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Abstract

We provide a conceptual framework for under-
standing similarities and differences among vari-
ous schemes of compositional representation, em-
phasizing problems that arise in modelling aspects
of human language. We propose six abstract di-
mensions that suggest a space of possible compo-
sitional schemes. Temporality turns out to play
a key role in defining several of these dimensions.
From studying how schemes fall into this space,
it is apparent that there is no single crucial dif-
ference between Al and connectionist approaches
to representation. Large regions of the space of
compositional schemes remain unexplored, such as
the entire class of active, dynamic models that do
composition in time. These models offer the pos-
sibility of parsing real-time input into useful seg-
ments, and thus potentially into linguistic units
like words and phrases.

Introduction

What is the relationship between the kinds of sym-
bolic representations deployed in “classical” cognitive
models and representations in their connectionist coun-
terparts? The study of human linguistic capability is
a particularly appropriate domain in which to discuss
this issue. But we must not let theoretical linguis-
tics define the problem. Linguistics presumes the sep-
arability of linguistic knowledge and language use, the
distinction of competence from performance. There
is much more to the linguistic cognition than syntax.
Still, language implies a system of complex representa-
tional structures for various purposes. And one of these
is orthography, the level of an author or editor produc-
ing text in a “received” form. The discrete, static,
concatenated nature of printed language does imply a
model for the underlying cognitive architecture. The
intuitive appeal of this view of language has inhib-
ited consideration of the many problems in account-
ing for speech perception and production, the lexicon,
slips of the tongue, etc, that imply consideration of
other kinds of models. Both Al theorists and linguists
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have regarded natural language as basically consisting
of concatenated structures of discrete, arbitrary sym-
bols, and have constructed models of language pro-
cessing that postulate internal representations of the
same general kind. Connectionists working on natural
language have been developing alternative distributed
representational schemes, but tend to agree with tra-
ditionalists regarding certain crucial ingredients of the
traditional picture — such as the need for compound
representations systematically constructed out of stan-
dard parts. So what, if anything, really differentiates
traditional symbolic and connectionist forms of com-
positional representation?

There is a widespread tendency to suppose that
there must be some one crucial issue which neatly sep-
arates traditional symbolic representations from con-
nectionist representations. We believe, however, that
no such magic key exists. Rather, there is a variety
of ways in which connectionist schemes of represen-
tation differ, to a greater or lesser extent, from tra-
ditional schemes of representation. This is true even
when we restrict attention to specifically compositional
schemes.

We consider a representational scheme to be compo-
sitional if it systematically constructs complex repre-
sentations from basic compoundable units, such that
the semantic and causal significance of the compound
whole is a function of the significances of its basic parts.
We describe individual representations belonging to a
compositional scheme as symboloids in order to stress
that the category of representational schemes we are
interested in includes, but is considerably more general
than, traditional symbolic representations. There must
also be included various kinds of fuzzy and dynamic
distributed patterns that serve a representational func-
tion for nervous systems.

To understand this situation we find it useful to
view traditional and connectionist schemes as vary-
ing along a number of abstract dimensions defining a
space of possible schemes of compositional representa-
tion. Classical systems occupy one relatively restricted
region (centered on prototypical symbolic schemes such
as the structures in LISP or formal logic) while vari-



ous connectionist schemes tend to be widely scattered
across other regions. Even different instantiations of
natural language, such as printed English and spoken
utterances, are found at quite distinct points. The
kinds of neural representations that underlie natural
language capacities most likely occupy several quite
different regions in the space depending on which lin-
guistic skills one looks at (e.g., interpreting speech di-
rected at you, editing a text, learning a new word,
mimicking someone’s dialect, etc.).

Our research is aimed at isolating and clarifying the
most important dimensions of this space — to distill
out the conceptual “principal components” (or so we
hope). We seek a picture of compositional represen-
tation in cognitive systems that is more general and
inclusive than has previously been available. An im-
portant result of this search is that, from the perspec-
tive afforded by an understanding of these various di-
mensions, one can see that standard Al-style schemes
of representation have no monopoly on compositional-
ity. Instead, they merely occupy one relatively narrow
corner of the space of possible systems that allow com-
position of tokens. Further, we think that exploring
other regions of this space will be more fruitful for cog-
nitive science research than developing variants within
this narrow region. The following is a tentative list of
the most general dimensions of the space of symbol-
oidal representational schemes. The issue should not
be which scheme is the correct one, but rather which
scheme is most appropriate for which phenomena?

Typology of Representations

The major dimensions fall into at least three groups:
(1) intrinsic properties of the compoundable tokens,
(2) the manner in which composition of tokens takes
place and (3) the functional role of symboloids in the
operation of the system. We do not claim these are
a minimal set of dimensions. (For example, there are
probably differing possible assumptions about seman-
tics, that is, about the nature of the world itself.) We
have tried to choose dimensions that are independent
and which clarify the range of possible solutions to the
representation problem. In addition to describing par-
ticular computational models, we will make reference
both the linguists’ models of language and to vari-
ous aspects of knowledge about language exhibited by
skilled users.

Properties of Basic Tokens

The tokens are the most basic entities with representa-
tional significance which can be compounded into de-
rived structures. In natural language processing, indi-
vidual words are assumed (by both linguists and high-
school English teachers) to serve as the basic units.
As a first-order model, this is satisfactory. Otherwise,
orthographies and typographical conventions would be
much more problematic than they are. But Bolinger
among others has frequently pointed out how difficult
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it is to nail down the actual list of the particular items
that have just the right properties (Bolinger, 1975).
Language is not just a set of morphemes plus rules of
syntax. Speakers use and ‘know’ linguistic fragments
that come in many sizes: from submorphemic ideo-
phones to words, idioms, and Bolinger’s ‘collocations’,
as well as ‘cliches’ and even entire sentences and para-
graphs of boilerplate (as in genres like wills and aca-
demic recommendation letters). The nature of these
mysteriously constrained yet mysteriously flexible lex-
icalized ‘units’ lies well beyond the grasp of current
representational schemes employed in linguistic theory.
Although an orthography can afford to ignore these
data, a model of human linguistic representation must
support all of these kinds of linguistic knowledge.

Discrete vs. Continuous Token Set. Basic to-
kens are physical entities that gain their type-identity
(e.g., being an instance of the word cat) by exhibit-
ing characteristic variation along certain critical di-
mensions (e.g., placement of ink on the page). These
dimensions can be thought of as delineating a space
of possible physical items which might count as to-
kens (e .g., ink marks on a page or a set of letter
strings). This first issue concerns how the basic to-
kens fall in this space. Are they sparsely or densely
packed into it? That is, are there entities which count
as basic tokens in the scheme ‘between’ any two tokens
of the scheme? For example: the so-called ‘phonemes’
or ‘phonological segments’ used to describe particular
languages are assumed to be discrete (that is, located
far apart in stimulus space — at least one feature step
apart), while the acoustic and articulatory phenomena
themselves are clearly densely packed or continuous.

Static vs. Dynamic Tokens. Standard symbolic
models invariably assume that basic tokens are static.
By this we mean that the tokens exist indefinitely and
change only when explicitly altered — like the basic vo-
cabulary of predicate calculus. They provide a concep-
tual model for standard orthographies of, say, English
and French. The inventory of units is relatively static
and the objects (the letters and words) endure fairly
indefinitely once converted to the printed medium.
These should be contrasted with the representation
that presumably must underlie spoken words. This
must change continuously over time as the pattern is
either produced or recognized. Acoustic changes are
essential to a word’s being the word that it is, and to
its being correctly perceived (Liberman, et al, 1967).
Sometimes temporal specifications can be very subtle
indeed (Port and Crawford, 1989). It is likely that
internal representations of spoken words are also dy-
namic in this sense, as suggested by some (Browman
and Goldstein, 1986; Saltzman and Munhall, 1989).
With dynamic tokens, the type-identity of tokens is
based on physical change over time. Another exam-
ple is the differentiation of smells in the olfactory bulb



of the rabbit (Skarda and Freeman, 1987). Familiar
smells each exhibit a characteristic limit cycle through
the activation state-space of a set of cells, There ap-
pears to be no single point in time when the instanta-
neous state ‘represents’ the identity of the scent,

Currently one can find connectionist models that
employ both kinds of representations. Most networks
produce static output vectors, that is, the dynamics
of the network leads it toward a point attractor (eg,
(Sejnowski and Rosenberg, 1987; Elman and Zipser,
1988)). These two properties of basic tokens, dis-
crete/continuous and static/dynamic seem to be the
most important ones, ! but models also differ in the
way composition of basic units takes place.

Manner of Composition

How are representational tokens of whatever form ac-
tually combined to make compounds or higher-level
representations? This ability is clearly essential to any
representational scheme that is to be generally useful
(Fodor and Pylyshyn, 1988).

Concatenation vs. Superimposition. Connec-
tionist work has revealed the importance of distin-
guishing several ways of combining tokens into com-
plex wholes (van Gelder, 1990). In traditional logic
and Al, there is, of course, no change whatever in to-
kens themselves when composed, as when LISP atoms
are strung together to form a complex statement. At
the other extreme is superimposition, or simultaneous
combination, as found, for example, in a Recursive
Auto-Associative Memory or RAAM (Pollack, 1991;
Blank et al., 1992). Such systems can be trained to
push and pop the elements of hierarchical trees from a
single distributed representation in a fixed-size group
of nodes. Input tokens are systematically combined
into completely distributed compounds by a sequence
of learning processes. The result is a static represen-
tation from which the entire tree can be constructed
even though no specific physical characters of the con-
stituents is present. It is even possible to demonstrate
structure-sensitive transformations on distributed rep-
resentations using a RAAM (Chalmers, 1990). These
demonstrations suggest that symbolic composition is
not the only kind possible.

'There is at least one other property of tokens as well
that may be relevant. How are basic tokens paired with
what they represent? Are basic tokens with similar mean-
ing also similar physically? Natural and formal languages
use arbitrary symbols. That is, tokens the typically have no
intrinsic relation to what they represent. This lack of mean-
ing is a key ingredient in the notorious “grounding prob-
lem”. Connectionist models often use arbitrary patterns
as the basic compoundable units but not always. On the
other hand, the stimulation patterns on a sensory surface
of an animal (like the finger tips, retina and basilar mem-
brane) illustrate highly non-arbitrary pairing of a stimulus
pattern with meaning.
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Between these simple physical concatenation and
superimposition lies Context Sensitive Concatenation
(Smolensky, 1988). Tokens with distinct physical iden-
tities are concatenated but they are affected by their
combination with particular other tokens. These are il-
lustrated by Elman’s recent models (Elman, 1989) and
the dynamic memory of Anderson and Port.

Static vs. Temporal Combination. A crucial
issue that cuts across the previous one is whether
the actual act of combining basic units to form com-
pound representations occurs in time or only statically.
(The temporality of combination should not to be con-
fused with the temporal vs. static nature of basic to-
kens themselves that we discussed in the previous sec-
tion.) Both standard computer languages and linguis-
tic models (Chomsky, 1965) depend on static hierar-
chical structures.

Of course, if modelling of time as a sequence of sym-
bols proves inadequate, one can always model time as
‘just another parameter’ and deposit some kind of time
measurements within the representation itself (Klatt,
1976; Port, 1981). But eventually, before addressing
the real world, the artificiality of this maneuver must
be faced by any model of representation in a nervous
system (Port, 1990).

Certain ‘recurrent’ connectionist models (eg, (An-
derson and Port, 1990; Elman, 1989)) deploy com-
plex representations that are essentially temporally
extended. The basic components, attractor states,
are appended in time, so the structure of a sequence
is encoded in characteristic trajectories through state
space. Systems along this line can be extended to ex-
hibit limit-cycle dynamics. It is likely that a dynamic
analog of concatenation in time can be achieved by
passing across the saddle points that separate one at-
tractor basin from the next for each sequential compo-
nent. We suspect that complex representations formed
by temporal combination must underlie a wide range of
real-time cognitive processes in speech and language.

Thus, there appear to be several possible kinds of
tokens. And each may support composition in several
ways.

Functional Role of Representations

Symboloidal schemes of representation exhibit certain
kinds of properties that only become apparent when
we consider how representations in that scheme are
handled within the context of processing. It is to be
expected that the radical differences in the nature of
representational elements we are proposing will have
consequences for their use.

Passive vs. Active. Representations are normally
seen as inert structures that are distinct from the pro-
cesses that manipulate them. This powerful assump-
tion underlies the notion of a Universal Turing Ma-
chine. The embedded Turing machine is described as



a set of rules, which the universal Turing machine can
execute at its convenience. The representations of the
embedded model sit on the tape waiting to be acted
upon by the host machine.

Another possibility is that representations are self-
executing processes. That is, a symboloid might propel
itself toward new representational stabilities without
need of an external executive that reads the states and
executes the steps specified in a static rule table. Self-
execution can be driven either by external input or by
internal dynamic representations from elsewhere in the
system. As a primitive example, the Interactive Acti-
vation models (McClelland & Rumelhart,1981; Elman
and McClelland, 1986) for speech recognition have rep-
resentations that are (weakly) active in this sense. As
input feature vectors become active during word pre-
sentation, they excite phoneme-level units and eventu-
ally word-level units. Information flows up, down and
laterally within the model such that evolving represen-
tations at one level drive the development of represen-
tations at other levels. No external observer (or uni-
versal Turing machine) reads the activation levels and
to decide what to do next. The control of the model
has been decentralized or distributed. The Anderson-
Port model for auditory pattern recognition that will
be described below is also active in this sense.

Digital vs. Analog. Do the representations enable
operations upon them that are ‘positive’ and ‘reliable’
in the terms of (Haugeland, 1985)? In classical symbol
systems, representations are digital in the sense that
the most basic identifying and transforming processes
can always be carried out with complete, unambiguous
success (e.g., the executive system can tell that the
symbol in the buffer is either foo or it is not; there is
no question of its being “somewhat foo”). This digital
character is, of course, supported by other properties
of the representational scheme such as discrete basic
tokens and the strict concatenation property.

In some connectionist schemes, however, we find rep-
resentations that are not digital in this sense. For ex-
ample, if one attempts to use the RAAM architecture
to represent many sequences by sequential superimpo-
sition, the representations of stack states become so
closely packed in the activation space of the relevant
units that operations on the representations eventually
cannot be carried out positively and reliably (Pollack,
1991). Such a system is essentially analog. As trees
are reconstructed from the stack, reliability deterio-
rates. Things that are different are eventually forced
into equivalence classes.

Dynamic Models and Time

We think that these dimensions are useful in revealing
both the possible diversity in symboloidal schemes of
representation and some of the similarities that exist
between the classical symbolic model and connectionist
schemes. But the connectionist framework also lends
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itself to dynamic models (Hopfield, 1984; Grossberg,
1980) and these open up opportunities for a differ-
ent way of conceptualizing representations (see (van
Gelder, 1991) for further discussion). Thus, we now
explore that possibility in a little more detail in the
context of a model for recognition of auditory pat-
terns. These patterns might be as short and complex
as a familiar chair squeek or bird chirp, of intermediate
length, like a syllable or a strum on a guitar, or they
might be hierarchically structured auditory objects like
words, melodies or sentences.

A crucial step in dealing with real-time input to a
cognitive model is the step from milliseconds to ab-
stract event categories. This a very difficult to achieve
because abstract events typically occur with variable
durations. Thus temporal measurements in millisec-
onds (even if nervous systems did have a way of mea-
suring them) are simply the wrong kind of description
(Rosen, 1978). It appears that dynamic systems pro-
vide a way to obtain abstract categories from real-time
input.

Dynamic Memory. Processing of temporal pat-
terns as dynamic representations has been demon-
strated to a limited extent. For example, Simple Re-
current Networks (Elman, 1990; Elman, 1989) respond
to learned sequential patterns by following a character-
istic trajectory in activation space. We view these tra-
jectories as dynamic representations, distinct for each
input sequence. In this case, states of the system near
the end of each sequence distinguish each learned pat-
tern. This can be illustrated by looking a little closer
at the model described by Anderson and Port.

A network was trained (by a form of supervised
gradient-descent learning) to recognize sequential pat-
terns of tones. The network has 6 input frequency
bins of which only one was strongly active on each
time frame (since the input was effectively sinusoidal
over this frequency range). There were 7 nodes in the
fully recurrent Dynamic Memory, as shown in Figure 1.
The activation of each node on the next time step is
the decayed value from the previous time step plus the
squashed sum of weighted activations from all other
nodes in the Dynamic Memory clique. In addition,
each of these nodes receives inputs from a layer that
indicates the energy in the six frequency bands. The
system learned to recognize a particular sequence of 8
input spectra comprising a melody-like pattern (An-
derson and Port, 1990).

The model was trained to recognize one or more
melody-like target patterns by using one of the dy-
namic memory nodes as an identification node for each
target. The weight vector after training enabled it to
produce stable trajectories for target sequences ending
in a particular corner of the space (where an identifica-
tion node approached 1) for the last two time cycles of
presentation of any target. The model achieved better
than 90% correct identification on each of several tar-



Dynamic Memory

Freq. High

Freq.
INPUT STREAM

Figure 1: The network that recognizes melody-like 8-
step sequential patterns. There are six input nodes,
one for each frequency bin, and seven dynamic mem-
ory nodes that are fully connected (to itself and all
neighbors. One (or more) of these nodes also serves as
a category identification node and is trained to reach
a target value for just the last 2 time frames of the
pattern. The input-feature group learned to sharpen
the spectrum by lateral inhibition of its neighbors.

gets. This contrasts with the response of the system to
distractor patterns (that is, to non-trained patterns).
In this case, trajectories are not distinctive. As shown
in the left hand panel of Figure 2, when a target is
presented, the memory followed a characteristic path
through activation space (represented here by its two
most significant principal components).

What if the rate of presentation is altered? When
the patterns are presented at half-tempo, as shown in
the right hand panel of Figure 2, essentially the same
trajectory is produced. This suggests the possibility
that chains of abstract objects could be learned by
such a dynamic network. If the system waits to al-
low the input patterns themselves determine when the
representational state should change, a major problem
in control of cognitive models might be solved — the
problem of how to parse time into useful pieces.

The critical property of rate invariance is achieved
because the representation consists of a sequence of dy-
namically linked states. These states are not forced to
proceed from one to the next at a rate clocked by the
machine itself, but are instead controlled by changes
in the inputs (in interaction with the internal state).
These results show how static fixed points can be com-
bined into a learned basic sequence when driven by
external input (which might be sensory or produced
by another group of nodes). It is likely such tokens
can be combined into larger structures by a process
that nests them into higher-level, more slowly chang-
ing, representations. The incoming pattern itself en-
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(A) Standard Rate (B) Half Rate

Figure 2: The trajectory of a target pattern plotted on
the first two principal components of the 7-D activation
space of dynamic memory. The patterns were 8-frame
tone sequences (see Anderson and Port, 1990). The
left panel shows the response after the presentation
at the standard rate (the rate at which training was
performed). The right panel shows the same network’s
response to the target when each spectral frame was
presented twice.

trains the dynamics of the trajectory determining the
entire composite representation. The representations
of the constituents of these melody-like patterns ac-
tively lead toward those states characteristic of the
learned pattern as a whole. This is the sense in which
the tokens are dynamic and play an active role in the
system. They determine, at the appropriate point in
time, what will happen next.

Interestingly, when attention is addressed to the dy-
namics of recurrent networks as a way of accounting for
interesting behavior, then one notices that connection-
ism itself is important in this enterprise particularly
for its support of learning and distributed represen-
tations. Other, non-connectionist models might also
support interesting dynamics.

Conclusions.

One goal of this paper was to suggest that there are
many more possible schemes that can serve a represen-
tational function than have been well-explored thusfar.
Without a clear idea of the degree of independence of
the parameters discussed here, it is difficult to estimate
the size of this space. We hope that the framework of-
fered here will help fix thoughts on this problem.

A second goal was to emphasize the possibility of
dynamic, active representations that are meaningful
because of their grounding in sensory surfaces in real-
time (Gibson, 1968). Although symbolic models for
language assume timeless static symbols apriori, sys-
tems embedded in the world must obtain appropriate
symbolic functions on their own. Dynamic representa-
tions in the auditory pattern-recognition model exhibit
natural rate invariance by entraining their dynamics to



the temporal structure of stimulation. This is an im-
portant step toward an understanding of how the or-
dered, nested, symbol-like representations of language
could be learned by a system that functions in real
time.

Returning to language, we have suggested that dy-
namic models have many useful properties — especially
for aspects of linguistic skill that are ignored by lin-
guistics. Clearly, further technical developments will
be necessary to demonstrate composition beyond the
most basic level for dynamic representations. Many as-
pects of human speech have proven intractible to sym-
bolic models. Perhaps symboloids can do better.

Acknowledgements. Thanks to Sven Anderson for
important contributions to the development of these
ideas and to David Chalmers as well as Lisa Meeden,
Doug Blank and other members of the Mind, Al and
Computation group at Indiana for helpful comments
on various drafts. This research was funded in part by
the Office of Naval Research, grant number N00014-
91-J1261.

References

Anderson, S. and Port, R. (1990). A network model of
auditory pattern recognition. Technical Report 1,
Indiana University, Institute for the Study of Hu-
man Capabilities.

Blank, D. S., Meeden, L. A., and Marshall, J. B.
(1992). Exploring the symbolic/subsymbolic con-
tinuum: a case study of RAAM. In Dinsmore, J.,
editor, Closing the Gap: Symbolism vs. Connec-
tionism. L. Erlbaum Assoc.

Browman, C. and Goldstein, L. (1986). Towards an ar-
ticulatory phonology. Phonology Yearbook, 3:219—
252.

Chalmers, D. J. (1990). Syntactic transformations on
distributed representations. Connection Science,
2:53-62.

Chomsky, N. (1965). Aspects of the Theory of Syntaz.
MIT Press, Cambridge, Mass.

Elman, J. (1989). Representation and structurein con-
nectionist models. Technical Report 8903, Center
for Research in Language, UCSD, La Jolla, CA
92093-0108.

Elman, J. (1990). Finding structure in time. Cognitive
Science, 14:179-211.

Elman, J. and Zipser, D. (1988). Learning the hid-
den structure of speech. Journal of the Acoustical
Society of America, 83:1615-26.

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connection-
ism and cognitive architecture: A critical analysis.
Cognation, 28:3-T1.

Gibson, J. J. (1968). The Senses Considered as Per-
ceptual Systems. Harcourt Brace, New York.

492

Grossberg, S. (1980). How does a brain build a cogni-
tive code? Psychological Review, 87(1):1-51.

Haugeland, J. (1985). Artificial Intelligence: The Very
Idea. MIT Press.

Hopfield, J. (1984). Neurons with graded response
have collective computational properties like those
of two-state neurons. Proceedings of the National

Academy of Sciences, 81:3088-3092.

Klatt, D. (1976). Linguistic uses of segmental du-
ration in English: Acoustic and perceptual evi-
dence. Journal of the Acoustical Society of Amer-
ica, 59:1208-21.

Pollack, J. (1991). Recursive distributed representa-
tions. Artificial intelligence, page in press.

Port, R. and Crawford, P. (1989). Pragmatic effects
on neutralization rules. Journal of Phonetics,

16(4):257-282.

Port, R. F. (1981). Linguistic timing factors in combi-
nation. Journal of the Acoustical Society of Amer-

ica, 69:262-274.

Port, R. F. (1990). Representation and recognition of
temporal patterns. Connection Science, 1-2:151-
176.

Rosen, R. (1978). Fundamentals of measurement and
representation of natural systems. North-Holland.

Saltzman, E. and Munhall, K. (1989). A dynamical
approach to gestural patterning in speech produc-
tion. Ecological Psychology, 1:333-382.

Sejnowski, T. and Rosenberg, C. (1987). Parallel net-
works that learn to pronounce English text. Com-
plez Systems, 1:145-168.

Skarda, C. and Freeman, W. (1987). How brains make
chaos in order to make sense of the world. Behav-
toral and Brain Sciences, 10:161-195.

Smolensky, P. (1988). On the proper treatment of con-
nectionism. Behavioral and Brain Sciences, 11:1-
74.

van Gelder, T. (1990). Compositionality: A connec-
tionist variation on a classical theme. Cognitive
Science, 14:355-384.

van Gelder, T. (1991). Connectionism and dynamical
explanation. In Proceedings of the 13th Meeting of
Cognitive Science Society, page in press, Hillsdale,
NJ. L. Erlbaum Assoc.



	cogsci_1991_487-492



