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ABSTRACT 

The role that soil moisture plays in terms of modulating 

hydrologic processes including infiltration and runoff 

generation makes it an essential component to capture 

for hydrologic modeling. This work aims to leverage 

information gained from SMOS to improve surface soil 

moisture simulations in the Russian River Basin 

(California, U.S.A). The basin’s complex terrain offers 

a rigorous testing ground for SMOS soil moisture 

products.  Data from seven in situ observation sites are 

used to assess model performance after assimilating 

SMOS-based soil saturation ratios.  For a comparison of 

“best case” scenarios, the in situ observations 

themselves are assimilated.  Results show that SMOS 

assimilated simulations shows modest improvement at 

most in situ locations. Despite the observed decrease in 

model performance at some locations, overall 

performance of simulations assimilated with SMOS-

based saturation ratios remains high. Findings suggest 

that even in a complex environment, useful information 

may be extracted from SMOS estimates for hydrologic 

modeling.  

1. INTRODUCTION 

Several studies have already made efforts to examine 

how the incorporation of soil moisture observations 

through data assimilation into hydrologic, land surface, 

and hillslope models improves estimates and predictions 

of the soil moisture state. Using a distributed soil-

vegetation-atmosphere transfer (SVAT) model and 

EnKF, [1] found that all data assimilation runs in their 

study provide an improvement over non assimilation 

runs, even when observation frequency was reduced 

from daily to once every 5 days.  This result is 

particularly encouraging for satellite based soil moisture 

applications, since these observations may only be 

available every 1-3 days for a given location. Reference 

[2] also employs the EnKF but uses a synthetic 

experiment with a land surface model.  These results 

yield reasonable soil moisture estimates even with 

relatively few ensemble members, suggesting a perhaps 

computationally efficient method.  Using the Noah 

LSM, [3] express improvement, especially in the top soil 

layer estimates by incorporating AMSR-E surface soil 

moisture retrievals in a semi-arid region. Reference [4] 

shows significant reduction of surface soil moisture bias 

with some reduction of RMSE for over half the 

watershed in the hillslope tRIBS-VEGGIE model, which 

they use for assimilation of synthetic 3 km Soil Moisture 

Active Passive (SMAP) radar data.  

2. MODEL 

The distributed hydrologic model used in the study is 

the Hydrology Laboratory Research Distributed 

Hydrologic Model (HL-RDHM) developed by the U.S. 

National Weather Office of Hydrologic Development. 

HL-RDHM was developed and implemented for use 

over the continental United States on the Hydrologic 

Rainfall Analysis Project (HRAP) grid.  The model can 

be run at a spatial resolution of 1 HRAP (~4 km), ½ 

HRAP, or ¼ HRAP.  The model can be run at any 

desired time step as well [5].  For more detailed 

information about the general structure of HL-RDHM, 

readers are referred to [6], [5], and [7].   For this study, 

the model was run at 1 HRAP spatial resolution with an 

hourly time step.  

Central to HL-RDHM and the work presented here is 

the Sacramento Soil Moisture Accounting (SAC-SMA) 

model (Fig. 1). HL-RDHM utilizes a priori SAC-SMA 

parameters derived from soil and land use data at each 

model pixel [8].  Recent developments include the 

estimation of a physically meaningful soil moisture 

profile and evapotranspiration from the soil column.  

Through this conversion, physics that loosely mimic 

those present in the Noah Land Surface Model allow for 

a heat transfer component to account for frozen ground 

processes to take place at each soil layer [9].  
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Figure 1. Formulation of basic SAC-SMA model and its parameters 

(black boxes) most relevant to soil moisture. 

  

Advanced evapotranspiration estimation was introduced 

in the version dubbed the Sacramento Soil Moisture 

Accounting Heat Transfer component for Enhanced 

Evapotranspiration (SAC-HTET) [10]. Within SAC-

HTET, accounting for photosynthetically active 

radiation, soil moisture and vapor pressure deficits, and 

air temperature takes place.  Physical representations of 

these additional variables are estimated through 

empirical relationships in order to keep the 

input data requirements low.  

Following the adjustments to the soil moisture 

state at various physical layers, the estimates 

are converted back to SAC-SMA conceptual 

storages (Fig. 2) and changes due to free water 

exchange and runoff are made.    

From these model-defined physically 

meaningful layers, interpolation to any desired 

depth within the model boundaries can be 

retrieved for comparisons to observations. 

However, user-defined depths have no bearing 

on the calculations within the model. 

3. STUDY AREA 

This study is conducted over the Russian River 

Basin in Northern CA and utilizes the United 

States National Oceanic and Atmospheric 

Administration ((NOAA) Hydrometeorology 

Testbed (HMT) program in situ measurements 

[11].  The network provides observations of soil 

moisture and temperature at several depths, but 

this study makes use of only the 10 cm depth (the 

shallowest layer for most of the sites). Using only 

the topmost observation layer is done to mimic 

what is captured by satellite-based retrievals.  

Observation sites are dispersed throughout the 

approximately 3,800 km2 basin and include Willits 

(WLS) and Potter Valley (PTV) in the upper basin, 

Hopland (HLD) and Lake Sonoma (LSN) in the central 

basin, and Cazadero (CZC), Rio Nido (ROD), and 

Healdsburg (HBG) in the lower basin (Fig. 3).   

Although the CZC site does not properly sit within the 

drainage area of the Russian River Basin, the 

observations from this site are still useful during for 

spreading innovation to pixels that are within the basin 

boundaries.  Furthermore, as the model is run 

completely in “unconnected mode” with no routing 

scheme demanding lateral pixel interaction, inclusion of 

CZC in the procedure carries no adverse implications.  

 

 

Figure 2. Conversion of SAC conceptual storages to 

model-prescribed physically meaningful soil layers 



 

4. METHOD 

Soil saturation ratios are used as a substitute for soil 

moisture values to partially circumvent scaling 

discrepancies among SMOS pixel resolution, HL-

RDHM resolution, and the point in situ measurements 

(although SMOS soil saturation ratios are further 

disaggregated using spatial patterns from HL-RDHM 

control runs). This is not an uncommon practice, and is 

the recommended this strategy for similar purposes 

using a lumped variant of SAC-HTET [12]. 

In the case of both in situ observations and satellite-

based estimates, observations are not available at all 

locations within the basin at every observation time step 

(Fig. 4).  Therefore, a recursive EnKF strategy is 

developed to update all pixels in the study basin in a 

manner that is respectful of the spatially heterogeneous 

nature of soil moisture dynamics. This is in contrast to 

previous studies that have (or assume) observations 

available at all locations (i.e. [4], [13], [14], [15]) or 

assign the same observation to all pixels but assign 

varying degrees of uncertainty according to spatial 

variations in soil moisture [16]. 

Considering a single observed model pixel scale, the 

state equation in the EnKF for this work is the running 

of HL-RDHM to project conceptual states to the next 

time step.  The observations are observed soil moisture 

estimates either from in situ HMT soil moisture probes 

or SMOS observations disaggregated to the HRAP 

scale.   

  

 

Figure 4. Sample coverage (colored areas) for a single 

time step of HMT stations (left) and SMOS coverage 

(right) in the Russian River Basin. Black area represents 

entire land domain that is being modeled but not 

observed, white areas represent water features that 

produce no simulation. 

However, to reach the point of the conceptual storages 

at all simulated pixels being updated by the soil 

moisture data assimilation process, a second filtering 

step in which there is a shift in the observation equation 

is proposed.  For this second step, the states are now the 

conceptual storages of the “unobserved” pixels and the 

observations are changed to be the ensemble of updated 

conceptual storages at model locations collocated with 

observations.  

To evaluate the impact and practicality of soil moisture 

assimilation with the proposed double EnKF, the model 

is run for a 1-year spinup period (2012) and a 1-year 

data assimilation period (2013).  Precipitation and 

temperature data for model forcing come from the 

California-Nevada River Forecast Center.  A 25 member 

ensemble is generated by sampling a Gaussian 

distribution with a mean equal to that of the states at the 

end of the 1-year spinup period, and a variance of 0.25. 

This sizeable variance was chosen to represent a large 

initial uncertainty in the possible range of 0 to 1 and 

approaches a “worst case” scenario for prior 

understanding of the state.  Ensemble members are 

sustained by perturbing the precipitation and 

temperature forcing data with noise sampled from a 

normal distribution.  Similarly, Gaussian noise that 

reflects uncertainty associated with the soil moisture 

Figure 3. Russian River Basin and HMT sites. 



measurement is added to the HMT soil moisture 

observations and disaggregated SMOS estimates.  

The evaluation is performed at the 7 HL-RDHM pixels 

collocated with the HMT observation sites in two 

phases.  The first phase uses the same observation set 

for the assimilation and the assessment to test the impact 

of the first filtering step in which the observations come 

from the soil moisture probes. In this 

case, the states being estimated are 

the SAC-SMA upper zone 

conceptual storages at the pixels 

collocated with the volumetric soil 

moisture observations.  For the 

second phase, only 6 of the 7 

observation sites are used in the 

complete double EnKF process, with 

the 7th saved for a validation of the 

spreading of the innovation to 

“unobserved” pixels.  For both parts, 

the RMSE, correlation, bias, and 

NSE are used as performance 

metrics. 

 

The double EnKF is repeated using 

SMOS observations for assimilation 

rather than HMT station 

observations. There is no separate 

validation stage for these 

observations, as each SMOS pixel is 

not necessarily retrieved at the same 

locations for at each observation 

time. That is, at some assimilation 

time steps, a given pixel might be 

collocated with an observation and at 

others it may not and must rely on the 

second filtering step.  Although 

SMOS observations are viable for the 

~5 cm depth and are assimilated into 

HL-RDHM accordingly, they are 

compared to HMT observation sets at 

10 cm depths.   

5. RESULTS 

Figs. 5, 6, and 7 feature results from 

both phases of the evaluation for the 

upper, central, and lower basin sites 

respectively.  Phase 1 is represented 

on left panels and  

phase 2 is shown on the right.  Control  runs and HMT 

observations are also included in all plots.  From Tab. 1, 

it can be seen that 5 of the 7 sites showed at least some 

improvement across all statistics for the experiment that 

included collocated observations (phase 1).  The 

exceptions came from ROD and HBG, which show a 

slight degradation in bias.  It is worth noting here that 

the control runs at these two sites were already 

Figure 5. Double EnKF soil saturation ratio results at 10 cm for upper basin 

observation sites in the Russian River Basin.  Left: Results with observations 

collocated at the site assimilated. Right: Validation of the second filter step 

with collocated observations removed from the assimilation. 

Figure 6. Same as Figure 5, but for central basin observation sites. 

 



performing high across all statistics, and even though 

the bias suffered mildly, the predictive capability in the 

form of NSE was unchanged at ROD and even had a 

modest 3% improvement at HBG.  For the remaining 

sites, a 3-61% RMSE reduction, a 0-16% correlation 

increase, a 4-66% bias decrease, and a 1-186% NSE 

increase is seen.  The site that clearly benefited the most 

from data assimilation of its collocated observation was 

LSN, which went from -0.84 NSE to 0.72 in addition to 

dramatic improvement in the other three metrics as well. 

Where the experiments that use collocated observations 

for the assimilation and evaluation provide valuable 

insight as a sanity check/general proof of concept, their 

impact basin-wide is minimal unless the innovation 

spreading step can be demonstrated to be effective.  This 

is especially true given the relatively sparse nature of the 

in situ observation network of this basin.  Removing one 

station at a time to treat its corresponding HL-RDHM 

pixel as “unobserved” allows for validation of the 

second spreading step.   

It is expected that a pixel collocated 

with an observation will exhibit 

improvement in soil moisture 

simulation, however, the minimalist 

goal for unobserved pixels after 

assimilation is that performance is not 

worse than the control run. The results 

for the validation are mixed in this 

sense with 4 sites (WLS, HLD, LSN, 

and ROD) outperforming the control 

run, 1 site (PTV) larger unchanged 

from the control run, and 2 sites (CZC 

and HBG) performing measurably 

worse than the control run. Even 

though the two sites downgraded, they 

still outperformed the LSN site 

validation, which even after the 

assimilation has an unacceptable NSE 

of -59 (due to a large bias), and even 

slightly edged out the PTV site in terms 

of NSE.  For this reason, the validation 

experiments are still crowned “more 

successful than detrimental” overall.  

Simulation results for SMOS 

assimilation experiments are presented 

in Figs. 8 through 10.  The model 

control run and 10 cm depth HMT 

observations are provided in each plot.  Noteworthy is 

the model tendency to overestimate soil moisture during 

the first large spring-time dry down period (April and 

May), especially at WLS, PTV, HLD, LSN, and HBG.  

Generally, the SMOS assimilation is able to push the 

ensemble mean toward the observation in this case.  

Improvement is also visible at sites with a control model 

run that overestimates in the first four months of the 

year (WLS, HLD, LSN, and ROD).   

Several striking pessimistic features appear in the 

assimilation runs as well.  At PTV for example, a large 

dip in soil saturation ratio appears at the end of 

February, despite the control run already 

underestimating at that site.  Similarly, the SMOS 

assimilation simulation at HBG jumps in early 

November and remains higher than the control run even 

though the control run overestimates this until the end 

of the year.  These features could be due to a number of 

factors including spurious correlations with 

observations not located at the pixel site, issues with 

Figure 7. Same as Figure 5, but for lower basin observation sites. 



SMOS observations at the pixel location, or even 

improper model parameter specification.  

A statistical summary of control runs along with 

simulations assimilated with SMOS saturation ratios are 

presented in Tab 1.  It is stressed that the catch with 

these results is that the HMT observations are used as a 

baseline and are at a 10 cm depth.  

With the exception of HBG, all sites show an RMSE 

decrease (or remained unchanged at PTV).  Correlation 

results were more mixed, with three sites showing a 

decrease in correlation and four showing an increase.  

With the exception of HBG, changes in either direction 

were less than 2.5%.  Correlations for all simulations 

(with SMOS soil moisture assimilation or not) were 

high with the minimum value of 0.83 belonging to the 

control run of LSN.  While bias results for HBG and 

ROD increased and PTV remained unchanged, 

improvement at the other stations ranged from 6% to 

35%.  NSE improved at all sites except for HBG with 

improvement ranging from 2% to 40%.   

Figure 8. Double EnKF soil saturation ratio results at 5 cm for upper basin observation sites in the Russian 

River Basin using SMOS observations for assimilation. 

Figure 9. Same as Figure 8, but for central basin observation sites. 

Figure 10. Same as Figure 8, but for lower basin observation sites. 



Table 1 
Site 

 ID 

Model Run RMSE 

[fract] 

Corr Bias NSE 

 

WLS 

 

 

Control 

EnKF HMT 

HMT Validation 

EnKF SMOS 

0.10 

0.08 

0.09 

0.09 

0.91 

0.95 

0.91 

0.90 

0.21 

0.10 

0.15 

0.13 

0.70 

0.83 

0.73 

0.75 

 

PTV 

 

 

Control 

EnKF HMT 

HMT Validation 

EnKF SMOS 

0.17 

0.12 

0.17 

0.17 

0.86 

0.95 

0.85 

0.88 

-0.29 

-0.24 

-0.27 

-0.30 

0.61 

0.80 

0.59 

0.61 

 

HLD 

 

 

Control 

EnKF HMT 

HMT Validation 

EnKF SMOS 

0.07 

0.07 

0.06 

0.06 

0.98 

0.98 

0.97 

0.97 

0.26 

0.25 

0.16 

0.22 

0.82 

0.83 

0.90 

0.87 

 

LSN 

 

 

Control 

EnKF HMT 

HMT Validation 

EnKF SMOS 

0.20 

0.08 

0.18 

0.18 

0.83 

0.97 

0.84 

0.85 

1.00 

0.34 

0.90 

0.90 

-0.84 

0.72 

-0.59 

-0.49 

 

CZC 

 

 

Control 

EnKF HMT 

HMT Validation 

EnKF SMOS 

0.10 

0.09 

0.13 

0.10 

0.91 

0.94 

0.87 

0.92 

-0.29 

-0.24 

-0.31 

-0.29 

0.75 

0.82 

0.63 

0.75 

 

HBG 

 

 

Control 

EnKF HMT 

HMT Validation 

EnKF SMOS 

0.07 

0.06 

0.11 

0.10 

0.94 

0.96 

0.85 

0.87 

-0.02 

0.06 

0.22 

0.14 

0.88 

0.91 

0.67 

0.72 

 

ROD 

 

 

Control 

EnKF HMT 

HMT Validation 

EnKF SMOS 

0.07 

0.07 

0.06 

0.06 

0.95 

0.96 

0.95 

0.96 

0.12 

0.13 

0.05 

0.15 

0.87 

0.87 

0.90 

0.89 

It should be noted that although LSN enjoyed the largest 

improvement in NSE through assimilation of SMOS 

soil moisture information, the simulation still produced 

a value of -0.49, which indicates no predictive ability.  

6. DISCUSSION 

A double EnKF technique was introduced as a means to 

update the conceptual storages at every pixel within the 

model domain without assuming observations are 

available at every location, and without having to rely 

on interpolation of soil moisture observations prior to 

assimilation.  In the first step of the assimilation, 

conceptual model states at “observed” pixels are 

updated with observed near surface soil moisture 

observations.  In the second step, the remaining pixels 

are update by treating the ensemble of the adjusted 

states from step one as the observations in the EnKF 

process.  Tests with the HMT sites show consistent 

improvement for step one of the procedure, and the 

validation phase with station removal revealed mostly 

favorable results over the control run.  

While it is expected that the more observations to 

contribute to the update of an unobserved state the 

better, given the formulation of this second EnKF step, 

there must be a correlation between the observation and 

unobserved state in order for it to be useful.  Therefore, 

strategies related to maximizing the benefit of the most 

relevant observations to a particular unobserved state 

could be further investigated.  This notion of data 

selection is discussed in [17] who utilize a cutoff radius 

to distinguish which analyzed points should be 

considered impacted by each observation in an 

atmospheric model.  They also stress that the further a 

point becomes from an observation, the potential 

positive impact from updating can be expected to be 

small.  The analogy to the hydrologic application in this 

sense is that the more dissimilar an observation location 

is (due to distance from the observation, physical 

properties leading to different drying rates, or 

differences in recent meteorological influences), the less 

of a positive impact that observation will have on an 

analyzed pixel.  Although not fully examined here since 

performance in the in situ validation investigation was 

largely positive, localization techniques may be 

beneficial in preventing detrimental prediction skill 

results as seen at the HBG and CZC sites during the 

validation portion.  

Following the development of the double EnKF 

procedure via HMT data was the testing of the 

procedure using SMOS satellite-based estimates.  These 

tests were also evaluated against the HMT observations.  

Overall, the improvement over the control run was 

largely underwhelming.  Nonetheless, with the 

exception of the HBG site, all of the sites experienced 

minor improvement in predictive capability as 

expressed by the NSE.  Of the cases that did outperform 

the control run, bias showed largest degree of 

improvement.  The slight decrease in correlation at 

some sites (and large decrease at the HBG site) may be 

attributed to the frequency of assimilation time steps, 

which was lower than the HMT study.  Although 

improvement is marginal, this study suggests there is 

valuable information contained in the SMOS soil 

moisture retrievals for the Russian River Basin, despite 

the fairly complex terrain challenging the capabilities of 

the retrieval.  However, SMOS assimilation in the 

context presented here does not render itself particularly 

useful.  
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