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Abstract

Physics-based digital twins often require many computations to diagnose current and predict future
damage states in structures. This research proposes a novel iterative global-local method, where the
local numerical model is replaced with a surrogate to simulate cracking quickly on large steel struc-
tures. The iterative global-local method bridges the scales from the operational level of a large steel
structure to that of a cracked component. The linear global domain is efficiently simulated using
static condensation, and the cracked local domain is quickly simulated using the adaptive surrogate
modeling method proposed herein. This work compares solution time and accuracy of the proposed
surrogate iterative global-local method with a reference model, a submodeling model, and an itera-
tive global-local method with no surrogate model for the local domain. It is found that the surrogate
iterative global-local method gives the fastest solution time with comparatively accurate results.

Keywords: surrogate, global/local, digital twin, crack

1 Introduction

With current computational mechanics technol-
ogy, physics-based digital twins can diagnose and
predict crack damage in structures. However, tech-
niques to infer such information require the explo-
ration of many crack state possibilities, which
is computationally expensive. This research pro-
poses a surrogate iterative global-local method to
quickly simulate many instances of a stationary
crack on a large steel structure.

This research uses a miter gate problem as
its case study, as shown in Fig. 1, although the
developed approach is easily applicable to other
structures. Miter gates are critical components of
river navigation that swing open and shut to allow
boat passage through a navigation lock chamber.
When closed, miter gates act as damming sur-
faces, allowing the water in the lock chamber to
rise or fall. These two processes combined allow
the lock chamber to act as a boat elevator, allow-
ing boats to bypass dams and their accompanying
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water level differences. Some of the most impor-
tant structural parts of the gates are submerged
during operation, making visual inspection diffi-
cult, leaving an information gap that digital twin
technology aims to fill. This paper describes the
miter gate example problem more fully in Section
3.

Fig. 1: An open miter gate.

The main problem in simulating large steel
structural performance (e.g. miter gate in Fig. 1)
with component-scale cracks is the separation in
length scales. Miter gate structures may be tens
of meters tall and wide, but their (possibly sta-
ble) cracks may be as long as a few cm. Thus the
structure and crack features are two orders of mag-
nitude different in scale, complicating numerical
model discretization and increasing computational
cost. In the miter gate numerical model, a small
solid cracked part (local region) is tied to a pris-
tine shell structure (global region) in Abaqus.
A fully-coupled at-scale simulation must include
the global region’s behavior to find crack effects,
greatly adding to the computational burden of the
digital twin.

Zooming or submodeling can be used to sep-
arate the cracked portion of the structure from
the pristine portion for reduced computational
cost. The submodeling method transfers the global
region solution to the shared boundary with the

local region. This is computationally cheap and
built into several commercial softwares including
Ansys and Abaqus, but it fundamentally relies
on Saint-Venant’s principle, which states the dif-
ference between the effects of two different but
statically equivalent loads becomes very small at
sufficiently large distances from load. It will be
shown that this principle does not hold for the
miter gate example.

A generalization of the submodeling method is
the iterative global-local (IGL) method (Allix and
Gosselet 2020). The IGL method provides a mech-
anism to obtain much more accurate solutions
than submodeling via a similar numerical strat-
egy: the global gate’s displacements are imposed
on the local model boundary. Then a feedback
loop finds the local boundary reaction, compares
it to the global boundary traction, and applies the
calculated immersed surface force to a new global
computational job. Iterations can be performed
until the solution is sufficiently accurate. The basic
process is shown in Fig. 2. The IGL method con-
verges to the reference combined problem given
enough iterations. Thus the IGL method can be
viewed as a bridge between the submodeling and
tying methods, providing increased accuracy over
submodeling at the expense of increased compu-
tational cost over submodeling.

* Define feature of interest

* Create global/local models

*  Global static condensation
Map global/local boundaries

|

| Solve global model

Model setup

|‘indate traction

| Solve local model |

Update
residual

Meets residual
threshold?

Extract SIF values from local
solution

Post-Analysis

Fig. 2: Tterative global local overview.
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Previous IGL method work has looked at non-
intrusively enhancing solid domains with XFEM
cracks using XFEM/GFEM (Duarte et al. 2001)
(Moes et al. 1999) (Fillmore and Duarte 2018)
(Gupta et al. 2012). However, those methods
each encountered limitations not affecting the IGL
method. XFEM/GFEM crack modeling requires
less particular local mesh refinement than quarter
node elements (Duarte et al. 2001) (Moes et al.
1999) (Henshell and Shaw 1975) (Barsoum 1976),
and therefore it is used in this work. Addition-
ally, the IGL method has been used successfully to
simulate nonlinearities in the local domain with a
linear global domain (Gendre et al. 2009).

The IGL method can be described as non-
intrusive because of the ease with which research
software may be combined with commercial soft-
ware. This allows synergy between the robustness
and broad applicability of the commercial software
and the specificity of the research software. Also,
the nonlinear case clearly lends itself to speed
increases since Newton-Raphson iterations may
be performed locally, reducing the problem size
dramatically. Within the context of large struc-
tures typically modeled as shells, the IGL method
has been successfully used to connect shell global
domains to solid local domains with welds (Li
et al. 2021a). The IGL method has also been
used to tie a shell aircraft geometry to a shell
local domain with a sub-local solid domain tied
into the local domain (Guinard et al. 2018). This
paper describes the IGL methodology in Section
2. Finally, an alternative method to IGL for crack
representation (i.e. a multigrid XFEM method) is
proposed in (Passieux et al. 2013).

The local cracked region in the miter gate
will be modeled linearly using XFEM/GFEM, so
the speed advantages of quarantining nonlinear
regions to the local domain cannot be exploited.
Therefore, the IGL method cannot be assumed
to be faster than the reference tying method. To
accelerate the local domain solution, this research
proposes the novel modeling the IGL local domain
using a surrogate model rather than a physics-
based model. The surrogate model is trained on
the local physics-based (crack) numerical results
(not necessarily from a linear analysis). This sur-
rogate model may then be used within the IGL
framework to dramatically reduce local domain
solution time. In fact, the non-intrusive nature

of the IGL method (Allix and Gosselet 2020)
(Gendre et al. 2009) (Gendre et al. 2011) (Gos-
selet et al. 2018) (Li et al. 2021a) facilitates easy
implementation of the surrogate model.

Surrogate models, such as a Kriging method
(Hu and Mahadevan 2016, Li et al. 2021b), neu-
ral networks (Li et al. 2017), and deep learning
approaches (Chen et al. 2020), have been exten-
sively studied in structural analysis and design
optimization to reduce the required computational
effort, especially in the presence of uncertainty
(Hu and Mahadevan 2017, Zhang, J. and Taflani-
dis , A.A. 2019). Various approaches have been
proposed in the past decade to build an efficient
yet accurate surrogate model (Li et al. 2021a,
Sadoughi et al. 2018, Viana et al. 2021). Some mul-
tiscale frameworks simulate material-scale dam-
age by using a surrogate model handle material
properties and damage information (Yan et al.
2020)(El Said and Hallett 2018). To the best of
our knowledge, however, surrogate modeling in an
IGL framework has not been reported. This paper
describes a surrogate-based IGL methodology in
Section 4 to fill this void.

Accelerating global domain linear solutions is
somewhat easier using static condensation. Inter-
actions between sub-regions to solve the aggregate
problem can be accelerated using static condensa-
tion (Bjorstad and Widlund 1986) (Gendre et al.
2009) (Wyart et al. 2008). Within the IGL frame-
work, this research utilizes static condensation to
accelerate solution of the linear global problem, as
discussed in Section 2.4. The use of a surrogate
model for the local domain and static condensa-
tion for the global domain results will be referred
to as the surrogate iterative global-local (SIGL)
method for the rest of this paper. SIGL has trivial
computational time for each IGL method iter-
ation, making the IGL method extremely fast,
relatively speaking. The basic SIGL process is
shown in Fig. 3

Four possible techniques have been mentioned
to solve a problem in the class posed within this
work: 1) reference tying method, 2) submodeling
method, 3) IGL method, and 4) a proposed sur-
rogate IGL method. The accuracy and speed of
each of these approaches are shown and discussed
in Section 5.

The remainder of this paper is organized as
follows: Section 2 presents the reference tying,
submodeling method, and the IGL algorithm.
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Fig. 3: Surrogate iterative global local overview

Using the miter gate problem given in Section 3
as an example, Section 4 presents the proposed
surrogate model-based IGL framework. Results
comparing the different modeling methods is pre-
sented and discussed in Section 5. Section 6 gives
the conclusions.

2 Modeling methodologies

2.1 Reference problem (shell-solid
tying)

The reference problem to be solved is a shell geom-
etry tied to a small solid geometry with a feature
of interest and boundary conditions, as shown in
Fig. 4. Large steel structures will have much larger
shell domain Qgg compared to the solid domain
Qg. Also, body loads may be included although
they are not shown in the figure. Commercial soft-
ware such as Abaqus provide the tools to solve
this problem for many different features of inter-
est, including cracks. The tying method couples a
solid surface to a shell edge where the shell normal
is perpendicular to the solid surface normal. The

constraints couple the displacement and rotation
of each shell node to the average displacement and
rotation of the solid surface near the shell node
(Abaqus 2021).

2.2 Submodeling methodology

The submodeling method has a coarsely dis-
cretized global domain Qs and a finely discretized
local domain Qpsy U Qps = Qp containing the
feature of interest within 2pg as shown in Fig.
5. The displacements and rotations are solved for
in the global domain and then the displacements
and rotations along I'gp_g are applied to the
local domain along I'gr_r. The solution of the
local domain reflects the effects of the feature of
interest. Due to the lack of any feedback mecha-
nism to the global domain, this solution tends to
underestimate the effects of the feature of inter-
est and may not be sufficiently accurate. However,
the numerical solution time is likely faster than
the reference problem. If it is assumed that the
number of flops is on the order of the number of
degrees of freedom cubed f,..r = O(n®) due to
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Fig. 4: Reference problem with shell domain
Qsp, solid domain Qg, shell-to-solid tied bound-
ary I'gy, feature of interest, Neumann boundary
condition I'y, and Dirichlet boundary condition
I'p

factorization, then dividing n into n ~ ng + nr,
gives the submodeling number of flops as fsup =
O(nsc) + O(n?). Therefore fref > fsub-

As shown in Figure 5, the local domain Qf,
is subdivided into a solid local domain Qg with
the feature of interest and a shell local domain
Qrsy to act as a buffer zone between the global
discretization and local discretization. The two
subdomains are tied along their shared bound-
ary I'sgy using built-in Abaqus shell-to-solid tie
constraints.

2.3 Iterative global-local
methodology

The IGL method is a generalization of the zoom-
ing/submodeling method which incorporates a
feedback loop into the global domain. This feed-
back loop improves accuracy but increases com-
putational cost. The IGL method utilizes a local
domain with local features of interest and fine
discretization along with a global domain with
a coarse discretization. The corresponding prob-
lem to Fig. 5 is shown in Fig. 6. The bound-
ary between the global and local domains T'gp,

Feature

e
Displacements and rotations interest
p—

Fig. 5: Submodeling problem with global domain
Qg, local shell domain Qgg, local solid domain
Qg, shell-to-solid tied boundary I'sy, feature
of interest, Neumann boundary condition I'y,
Dirichlet boundary condition I'p, global-local
boundary 'y, and local Dirichlet boundary con-
dition I'qr_1,

facilitates exchange of displacement and reaction
forces between the global and local problems. Note
that the local domain utilizes the technique in
(Guinard et al. 2018) to facilitate shells in the
global region and solids in the local region near
the feature of interest.

The IGL algorithm is given in Algorithm 1
where p; is immersed surface force at I'cr-g,
wj is relaxation parameter that accelerates con-

G

vergence, u; is global displacement at I'cr—c,

/\f is local reaction at I'gr_r, and AJL is the
auxiliary reaction at I'grp_a shown in Fig. 7.
Algorithm 1 expounds upon the values exchanged
between Qg and €1p. It is generally accepted that
Aitken’s Delta-Squared method provides robust
convergence for this algorithm (Allix and Gosselet
2020)(Duval et al. 2016)(Gosselet et al. 2018)(Liu
et al. 2014).

This algorithm shows that part of the first
iteration of IGL constitutes the zooming/submod-
eling method. To compare accuracy between the
two and the reference solution, values specific to
the feature of interest will be used, specifically for
cracks stress intensity factors (SIF).

For a linear problem IGL may be faster than
the reference problem under ideal conditions, e.g.
the commercial software can save the factorized
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Displacements and rotations

r; along 'gr,
G added to Dj—1

Fig. 6: Iterative global-local algorithm illustrated
using Qg, Qrsmy, Qrg, feature of interest, I'y,
Dirichlet boundary condition I'p, I'¢r—¢, g1,
and I'sy. The top large arrow denotes appli-
cation of displacements and rotations from the
global solution to the local problem. The bottom
large arrow denotes the application of the resid-
ual between a) the local solution reaction forces
and moments and b) the global traction forces and
moments to the global problem. This process is
repeated until convergence is reached.

matrix. The speed increase depends on the num-
ber of iterations ¢ and ng, nr, and n. Considering
factorization and forward and backward substi-
tution since it may be significant for iterations
within IGL, fiar = O(n} + ng, + i x (n3 + nZ).
Directly comparing this with the tying method
frer = O((np, + ng)® + (nr + ng)?) one can
see the rather precarious situations under which
IGL may be faster than the tying method. Now,
assume that these estimates on the order of solu-
tion perfectly represent solution time. We take
that IGL solution time must be less than the tying,
n3 +ng+ix (n2 +nZ) <ni+3ning+3npnd +
n‘é +n2 +2npng + n%; Solving this for ¢ gives

3n2Ln§ + 3721Ln2G ey (1)
ny +ng

If either ny or ng is much greater than the
other, ¢ < 4 for faster IGL solution of the system
of equations. If n; approaches 0 (local problem
disappears) ¢ < 1. This motivates the numeri-
cal context within which IGL is useful: the global
domain is so large that the local domain likely
requires immense detail for the feature of inter-
est. Now, the global maximum for m is along the

Algorithm 1 Iterative global-local fixed point
iteration algorithm with Aitken’s delta-squared
method (Gosselet et al. 2018)

1: procedure IGL(tolerance,m,fG,fL) > ¢ and
£~ are glob. and loc. load vectors

2 Arbitrary initialization py

3 Arbitrary initialization wg ~ 1.0

4 for j €[0,...,m] do

5: uJG = SolveGlobal(p,; <)

6 AJL = SolveLocal(u§’; )

7 /\JGA = SolveAux(uJG; 4

8: r;, =— (Af + pj - )\?A)
9: ej = Tjoo

10: if e; < tolerance then
11: exit for loop

12: end if

13: Pjy1 =P; t7r;

) . 2. ) . ri_1(r;—rj_1)
1 Alt. A% wip = —w; (Tj*JTj—l)J'(TjJ*Tj—l)
15: Pjt1 = wj+1Pjp1 + (1 —wjt1) Py
16: end for

17: end procedure

line n;, = ng which gives ¢ < 6ny, 4+ 1 iterations.
Now this is not exact arithmetic on the time to
solution of the system, but demonstrates the likely
speed advantage of IGL for linear problems. In this
research such ideal conditions are achieved using
static condensation, which has the added benefit
of reducing the degrees of freedom in the solve for
the global system of equations.

Displacements and rotations

Fig. 7: Iterative global-local algorithm auxiliary
domain Qg4 used for the calculation of global
traction



Springer Nature 2021 ETEX template

A Surrogate Model to Accelerate Non-intrusive Global-Local Simulations of Cracked Steel Structures 7

2.4 Static condensation of global
domain in IGL method

The IGL algorithm provides clear computational
benefits with localized nonlinearity, since Newton-
Raphson iterations need to be performed on only
the much smaller local domain. However, this
research shows that the IGL method may be much
slower than the tying method in a linear local
problem. In this research the XFEM crack local
problem is linear and computationally expensive,
which makes IGL possibly slower than the tying
method. In an attempt to accelerate the IGL
method, static condensation can be applied to
both the global and local stiffness matrices since
both are linear. Statically condensing Qg requires
leaving the degrees of freedom at the nodes along
I'¢r uncondensed. Then global Neumann bound-
ary conditions can be applied at those degrees
of freedom as well as the immersed surface force
at each iteration p;. Then, the global displace-
ment along I'cy, (ujG) is obtained directly from the
condensed matrix.

In the example problem presented in this
research, there may be damage in one boundary
condition region. When damage is not present, a
pin boundary condition is applied; when damage
is present, the pin boundary condition is removed.
This is compatible with static condensation by
leaving all nodes along the boundary condition
uncondensed and applying the pins on the static
condensation system of equations.

While static condensation demands a large
upfront cost, the speed improvement comes with
the many IGL iterations performed over the many
permutations of a Monte Carlo analysis or training
process. However, applying static condensation to
the local domain stiffness matrix has some caveats.
First, the used commercial software does not sup-
port static condensation with XFEM, although it
is theoretically possible. Second, a unique static
condensation must be computed for each crack
length, which may be faster than the reference
solution.

Since the static condensation of a global stiff-
ness matrix can consider different load cases and
levels of damage along the boundary condition,
only one global static condensation step is nec-
essary per local domain. Then the same reduced
stiffness matrix can be used over the permutations
of load cases, damaged boundary condition, and

IGL iterations. Thereby the static condensation
of the FEM discretization of the global domain
saves computational cost. However, it is shown in
Section 5 that the IGL solution of a problem with
only one permutation of the load cases and dam-
aged boundary conditions saves computational
effort.

3 Problem definition:
application to a miter gate

3.1 Miter gate operation, load state,
and feature of interest

Miter gates are navigational hydraulic steel struc-
tures critical to river traffic. They function as boat
“elevators” that allow boats to bypass dams and
navigate up or down river. Figure 8 shows how
miter gates open and close. The gudgeon and pin-
tle (seen in Fig. 9) form a hinge about which
the gate rotates. More detailed information about
pintle behavior can be found in (Fillmore and
Smith 2021). When open, boats can enter or leave
the lock chamber. When closed, the lock chamber
can be filled or emptied (on the upstream side)
while the miter gate acts as a damming surface.
The resulting hydrostatic pressure pushes the two
leaves together along their miter and pushes each
leaf into the wall along the quoin. More detailed
information about quoin behavior can be found in
(Eick et al. 2019).

Miter
Upstream
=]
2
SN Miter e
0se
Downstream 5/

Goudgeon

Fig. 8: Miter gate top view with swinging motion

Miter gates’ largest cyclic loads are from
the filling and emptying of lock chambers as
boats are lifted or lowered. The resulting cyclic
stresses contribute to fatigue cracking. Miter gates
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are welded structures, so the heat-affected zones
greatly accentuate the cyclic stresses. However,
in this example, a region of the leaf is selected
that naturally experiences tension to reduce com-
plexity resulting from weld residual stresses. This
portion of the leaf is near the bottom center. If
each leaf is viewed as a beam (Fig. 8) with dis-
tributed load, the greatest tension in the leaf will
occur on the downstream side at the middle of the
leaf.

—= '1

;?ﬁaéﬁﬁgl_-m;-ﬂ—.l.
Fig. 9: Miter gate downstream side view. Photo-
graph courtesy of John Cheek, USACE.

A finite element model representing the
Greenup downstream miter gate is shown in Fig.
10. The boundary conditions of the miter gate are
set up to simulate the in-situ environment of a
hanging gate. The miter gate rotates around the
axis created by the anchorage pin and pintle as
shown in Fig. 8. The pintle, a ball and socket joint,
takes all of the vertical gravity load. The pintle
is represented by applying a multi-point constrant
(MPC) from the center of the ball to the portions
of the horizontal girder with which the socket con-
nects. Then, the center of the ball is restrained
from translating in the x, y, and z-directions. The
anchorage links are embedded in concrete at the
top of the gate. This is represented by restraining
translation in the z, y, and z-directions.

Gudgeon
anchorage

' Il
=+
===

gy /AHE:

Miter

drostatic pressure

Crack
Fig. 10: Miter gate boundary conditions

\ -
% Pintle

The strut pin is attached to a strut arm that
opens and closes the gate. The strut pin can rotate
around the z-axis. When the gate is closed, the
strut arm applies resistance at —43° from the neg-
ative z-direction on the gate. The strut pin is
modeled by applying an MPC from the top of the
strut pin to the enveloping top lug and a sepa-
rate MPC from the bottom of the strut pin to the
enveloping bottom lug., Then the center of the
strut pin is restrained from translating —43° from
the negative z-direction.

Hydrostatic pressure is applied on the
upstream plate of the gate, called the skin plate as
shown in Fig. 11. The upstream hydrostatic pres-
sure is denoted h,, and the downstream hydro-
static pressure is denoted hgown. When the gate
holds enough water in the lock chamber, the miter
contact block of both gate leaves come into contact
and a symmetric pin is assumed preventing trans-
lational movement —18° from the x-direction. The
two gate leaves act as an arch, experiencing more
axial compression under more hydraulic head.
This compression causes the gate to thrust in the
lock wall contact block. The wall resists horizon-
tal movement in the z and y-directions, which
is represented in the model with pins that resist
translation in the z and y-directions.

The contact of the quoin contact block with
the wall is idealized using pin boundary conditions
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Upstream
hydrostatic
pressure h.,y

Downstream
hydrostatic
pressure hgown

Fig. 11: Miter gate hydrostatic pressure from
upstream and downstream water levels

as shown in Fig. 12. Often, the bottom portion
of the quoin becomes damaged so that it cannot
properly contact the wall. This lack of contact
is idealized by not applying the pin boundary
conditions. The length of this damaged region is
denoted lgmg-

Figure 13 shows the reference discretization
with a zoom-in of the crack region. The shell
elements used over much of the gate are reduced-
integration quadrilaterals with element size six
inches. Where the crack is defined linear hexahe-
dral elements are used with element size 0.0625 in.
The mesh discretization has 201, 463 elements and
211,372 nodes. The IGL discretization is effec-
tively identical to the reference, with an identical
mesh discretization in Qg and Q.

Figure 13 also shows the location of the crack
used for this example. The crack occurs along the
bottom web edge of the second from bottom girder
as shown in Fig. 13. The crack has a straight front,
extending through the entire 3/4 in thickness of
the plate. The crack length is variable, but the
largest possible length through the web bottom is
4 in.

Miter gates are fabricated by welding mild
steel plates together. The local weld geometries

Aviih vl vil vl v

Idealized geometry

Damaged geometry

ldmg

(
Fig. 12: Damage in the quoin contact block

are ignored in this research. A linear material
model is used with the Young’s modulus as F =
29,000 ksi and the Poisson ratio as 0.3.

Figure 14, Figure 15, Figure 16, and Figure
17 help clarify how IGL is used in this example.
Figure 14 shows the global domain along with
the immersed surface force p; resulting from the
IGL algorithm. The global domain does not con-
tain the crack and is only coarsely discretized
in the crack’s coordinates Qg 4. Outside of Qga,
the global domain’s geometry and discretization
matches up exactly with the reference model.

The feature of interest is the crack, which is
only explicitly represented in the local model in
Fig. 15. The geometry and discretization of the
shell domain Qrgsy and the solid domain Qg line
up exactly with the reference model in the cor-
responding region. Also, the nodes of the FEM
global mesh along I';, line up with the nodes of
the FEM local mesh along 'y, _ 1, exactly. Because
shell elements are used, such matching meshes
along the 1-dimensional interface are easy to pro-
duce in Abaqus. Displacements and rotations from
the global model at the IGL step are applied along
I'er—r.

Figure 16 shows the global auxiliary domain.
This domain matches the Qg4 in Fig. 16 exactly,
i.e. there is no crack and has the same mesh dis-
cretization. When the displacements and rotations
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Fig. 13: Mesh discretization of reference miter
gate model

from the global solution are applied along 'y,
this domain helps to calculate the reaction forces
of Qaa easily, particularly when sophisticated
post-processing capabilities are not available.
The IGL fixed point iteration algorithm with
Aitken’s Delta-Squared method is shown in the
context of the cracked miter gate in Fig. 17. The
boundary conditions for the global domain include
damaged gap length lg;,4, and upstream h,, and
downstream hgo,, water heights that result in
fG. The local domain has a certain crack length

==

=

=]

)
(

2§76
I e NG
||| RS

si=== g

=

i

{
[

Fig. 14: IGL global miter gate model with zoom-
in of area of interest. No crack is included in the
area of interest, but the shown purple arrows along
boundary I'gy are the p; forces that relay the
effects to the global model.

a. For the first iteration of IGL or the submodel-
ing method, p; = 0. The resulting displacements
and rotations along I';, are applied to the local
and auxiliary global models. These models give
the local reactions and global reactions respec-
tively. The residual between them is found. The
local model and global auxiliary model also have
the displacements from the global model solution
uJG applied along T'¢r .
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Fig. 15: Local miter gate model with contour
integral crack representation. The crack is located
in the solid subdomain g. The global displace-
ment solution ujG is applied along the global-local
boundary I'qp,.

uf applied E

along '™

g

Fig. 16: Global auxiliary miter gate model. The

global displacement solution uJG is applied along

the global-local boundary 'y

3.2 Calculating the stress intensity
factor

The stress intensity factor is calculated using
built-in Abaqus technology. There are 13 nodes
through the thickness of the cracked plate, and
through the rest of this paper the middle node will
be considered. Four contours are generated per
node, and the first SIF mode, K7, is recorded. The
Abaqus default contour integral method, the line
integral method is used. In order to measure error
of the methods considered in this research, the SIF
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-,

Fig. 17: Illustrated IGL fixed point iteration algo-
rithm with Aitken’s Delta-Squared method for
miter gate with global, local, and global auxiliary
mesh discretizations. The global domain has lgy,,,
hup, and hgown parameters. The local domain has
parameter a.

relative error with the reference solution is calcu-
lated as ex = W, where Ki_yf is
the SIF value extracted from the reference model

and Kl—IGL is from IGL.

4 Surrogate iterative
global-local methodology

The aforementioned IGL algorithm is compu-
tationally expensive for probabilistic analysis
(e.g. reliability analysis, uncertainty quantifica-
tion, model updating), since the model needs to
be executed thousands of times. A straightforward
way to overcome the computational challenge of
the IGL method is to directly build a surrogate
model for the IGL model as a whole by treating
the model as a black box. The direct surrogate
modeling method, however, has the following three
major drawbacks:

1. Whenever there is a change in the global model,
the original surrogate model will become inap-
plicable and needs to to be retrained;

2. As a purely data-driven approach, the direct
surrogate modeling method does not preserve
the physical information in the global model;

3. The training time is much longer. Generating
training samples for the direct surrogate mod-
eling method requires full runs of the IGL,
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which itself requires a number of iterations to
converge.

This section proposes a hybrid surrogate mod-
eling method to tackle the computational chal-
lenge in the IGL method and overcome the limi-
tations of the direct surrogate modeling method.
In the proposed method, the FE process of
global domain is kept to capture the physi-
cal response of the global domain under several
boundary conditions, while the non-linear behav-
ior of the local domain is modeled using Gaus-
sian Process Regression (GPR)(Santner and et al
2003)(Williams and Rasmussen 2006). As for this
paper, the GP package from scikit-learn is used
to build the surrogate models (Pedregosa and
et al 2011). Because that the local FEM process
was used repeated in IGL iterations, the perfor-
mance of the surrogate model must be carefully
calibrated without introducing additional system
error. The proposed method consists of two main
steps, namely (1) surrogate modeling and refine-
ment in the local domain; and (2) integration of
physics-based global model and data-driven local
model for IGL implementation. In what follows,
more details are provided about the proposed
surrogate-based iterative global-local methodol-

ogy.

4.1 Surrogate modeling in the local
domain

As shown in Fig. 17, the input of the local-domain
FE model consists of the displacements u® from
the global model solution and given crack length
a imposed to the local domain. The output, corre-
spondingly, is composed of the reaction forces AE
from the local model solution. The goal of surro-
gate modeling in the local domain is to efficiently
map u® and a to AE using surrogates without
solving the computationally expensive local FE
model repeatedly.

4.1.1 Training data collection

The local boundary condition solved from the
global model is dominated by the hydrostatic pres-
sure and the quoin block damage. Meanwhile,
the crack length determines the corresponding
response from the local model. Overall, the physics
of the whole structural system in this case is
affected by four parameters, i.e., hup, Rdown; lamg,

and a. Different combinations of such parame-
ters induce different physical behaviors of local
model, leading to input-output (IO) relations for
the surrogate models. Directly building and train-
ing surrogate models can be time-intensive as
such high-dimensional space is hard to be suffi-
ciently sampled. To overcome this challenge, we
first generate N samples in the 4-D space con-
structed by hup, Rdown, lamg, and a using the
Latin hyper-cube sampling method. In this study,
400 samples are firstly generated with As shown
in Fig. 18, assume that the IGL algorithm needs
n; iterations to converge for the i-th sample,
Vi = 1, 2, ---, N. The intermediate train-
ing data can be denoted as u$ € R(ixMpor)
and )\iL € R(ixMpor) where Mpop is the total
DOFs of the local boundary I'gr. In this exam-
ple, 200 samples are generated with the parameter
ranges as: hyy, ~ [432,720]in, haown ~ [120, 360]in,
lamg ~ [0,150]in, and a ~ [0.5,4]in, where [Ib, ub]
represents variation lower bound [b and upper
bound wub.

Let the total number of (%\z[auta collected for w
and A* be Np (i.e. Ny = > n;), we then have
training data from the IV sirlmhations as

G

X = (u%,a)
= [(u?,m),(ug,ag),...,(uﬁT,aNT)] 9
c R(NTX(]\/IDOF+1))’ ( )

Y = AL = [AE AL AL ] e R x<Mpor)

where Mpor is the total DOF's of the local bound-
ary I'gr. Note that the data are organized in
rows, i.e., the total number of rows represents the
length of the data and the total number of columns
represents the dimension of the data.

4.1.2 Data compression and latent
space representation

In general, as the input dimension of the surro-
gate model increases, the training data required
to fully characterize the IO relationship grows
exponentially. According to the collected train-
ing data in the case of miter gate, the local
boundary T'gr contains 120 x 6 DOFs (Mpor
= 720) resulting in a 721-dimensional input and
a 720-dimensional output. The high-dimensional
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Fig. 18: Collecting u®, A, and SIF training
data from the physics model.

input and output make the construction of accu-
rate surrogate models in the local domain very
challenging. Thus, instead of directly building sur-
rogate models for u“ and AE , dimension reduction
method is necessary to map the IO relationship
into a low-dimensional latent space. Numerous
contributions have been made to compress dataset
from higher dimensional matrix to lower dimen-
sional matrix with various dimension reduction
techniques, such as singular value decomposition,
independent component analysis, auto-encoder,
etc. (Fodor 2002, Vega et al. 2021). Considering
its computational cost as well as stability, SVD
is adopted in this paper. However, compression
in the developed approach is not limited to SVD,
but can be accomplished with other dimension
reduction techniques as well.

In SVD, the data collected in Eq. (2) is decom-
posed as
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u® =w,E, VL

A= WLE,\VY, ©)
where W, W, € RWrxNr) and vI v{ ¢
R(MporxMpor)are orthogonal matrices, and
E, E, € RWNtxMpor) are rectangular diagonal
matrices. Note that the crack length in the input
data is not compressed with the whole matrix due
to its significance.

’
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Fig. 19: Dimension reduction strategy of the pro-
posed method compared with 10 of FEM local
model.

After the decomposition given in Eq. (3), a
low-rank matrix approximation can be further
determined, namely

/L ~ (4)

where E, € RVNTXNY) and E, € RVT*N) are
the same matrices as E,, E) except that they
contain only N and Nj largest singular values,
respectively (the other singular values are replaced
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by zero). Figure 20 illustrates how the impor-
tant features of the data can be represented by a
low-rank matrix from the SVD.

[0]
1 1 2
gO.S 0.995 g
C
S 0.99 (13;
©0.6 >
3 —e—Accumulated weight 5
S S . 0.985 2
= —e—Inidividual weight =]
204 2
8 098 ©
3 kS
502 0.975 <—§
3
0 097 o
0 5 10 15 <

Rank
Fig. 20: Illustration of the importance values of
different features in the matrix represented by the
singular values.

As shown in Fig. 19, the corresponding
reduced-order the displacement and reaction
force, denoted w'¢ and X', can be represented
by truncating the orthogonal matrices W, Wy
based on their ranks,

W, € RVTNT) ! e RINTXNL) /G

W, e R(NTXNT) _ W’)\ c R(NTxN;) - )\/L7

(5)

where N, and Ny are the dimensions of ©/'¢ and
X1 after reduction. The decoders and encoders
are defined as the matrices that allows the data
to transform between low-dimensional and high-
dimensional spaces through matrix multiplication.
Written explicitly,

Decodery = E',\V'f,
Encoder,, = (E'uV/Z)T7

u® = u'% x Decoder,,, (©)
L _ /L

A7 = X" x Decodery,

w'% = u% x Encoder,,,

A=A x Encodery,

where (E'UV'Z)T is the (Moore-Penrose)

pseudo inverse (Moore 1920) of E', V'L, which
extends matrices inversion to non-square matri-
ces (the decoders are non-square matrices in most
cases).

The latent space of the surrogate model now

can be presented as

X/ — H/G
= [(ullGaal)a(UIQGaa2)7--~7<u§\§T7aNT)] 7
¢ ROVEX(N+1)) (7)

Y/ — AIL _ [AllL A/2L A/]\L/'/ ] c R(NTXN;\)
A ) PRAAS T .

In this example, the 720-DOF displacement
vector u is compressed into a 4-dimensional vec-
tor (N, = 4), which forms a 5-dimensional input
combining with crack length parameter in the
latent space. Similarly, the 720-DOF reaction force
AL s compressed into a 4-dimensional output
(Ny = 4) in latent space. The GPR-based sur-
rogate models are then built and trained in the
designed latent space with training samples X'
and Y’. Since Y’ € RWNTxN))  GPR surrogate
models are constructed for each dimension of Y’
as follows

Y/ =Gi(X),i=1, ..., N}, (8)

where Gy(-),Vi =1, ..., N} is the i-th GPR sur-
rogate model. Note that the surrogate modeling
in this paper is not limited to GPR. Because GPR
can be computationally inefficient when handling
high-dimensional data, the GPR can be replaced
by a neural network architecture or other deep
learning methods in a case that low-dimensional
data can not be accurately generated.

For any given value of X', we have the pre-
diction from the i-th GPR surrogate model as
follows

Gi(X') ~ N(py,, 0y.),Vi=1, ..., N\ (9)
in which N(-) is Gaussian distribution, pty, and oy;
are respectively the mean and standard deviation
of the prediction.

Due to the imbalance of the initial training
data collected in Sec. 4.1.1, the GPR surrogate
models given in Eq. (8) may not accurately rep-
resent the original local-domain FE model. Using
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the GPR surrogate models to replace the original
local-domain model in the global-local iterative
scheme will lead to large prediction errors due to
error accumulation over iterations. To overcome
this issue in surrogate model-based IGL algorithm,
we present a framework to refine the local-domain
surrogate models in the subsequent section.

4.2 Refinement of local-domain
surrogate models

An important issue in surrogate modeling is how
to achieve a good accuracy with a reasonable num-
ber of sample points in the latent space. Due to
the error accumulation over iterations as men-
tioned above, the performance of the surrogate
model that replaces the FE process must be care-
fully calibrated in order to avoid additional system
error. As an example shown in Fig. 21, an input
that locates in the area with sufficient training
points (i.e., well-trained area) will result a low
model error when passing the GPR model, while
poor-trained area will result a high model error.

Poor-trained region

High model error

Model Error

Well-trained region
X1

Fig. 21: Model error from differently trained
regions.

Three sequential sampling approaches, i.e., the
Maximin approach, Variance Minimization (VM)
method, and the Voronoi method are proposed to
identify the sample points that need to be trained
in the latent space. The goal of this section is
to adaptively identify new training points x* in
the input space, utilizing the information obtained
from the existing input space Xc.

4.2.1 Global refinement

The global refinement is defined as a strategy
which adds essential points based on current well-
trained region to extend the cover range of the
latent space. In this case, the Maxmin approach
(Jin et al. 2002) is adopted which adaptively
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determines new training points by maximizing the
minimum distance between the new point and all
current available training points

dnew = maz{min]||d — d"||2]}, (10)

where d,q,, is the identified location of the new
training point x*, d* denotes all current available
training points, and |||z is the l3-norm of a vector.
By using this method, a larger training space of
the design domain can be evenly sampled with
training points.

4.2.2 Local refinement

The local refinement is defined as a strategy
which optimizes the training space by further
sampling the regions with the largest prediction
error. Given the different definitions of “prediction
error”, two local refine strategies are developed. In
VM method, the new training point in each itera-
tion is selected by minimizing the maximum mean
square error (MSE) or prediction variance as

dpew = maz{MSE(d)}, (11)

where MSE(-) is the prediction variance of the
surrogate model. The VM methods can effec-
tively construct a global surrogate model when
the variation of the response is similar across the
design domain. However, VM is limited to the
GP-based surrogate modeling method because it
requires additional information from model out-
puts. Besides, when the underlying black box
function is highly nonlinear in only certain design
regions, the VM methods become inefficient (Hu
and Mourelatos 2018).

We then further proposed Voronoi method,
serving as an alternative to the VM method.
The Voronoi method finds the most sensitive
Voronoi cell to sample more points in this region.
Such sensitive region when removed, the predicted
response constructed by the rest of existing points
will be far away from the actual response (Xu et al.
2014).

As shown in Fig. 22, the design space is par-
titioned into N¢ Voronoi cells in each iteration,
where N¢ is the number of training data at
current iteration, as follows

Q= U R; (12)
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where R; is the domain of the i — th cell defined
as below

Ri= n d}{:z:eX,||x—diH2§||x—dj||2},

d;eD/

(13)
in which D/d; represents the training data exclud-
ing d;.

From the N¢ Voronoi cells, the most important
cell is identified in each iteration as follows

? ie{f}%@c}{%oo} (14)

where €}, is the leave-one-out (LOO) prediction
bias given by

€00 = [£(d) = Goja, @), (1)

in which f(d;) represent the true response of the
training data d; and Gp /d,(d;) is the prediction
of a GPR model trained using training data D
excluding d;.

After the important cell (i.e. ¢*) is determined,
the new training input is identified in that cell by
maximizing the distance between the new training
data and the current training data (i.e. d;«) as
follows

x* = argmax{||x — d;

XER;*

2 (16)
where R; is the Voronoi cell defined in Eq. (13).

Once the new training point is added, the
design space is then re-partitioned into Ngo + 1
Voronoi cells in the next iteration as illustrated in
Fig. 22. Voronoi method takes use of the informa-
tion from the existing surrogate models and are
not limited to the GP-based surrogate modeling
method.

The overall process of combining global refine
and local refine from initial surrogate modeling
to well-trained model is shown in Fig. 23. The
input space of the GPR is sufficiently sampled
by adaptively identifying new training points in
the poor-trained region, which improves the sur-
rogate performance without filling the training
space blindly. Denoting all the identified new sam-
ple point in the input space as ®jew, to form
a complete training dataset for GPR, the corre-
sponding training points in the output space y,,.,,
have to be obtained. Firstly, the displacement

in physical domain u¢,, is reconstructed from

the compressed displacement u/%, = determined in
Tpew- By imposing u&,, into the local ABAQUS
FE model, the local reaction /\ﬁew can be solved.
The new training point in the output space of
GPR model X% | is then obtained by compressing
the full-dimensional data into latent space using

output encoder as follows

/ 1T
Decoder, = E', V',

Encoder) = pseudomverse(E’AV’f),

G G (17)
Uy oy = Wpay X Decoder,,,

IL L
Apow = Anew X Encodery,

The updated training dataset in the latent
space of GPR after after refinement is now
obtained as follows,

;pdated = [(U/IG7 a’l)’ (u/2G7 a’2)7

) (u,]€7 aN)7 (ulncéun anew)]
€ RUNT+Nnew) x (N, +1)) (18)
;Lpdated = [>‘/1L7 >‘/2La EES) )‘3\1717 A;LLew]

€ RUNT+Nwew)xN})

where N, is the total number of added training
points in the refinement. The GPR model is then
considered as fine-developed as it covers a larger
well-trained training region.

4.3 Surrogate IGL method
combining statically condensed
physics-based model in global
domain and data-driven
surrogate model in local domain

For the miter gate example, solution of the global
domain reduced system of equations (in this exam-
ple the matrix is 720 x 720) takes less than a
second. This is particularly attractive when con-
sidering the IGL iterations of a nonlinear problem.
For example, say a crack-propagation is dis-
cretized to c crack lengths and each crack length
takes 5 IGL iterations. The static condensation
reduced matrix can be used 5c¢ times with only one
front-end cost, resulting in dramatic time savings.

No special handling is required for the inputs
and outputs of the statically condensed global
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Fig. 22: Tteratively adding new training points by the Voronoi method.

[Identify new training sample x* in the latent space through global refine}

!

[Reconstruct new training sample x in original space and impose it to the local-domain FE model]

I

[Solve the FE model to obtain corresponding output sample y and compress it into latent space ]

l

[Re-train the surrogate model using the new input-output sample pairs (x* , y*) and calculate error metric]

No

Global error

tolerance satisfied?

Yes 1

[ Repeat above procedures by using local refine]‘i

Local error
tolerance satisfied?

No

Yes

Fig. 23: Flowchart of the overall procedure from initial surrogate modeling to well-trained model.
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model, making it a plug-in replacement for the cannot be pulled directly from the FEM model
FEM global model in IGL as shown in Fig. 24. without element information around the bound-
With these improvements, the bottleneck for IGL ary, so the statically condensed global auxiliary

solution time is now the local problem. However, domain is used instead.
while calculating p; the reaction forces of Qg4
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Fig. 24: Tllustrated IGL algorithm for miter gate
with 1) global and global auxiliary static conden-
sation uncondensed nodes and 2) local domain
mesh discretization.

Fig. 25: llustrated surrogate IGL algorithm for
miter gate with 1) global and global auxiliary
static condensation uncondensed nodes and 2)
local domain GPR surrogate.

The proposed surrogate local model in Section
4 removes the local solution bottleneck. The GPR
surrogate local model receives uf and outputs
)\Z-L , making it a plug-in replacement for the FEM
local model. The surrogate iterative global-local
method is illustrated in Fig. 25.

4.4 Extracting SIF Values After
Convergence

After the IGL reaches its convergence, the local
FE model after the last iteration is considered

to preserve a true physics. As mentioned above,
the SIF value at the middle node through the
thickness of the is extracted from the local model
after post-processing. In SIGL, however, due to
the physics is replaced by surrogate modeling, it
is important to fill the gap between local reaction
forces )\cLomergence and SIF. Given that, another
surrogate model is built and trained to increase
the running efficiency.

In this case, the 720-DOF reaction force vec-
tor /\JL is compressed into a 4-dimensional vector,
which forms a 5-dimensional input combining with
crack length parameter in the latent space. The
output is then defined as the desired SIF value
Ki_s1qr- The GPR-based surrogate models are
then built and trained in the designed latent space
with training samples X and Ki_grqr.

Ky srar = Gsir(X), (19)
where Ggprp(-) is the GPR surrogate model
connecting local reaction forces with SIF.

For any given value of local reaction forces
X, we have the prediction of SIF from the GPR
surrogate model as follows

Gsrr(X) ~ N(uk, o%), (20)

in which N (-) is Gaussian distribution, px and ok
are respectively the mean and standard deviation
of the SIF prediction.

Next, we will use the miter gate example
presented in Section 3 to compare the differ-
ent approaches including submodeling, IGL, and
surrogate-based IGL (SIGL).

5 Results and Discussion

Several solution methods have been covered: 1)
Reference tying method, 2) submodeling, 3) IGL,
4) IGL with static condensation for global and
auxiliary domains, and 4) SIGL. The methods for
which accuracy is considered in this research are
the IGL and SIGL methods. An example of their
accuracy with a miter gate and a = 1 in, h,,, = 50
ft, haown = 16 ft, and l4yne = 0.5 in is shown in
Fig. 26. The IGL method with and without static
condensation gives the same solution, so it is not
shown in the figure.

For the IGL method the error drops below
1075 after only three iterations. The SIGL method
takes more iterations, but reaches an error below



Springer Nature 2021 ETEX template

A Surrogate Model to Accelerate Non-intrusive Global-Local Simulations of Cracked Steel Structures

104 To 16l ]
AN —e— SiGL |
X
'\\'
v 104 i S—
\n\
\n\
10712 ~—
0 1 2 3 4 5 6 7

iteration
Fig. 26: Error convergence of IGL and SIGL
methods for a = 1 in, hyy, = 50 ft, Agown = 16 ft,
and lgmg = 0.5 in.
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Fig. 27: SIF error ex convergence of IGL and
SIGL methods for a = 1 in, hyp = 50 ft, hgown =
16 ft, and l4ymg = 0.5 in.

10~%. While the error definition in Algorithm 1 is
convenient for defining the IGL method conver-
gence, the example problem proposed depends on
the accuracy of the stress intensity factors along
the crack front as compared with the reference
tying method. Figure 27 shows the relative stress
intensity factor error ex evaluated at each IGL
method and SIGL method iteration.

The IGL method quickly converges to below
103 while the SIGL method lags somewhat, but
still achieves an ex near 2%. Since the resid-
ual convergence e showed better convergence, it
seems likely that this is due to lack of accuracy
in the SIF surrogate model. As for the higher ex

19

Submodeling IGL SIGL

Fig. 28: SIF error ex accuracy of submodeling,
IGL and SIGL methods for a = 1 in, Ay, = 50 ft,
hdown = 16 ft, and lgmg = 0.5 in.

than e, it can be helpful to look at the physi-
cal quantities each deal with. The error e deals
with residual forces at nodes, quantities solved for
directly in the system of equations. However, ex
depends on contour integrals involving evaluation
of stress, a derived quantity from the displace-
ments. Therefore, the error will be higher for SIF
outputs than for residual forces. However, the
SIF error stagnates at around 4 x 10~*. This may
be due to computer precision error between the
reference tied model definition and IGL model def-
inition, e.g. the geometry in Abaqus seems to only
have single precision. Figure 28 shows the SIF
error e accuracy of the converged IGL and SIGL
compared with the submodeling solution.

It can be seen that while ex is similar for
submodeling and the SIGL method, e is much
smaller for the SIGL method. Since the IGL
method is much more accurate than the submod-
eling model, this points to room for improvement
in the surrogate SIF model. Also, the crack length
is very small (¢ = 1), helping the submodeling
St. Venant’s assumption hold. As the crack length
grows, the submodeling solution will become much
less accurate. The SIGL method accuracy for vary-
ing a and [ 4y, Will be explored later in this section.
For now, Fig. 29 shows the time to solution for
several methods on the same desktop computer
using 2 processors (CPUs) with a RAM of 32 GB.

The reference solution takes about 150 sec-
onds. Interestingly the submodeling solution takes
longer than the reference solution, which bodes
ill for the IGL method. A possible explanation
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Fig. 29: Solution time for reference tying model,
submodeling, IGL, IGL with global and auxiliary
static condensation, and SIGL methods for a = 1
in, hyp = 50 ft, haown = 16 ft, and lgmg = 0.5 in.

for this may be inefficiencies in multiple Abaqus
calls versus one in input file analysis, assembly,
solution, and post-processing. The IGL method
takes three iterations and about three times the
time of the reference solution. Using static con-
densation on the global and auxiliary problems
cuts the IGL solution time in half, but IGL with
static condensation is still slower than the ref-
erence solution. This is surprising given some of
the discussion in Section 2.2 claiming a potential
speed advantage for IGL. However, this can be
explained by the limitations of performing analysis
with Abaqus. Abaqus does not store the factor-
ized stiffness matrix between jobs, so every job
called after the first IGL iteration requires an
(unnecessary to IGL) stiffness matrix assembly
and factorization. However, The SIGL method has
such a small time to solution 1.06 s that the bar
is not visible.

Figure 30 shows the reference SIF results over
cracks from 0.5 in to 4.0 in and damage gap height
from 10 in to 150 in. The SIF values get higher for
longer cracks, but the behavior for higher damage
gaps is more complicated. In the range of 60 in to
120 in the SIF values are actually smaller, showing
the importancce of the location of the crack on the
miter gate. Since the damage gap is at the bottom
of the gate, the load path travels up and around
it, and coincidentally the crack as well. However,
the pintle (bottom hinge support) can take load,
so as the damage gap grows higher the load paths
somewhat divert back down through the crack.
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Fig. 30: Heatmap of SIFs for reference solution

in ksiv/in.

Figure 31 shows the ability of the surrogate
iterative global local method to model the miter
gate. Interestingly, globally refining the surrogate
local model leads to overestimation of the SIF
value for large damage gaps. Considering that
local refinement improves the solution drastically,
the solution must be very sensitive for large dam-
age gap heights. In fact, looking at the residual
map for global refine, the error clearly depends
on damage gap height more than crack length,
peaking at the extremes. Higher error near the
edges. Both local refine methods manage to con-
trol the prediction error based the global refine
improvement.

6 Conclusion

A surrogate iterative global-local methodology has
been proposed to reduce computation time for
problems with cracked large steel structures. This
research novelly represents the local domain in an
IGL problem using a surrogate model rather than
a physics-based model. It was shown that for the
example problem (with a linear local domain) IGL
was extremely accurate, while the required com-
putational cost is high which is not suitable for
probabilistic analysis such as failure diagnostics
under the Bayesian framework. However, SIGL
achieves acceptable accuracy and is extremely
fast. This makes SIGL well suited for diagnosis
and prognostic tasks in digital twins.

Future research will look at handling nonlin-
ear global problems and utilization of SIGL to
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probabilistically infer crack length given sensor
readings.
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