid model for
mental representations of objects – insofar as our interactions
with them go – would require additional experiments. One
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Table 3: Affordance assignment for a selection of SPoSE dimensions mentioned in the text, ordered by how well they can be
predicted from the affordance embedding. The names of SPoSE dimensions are simplified.

Correlation SPoSE dimension Type Affordances (Top Ten Ranked Verbs)

0.84 animal categorical kill, spot, hunt, observe, chase, feed, slaughter, sight, trap, find
0.82 food categorical serve, eat, cook, prepare, taste, consume, add, mix, stir, order
0.75 wearable categorical wear, don, match, knit, sew, fasten, rip, embroider, tear, model
0.71 plant categorical grow, cultivate, plant, add, eat, chop, gather, cut, dry, prune
0.67 made of metal structural fit, invent, manufacture, incorporate, design, position, attach, utilize, carry, install
0.61 tool categorical wield, grab, hold, carry, sharpen, swing, hand, pick, clutch, throw
0.57 can tie functional fasten, tighten, unfasten, undo, attach, thread, tie, secure, loosen, loose
0.54 granulated structural contain, mix, scatter, add, gather, remove, sprinkle, dry, deposit, shovel
0.48 flammable functional light, extinguish, ignite, throw, carry, flash, kindle, place, manufacture, douse
0.47 textured appearance remove, place, hang, tear, stain, spread, weave, clean, drape, wrap
0.44 round appearance grow, cultivate, pick, add, slice, place, eat, chop, throw, plant
0.40 made of wood structural place, remove, carry, incorporate, design, contain, bring, construct, manufacture, find
0.40 container functional empty, fill, carry, place, clean, load, bring, dump, unload, leave
0.38 elongated structural grab, carry, wield, hold, pick, place, throw, hand, bring, drop
0.24 colorful pattern appearance manufacture, buy, design, place, remove, sell, invent, purchase, contain, bring
0.23 craft appearance place, bring, remove, design, hang, call, buy, put, pull, manufacture
0.22 permeable structural fit, incorporate, remove, place, design, manufacture, install, position, clean, attach
0.18 degree of red appearance place, call, add, contain, remove, find, buy, bring, introduce, sell

possibility would be to explicitly ask human subjects ”given
objects that load highly on this embedding dimension, what
can you do with them”, and consider the typicality of verb
answers against the weight given to those verbs by the dimen-
sion. Given that our embedding is based on language data
about which verbs apply to which objects, we would expect
these experiments to give verb loadings coherent with ours.

A future direction of work will be to predict SPoSE di-
mensions that are not well explained in terms of affordance
embeddings. We plan to do this using embeddings produced
with the same framework, but from different co-occurrence
statistics. The first possibility will be to extract instances in
corpora where objects are the subjects of verbs, i.e. they act or
cause certain effects. The second possibility will be to consider
applications of adjectives to objects, given that those may con-
tain information relevant to all 4 types of SPoSE dimensions.
Finally, we will consider reducing visual representations of
objects obtained through deep neural networks to embedding
vectors, as those contain both visual and semantic information.
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Appendix: Hyper-parameter Selection for
Non-negative Matrix Factorization

Denote Mt ,Mv 2 {0,1}n⇥m to be the mask matrices for indi-
cating held-in and held-out entries of the input PPMI matrix P

Figure 4: A zoom-in plot for the reconstruction errors.

in CV procedure, we then optimize for O
⇤ and V

⇤:

O
⇤,V ⇤ = argmin

O,V
kMt � (P�OV

T )k2
F
+bR (O,V ). (5)

To apply the multiplicative update scheme in (Lee & Seung,
2001), we need the partial derivatives with respect to O and V .
Denote F(O,V )⌘ kMt � (P�OV

T )k2
F
+bR (O,V ), we have

—OF(O,V ) = (Mt �OV
T )V � (M�P)V +b ·1

—V F(O,V ) = (Mt �OV
T )T

U� (M�P)T
U +b ·1.

(6)

We then have the following update rules that is guaranteed to
be non-increasing:

O
(i+1) O

(i)� (Mt �P)V (i)

(Mt �O(i)(V (i))T )V (i) +b

V
(i+1) V

(i)� (Mt �P)T
U

(i)

(Mt �O(i)(V (i))T )TU (i) +b
,

(7)

where the fraction here represents elementary-wise division.
For the choice of Mt and Mv, we follow the same approach
as proposed in (Kanagal & Sindhwani, 2010). We first split
the matrix into K blocks, with randomly shuffled rows and
columns. Denote r(k) and c(k) to be the index vectors for rows
and columns respectively, where r(k)

i
= 1 if row i is in block k,

or c(k)
j

= 1 if column j is in block k. The mask for k-th block
can then be expressed as M

(k) = r(k)⌦c(k). We then randomly
select q out of K blocks as holdout blocks, which gives

Mv =
q

Â
s=1

r(ks)⌦c(ks), Mt = 1�Mv, (8)

where ks is the index of selected block. The reconstruction
error E can thus be computed:

E = kMv� (P�O
⇤(V ⇤)T )k2

F
+bR (O⇤,V ⇤). (9)

Figure 4 shows a zoom-in plot of the reconstruction error under
different combinations of d and b. For every (d, b) setting,
we perform multiple optimization since NMF is sensitive to
initialization. We then choose d = 70 and b = 0.3 accordingly.
Empirically, we observe that the rank selection is quite robust
to over-fitting when there is a sufficient sparsity control, for
instance, b> 0.1 in our dataset. We also observe that whenever
d 2 [50,150] and b 2 [0.05,0.5], the results are similar.
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